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We consider the possible detection of parity violation at the linear level in gravity using polarized
anisotropies of the cosmic microwave background. Since such a parity violation would lead to non-
zero TB and EB correlations, this makes those odd-parity angular power spectra a potential probe
of parity violation in the gravitational sector. These spectra are modeled incorporating the impact
of lensing and we explore their possible detection in the context of small-scale (balloon-borne or
ground-based) experiments and a future satellite mission dedicated to B-mode detection. We assess
the statistical uncertainties on their reconstruction using mode-counting and a (more realistic) pure
pseudospectrum estimator approach. Those uncertainties are then translated into constraints on
the level of parity asymmetry. We found that detecting chiral gravity is impossible for ongoing
small-scale experiments. However, for a satellite-like mission, a parity asymmetry of 50% could be
detected at 68% of confidence level (at least, depending on the value of the tensor-to-scalar ratio),
and a parity asymmetry of 100% is measurable with at least a confidence level of 95%. We also
assess the impact of a possible miscalibration of the orientation of the polarized detectors, leading to
spurious TB and EB cross-correlations. We show that in the context of pseudospectrum estimation
of the angular power spectra, self-calibration of this angle could significantly reduce the statistical
significance of the measured level of parity asymmetry (by e.g. a factor ∼ 2.4 for a miscalibration
angle of 1 degree). For chiral gravity and assuming a satellite mission dedicated to primordial B-
mode, a non detection of the TB and EB correlation would translate into an upper bound on parity
violation of 39% at 95% confidence level for a tensor-to-scalar ratio of 0.2, excluding values of the
(imaginary) Barbero-Immirzi parameter comprised between 0.2 and 4.9 at 95% CL.
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I. INTRODUCTION

The anisotropies of the cosmic microwave background
(CMB) are currently the most powerful probe of the
physics underlying the primordial universe. Those
anisotropies arise into three flavors: total intensity and
two degrees of freedom describing its linear polarization.
Though CMB polarized anisotropies are measured using
two Stokes parameters, Q and U , they are most conve-
niently described using a gradient-like, E-mode, and a
curl-like, B-mode [1, 2].

Such a decomposition of the linearly polarized
anisotropies is meaningful at a physical level as it is di-
rectly linked to the primordial cosmological perturba-
tions sourcing CMB anisotropies. For instance, on the
linear level the B-modes can be sourced by the primordial
gravitational waves [3, 5] and not by the scalar fluctua-
tions, thought to be largely responsible for the observed
total intensity and E-mode anisotropies. Consequently,
a detection of the B-mode anisotropy at large angular
scales (` > 100) in excess of what is expected from the
gravitational lensing signal could be seen as a direct val-
idation of inflationary theories, as the latter are consid-
ered to be the most likely source of the gravity waves,
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and could allow for discrimination between different in-
flationary models. It could also set useful constraints on
the reionization period [6]. At smaller angular scales,
B-modes are expected to be mainly due to gravitational
lensing of CMB photons which converts E-modes into
B-modes [7] and therefore their detection – a source of
constraints on the matter perturbation evolution at red-
shift z ∼ 1 when light massive neutrinos and elusive dark
energy both play potentially visible roles. Very recently,
the direct detection of the lensing-induced B-mode and
the primordial B-mode has been reported by the po-
larbear experiment [8] and the bicep2 experiment [9],
respectively.

In the standard cosmological paradigm, the TB end
EB cross-correlations are vanishing. However, they re-
main important quantities to be estimated from the data.
This is because on the one hand, these odd-parity cross-
spectra are comprehensive, end-to-end, null tests of the
presence of instrumental and/or astrophysical system-
atic effects still present in the data (see e.g. [10, 11]).
On the other hand, as some non-standard cosmologi-
cal mechanisms could produce nonvanishing odd-parity
cross-spectra, their detection could become a smoking
gun of such effects with potentially far-reaching conse-
quences for our understanding of the Universe. Examples
of such mechanisms include a primordial stochastic mag-
netic field, which generates TB and EB correlations, if
this magnetic field possesses a helical component [12–14]
or a pseudoscalar inflaton field which naturally couples
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to the electromagnetic field in a parity-dependant way
[15–17]. Similar effects can be obtained due to a rotation
of the plane of linear polarization of the CMB photons
traveling from the last scattering surface to our detec-
tors. This could result from either the Faraday rotation
induced by interaction with background magnetic fields
[18–21] or interactions with pseudoscalar fields on the
trajectory of CMB photons [22].

In this paper, we consider the case of odd-parity an-
gular power spectra as probes of parity violation in the
primordial Universe as induced by gravity. The impli-
cation of chiral gravity on CMB anisotropies has been
first explored in Ref. [23] and then in Ref. [24] where
it was shown that if parity is violated by gravitation at
the linear level, CMB polarized anisotropies should ex-
hibit non vanishing EB and TB cross-correlations. This
idea has been theoretically strengthened in Refs. [25–
27], and the idea that gravity could be parity dependent
can be traced back to its formulation by e.g. Cartan and
Kibble [28] or Ashtekar [29]. The possible detection of
such parity asymmetry using CMB datas coming from a
satellite-like mission has been discussed in Refs. [30, 31],
in Ref. [32] in the Horava-Lifshitz framework and in Ref.
[33] (including the case of a ballon-borne experiment in
the latter).

We amend and elaborate on this proposal of Refs.[23,
24, 30, 31, 33] in three directions. First, chiral gravity
leads to primary TB and EB cross-correlations which
are latter on, deformed by the weak gravitational lens-
ing by large scale structure. As this could potentially
lead e.g. EE correlations to leak into EB correlations
(which would partially mask the primary EB), we there-
fore include in the predicted C`’s the impact of lensing.
Second, we make use of a Fisher matrix formalism to
assess the potential detection of chiral gravity from the
measurements of CMB polarized anisotropies in two typ-
ical experimental setups: small-scale experiments as mo-
tivated by operating (or forthcoming) balloon-borne or
ground-based experiments such as polarbear, sptpol,
qubic or actpol, for ground-based experiments [34],
and, such as spider or ebex, for balloon-borne exper-
iments [35], and, satellite-like missions as motivated by
e.g. litebird, prism or pixie proposals [36]. Estima-

tion of the uncertainties on the reconstructed C
TB(EB)
`

(subsequently used in the Fisher matrix) is based first on
a näıve mode-counting (as a reference), and, second, on
Monte-Carlo simulations coupled to a realistic statistical,
pure pseudospectrum based estimators of angular power
spectra. Thirdly, we assess the impact of a miscalibra-
tion of the orientation of the polarized detectors which
creates spurious TB and EB correlations coming from
TE and EE, BB respectively.

The paper is organized as follows. The section II is
devoted to the theoretical prediction of the TB and EB
angular power spectra including the impact of weak grav-
itational lensing by large scale structure. We present
the statistical uncertainties on the reconstruction of
C
TB(EB)
` ’s using pure pseudospectrum estimators in Sec.

III. The results of the application of such an approach
to the two above-defined typical cases of CMB experi-
ments dedicated to polarization, small-scale experiments
and satellite-like missions, are presented in Secs. IV B
and IV C respectively. We finally conclude and discuss
the potential detection of chiral gravity within CMB
anisotropies in the last section, Sec. V, and discuss the
relevance and extension of those results to other possible
sources of parity violation in the primordial universe.

The technical details are provided in the appendices A
and B.

II. ANGULAR POWER SPECTRA IN CHIRAL
GRAVITY

A. Primary anisotropies

If parity invariance is broken by gravity, the amount
of gravitational waves produced during inflation differs
from one helicity state to another. As a consequence, the
primary CMB polarized anisotropies gain non vanishing
TB and EB cross-correlations. Using the line of sight
solution of the Boltzmann equation [38] and following
Ref. [24], the different angular power spectra are given
by

CXZ` =

∫
dk
{

∆X
`,S(k, η0)∆Z

`,S(k, η0)PS(k) (1)

+ ∆X
`,T(k, η0)∆Z

`,T(k, η0)
[
PRT (k) + ε× PLT(k)

]}
In the above, X, Z = T, E or B and ∆

X,S(T)
` is the

transfer function for scalar(tensor) modes. The number
ε is equal to (+1) for the TT, EE, BB and TE angu-
lar power spectra, and, equal to (−1) for the TB and
EB angular power spectra. Clearly, the TB and EB
cross-correlations are equal to zero if PRT = PLT at all
k values, as expected in a parity invariant primordial
universe. However, if for any reason PRT (k) 6= PLT(k),
then the primary CMB anisotropies would exhibit non-
vanishing TB and EB cross-correlations. In the follow-
ing, the TT, EE, BB and TE correlations will be de-
noted even power spectra and the TB and EB correla-
tions will be called odd power spectra.

The primary correlations of BB, TB and EB types
are only sourced by the tensor mode and these angular
power spectra are given by

CBB` =

∫
dk
(
∆B
`,,T(k, η0)

)2 P(+)
T (k), (2)

CTB` =

∫
dk∆T

`,T(k, η0)∆B
`,T(k, η0)P(−)

T (k), (3)

CEB` =

∫
dk∆E

`,T(k, η0)∆B
`,T(k, η0)P(−)

T (k), (4)

with

P(±)
T (k) = PRT (k)± PLT(k). (5)
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Following Ref. [24–27], the primordial power spectra of
the left-handed and right-handed gravitational waves dif-
fer by two different effective Newton constants. As a
consequence, one expect a change in amplitude but iden-
tical spectral indices for PRT and PLT , i.e. rR 6= rL and
nR = nL. The same modifications are also obtained in
the framework of pseudoscalar inflation [15–17]. We sub-
sequently model the primordial power spectra by

P(±)
T (k) = r(±) ×AS ×

(
k

k0

)nT

, (6)

with AS the amplitude of the power spectrum for
scalar perturbations at the pivot scale, k0, (set equal to
0.002 Mpc−1 in our study) and, nT(= nR = nL) the tilt
of the tensor modes. The parameters r(±) = rR ± rL
stand for the tensor-to-scalar ratio amounting the ampli-

tude of P(±)
T . The parameter r(+) is positive-valued while

r(−) can be either positive-valued (rR > rL) or negative-
valued (rR < rL). Since the BB correlations are only
generated by P(+) and the TB and EB correlations by

P(−), the amplitude of CBB` measures the cosmological

parameter r(+), while the amplitudes of CTB` and CEB`
measure the parameter r(−). In a parity invariant uni-
verse, rR = rL and one easily obtains r(+) = r, the stan-
dard tensor-to-scalar ratio, and r(−) = 0. We stress that
there is a priori no reason for r(+) to be equal to the
tensor-to-scalar ratio of standard cosmology, r, except in
the case of parity invariant universe. However, what is
constrained thanks to a measurement of CBB` is r(+) and
from that perspective, r(+) plays the same role as r.

