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The B-mode of polarized anisotropies of the cosmic microwave background is a unique and nearly direct
probe of primordial inflation, as it can constrain the amplitude of the primordial gravity waves. However, its
detection and precise measurement is made difficult by a minute amplitude of the signal and the fact that the
signal has to be discerned from many contributions of noncosmological origin and reliably estimated in the
presence of numerous sources of statistical uncertainties. Among these last effects, the E-to-B leakage,
arising as a result of partial sky coverage, has been found to play a key and potentially fundamental role in
determining the possible statistical significance with which the primordial B-mode signal can be detected.
In this work we employ the pure pseudospectrum formalism devised to minimize the effects of the leakage
on the variance of power spectrum estimates and discuss the limits on the tensor-to-scalar ratio, r, that could
be realistically set by current and forthcoming measurements of the B-mode angular power spectrum. We
compare those with the results obtained using other approaches: naive mode counting, minimum-variance
quadratic estimators, and revisiting the question of optimizing the sky coverage of small-scale, suborbital
experiments in order to maximize the statistical significance of the detection of r. We show that the optimal
sky coverage is largely insensitive to the adopted approach at least for reasonably compact sky patches. We
find, however, that the mode counting overestimates the detection significance by a factor ∼1.17 as
compared to the lossless maximum variance approach and by a factor ∼1.25 as compared to the lossy pure
pseudospectrum estimator. In a second time, we consider more realistic experimental configurations. With
a pure pseudospectrum reconstruction of B-modes and considering only statistical uncertainties, we find
that a detection of r ∼ 0.11, r ∼ 0.0051, and r ∼ 0.0026 at 99% confidence level is within the reach of
current suborbital experiments, future arrays of ground-based telescopes, and a satellite mission,
respectively. This means that an array of telescopes could be sufficient to discriminate between large-
and small-field models of inflation, even if the E-to-B leakage is consistently included but accounted for in
the analysis. However, a satellite mission will be required to distinguish between different small-field
models depending on the number of e-folds.
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I. INTRODUCTION

Primordial gravity waves are expected to be produced
during cosmic inflation in addition to scalar perturbations.
If indeed present, they would leave a characteristic foot-
print on the polarized anisotropies of the cosmic micro-
wave background (CMB), as they are considered to be
essentially the sole source of the so-called primordial
B-mode residing at the superhorizon scales at the time of
the last scattering. A detection of the B-mode angular
power spectrum at large angular scales would be then
treated as a smoking gun of inflation, while a precise

measurement of its amplitude would constrain the
energy scale of inflation, or, geometrically speaking,
the expansion rate of the Universe during inflation
[1,2]. This amplitude is expressed by the tensor-to-scalar
ratio, r, defined as the relative power of primordial gravity
waves with respect to that of the scalar perturbations
at some pivot scale k0, chosen here to be equal to
k0 ¼ 0.002 Mpc−1. Currently, the most stringent upper
bound on r using temperature anisotropies has been
derived by the Planck Collaboration, r < 0.11 at
95% C.L. [3], while a recent joint analysis of the
Planck and BICEP2 polarized data set an upper limit
r0.05 < 0.12 at 95% C.L. [4]. The measurement of the
tensor-to-scalar ratio r could allow one to discriminate
between different inflationary models. In particular, if this
upper bound r ∼ 0.1 is indeed realized in nature, this
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would imply a rather high amount of primordial gravity
waves, thus favoring large-fields inflationary models [5].
At smaller angular scales, the B-mode is dominated by

the lensing induced signal. This signal is generated by the
gravitational lensing of the CMB photons due to the large-
scale structure [6]. The lensing contribution is well under-
stood from a theoretical point of view and can be uniquely
predicted given the primary E-modes anisotropies and the
lensing deflection field [7]. Such predictions have been
recently confirmed by the SPTPOL [8,9] and POLARBEAR