Parity breaking is amounted by the parameter:

δ =
r(−)

r(+)
=
rR − rL
rR + rL

, (7)

which varies from −1 ≤ δ ≤ 1 since both rR and rL
are greater than or equal to zero. Parity is not bro-
ken by gravity if δ = 0. The case of no production of
left-handed(right-handed resp.) gravitational waves cor-
responds to δ = 1(−1 resp.).

Moreover, the opposite convention of δ can be adopted,
as in [30]. It simply changes the sign of the EB and TB
correlations. Indeed, through parity transformation, i.e.

r(+) → r′(+) = r(+) and δ → δ′ = −δ, (8)

(corresponding to rR → r′R = rL and rL → r′L = rR),
the primary CMB anisotropies are changed to

CTB` → C ′
TB
` = −CTB` , (9)

CEB` → C ′
EB
` = −CEB` , (10)

leaving the four other power spectra unchanged.

B. Impact of lensing

During their propagation from recombination to today,
CMB photons travel through the potential-well of large

scale structures deforming their trajectories because of
gravitational lensing. This distorts the spatial distribu-
tion of primary anisotropies and deforms their angular
power spectra. However, the gravitational lensing is usu-
ally neglected as mentioned in Ref.[31]. We propose here
to derive the impact of lensing by large scale structure
and to show the obtained lensed power spectra. To this
end, we adopt the harmonic formalism developed in Ref.
[39], extended here to account for the presence of primary
TB and EB correlations which are non-zero (see also Ref.
[40, 41] for a real-space formalism). This computation is
explicitly given in App. A and we only provide here the
final results. For temperature, one obtains :

C̃TT` =
[
1 +RT

]
CTT` +

∑
`1,`2

FT``1`2C
φφ
`1
CTT`2 (11)

with

RT = −1

2
`(`+ 1)

∑
`3

`3(`3 + 1)
2`1 + 1

4π
Cφφ`3 , (12)

FT``1`2 =
1

4
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2
(13)

× (2`1 + 1)(2`2 + 1)

4π

(
` `1 `2
0 0 0

)2

.

More interestingly is the case of the cross-correlation
between temperature and polarization fields including
primary TB correlations :

C̃TE` =
[
1 +RX

]
CTE` +

∑
`1,`2

FX``1`2C
φφ
`1
CTE`2 , (14)

C̃TB` =
[
1 +RX

]
CTB` +

∑
`1,`2

FX``1`2C
φφ
`1
CTB`2 , (15)

with

FX``1`2 =
1

8
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2
(16)

× (2`1 + 1)(2`2 + 1)

4π

(
` `1 `2
0 0 0

)
×
[(

` `1 `2
2 0 −2

)
±
(

` `1 `2
−2 0 2

)]
.

and

RX = −1

2
[`(`+ 1)− 2]

∑
`3

`3(`3 + 1)
2`3 + 1

4π
Cφφ`3 . (17)

It is worth mentionning that the primary TE angular
power spectrum does not contribute to the lensed TB
angular power spectrum. If it were not the case, the for-
mer power spectrum would have spoilt the lensed C̃TB`
(at least in some range of angular scales). Indeed, Pri-
mary TB correlations are only sourced by tensor modes
in chiral gravity while primary TE are sourced by both
scalar and tensor modes. As a consequence, the polarized
anisotropies are such as:

∣∣CTE` ∣∣ � ∣∣CTB` ∣∣. This means
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that any leakages of primary CTE` into C̃TB` are a non-
negligeable, if not dominant, contaminant of the primary
TB cross-correlation. As primary TE are not affected
by parity breaking, this would have significantly lowered
the efficiency of using the (necessarily lensed) TB angu-
lar power spectrum as a probe of chiral gravity.

Finally, the lensed angular power spectra for polarized
anisotropies read

C̃EE` =
[
1 +RP

]
CEE` +

∑
`1,`2

F
(+)
``1`2

Cφφ`1 C
EE
`2 (18)

+
∑
`1,`2

F
(−)
``1`2

Cφφ`1 C
BB
`2

C̃BB` =
[
1 +RP

]
CBB` +

∑
`1,`2

F
(+)
``1`2

Cφφ`1 C
BB
`2 (19)

+
∑
`1,`2

F
(−)
``1`2

Cφφ`1 C
EE
`2

C̃EB` =
[
1 +RP

]
CEB` (20)

+
∑
`1,`2

(
F

(+)
``1`2

− F (−)
``1`2

)
Cφφ`1 C

EB
`2 ,

with

F
(±)
``1`2

=
1

16
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2

× (2`1 + 1)(2`2 + 1)

4π
(21)

×
[(

` `1 `2
2 0 −2

)
±
(

` `1 `2
−2 0 2

)]2

.

and

RP = −1

2
[`(`+ 1)− 4]

∑
`3

`3(`3 + 1)
2`3 + 1

4π
Cφφ`3 . (22)

As is the case for TB correlations, the lensed EB power
spectrum is not affected by the primary EE and BB
power spectra. This once again means that the potential
observation of a (necessarily lensed) non-vanishing EB
angular power spectrum is a direct tracer of non-zero EB
correlations prior to lensing. In the more precise setting
of this study, this means that observing non-vanishing
EB (as well as non-vanishing TB) is a direct view of
primary EB cross-correlations due to parity breaking,
though `-modes are reshuffled by lensing.

C. Numerical results

The explicit computation of the six angular power
spectra is done by numerically solving for the Boltz-
mann equations. To this end, we modified the class
Boltzmann code 1 [42] incorporating two different pri-
mordial power spectra for left-handed and right-handed

1 http://class-code.net

FIG. 1: Upper panel: Angular power spectra for primary
CMB anisotropies for BB (black curve), TB (red curves) and
EB (blue curves) correlations. The parameters r(+) is set
equal to 0.05 and δ varies from 0.1 (meaning 10% of parity
violation) to 1 (100% of parity violation). Solid lines cor-
respond to positive values of the angular power spectra and
dashed lines correspond to negative values. Changing from
(δ) to (−δ) with r(+) unchanged changes the sign of CTB

`

and CEB
` and leaves CBB

` unaffected. We note that smaller
|δ| translates into smaller

∣∣r(−)

∣∣. Lower panel: Same as up-
per panel but taking into account the impact of gravitational
lensing.

tensor modes, as well as the impact of lensing on primary
anisotropies using the above-derived formulas. Our main
interest is the TB and EB angular power spectra and
we only show our results for such C`’s (alongside the BB
spectrum used as a reference to evaluate the amplitude
of the odd power spectra). The case of TT , EE, BB
and TE power spectra is identical to standard, parity-
invariant cosmology, setting r = r(+).

The CMB angular power spectra for BB (black curve),
TB (red-orange curves) and EB (blue curves) in the case
of primary anisotropies are depicted in the upper panel
of Fig. 1, for nR = nL = 0. The parameter r(+) is set
equal to 0.05 and δ = 0.1, 0.5 and 1, corresponding to
r(−) = 0.005, 0.025 and 0.05. The specific case of δ = 1
corresponds to 100% of parity violation. As δ is positive-

http://class-code.net
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valued, this parity break is in the right-handed sector,
meaning that left-handed tensor modes are not produced
at all. The shape of the power spectrum for negative
values of δ is easily inferred from using the transformation
rule of the C`’s under parity transformation: changing
from (δ) to (−δ) with r(+) unchanged changes the sign

of CTB` and CEB` and leaves CBB` unaffected. For δ > 0,
the TB angular power spectrum is negative at the largest
scale, ` ≤ 10, and the EB spectrum is negative-valued
for ` = 2. From the transformation rule under parity,
this means that for negative values of δ, the TB angular
power spectrum is positive for multipoles smaller than 10
while the EB quadrupole becomes positive. The impact
of lensing on the TB and EB power spectra is shown
in the lower panel of Fig. 1. As already underlined,
gravitational lensing has only a mild impact on the odd-
parity angular power spectra.

III. UNCERTAINTIES ON ANGULAR POWER
SPECTRUM RECONSTRUCTION

A. Experimental setups

For numerical investigations, we define two fiducial
experimental setups. Though idealized, they are cho-
sen to reflect the general characteristics of forthcom-
ing CMB experiments dedicated to B-modes detection.
Those characteristics which crucially impact on the an-
gular power spectrum reconstruction are the noise level,
the beam width and a peculiar sky coverage.

First, we consider the case of a possible satellite exper-
iment aimed at primordial B-mode detection. For such
an experiment, we relied on the epic−2m [43] specifi-
cations for the noise level and the beam width, setting
these to 2.2 µK-arcmin for the noise level and 8 arcmin
for the beam width. For the peculiar sky coverage of such
a ’nearly full-sky’ experiment, we consider the galactic
mask R9 used for polarized data in wmap 7yrs release
(see [44]) adding the point-sources catalog mask. So we
obtain a ∼ 71% sky coverage patch showed in the upper
panel of Fig. 2.

Second, we consider the case of small-scale experiments
inspired by the ebex, ballon-borne experiment [45]. The
noise level and the beam width are respectively set equal
to 5.75 µK-arcmin and 8 arcmin. The observed part of
the sky covers ∼ 1% of the total celestial sphere and its
peculiar shape is displayed in the lower panel of Fig. 2.
It consists of a square patch of an area of ∼ 400 square
degrees including holes to mimic polarized point-sources
removal.

B. Analytical and numerical error bars

We use two approaches to derive the error bars and the
covariance matrix on the estimated angular power spec-
tra, denoted Σ in the following. The first one is based

FIG. 2: Upper panel: Sky area as observed by the fiducial
satellite-like experiment as considered in this work. The sky
coverage is ∼ 71% of the total celestial sphere. The mask is
a combination of the galactic mask R9 and the point-sources
catalog used for polarized data in wmap 7yr release. Lower
panel: Sky area as observed by the fiducial balloon-borne,
small-scale experiment as considered in this work. The sky
coverages is ∼ 1% of the total celestial sphere.

on a simple mode-counting. This underestimates the un-
certainties as leakages due to cut-sky effects (and the full
complexity of the mask) are not taken into account. Sec-
ond, we make use of Monte-Carlo simulations using a
pure pseudospectrum code for reconstructing the angular
power spectra from the maps of the Stokes parameters
[46].

1. Mode-counting expressions

The näıve mode counting derivation of the covariance
matrix leads to :

[Σ]
XY,X′Y ′

`,`′ =
〈
CXX

′

` CY Y
′

`′

〉
−
〈
CXX

′

`

〉〈
CY Y

′

`′

〉
(23)

= δ`,`′

(
1

(2`+ 1)fsky

)
×

[(
CXX

′

` +
NXX′

`

B2
`

)(
CY Y

′

` +
NY Y ′

`

B2
`

)

+

(
CXY

′

` +
NXY ′

`

B2
`

)(
CY X

′

` +
NY X′

`

B2
`

)]
,
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with X, X ′ and Y, Y ′ taking the values T, E and B.
In the above formulas, the quantities fsky, B` and NXX′

`
described the impact of the instrumental strategy on the
CMB anisotropies reconstruction: fsky stands for the ob-
served (or kept in the analysis) fraction of the sky, B`
is the multipolar decomposition of the beam of the tele-
scope, and, NXX′

` describes the instrumental noise power

spectrum entering in the estimation of C̃XY` . As ex-
plained in the appendix C of Ref. [46], this noise power
spectrum vanishes for TE, TB and EB cross-correlations
as long as the noise in the I, Q, and U maps is not corre-
lated between two different Stokes parameters. We will
assume here that this is indeed the case.

It is worth to mention that because none of the an-
gular power spectra are vanishing in this setting, the six
angular power spectra shows cross-correlations. As an
example, the correlations between the BB and TB esti-
mators are given by :

[Σ]
BB,TB
``′ =

2δ`,`′

(2`+ 1)fsky
C̃TB`

[
C̃BB` +

NBB
`

B2
`

]
, (24)

which is non zero for non-vanishing CTB` .

2. Error bars from pure pseudospectrum

We also estimate the statistical uncertainties on the
reconstructed C`’s using a more elaborated approach
based on Monte-Carlo simulations. Though the above-
mentioned formulas are easy to handle with, they un-
derestimate the error bars expected using realistic sta-
tistical tools to reconstruct the angular power spectra
from maps of the CMB sky. In particular, it neglects
the impact of leakages due to cut-sky effects in the case
of pseudospectrum-based estimation of the C`’s. Those
leakages between multipoles and between polarization
modes (see e.g. [47]) increase the sampling variance of
angular power spectra estimations. For the more spe-
cific case of B-modes, such an increase could be dramatic
as the much higher E-mode leaks into the much weaker
B-mode. Those leakages can be corrected on average
[48, 49] but, if not corrected at the level of the variances
of the estimators, the much higher CEE` and CTE` will
inevitably contribute to the sampling variance of CBB` ,
CTB` and CEB` , thus significantly increasing it. We there-
fore rely on the x2pure code [46] which implements the
so-called pure pseudospectrum estimators, correcting for
E/B mixing on average and at the level of variances [50].
The pure decomposition of the polarization field intro-
duced in Ref. [51] allows E and B-modes to be exactly
separated on a partial sky and for any single realization
of the CMB polarized anisotropies, a sufficient condition
for removing any E-modes leaking into B for all the sta-
tistical moments of the angular power spectra estimators.
A prescription based on the pure decomposition has been
introduced in Ref. [50] (and later elaborated on in Refs.
[52, 53]) to built a pseudospectrum estimator for CBB`

free of any E/B mixing. This approach has finally been
extended to incorporate odd power spectra in Ref. [46]
(see also Ref. [54] for a flat sky implementation of the
pure pseudospectrum estimator).

It was shown that the so-called hybrid computation2

is the most accurate for estimating BB, TB and EB
angular power spectra for the case of small-scale experi-
ments covering ∼ 1% of the celestial sphere, and assum-
ing a parity invariant universe, i.e. CTB` = CEB` = 0
[46]. More recently, the need for such a pure approach
in the context of satellite experiments, allowing for an
estimation of the C`’s over ∼ 71% of the celestial sphere,
has been proved for the specific case of the BB angular
power spectrum [55]. Such a pseudospectrum approach
is therefore a method of a choice for analyzing forthcom-
ing data currently taken by small-scale experiments as
well as a potential, long-term, satellite mission dedicated
to B-mode.

We use the x2pure code in a Monte-Carlo setting to
derive realistic estimates of the statistical uncertainties
(including sampling variance and noise variance) for the
two above-defined different experimental configurations.
The angular power spectra are estimated within band-
power with the first bin ranging from ` = 2 to ` = 20
and the following bins having a width of ∆b = 40.

C. Results for the two experimental configurations

Our numerical results for the uncertainties on the re-
construction of the odd-power spectra are depicted in
Fig. 3 for the two above-described experimental config-
urations, and the two approaches to compute the error
bars. Black curves are the input angular power spectra.
Solid-orange curves stand for the error bars using an `-by-
` mode counting derivation, Eq. (23). Dashed-red curves
are the error bars obtained from 500 Monte-Carlo sim-
ulations using the pure pseudospectrum reconstruction
of the angular power spectra. This has to be compared
to the binned mode-counting computation of those error
bars given by the dashed-orange curves, i.e.

[Σ]
A,A
b,b =

∑
`∈b

[
`(`+ 1)

2π∆b

]2

[Σ]
A,A
`` , (25)

where we used the fact that the mode-counting covari-
ance is diagonal in the `-space.

We consider here the case of r(+) = 0.1 and δ = 1
(i.e. r(−) = 0.1), in line with the latest constraints on
the tensor-to-scalar ratio [9, 56].

2 The so-called hybrid computation means that angular power
spectra are estimated using pure pseudomultipoles of B-types
and standard pseudomultipoles of E-type.
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FIG. 3: Uncertainties on the reconstructed CTB
` (left panels) and CEB

` (right panels) angular power spectra for two experimental
configurations: a satellite mission covering ∼ 71% of the sky (upper panels) and a small-scale experiment covering ∼ 1% of
the sky (lower panels). Black curves are the input angular power spectra. Solid-orange curves stands for the error bars using
an `-by-` mode counting derivation. Dashed-red curves are the error bars obtained from 500 Monte-Carlo simulations using
the pure pseudospectrum reconstruction of the angular power spectra. This has to be compared to the binned mode-counting
computation of those error bars given by the dashed-orange curves.

1. Analytical error bars

As shown in Sec. II, the TB angular power spectra
is higher in amplitude than the BB spectrum, and one
could be tempted to deduce that detecting TB cross-
correlations would be easier than detecting BB correla-
tions. However, one can expect rather high error bars on

the reconstructed C̃
TB(EB)
` at large angular scales simply

because of the sampling variance. Indeed the sampling
variance for the TB correlations, reads

[Σ]
TB,TB
`` =

1

(2`+ 1) fsky

[(
C̃TB`

)2

+ C̃TT` C̃BB`

]
.

The TB and BB spectra are sourced by tensor pertur-
bations only. However, the TT spectrum is generated
by both scalar and tensor perturbations. We therefore

expect
√
C̃TT` C̃BB` � C̃TB` and the signal-to-noise ratio

for TB roughly scales as

C̃TB`√
[Σ]

TB,TB
``

∼
√

(2`+ 1) fsky

 C̃TB`√
C̃TT` C̃BB`



which is much smaller than unity because CTT` is sourced
by scalar perturbations3. The same argument applies to
the case of the EB cross-correlations as scalar perturba-
tions contribute via C̃EE` .

This is clearly highlighted in Fig.3, focusing on the
orange curve. For the noise levels considered here, the
uncertainties are completely dominated by the sampling
variance from ` = 2 to ` = 1000 and, more precisely,

by the term

√
C̃
TT (EE)
` C̃BB` for C̃

TB(EB)
` . Detecting the

TB and EB angular power spectra multipole by multipole
is impossible even in this rather optimistic case (δ = 1
and r(+) = 0.1) and one should rely on binning for a
positive detection of such C`’s in this framework.

3 For BB, the signal-to-noise ratio is given by
√

(`+ 1/2)fsky for
such an ideal case dominated by the sampling variance. Clearly,
detecting C̃BB

` is easier than detecting C̃TB
` though the later is

higher in amplitude than the former.
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2. Error bars from pure pseudospectrum

The error bars on the C
TB(EB)
` ’s using the pure pseu-

dospectrum estimation is depicted by the dashed-red
curves. For the case of the satellite-like mission, the TB
angular power spectrum can be detected in the three first
bins while the detection of EB is not possible without a
drastic increase of the width of the bandpowers. For the
case of small-scale experiments, neither the TB spectrum
nor the EB one can be measured, at least with the size
of the bandpower here-adopted.

We note here that the expected uncertainties shown in
Fig. 3 are very high so that one could be tempted to con-
clude that a detection of r(−) is impossible. Nevertheless,

the fact that detecting C̃
TB(EB)
` multipole by multipole

(or bin by bin) is not possible does not necessarily im-
ply that detecting r(−) is impossible, for the detection
of such a parameter is done by resumming the angular
power spectrum over bandpowers. Since those bandpow-
ers are assumed to be uncorrelated, this will inevitably
decrease the uncertainty on r(−) by a factor ∼

√
N , with

N the total number of resummed bins.

IV. FORECASTS ON CHIRAL GRAVITY

A. Fisher matrix formalism

1. Fisher matrix

Detecting chiral gravity using CMB polarized
anisotropies translates into the possible detection of
non-vanishing CMB angular power spectra of odd type,
and subsequently into the possible measurement of r(−)

from those odd power spectra. To this end, we will
rely on a simple Fisher analysis [57] to translate the
uncertainties on the odd power spectrum reconstruction
into errors on the recovery of r(−) (see also Ref. [58]
for a more elaborated approach). Such an approach has
already been proved to be useful in such a context for
e.g. forecasting constraints on bouncing cosmology in
loop quantum cosmology [59].

As explained in Sec. III, the six estimated CMB angu-
lar power spectra are cross-correlated and this additional
source of information should be kept in the Fisher analy-
sis. We therefore use the six angular power spectra as our
”input” data and define the Fisher information matrix as
follows :

[F]ij =
∑
A,A′

∑
b,b′

∂CAb
∂θi

∣∣∣∣
θ̄i

×
[
Σ−1

]A,A′
b,b′
× ∂CA

′

b′

∂θj

∣∣∣∣∣
θ̄j

, (26)

where the A and A′ superscripts runs over
TT, EE, BB, TE, TB and EB, and b, b′ denote the
bandpowers. Our set of parameters is θi ≡ (r(+), r(−))
and the above Fisher information matrix is just the

inverse of the covariance matrix for θi assuming the like-
lihood to be gaussian. The marginalized signal-to-noise
ratio (S/N)θi for a given parameter θi is finally given by

(S/N)θi = θ̄i/
√

[F−1]ii.

It is worth mentioning that though only CTB` and CEB`
do depend on r(−), the constraints that can be set on
that parameter using the six angular power spectra will
be different than the constraint obtained by using solely
the two odd-parity angular power spectra. In the latter
case, the covariance matrix entering the Fisher informa-
tion matrix would be a sub-block of the full covariance
matrix. However, the inverse of that sub-block is not
equal to the sub-block of the inverse of the full covari-
ance as long as the estimated TB and EB power spectra
are correlated to the other spectra, which is indeed the
case here.