experiments [10,11], with also constraints on the CMB
lensing B-mode power spectrum [12,13]. The lensing
B-mode signal does not depend on r. It therefore acts as
a source of an additional “noise” masking the primordial,
r-dependent B-mode and making its detection more diffi-
cult. Striving for a detection of r, one has to either try to
remove this lensing signal [14] or rely solely on the large
angular scales. In this latter case, two features of the
primordial B-mode spectrum are of particular interest as
they are anticipated to be particularly prominent. These are
so-called reionization and recombination bumps peaking at
2 ≤ l≲ 10 and at l ∼ 100, respectively.
Measuring the B-mode is made even more difficult by

the fact that measurements as performed by the majority of
current experiments, which scan the sky in order to produce
its maps, are straightforwardly expressed only in terms of
the Stokes parameters, Q and U. The E- and B-modes are
mathematically related to the Stokes parameters [15–17]
and can be therefore recovered from the observational data.
This, however, is only simple, if full-sky data were
available. In contrast, realistic CMB experiments provide
maps of polarized anisotropies, which only cover a reduced
fraction of the celestial sphere, ranging from ∼1% for
balloon-borne and ground-based experiments to ∼70% for
satellite missions. In the context of pseudospectrum
estimation of the angular power spectra on an incomplete
sky, part of the E-mode signal is unavoidably mislabelled
as B-modes and vice versa. Though such leakages can be
corrected on average, the leaked signal inevitably contrib-
utes to the sampling variance of the other reconstructed
spectrum. This dramatically increases the uncertainties
of the estimated B-mode spectrum since the cosmological
E-mode is expected to be at least 2 orders of magnitude
higher than the B-mode in terms of their power spectrum
[18]. The nature of the leakages and approaches to
their removal were investigated in Ref. [19], and a
relevant pseudospectrum estimator, referred to as the pure
pseudospectrum estimator, was proposed subsequently in
Ref. [20]. This estimator has been thoroughly investigated
and extended to include an optimization of the sky
apodization [21], cross-spectrum approaches [22], and
TB and EB cross-correlations [23]. Alternative construc-
tions of pseudospectrum estimators correcting for E-to-B
leakages have been also proposed [24–27]. Nevertheless,
the pure pseudospectrum method has been found the most

mature and efficient one, particularly due to its ability of
optimizing the sky apodizations [28], making it a method of
choice for many practical applications. It is worth pointing
out that the leakages are indeed ubiquities, and correcting
for them is as mandatory for small-scale experiments,
covering ∼1% of the sky, as for satellitelike missions, with
access to as much as ∼70% of the sky [28].
Though the impact of the E-to-B leakage on the variance

of the B-mode power spectrum is generally acknowledged,
it is rarely included in projecting the performance of
planned CMB experiments or instrumental concepts from
the point of view of their setting constraints on the tensor-
to-scalar ratio, r. Instead, the major body of work (see
Refs. [29,30] for some recent examples) in this area
is based on simplified mode-counting arguments (see,
however, e.g., Refs. [21,31] for some exceptions). This
stemmed mostly from the practical reasons, as the impact of
the leakage is neither calculable analytically nor analysis
method independent.
The objective of this work is to fill this gap and present a

more systematic study of the impact of the presence of the
leakage on the performance forecasts of CMB B-mode
experiments. The paper consists of two parts. In the first
part, Sec. II, we consider idealized observations of azimu-
thally symmetric sky areas with homogenous noise and
study differences between performance forecasts derived,
applying three different approaches for different assumed
sky area sizes. Subsequently, from these three different
perspectives, we revisit the issue of the optimal sky area,
which would permit setting the most stringent constraints
on the scalar-to-tensor ratio, r, given a fixed length and
sensitivity of the experiment.
In the second part, Sec. III, we complete those consid-

erations by discussing more realistic sky areas defined for
three types of experiments: small-scale observations cover-
ing ∼1% of the sky, an array of a ground-based telescope
covering ∼36%, and a satellitelike mission capable of
delivering up to 71% of the foreground clean sky. Our
conclusions are drawn out in Sec. IV, where we also briefly
sketch the implications for constraining inflationary
models.
Throughout this work we neglect complications such as

polarized diffuse foregrounds, e.g., Refs. [31,32], and
account for resolved points sources only by appropriately
tailoring the adopted mask. We also assume that no
subtraction of the lensing B-mode has been attempted [14].