2. Parameterizing the input angular power spectra

Information about r(+) is in principle contained in the
six angular power spectra. However, the TT, EE and
TE correlations are mainly generated by the scalar in-
homogeneities and we can safely set those angular power
spectrum to their best-fit shape and considered them as
independent of r(+). This approximation is valid as in
this study, we will consider values of r(+) smaller than
0.2. Information about r(−) is solely contained in the
TB and EB cross-correlations. We therefore modeled
the CMB anisotropies as C̃BB` = f(r(+)) as a function

of r(+), and, C̃
TB(EB)
` = f(r(−)) as functions of r(−).

The parameters r(±) provide the global amplitude of the
B-related angular power spectra. Those power spectra
can therefore be parametrized as an amplitude, given by

r(+) for C̃BB` and given by r(−) for C̃
TB(EB)
` , multiplied

by a template (plus a constant term coming from lensing
for the specific case of the BB spectrum). The different
templates will be denoted using calligraphic font, T .

As a function of r(+), the lensed BB angular power
spectrum reads

C̃BB` [r(+)] = r(+) × T BB` + T EE→BB`,lens , (27)

with T BB` and T EE→BB`,lens two fiducial angular power spec-
tra, independent of r(+), and given by

T BB` =
[
1 +RP

]
CBB` [r(+) = 1] (28)

+
∑
`1,`2

F
(+)
``1`2

Cφφ`1 C
BB
`2 [r(+) = 1],

and

T EE→BB`,lens =
∑
`1,`2

F
(−)
``1`2

Cφφ`1 C
EE
`2 . (29)

The fiducial CBB` [r(+) = 1] is easily computed using the
line of sight solution and setting r(+) = 1. The EE
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angular power spectra involved in CBB`,lens is obtained using
the Planck best fit.

The two odd angular power spectra are similarly ex-
pressed using two fiducial power spectra which do not
depend on r(−), i.e.

C̃
TB(EB)
` [r(−)] = r(−) × T

TB(EB)
` , (30)

with

T TB` =
[
1 +RTB

]
CTB` [r(−) = 1] (31)

+
∑
`1,`2

FTB``1`2C
φφ
`1
CTB`2 [r(−) = 1],

and

T EB` =
[
1 +RP

]
CEB` [r(−) = 1] (32)

+
∑
`1,`2

(
F

(+)
``1`2

− F (−)
``1`2

)
Cφφ`1 C

EB
`2 [r(−) = 1].

As is the case for the BB angular power spectrum, the

two fiducial power spectra C
TB(EB)
` [r(−) = 1] are easily

computed using the line of sight solution and setting r(−)

equal to 1.
The parameter r(+) plays the same role as r in stan-

dard cosmology. As a consequence, any observational
constraint on r can be directly translated into a con-
straint on r(+). We remind that from temperature as
measured by the planck satellite, the tensor-to-scalar
ratio is bounded from above: r < 0.11 at 95% CL [56],
while the latest measurement of polarization by the bi-
cep2 experiment constrains r = 0.2+0.07

−0.05 [9]. This latest
constraint on the tensor-to-scalar ratio probably needs
some confirmation. As a consequence, we will explore
values of r(+) ranging from 0.007 to 0.2 with a specific
focus on the r(+) = 0.05, 0.1 and 0.2

B. Detection of r(−) : satellite mission

1. Results with mode-counting covariance

We first consider the case of the signal-to-noise ratio
on the parameter r(−). A preliminary study is to inquire
the values of the signal-to-noise ratio obtained on the
above-mentioned parameters relying on a simple mode-
counting error bars estimation. This warrants an efficient
exploration of the measurable range of r(−) and δ using

the x2pure code for a correct estimation of the uncer-
tainties.

Let us first briefly mention that taking into account the
TT, EE, BB and TE power spectra brings an additional
amount of information thus increasing the signal-to-noise
ratio on r(−). This additional piece of informations sim-
ply consists in the fact that those angular power spectra
do not depend on r(−) and it is finally transferred into
the ending values of [F]r(−),r(−)

since the TB and EB
spectra are correlated to the four other ones. Without

r+ 0.2 0.1 0.07 0.05 0.03 0.007
r−

0.2 10.6
0.1 3.8 5.66
0.07 2.57 3.6 4.3
0.05 1.8 2.46 2.91 3.4
0.03 1.07 1.44 1.68 1.95 2.44
0.007 0.25 0.33 0.39 0.44 0.54 0.94

TABLE I: Signal-to-noise on r(−) for different values of r(+)

in the case of satellite mission and using a mode-counting
expression for the error bars on the angular power spectra
reconstruction. The underlined values correspond to a detec-
tion at 2σ of parity violation.

such correlations, adding TT, EE, BB and TE would
have not change the signal-to-noise ratio. Considering
the case of r(+) = r(−) = 0.1, the derived signal-to-noise
ratio on r(−) using solely TB and EB would be ∼ 5, to
be compared to 5.6 using the full set of angular power
spectra (see Tab. I).

The table I summarizes our results on (S/N)r(−)
for

different values of r(+) and r(−) (keeping in mind that
r(−) ≤ r(+)) using the mode-counting expressions for the
covariance of the C` and marginalized over r(+). We note
that the correlations between r(−) and r(+) are small for
the ranges of values here-explored, i.e.

Fr(+),r(−)√
Fr(+),r(+)

Fr(−),r(−)

∼ 10−3.

However, the signal-to-noise ratio for a fixed value of
r(−) decreases for higher values of r(+) since the higher

r(+), the higher C̃BB` and the higher the uncertainties on

C̃
TB(EB)
` . This translates inevitably into higher uncer-

tainties on r(−).
A 2σ detection of parity violation is guaranteed if

r(+) ≥ 0.05 and r(−) ≥ 0.05. The values of r(−) = 0.03
appears as a threshold value since for r(−) < 0.03 the
signal-to-noise ratio is systematically below unity. For
this precise value of r(−) = 0.03, the signal-to-noise ratio
on r(−) varies from 1.44 to 2.44, for r(+) = 0.1 (a parity
violation of 30%) and r(+) = 0.03 (a parity violation of
100%), respectively.

Moreover, for a tensor-to-scalar ratio r = 0.2 as favored
by the bicep2 experiment [4], a detection of chiral gravity
with at least 2σ is expected for parity violation greater
or equal to 35%.

The figure 4 shows the (S/N)r(+)
(black crosses) and

(S/N)r(−)
(colored lines) as a function of r(+) and for

different level of parity violation, δ ranging from 10% to
100%. (We remind that for a fixed value of δ, the value
of r(−) increases for higher values of r(+).) For r(+) ≤
0.11 (as favored by the planck results on temperature
anisotropies), a 3σ detection of parity violation can be
achieved for δ ≥ 70% and a 2σ detection is possible for a
parity violation greater than 50%, and a minimal value
of r(+) ∼ 0.05 appears as mandatory for such a detection.
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FIG. 4: Signal-to-noise ratio on the r+ (black cross) and r−
(colored lines) parameters is here depicted for four values of δ.
The black dashed lines figure the 1σ and 3σ level of detection.

For r(+) = 0.2 (as favored by polarization measurements
of bicep2), δ = 40% could be detected at 3σ.

2. Results with pure pseudo-C` covariance

Based on this optimistic exploration of the detectable
range of parity violation, we then estimate realistic sta-
tistical error bars on the reconstructed angular power
spectra in the context of the pure pseudospectrum es-
timators. Our results are summarized in the table II,
considering r(+) = 0.05, 0.1 and 0.2 and δ = 0.5 and 1.

For the most optimistic case, i.e. r(+) = 0.2 and δ = 1,
the obtained signal-to-noise ratio on the r(−) parameter
is (S/N)r(−)

= 5.46 then a detection at 5σ would be pos-
sible. This has to be compared to a 10σ detection as-
suming the (underestimated) mode-counting derivation
of the statistical uncertainties. If for that same value
of r(+) = 0.2, parity violation is reduced to δ = 0.5
(corresponding to r(−) = 0.1), its detection is reduced
by more than a factor 2, the signal-to-noise ratio on
r(−) being ∼2.5. The same conclusions are drawn for
the case of r+ = 0.1, the signal-to-noise ratio ranging
from 3.67 for δ = 1 down to 1.51 for δ = 0.5, using the
pure reconstruction of B-modes. We finally look at the
case of δ = 1 and r(+) = 0.05. The obtained result is:
(S/N)r(−)

= 2.35 meaning a detection of chiral gravity of

at least 2σ for δ = 1. (For the same situation and as-
suming the mode-counting estimation of the error bars, a
3σ detection would have been inferred.) Similarly, if the
level of parity violation is only of 50% (corresponding to
r(−) = 0.025), the signal-to-noise ratio is reduced by a
factor ∼ 2.

We also consider the extreme case where parity is not
violated, δ = 0, and setting r(+) = 0.05 and r(+) = 0.2.
In the first case, the computed value of the uncertainty on
the value of r(−) is σr(−)

= 0.023. This fixes a minimal

δ = 1 δ = 0.5

r(+) = 0.2 5.46 2.5
r(+) = 0.1 3.67 1.51
r(+) = 0.05 2.35 1.11

TABLE II: Signal-to-noise ratio on r(−), (S/N)r(−)
, as derived

from a pure pseudospectrum reconstruction of the angular
power spectra. We remind that for a given value of r(+) and
δ, the value of r(−) is r(−) = δ × r(+).

detectable value of r(−) ∼ 0.046 at 95% CL for such a
possible satellite mission dedicated to B-mode, assuming
r(+) = 0.05. In that case, detecting EB and TB power
spectra compatible with zero corresponds to an upper
bound on the level of parity violation of δ ≤ 0.92 at 95%
CL. For r(+) = 0.2, this upper bound becomes δ ≤ 0.39
at 95% CL.

3. Impact of miscalibration angle

There are many systematic effects affecting the recon-
struction of the Stokes parameter starting from the time
stream data. Among them, a miscalibration of the pro-
jection on the sky of the polarization orientation of the
detectors will turn out into a rotation of the Stokes pa-

rameter, P± → P
(obs)
± = e±2i∆ψ × P± [10, 11, 60]. A

way to estimate ∆ψ is to put the detecting TB and EB
correlation equal to zero as they are expected to vanish
in standard cosmology [61]. In the context of cosmo-
logical parity-violation parametrized by e.g. r(−), the
miscalibration angle has to be estimated from TB and
EB jointly to r(−). We propose to quantify how the mis-
calibration of the polarization angle can deteriorate the
previous obtained constraints on chiral gravity.