II. MEASURING THE TENSOR-TO-SCALAR
RATIO FOR IDEALIZED SMALL-SCALE

EXPERIMENT

A. Experimental setup

We consider first the case of small-scale experiments
in an idealized way. The observed part of the celestial
sphere is assumed to be azimuthally symmetric, given by a
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spherical cap. We, however, let the sky coverage vary from
0.5% to 10%. The noise is an homogeneous white noise,
and its level is fixed at nPð1%Þ ¼ 5.75 μK-arcminute for
fsky ¼ 1% (a typical level for ongoing small-scale experi-
ments). For a fixed sensitivity and a fixed time of
observation, the noise level (in μK-arcminute) scales as

nPðfskyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsky½%�
1%

r

× nPð1%Þ: ð1Þ

The instrumental noise reprojected on the sky thus varies
from 4.1 to 18 μK-arcminute for an observed fraction of the
sky of 0.5% and 10%, respectively. Finally, the angular
resolution is given by an azimuthally symmetric, Gaussian
beam with a width of 8 arcminutes.
We subsequently investigate the signal-to-noise ratio,

ðS=NÞr ¼ r=σr, as a function of the sky coverage. This will
be done considering four values of the tensor-to-scalar
ratio: r ¼ 0.07; 0.1; 0.15, and 0.2. We note that the last two
values are disfavored by the current data; nevertheless we
include them in our considerations as they are useful in
demonstrating some of the effects we describe hereafter.

B. Fisher matrix formalism

Translating the uncertainties on the B-mode angular
power spectrum reconstruction into error bars on the
measured tensor-to-scalar ratio, σr, can be done using a
Fisher matrix formalism.
For the rather small observed fractions of the celestial

sphere considered here, the B-mode angular power spec-
trum is reconstructed within bandpowers, labelled b here-
after, with bandwidths Δb. The binned power spectrum is
given by CBb ¼ P

lPblCB
l, where the binning operator is

defined as

Pbl ¼
(

lðlþ1Þ
2πΔb

if l ∈ b;

0 if l ∉ b:
ð2Þ

(Our specific choice of the binning will be given in
Sec. II C.) The error bars on r are then derived from the
Fisher matrix via

ðσrÞ−2 ¼ Frr ¼
X

b;b0

�∂CBb
∂r

�
ðΣ−1Þbb0

�∂CBb0
∂r

�
; ð3Þ

with Σbb0 ¼ CovðĈBb ; ĈBb0 Þ, which stands for the covariance
matrix of the reconstructed, binned angular power spectrum
of the B-mode. (Note that ĈB

l denotes the estimator of the
angular power spectrum, CB

l .)
The B-mode angular power spectrum as a function of r is

modeled as

CB
lðrÞ ¼ r × T B

l þ T E→B
l;lens; ð4Þ

with T B
l and T E→B

l;lens two fiducial angular power spectra,
which do not depend on r. The former is just obtained as
the contribution of primordial gravity waves for r ¼ 1
(taking into account that the primordial B-mode is itself
lensed). The latter corresponds to the contribution of the
primary E-mode transferred into the B-mode because of the
gravitational lensing of large-scale structures. We do not
consider here a potential delensing of the B-mode anisot-
ropies, and such a contribution will be assumed to act as an
additional Gaussian noise for the measurement of r. This is
a simplifying assumption since the lensing-induced B-
mode is non-Gaussian, leading to an additional, non-
Gaussian contribution to the covariance [33]. Gaussianity
remains, however, a good approximation for bandpowers
which are narrow enough (Δb ≲ 100) [33], which is the
case in our study.
The covariance matrix Σbb0 is estimated using three

different approaches, as described here.

1. Mode counting

First, we rely on a naive mode-counting expression (or
so-called fsky formula). In this case, the covariance on ĈB

l is
approximated by

CovðĈB
l ; Ĉ

B
l0 Þ ¼

2δl;l0

ð2lþ 1Þfsky

�
CB
l þ NlðfskyÞ

B2
l

�
2

; ð5Þ

with Nl the noise power spectrum, Bl the beam of the
telescope, and fsky the portion of the celestial sphere, which
is observed (or kept in the analysis). The noise power
spectrum scales linearly with the sky coverage.
The covariance matrix for the binned power spectrum is

thus given by

Σbb0 ¼
�X

l∈b
ðPblÞ2 × CovðĈB

l ; Ĉ
B
lÞ
�
δb;b0 : ð6Þ

This is essentially used as a benchmark as such an
evaluation of the statistical error bars on the B-mode
reconstruction underestimates the error bars coming from
any numerical methods to be applied to the data.