As a consequence of this systematic effect, the observed
angular power spectra are a linear combination of the real
CMB angular power spectra. With non-vanishing TB
and EB cross-correlations, the observed angular power
spectra are :

C̃
TT (rot)
` = C̃TT` (33)

C̃
TE (rot)
` = cos(2∆ψ)C̃TE` − sin(2∆ψ)C̃TB` , (34)

C̃
TB (rot)
` = sin(2∆ψ)C̃TE` + cos(2∆ψ)C̃TB` , (35)

C̃
EE (rot)
` = cos2(2∆ψ)C̃EE` + sin2(2∆ψ)C̃BB` (36)

+ sin(4∆ψ)C̃EB` ,

C̃
BB (rot)
` = sin2(2∆ψ)C̃EE` + cos2(2∆ψ)C̃BB` (37)

− sin(4∆ψ)C̃EB` ,

C̃
EB (rot)
` =

1

2
sin(4∆ψ)

(
C̃EE` − C̃BB`

)
(38)

+ cos(4∆ψ)C̃EB` .

As compared to the results shown in e.g. Ref. [61], one
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FIG. 5: A miscalibration of the polarization angle impacts the amplitude and shape of the power spectra. The unrotated
power spectra of the B-modes and the TB and EB cross-correlations are depict in black solid curve from left to right panels.
The difference between the rotated power spectra and the unrotated is represented in dashed lines for different values of the
miscalibration angle ∆Ψ.

can notice the additionnal contribution of C̃TB` and C̃EB` .
However, even in the case of vanishing TB and EB spec-
tra, such miscalibration leads to spurious non-vanishing
odd-parity angular power spectra. In Fig. 5, the intrinsic
CMB angular power spectra (solid-balck curves), C̃`, and
the leaked power due to rotation (dashed-colored curves),

∆C` = (C̃
(rot)
` − C̃`), are displayed for the BB, TB and

EB correlations and ∆ψ = 0.1, 0.5 and 1 degree.
We note that the above modeling of the impact of mis-

calibrating the orientation of the detectors implicitly as-
sumes that such angle is identical over the entire observed
patch. If some variations are allowed, the resulting angu-
lar power spectra would be a convolution of the intrinsic
CMB spectra with the angular power spectra of the ro-
tation angle. This would significantly increase the com-
plexity of the problem as this convolution mixes different
multipoles. We also remind that the impact of homo-
geneous cosmic birefringence is exactly identical to the
impact of a miscalibration of the polarizers orientation
then the forthcoming results and conclusions could also
be applied to the case of homogeneous cosmic birefrin-
gence.

a. Bias on parity violation– Following the approach
of Ref. [61], the miscalibration angle can be fitted by
minimizing the following χ2 (here generalized to the six
angular power spectra):

χ2 =
∑
A,A′

∑
b,b′

(
C
A (th)
b − CA (obs)

b

)†
×
[
Σ−1

]A,A′
b,b′

×
(
C
A′ (th)
b′ − CA

′ (obs)
b′

)
, (39)

with C
A (th)
b the theoretically predicted angular power

spectra, considered as functions of the set of parameters

enlarged to θi = (r(+), r(−),∆ψ), and C
A (obs)
b the re-

constructed angular power spectra. The error bars on
the reconstructed values of the parameters is the Fisher
information matrix at the peak of the likelihood and is
given by Eq. (26), assuming that the estimated power

spectra C
A (obs)
b are unbiased.

The first effect of a miscalibration on the detection
of parity violation would be to bias the measurement
of r(−) if such rotation is not taken into account in the

modelized C`’s. Assuming that C
A (th)
b is not rotated by

the miscalibration angle though the observed spectra are,
the recovered, and therefore biased, value of r(−), noted

r
(bias)
(−) , is obtained by minimizing the χ2 :

0 =
∑
A,A′

∑
b,b′

(
∂C

A (th)
b

∂r(−)

)†
×
[
Σ−1

]A,A′
b,b′

(40)

×
(
C
A′ (th)
b′ − CA

′ (obs)
b′

)
.

In the above, C
A (obs)
b is fixed by the targeted values

θ̄i = (r̄(+), r̄(−), ∆̄ψ) while C
A (th)
b is a function of r(±)

only, i.e. C
A (th)
b = C̃Ab . The uncertainties on the recon-

structed value of r(−) is derived from the Fisher matrix

where (∂C
A (th)
b /∂r(−)) = (∂C̃Ab /∂r(−)).

The biases, ∆r(−) = (r
(bias)
(−) − r̄(−)), and their asso-

ciated error bars are depicted in Fig. 6 as a function
of ∆ψ and for different input values of r(−). It shows
that for ∆ψ . 0.1 degree, the measured r(−) is com-
patible with the input value, r̄(−), within the 1σ uncer-
tainty. For higher values of ∆ψ, the bias would trans-
late into a false detection of parity violation. We men-
tion that most of the bias comes from the EB spectrum
since its intrinsic CMB contribution is rapidly dominated
by spurious power spectra due to the miscalibration, i.e.
∆CEB` ≥ C̃EB` for ∆ψ ≥ 0.1 degree. The main con-
tribution for small angles to the EB power spectrum is

C̃
EB (rot)
` ' C̃EB` + 2(∆ψ)C̃EE` with the first term be-

ing the intrinsic EB correlations and the second term
the spurious EB correlation as induced by miscalibra-
tion of the orientation of the polarisers. This means that
positive-valued ∆ψ leads to a positive bias while negative
values of ∆ψ leads to a negative bias.

b. Statistical uncertainties with mode-counting–
The proper approach consists in fitting for the three
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FIG. 6: Bias on the reconstruction of r(−) if the miscalibra-
tion angle, ∆ψ, is not taken into account in the parameters
estimation. For ∆ψ ≥ 0.1 degree, the bias is sufficiently high
to lead to a false detection of parity violation.

parameters θi = (r(+), r(−),∆ψ) by minimizing the χ2.
The final estimate will be unbiased and the uncertainties
are given by the Fisher information matrix assuming
that the theoretical power spectra are appropriately

modeled, i.e. C
A (th)
b = C̃

A (rot)
b . As r(−) and ∆ψ could

be degenerated, one should expect the marginalized
error bars on r(−) to be enlarged.

Using the mode-counting for estimating the covariance
on the reconstructed angular power spectra, our numer-
ical investigations show that the signal-to-noise ratio on
r(−), for r(±) ranging from 0.004 to 0.2 and ∆ψ vary-
ing from 0.1 to 1 degree, are only degraded by a factor
∼ 10−5 as compared to the case without such miscal-
ibration angle, meaning that the joined reconstruction
of ∆ψ with r(−) only marginally affects the detection of
parity violation. This is in perfect agreement with the
results obtained in e.g. Ref. [33] where they consider
both parity violation in the primordial universe and ho-
mogeneous cosmic birefringence. However, this conclu-
sion is only valid assuming the mode-counting expres-
sions for the covariance on the estimated angular power
spectra. In the appendix B, we prove the following state-
ment : assuming that i) the covariance matrix on the es-
timated angular power spectra, Σ, is given by the mode-
counting expression, ii) the entire set of correlations be-
tween the six estimated angular power spectra is taken
into account, and, iii) the covariance matrix Σ is domi-
nated by the sampling variance, then it is shown that the
sub-block (r(±), r(±)) of the Fisher information matrix is
equal to the Fisher matrix as derived without any miscali-
bration angle, and that the correlations between r(±) and
∆ψ does not depend on the values of ∆ψ. Theoretically
speaking, the hypothesis of the sampling variance domi-
nated regime is not met at small angular scales. However,
most of the constraints on r(±) come from the largest
angular scales where noise variance is negligible. As a
consequence, supposing that uncertainties are dominated

by sampling variance is a valid assumption in practice.
Moreover, our numerical results shows that the parame-
ters r(±) are poorly degenerated with ∆ψ for the range
of values of ∆ψ here-considered, i.e.

Fr(±),∆ψ√
Fr(±),r(±)

F∆ψ,∆ψ
∼ 10−6 − 10−5.

This means that in practice, the (symmetric) Fisher in-
formation matrix is well approximated by

F '

 Fr(+),r(+)
Fr(+),r(−)

ε(+)f(+)(r(+))
· Fr(−),r(−)

ε(−)f(−)(r(−))
· · F∆ψ,∆ψ

 ,

with Fr(±),r(±)
derived without a miscalibration error, as

in Sec. IV B 1, and ε(±) ∼ 10−5. As a consequence, the
signal-to-noise ratio as derived in the previous section,
Sec. IV B 1, remains relevant even with a non-vanishing
miscalibration angle.

We have further checked the above argument by two
numerical experiments. On the one hand, we significantly
increased the noise level which breaks the hypothesis of
being sampling-variance dominated. On the other hand,
we only take the diagonal of the covariance matrix Σ,
which break the hypothesis of using all the information
through the correlations between different angular power
spectra. In both cases, we do observe that the signal-to-
noise ratio on e.g. r(−) indeed decreases for higher values
of ∆ψ. We have also checked numerically that Fr(±),∆ψ

does not depend on the value of ∆ψ.
c. Statistical uncertainties with the pure pseudospec-

trum approach– We have finally investigated the ef-
fect of a joint reconstruction of the miscalibration an-
gle, ∆ψ, and r(−) in the context of the pure pseudospec-
trum estimation of the C`’s. We consider the two cases
r(+) = r(−) = 0.1 and 0.2 and subsequently derive the
signal-to-noise ratio on r(−) marginalized over both r(+)

and ∆ψ. If ∆ψ is indeed equal to zero, the detection of
r(−) is only marginally affected since the signal-to-ratio

ratio is degraded by a relative factor of 10−4. However,
this signal-to-noise ratio is reduced for higher values of
∆ψ. For ∆ψ = 0.1 degree, (S/N)r(−)

is reduced to 5

for r(+) = r(−) = 0.2 (to be compared to 5.46 without
miscalibration) and to 2.96 for r(+) = r(−) = 0.1 (to be
compared to 3.67). This corresponds to a decrease by a
factor ∼ 1.09. For ∆ψ = 1 degree, the reduction factor
is ∼ 2.4, obtaining (S/N)r(−)

=2.23 for r(+) = r(−) = 0.2

and (S/N)r(−)
=1.58 for r(+) = r(−) = 0.1. This shows

that the non-degeneracy between r(+) and ∆ψ (as men-
tionned in Ref. [33]) is only valid in the context of the
mode-counting expression for the covariance.

We believe the fundamental reason for such a result is
that pseudospectrum based estimators does not allow for
accessing to the whole set of correlations between the six
estimated angular power spectra, due to the joint effect
of mode-mixing and binning. Since keeping track of all
the correlations was one of the mandatory assumptions



13

used in App. B, this probably explains why in the more
realistic case of pure pseudospectrum reconstruction of
the C`’s, non-vanishing ∆ψ then impacts on the signifi-
cance of the estimation of r(−).

d. Inhomogeneous cosmic birefringence– As previ-
ously underlined, the impact of miscalibrating the ori-
entation of the polarized detectors is identical to the
cosmological effect of homogeneous cosmic birefringence.
However, such cosmic birefringerence can also have an
inhomogeneous contribution. This could be the case if
e.g. a scalar field coupled to the fermion current (there-
fore generating CPT violation) also exhibits some inho-
mogeneities in its energy density, as it should be since
such a scalar field inevitably evolves in a perturbed FLRW
space-time [62, 63]. In that case the rotation angle due to
cosmic birefringence splits into an homogeneous part, α,
and an inhomogeneous part, δα(~n), with δα � 1. This
allows for performing a Taylor expansion to infer the im-
pact of that inhomogeneous sector on the CMB angular
power spectra.

Considering this additional contribution and the pres-
ence of primary EB and TB contribution, the ob-
served angular power for e.g. TB correlations will re-
ceive new contributions proportional to (sin(2α)CTE`′ +
cos(2α)CTB`′ ) ×

〈
δα2
〉
. Similar terms arise for the EB

spectrum where (sin(2α)CTE`′ + cos(2α)CTB`′ ) is replaced

by (sin(4α)(C̃EE`′ − C̃BB`′ )/2 + cos(4α)C̃EB`′ ). (We refer
the interested reader to Refs. [62, 63] for a more detailed
computation and we only focus here on orders of mag-
nitude.) Those corrections are of second order, being
proportional to

〈
δα2
〉
. Following Ref. [62], the ampli-

tude of
〈
δα2
〉

has been estimated to be of the order of

∼ 10−3. This means that the biases derived by assuming
a purely homogeneous birefringence may changed by a
factor ∼ 10−3 which is well within the statistical uncer-
tainties, making our previously derived results still rele-
vant for inhomogeneous cosmic birefingence.

C. Detection of r(−): small-scale experiment

Our results on the signal-to-noise for r(−) in the case
of a small-scale experiment are summarized in Tab. III,
assuming the mode-counting for the derivation of the co-
variance matrix. Clearly in this case, the measurement
of such a parameter is unfeasible as (S/N)r(−)

< 1.5, even
in the most optimistic case of r(+) = r(−) = 0.2. This is
because most of the constrains on r(−) comes from the
largest angular scale which are unachievable for an ex-
periment covering 1% of the celestial sphere.

Using the covariance as obtained from a pure pseu-
dospectrum estimation of the angular power spectra only
degrades the signal-to-noise ratio. For example, in the
case of r(+) = r(−) = 0.1 (i.e. δ = 1), we obtain
(S/N)r(−)

= 0.2, as compared to 0.64 by using the mode-
counting approach.

For a parity-invariant primordial universe, i.e. r(−) =
0, the marginalized uncertainty on r(−) for r(+) = 0.05 is

r(+) 0.2 0.1 0.07 0.05 0.03 0.007
r(−)

0.2 1.22
0.1 0.43 0.64
0.07 0.29 0.4 0.487
0.05 0.2 0.28 0.326 0.38
0.03 0.12 0.16 0.188 0.216 0.27
0.007 0.03 0.037 0.043 0.049 0.06 0.1

TABLE III: Signal-to-noise on r(−) for different values of r(+)

in the case of small-scale (ballon-borne or ground-based) ex-
periments, and using a mode-counting expression for the error
bars on the angular power spectra reconstruction.

σr(−)
= 0.36. Therefore, the δ parameter is greater than

unity which is theoretically irrelevant, meaning that no
significant upper bound on the level of parity violation
can be established using datas from ongoing or forthcom-
ing small-scale experiments.

V. CONCLUSION AND DISCUSSION

In this paper, we investigate the constraints that could
be set on chiral gravity from the detection of the CMB
TB and EB correlations, taking into account statistical
uncertainties as incurred by pure pseudospectrum recon-
struction of the CMB angular power spectra and consid-
ering the impact of miscalibrating the orientation of the
polarized detectors. (We stress that all the constraints
we have set are for positive valued r(−). They however
equally apply to negative values of r(−) as in practice,

the derived constraints are for
∣∣r(−)

∣∣.)
We have shown that such a detection of parity viola-

tion leading to non zero C
TB(EB)
` is beyond the scope

of forthcoming small-scale measurements of CMB po-
larized anisotropies. Even in the most optimistic case
of 100% of parity violation and a tensor-to-scalar ratio
of 0.2, and underestimating the uncertainties by using a
mode-counting approach, the signal-to-noise ratio on the
amplitude of parity asymmetric tensor mode is only of
∼ 1.2, and it rapidly diminishes to values smaller than
unity for smaller values of the tensor-to-scalar ratio, r(+),
or a smaller percentage of parity violation. This is be-
cause most of the constraints come from the largest angu-
lar scales which cannot be measured with enough signif-
icance by those experiments. Moreover, even in the case
of vanishing TB and EB cross-correlations, the statisti-
cal uncertainties on their reconstruction via pure pseu-
dospectrum estimators lead to an upper bound of the
level of parity violation of more than 100% at 95% CL.
Since this level is theoretically bounded from above at
100%, this means that no significant constraint can be
set on this type of parity violation using datas from on-
going or forthcoming small-scale experiments.

In the case of a potential satellite mission dedicated to
primordial B-mode, we have shown that a detection with
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at least 2σ is possible for 100% of parity violation and a
tensor-to-scalar ratio of at least 0.05. A 1σ detection is
still achieved for 50% of parity violation and a tensor-to-
scalar ratio of at least 0.05 and a 2.5σ detection would be
possible for r(+) = 0.2. We found that by a measurement
of vanishing TB and EB angular power spectra using
pure pseudospectrum estimators, the level of parity vio-
lation is bounded from above: |δ| ≤ 0.92 at 95% CL. We
have also shown that for such an experimental configura-
tion where sampling variance is dominating at the largest
scales – precisely those scales which allows for constrain-
ing parity violation –, the impact of self-calibrating the
miscalibration angle could have a significant impact on
the final estimation of the level of parity violation, the
reported signal-to-noise ratio being degraded by a factor
of ∼ 1.09 for a miscalibration angle of 0.1 degree and,
more significantly, by a factor ∼ 2.4 for an angle of 1
degree. In this very last case, a 2σ detection of parity
violation becomes possible only for δ = 1 and r(+) = 0.2.
We stress that such an impact is revealed in the context
of the pseudospectrum estimation of the angular power
spectra. By making use of the näıve mode-counting ex-
pression for the covariance of the reconstructed C`’s, it
is formally shown that self-calibration of the orientation
of the polarizers does not impact on the significance of
the reconstruction of r(−) assuming that the covariance
is dominated by sampling variance and that one have ac-
cess to the entire set of cross-correlations between the
six estimated angular power spectra. Nevertheless, this
last assumption is broken by pseudospectrum estimators
(because of mode-mixing and binning) leading to degen-
eracies between r(−) and ∆ψ.

In the context of chiral gravity from the Ashtekar for-
mulation of general relativity, the parameter δ amounting
the level of parity breaking is related to the imaginary
Barbero-Immirzi parameter via δ = 2iγ/(1 − γ2) [26].
(We will restrict to the case of purely imaginary values
of γ though the formalism can be extended to the case
of any arbitrary complex values of γ [27].) The (abso-
lute) level of parity breaking is encoded in |δ| leading

to |γ| =
(
1±
√

1− δ2
)
/ |δ|. Considering the statisti-

cal error bars from a pseudospectrum reconstruction of
the C`’s, detecting |γ| = 1 is possible using datas from
a satellite mission with a statistical significance rang-
ing from 2.3σ to 5.4σ for a tensor-to-scalar ratio rang-
ing from 0.05 to 0.2, respectively. Assuming a detec-
tion of |δ| = 0.5 translates into a detectable value of
γ = 0.26 or γ = 3.73, meaning that such a form of chiral
gravity is detectable with CMB polarized anisotropies if
0.26 ≤ |γ| ≤ 3.75. The significance of that detection for
a future satellite mission ranges from 1.1σ to 2.5σ for
a tensor-to-scalar ratio of 0.05 and 0.2. Detecting TB
and EB angular power spectra which are consistant with
zero leads to an upper bound on the parity violation level
|δ| ≤ 0.92 at 95% CL for r(+) = 0.05 and δ ≤ 0.39 at 95%
CL for r(+) = 0.2. This would mean that 0.66 ≤ |γ| ≤ 1.5
is excluded at 95% CL for r(+) = 0.05 (the exclusion
range at 68% CL would be 0.24 ≤ |γ| ≤ 4.1), and that

0.2 ≤ |γ| ≤ 4.9 is excluded at 95% CL for r(+) = 0.2 (the
exclusion range at 68% CL would be 0.098 ≤ |γ| ≤ 10.1).

In the context of a pseudoscalar inflaton, the amount
of parity violation is given by [17]

|δ| =
8.6× 10−7

(
H2

2M2
Pl

e4πξ

ξ6

)
1 + 8.6× 10−7

(
H2

2M2
Pl

e4πξ

ξ6

)
and

r(+) = 8.1×107

(
H2

M2
Pl

)[
1 + 8.6× 10−7

(
H2

2M2
Pl

e4πξ

ξ6

)]
.

For a given value of r(+), one can express H2

2M2
Pl

as a func-

tion of e4πξ

ξ6 and plug it into |δ|. Following Ref. [17], one

introduces the parameter X̃ = e2πξ/ξ3 which is related
to r(+) and δ via

X̃ =

(
1.37× 107

√
r(+)

)√(
|δ|

1− |δ|

)(
1 +

|δ|
1− |δ|

)
.

As compared to Ref. [17], X̃ is related to their X param-

eter via X = ε × X̃ with ε the first slow-roll parameter.
For r(+) = 0.05, one obtains the following upper bound

on X̃: X̃ ≤ 73 × 107 at 95% CL. For r(+) = 0.2, this

upper bound is strengthened to X̃ ≤ 3× 107 at 95% CL.
This has to be compared to the upper bound reported
in Ref. [17]: X̃ ≤ 6 × 107 at 95% CL, using the up-
per bound set by Planck on primordial non-gaussianities,
fNL < 150 [64]. This means that constraining such mod-
els with TB and EB is on par with the constraints that
can be set with measurements of non-gaussianities as-
suming a rather high value of r(+).
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Appendix A: Lensed angular power spectra with
primary TB and EB correlations

Weak lensing of the primary anisotropies remaps the

primary anisotropies by a displacement fields δ~n = ~∇φ
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with ∇ the covariant derivative on the sphere and φ the
projected potential of the large scale structures. By de-
noting X̃ the lensed CMB anisotropies (we keep untilted
notations for the primary CMB anisotropies), this trans-

lates into T (~n) → T̃ (~n) = T (~n + δ~n) and P±(~n) →
P̃±(~n) = P±(~n + δ~n). This displacement field is sup-
posed to be small in amplitude and one can therefore per-
form a Taylor expansion up to second order of the lensed
CMB anisotropies around their unlensed value. With

such a Taylor expansion, it is shown that the remapping
of CMB primary fluctuations appears as a reshuffling of
the multipoles X`m according to some convolution kernel
involving the harmonic decomposition of the projected
potential, φ`m [39]. This reshuffling acts between differ-
ent `-multipoles but also between different polarization
modes as lensed B-modes receive contribution from pri-
mary E-modes and vice versa. For temperature, it reads:

T̃`m = T`m +
∑
`1,m1

∑
`2,m2

φ`1m1T`2m2 × I``1`2mm1m2︸ ︷︷ ︸
T

(1)
`m

+
1

2

∑
`1,m1

∑
`2,m2

∑
`3,m3

φ`1m1T`2m2φ
?
`3m3

× J``1`2`3mm1m2m3︸ ︷︷ ︸
T

(2)
`m

, (A1)

with

I``1`2mm1m2
=

∫
4π

Y ?`m (∇aY`1m1
) (∇aY`2m2

) d~n, (A2)

J``1`2`3mm1m2m3
=

∫
4π

Y ?`m (∇aY`1m1)
(
∇bY ?`3m3

) (
∇a∇bY`2m2

)
d~n. (A3)

Similarly for polarization, one obtains:

Ẽ`m = E`m +
1

2

∑
`1,m1

∑
`2,m2

φ`1m1

[
E`2m2

× (+)I
``1`2
mm1m2

+ iB`2m2
× (−)I

``1`2
mm1m2

]
︸ ︷︷ ︸

E
(1)
`m

(A4)

+
1

4

∑
`1,m1

∑
`2,m2

∑
`3,m3

φ`1m1
φ?`3m3

[
E`2m2

× (+)J
``1`2`3
mm1m2m3

+ iB`2m2
× (−)J

``1`2`3
mm1m2m3

]
︸ ︷︷ ︸

E
(2)
`m

,

B̃`m = B`m +
1

2

∑
`1,m1

∑
`2,m2

φ`1m1

[
B`2m2

× (+)I
``1`2
mm1m2

− iE`2m2
× (−)I

``1`2
mm1m2

]
︸ ︷︷ ︸

B
(1)
`m

(A5)

+
1

4

∑
`1,m1

∑
`2,m2

∑
`3,m3

φ`1m1φ
?
`3m3

[
B`2m2 × (+)J

``1`2`3
mm1m2m3

− iE`2m2 × (+)J
``1`2`3
mm1m2m3

]
︸ ︷︷ ︸

B
(2)
`m

,

with

(±)I
``1`2
mm1m2

=

∫
4π

[2Y
?
`m (∇aY`1m1

) (∇a2Y`2m2
)± −2Y

?
`m (∇aY`1m1

) (∇a−2Y`2m2
)] d~n, (A6)

(±)J
``1`2`3
mm1m2m3

=

∫
4π

[
2Y

?
`m (∇aY`1m1)

(
∇bY ?`3m3

) (
∇a∇b2Y`2m2

)
± −2Y

?
`m (∇aY`1m1)

(
∇bY ?`3m3

) (
∇a∇b−2Y`2m2

)]
d~n.

The kernels I``1`2mm1m2
and J``1`2`3mm1m2m3

have properties
which greatly simplifies the forthcoming computations.

The final derivation of the lensed angular power
spectrum is obtained by considering the correlators

C̃XZ` =
[〈
X̃`mZ̃

?
`m

〉
+
〈
X̃?
`mZ̃`m

〉]
/2, and making use

of the statistical isotropy of the primary fluctuations,
i.e. 〈X`mZ

?
`′m′〉 = CXZ` δ``′δmm′ and 〈φ`mφ?`′m′〉 =

Cφφ` δ``′δmm′ ; following Ref. [39], we also consider that
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the projected potential causing the deflection of CMB
photons is not correlated to the primary anisotropies of
CMB and we neglect any curl-like contribution to the
deflection field.

1. Properties of I``1`2mm1m2
and J``1`2`3

mm1m2m3

a. First property

The first important property is that I``1`2mm1m2
is an

’even’ quantity: I``1`2mm1m2
= 0 for (`+ `1 + `2) = 2n+ 1,

I``1`2mm1m2
6= 0 for (`+ `1 + `2) = 2n.

(A7)

As shown in Refs. [39, 70], I``1`2mm1m2
is rewritten as a

function of the Gaunt integral

I``1`2mm1m2
=

1

2
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

×
∫

4π

Y ?`m(~n)Y`1m1(~n)Y`2m2(~n) d~n. (A8)

The second line of the above is precisely the Gaunt inte-
gral, G, which is re-expressed as a function of the Wigner-
3j’s, i.e.

G = (−1)m
√

(2`+ 1)(2`1 + 1)(2`2 + 1)

4π
(A9)

×
(

` `1 `2
−m m1 m2

)(
` `1 `2
0 0 0

)
.

Since(
` `1 `2
m m1 m2

)
= (−1)`+`1+`2

(
` `1 `2
−m −m1 −m2

)
(A10)

it is obvious that the Wigner-3j is vanishing for m =
m1 = m2 = 0 for `+ `1 + `2 = 2n+ 1. As a consequence,
I``1`2mm1m2

is also equal to zero for odd values of `+ `1 + `2.

b. Second and third properties

The second and third important properties are that

(+)I
``1`2
mm1m2

is an ’even’ quantity, and, (−)I
``1`2
mm1m2

is an
’odd’ quantity, i.e.: (+)I

``1`2
mm1m2

= 0 for (`+ `1 + `2) = 2n+ 1,

(+)I
``1`2
mm1m2

6= 0 for (`+ `1 + `2) = 2n.
(A11)

and (−)I
``1`2
mm1m2

6= 0 for (`+ `1 + `2) = 2n+ 1,

(−)I
``1`2
mm1m2

= 0 for (`+ `1 + `2) = 2n.
(A12)

Those two properties are simply proved by noticing
that [39]∫

4π
2Y

?
`m (∇aY`1m1

) (∇a2Y`2m2
) d~n = (A13)

(−1)`+`1+`2

∫
4π
−2Y

?
`m (∇aY`1m1

) (∇a−2Y`2m2
) d~n.

From that, it is obvious that (+)I
``1`2
mm1m2

= 0 for odd

values of `+ `1 + `2 while (−)I
``1`2
mm1m2

= 0 for even values
of `+ `1 + `2.

This can also be seen from the explicit expressions of

(±)I
``1`2
mm1m2

as functions of the Wigner-3j since

(±)I
``1`2
mm1m2

=
1

2
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

× (−1)m+2

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

×
(

` `1 `2
−m m1 m2

)
(A14)

×
[(

` `1 `2
−2 0 2

)
±
(
` `1 `2
2 0 −2

)]
.

From the symmetry of the Wigner-3j’s involved in the
last line, it is clear that (+/−)I

``1`2
mm1m2

= 0 for odd(even)
values of `+ `1 + `2.

c. Fourth property

The last useful property is∑
m1

(−)J
``1``1
mm1mm1

= 0. (A15)

To prove it, one shoud first notice that (see Eqs. (59)
and (60) of [39])∑
m1

∇aY`1m1∇bY ?`1m1
=

`1(`1 + 1)

2

2`1 + 1

4π
[(~m+)a(~m−)b

+ (~m−)a(~m+)b] , (A16)

and

[(~m+)a(~m−)b + (~m−)a(~m+)b]∇a∇b±sY`m =

−
[
`(`+ 1)− s2

]
±2Y`m. (A17)

with ~m± = (~eθ ∓ i~eϕ)/
√

2. From those two expressions,
one easily derive that∑

m1

(−)J
``1``1
mm1mm1

= F (`, `1)

∫
4π

[2Y
?
`m2Y`m (A18)

− −2Y
?
`m−2Y`m] d~n,

with F (`, `1) a numerical factor depending on ` and `1.
The integral in the right-hand side of the above expres-
sion is vanishing since the ±2Y`m’s forms an orthonormal
basis on the celestial sphere.
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2. Temperature power spectrum

The case of TT correlation is rather straighforward:
it only consists of reshuffling `-multipoles without any
contribution from primary power spectra but CTT` . The
lensed power spectrum is therefore not affected by non-
vanishing TB and EB and reads:

C̃TT` =

[
1 +

∑
`3

Cφφ`3

∑
m3

Re
[
J``3``3mm3mm3

]]
CTT`

+
∑
`1,`2

CTT`2 Cφφ`1

∑
m1,m2

∣∣I``1`2mm1m2

∣∣2 . (A19)

From the expression of I``1`2mmm1m2
as a function of the

Wigner-3j’s and using that∑
m1,m2

(
` `1 `2
m m1 m2

)(
`′ `1 `2
m′ m1 m2

)
=
δ``′δmm′

2`+ 1
,

(A20)
it is easily shown that

FT``1`2 =
∑
m1,m2

∣∣I``1`2mmm1m2

∣∣2 (A21)

=
1

4
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2

× (2`1 + 1)(2`2 + 1)

4π

(
` `1 `2
0 0 0

)2

.

For the second term, one makes use of Eqs. (A16) and
(A17) to show that∑

m3

J``3``3mm3mm3
= −1

2
`3(`3 + 1)`(`+ 1)

2`3 + 1

4π

×
∫

4π

Y ?`mY`m d~n

= −1

2
`3(`3 + 1)`(`+ 1)

2`3 + 1

4π
,(A22)

where the orthonormality of spherical harmonics has
been used to derive the second line of the above equa-
tion. This leads to

RT =
∑
`3

Cφφ`3

∑
m3

Re
[
J``3``3mm3mm3

]
(A23)

= −1

2
`(`+ 1)

∑
`3

`3(`3 + 1)
2`3 + 1

4π
Cφφ`3 .

3. Temperature-polarization power spectrum

We focus on the case of the TB cross-correlation. This
calculation is then easily adapted to the case of TE by
first, replacing (CTB` ) by (CTE` ), and, second, replacing
(CTE` ) by (−CTB` ),. Let us first notice that

C̃TB` = 〈T`mB?`m〉+
〈
T

(1)
`mB

(1)?
`m

〉
(A24)

+
〈
T`mB

(2)?
`m

〉
+
〈
T

(2)
`mB

?
`m

〉
.

Each of this term are given by

〈T`mB?`m〉 = CTB` , (A25)〈
T

(1)
`mB

(1)?
`m

〉
=

1

2

∑
`1,`2

Cφφ`1

{
CTB`2

∑
m1m2

Re
[
I``1`2mm1m2 (+)I

``1`2 ?
mm1m2

]
− CTE`2

∑
m1m2

Im
[
I``1`2mm1m2 (−)I

``1`2 ?
mm1m2

]}
(A26)

〈
T`mB

(2)?
`m

〉
=

1

4
CTB`

∑
`3

Cφφ`3

∑
m3

Re
[
(+)J

``3``3
mm3mm3

]
+

1

4
CTE`

∑
`3

Cφφ`3

∑
m3

Im
[
(−)J

``3``3
mm3mm3

]
(A27)

〈
T

(2)
`mB

?
`m

〉
=

1

2
CTB`

∑
`3

Cφφ`3

∑
m3

Re
[
J``3``3mm3mm3

]
(A28)

The above expressions can be simplified using the proper-
ties of the I, (±)I and J, (±)J kernels. First, the second

line of Eq. (A26) proportional to CTE` is zero. This is
a consequence of the first and the third properties: for
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any triplet (`, `1, `2), either I``1`2mm1m2
or (−)I

``1`2
mm1m2

is zero
and the product of the two is always vanishing. In other

word, primary TE does not contribute to
〈
T

(1)
`mB

(1)?
`m

〉
, in

perfect agreement with the analogous case of pseudospec-
trum estimators. (This is for that very same reason that
TE is not leaking into TB in pseudospectrum estima-
tor.) Second, the second line of Eq. (A27) proportionnal
to CTE` is also vanishing as a result of the fourth prop-
erty. This means that even at second order, the primary
TE correlations do not contribute to the lensed TB cor-
relations.

The same strategy is adopted for the TE angular power
spectrum, and, similarly to TB, it appears that the pri-
mary CTB` does not contribute to the lensed C̃TE` . Gath-
ering all the terms, one finally obtains

C̃TE` =
[
1 +RX

]
CTE` +

∑
`1,`2

FX``1`2C
φφ
`1
CTE`2 , (A29)

C̃TB` =
[
1 +RX

]
CTB` +

∑
`1,`2

FX``1`2C
φφ
`1
CTB`2 , (A30)

with

FX``1`2 =
1

2

∑
m1,m2

Re
[
I``1`2mmm1m2 (+)I

``1`2?
mmm1m2

]
,(A31)

RX =
1

4

∑
`3

Cφφ`3

∑
m3

{
2Re

[
J``3``3mm3mm3

]
(A32)

+ Re
[
(+)J

``3``3
mm3mm3

]}
.

The first quantity is easily computed starting from the
expressions of I``1`2mmm1m2

and (+)I
``1`2
mmm1m2

as functions of
the Wigner-3j and using Eq. (A20) to get

FX``1`2 =
1

8
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2

× (2`1 + 1)(2`2 + 1)

4π

(
` `1 `2
0 0 0

)
(A33)

×
[(

` `1 `2
2 0 −2

)
±
(

` `1 `2
−2 0 2

)]
.

Using Eqs. (A16) and (A17) and the orthonormality of
spin-(±2) spherical harmonics, it is proved that

∑
m3

(+)J
``3``3
mm3mm3

= −`3(`3 + 1) [`(`+ 1)− 4]
2`3 + 1

4π
.

(A34)
This finally leads to

RX = −1

2
[`(`+ 1)− 2]

∑
`3

`3(`3 + 1)
2`3 + 1

4π
Cφφ`3 .

(A35)

4. Polarization power spectra

For the case of polarized angular power spectra, we
detailed our derivation of the lensed EB cross-correlation
which can then easily be adapted to the case of EE and
BB angular power spectra. Following the same steps as
the ones used for C̃TB` , we first note that

C̃EB` = Re [〈E`mB?`m〉] + Re
[〈
E

(1)
`mB

(1)?
`m

〉]
(A36)

+ Re
[〈
E`mB

(2)?
`m

〉]
+ Re

[〈
E

(2)
`mB

?
`m

〉]
.

Each of this term are given by

Re [〈E`mB?`m〉] = CEB` , (A37)

Re
[〈
E

(1)
`mB

(1)?
`m

〉]
=

1

4

∑
`1,`2

CEB`2 Cφφ`1

∑
m1m2

(∣∣
(+)I

``1`2 ?
mm1m2

∣∣2 − ∣∣(−)I
``1`2 ?
mm1m2

∣∣2) (A38)

− 1

4

∑
`1,`2

(
CEE`2 − C

BB
`

)
Cφφ`1

∑
m1m2

Im
[
(+)I

``1`2
mm1m2 (−)I

``1`2 ?
mm1m2

]
Re
[〈
E`mB

(2)?
`m

〉]
=

1

4
CEB`

∑
`3

Cφφ`3

∑
m3

Re
[
(+)J

``3``3
mm3mm3

]
+

1

4
CEE`

∑
`3

Cφφ`3

∑
m3

Im
[
(−)J

``3``3
mm3mm3

]
(A39)

Re
[〈
E

(2)
`mB

?
`m

〉]
=

1

4
CEB`

∑
`3

Cφφ`3

∑
m3

Re
[
(+)J

``3``3
mm3mm3

]
− 1

4
CBB`

∑
`3

Cφφ`3

∑
m3

Im
[
(−)J

``3``3
mm3mm3

]
. (A40)
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From the fourth property, the second term in the right-
hand side of the equations (A39) and (A40) are vanishing.
Similarly, the second term in the right-hand side of Eq.
(A38) is equl to zero as a result of the second and third
properties. Therefore, both the primary EE spectrum
and the primary BB spectrum does not contirbute to
the lensed EB angular power spectrum.

An identical conclusion is easily derived for the case
of the lensed EE and BB spectrum as the primary EB
power spectrum does not contribute to the nesed EE and

BB spectra, since any contribution of CEB` to C̃
EE(BB)
`

arises as either proportionnal to (+)I
``1`2
mm1m2 (−)I

``1`2 ?
mm1m2

or

proportionnal to
∑
m3 (−)J

``3``3
mm3mm3

, which are both van-
ishing. One finally obtains the following expressions for
the lensed angular power spectra

C̃EE` =
[
1 +RP

]
CEE` +

∑
`1,`2

F
(+)
``1`2

Cφφ`1 C
EE
`2 (A41)

+
∑
`1,`2

F
(−)
``1`2

Cφφ`1 C
BB
`2

C̃BB` =
[
1 +RP

]
CBB` +

∑
`1,`2

F
(+)
``1`2

Cφφ`1 C
BB
`2 (A42)

+
∑
`1,`2

F
(−)
``1`2

Cφφ`1 C
EE
`2

C̃EB` =
[
1 +RP

]
CEB` (A43)

+
∑
`1,`2

(
F

(+)
``1`2

− F (−)
``1`2

)
Cφφ`1 C

EB
`2 ,

with

F
(±)
``1`2

=
1

4

∑
m1,m2

∣∣
(±)I

``1`2
mm1m2

∣∣2 , (A44)

RP =
1

2

∑
`3

Cφφ`3

∑
m3

Re
[
(+)J

``3``3
mm3mm3

]
. (A45)

The computation of RP directly follows from the compu-
tation of RTB and gives

RP = −1

2
[`(`+ 1)− 4]

∑
`3

`3(`3+1)
2`3 + 1

4π
Cφφ`3 . (A46)

Using the expressions of (±)I
``1`2
mm1m2

as functions of the
Wigner-3j’s and the summation rule for the product of
two such symbols, one easily derive that

F
(±)
``1`2

=
1

16
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

2

× (2`1 + 1)(2`2 + 1)

4π
(A47)

×
[(

` `1 `2
2 0 −2

)
±
(

` `1 `2
−2 0 2

)]2

.

Appendix B: Fisher matrix and miscalibration angle

Let us consider the simple situation where the mode-
counting derivation of the covariance matrix on the an-

gular power spectra is used. In that case, the Fisher
information matrix can be re-expressed as

[F]ij =
fsky

2

∑
`,m

Tr

[
∂C

(obs)
`m

∂θi
C

(obs)
`m

−1 ∂C
(obs)
`m

∂θj
C

(obs)
`m

−1

]
,

(B1)

with C
(obs)
`m =

〈
a

(obs)
`m a

(obs) †
`m

〉
the covariance matrix of

the T, E and B multipoles of the observed CMB maps.
(We remind that in the mode-counting approximation,
those covariance matrices are supposed to be block di-
agonal in (`,m)-space.) If those multipoles are affected
by a global miscalibration, they are related to the CMB
multipoles by a rotation matrix :

a
(obs)
`m = R(2∆ψ)× a`m + n`m, (B2)

with

a
(obs)
`m =

 a
T (obs)
`m

a
E (obs)
`m

a
B (obs)
`m

 (B3)

the observed (systematically rotated and noisy) multi-
poles,

a`m =

 aT`m
aE`m
aB`m

 (B4)

the intrinsic (noiseless and unrotated) CMB multipoles,

n`m =

 nT`m
nE`m
nB`m

 (B5)

the instrumental noise, and,

R(2∆ψ) =

 1 0 0
0 cos(2∆ψ) − sin(2∆ψ)
0 sin(2∆ψ) cos(2∆ψ)

 (B6)

a rotation matrix modeling the impact of miscalibra-
tion. Being a rotation matrix, it satisfies R†(2∆ψ) =
R(−2∆ψ) = R−1(2∆ψ).

On defining C`m =
〈
a`ma†`m

〉
and N`m =

〈
n`mn†`m

〉
,

both assumed to be block diagonal – which is only true
for homogeneous noise –, it is easily shown that

C
(obs)
`m = R(2∆ψ)C`mR−1(2∆ψ) + N`m. (B7)

Assuming finally that we are in such an experimental se-
tups where sampling variance is dominating, then one

can neglect noise leading to C
(obs)
`m = RC`mR−1 and

C
(obs)
`m

−1
= RC−1

`mR−1.
It is straighforward to show that the Fisher matrix for

r(±) reduces to:

[F]r(±)r(±)
=
fsky

2

∑
`,m

Tr

[
∂C`m

∂r(±)
C−1
`m

∂C`m

∂r(±)
C−1
`m

]
. (B8)
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This simply means that for an experiment only limited by
cosmic variance, the block r(±) of the Fisher information
matrix is exactly the same as if there were no rotation.

Let us now consider the off-diagonal terms amounting
for the correlations between r(±) and ∆ψ, i.e.

[F]r(±)∆ψ
=

fsky

2

∑
`,m

Tr

[(
∂R

∂∆ψ
C`mR−1 + RC`m

∂R−1

∂∆ψ

)

× RC−1
`m

∂C`m

∂r(±)
C−1
`mR−1

]
. (B9)

Using the fact we are considering the trace and
M−1 (∂M)+

(
∂M−1

)
M = 0, the above expression gives:

[F]r(±)∆ψ
=

fsky

2

∑
`,m

Tr

[
R−1 ∂R

∂∆ψ
(B10)

×
(
∂C`m

∂r(±)
C−1
`m −C−1

`m

∂C`m

∂r(±)

)]
,

with

R−1 ∂R

∂∆ψ
=

 0 0 0
0 0 −2
0 2 0

 . (B11)

Because
(
∂C`m
∂r(±)

C−1
`m −C−1

`m
∂C`m
∂r(±)

)
does not depend on

∆ψ, this means that the correlations between parame-
ters r(±) and ∆ψ are independent of the value of ∆ψ.
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