2. Minimum variance quadratic estimator

Second, we consider the error bars that could be incurred
by using a minimum-variance quadratic estimator [34,35].
The estimator is defined as follows:

ĈB
l ¼ 1

2

X

l0
F−1

ll0

�
Tr

�
d†
�
C−1 ∂C

∂CB
l0
C−1

�
d

�
− ~Nl0

�
:

ð7Þ

In the above, C ¼ hdd†i is the covariance matrix of the
maps of the Stokes parameter, and d is the column vector
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composed of ðI; Q;UÞ (the trace operation is across pixels).
The quantity ~Nl0 stands for the noise debias. Finally, F is
the Fisher information matrix given by

Fll0 ¼
1

2
Tr

� ∂C
∂CB

l
C−1 ∂C

∂CB
l0
C−1

�
: ð8Þ

It is then shown that the covariance of the above estimator
is given by the inverse of the Fisher matrix, i.e.,
CovðĈB

l ; Ĉ
B
l0 Þ ¼ F−1

ll0 . We remind that this estimator is
precisely built to be the quadratic estimator with the lowest
variance.
If the B-mode power spectrum is indeed estimated for

each multipole, l (that is chosing Δb ¼ 1), this directly
gives the following expression for the error bars expected
on r:

ðσrÞ−2 ¼ Frr ¼
1

2
Tr

�∂ ~C
∂r ~C−1 ∂ ~C

∂r ~C−1
�
; ð9Þ

with ~C the same covariance matrix but assuming that only
CB
l does depend on r, in line with our approach consisting

of constraining the tensor-to-scalar ratio from the B-mode’s
measurements only.1 In the case of azimuthally symmetric
patches, the numerical computation of such Fisher matrices
(either Fll0 or Frr) can be performed in a reasonable time
using the expression found in Appendix F of Ref. [20] and
by using the S2HAT package to perform spherical har-
monic transforms [36–39]. (The use of this massively
parallel package allows for a rapid computation of the
covariance matrix for large sky coverages.) In the standard
case, for brute force calculation, the Fisher matrix requires
OðN3

pixÞ operations to be evaluated, but in this calculation,
evaluating the spin harmonics by recursion in l makes the
computational cost asOðN3

θmmaxÞ, where Nθ is the number
of rings actually used.
Practically speaking, one should nonetheless include the

impact of binning, done as follows. First, one defines the
so-called optimal pseudospectrum:

~CðoptÞ
l ¼ Tr

�
d†
�
C−1 ∂C

∂CB
l
C−1

�
d

�
− ~Nl: ð10Þ

One easily checks that h ~CðoptÞ
l i ¼ 2

P
l0Fll0B2

l0C
B
l0 (where

we also include the impact of an azimuthally symmetric
beam). One then introduces the matrix

~Fbb0 ¼
X

l∈b

X

l0∈b0
PblFll0B2

l0Qb0l0 ; ð11Þ

with the interpolation operator, Qbl:

Qbl ¼
(

2π
lðlþ1Þ if l ∈ b;

0 if l ∉ b:
ð12Þ

The binned estimator, ĈBb , is finally defined as

ĈBb ¼
X

b0

~F−1
bb0

~CðoptÞb0 ð13Þ

with ~CðoptÞb0 ¼ P
l0Pb0l0 ~C

ðoptÞ
l0 the binned, optimal pseudo-

spectrum. From that last definition, and making use of
Eqs. (7) and (8), it is straightforward to show that

Σbb0 ¼ ½ ~F−1�bb1 ½Pb1l1Fl1l01
Pb0

1
l0
1
�½ð ~F−1Þ†�b0

1
b0 ; ð14Þ

where summations over repeated indices (i.e., b1; b01 and
l1;l0

1) is implicitly assumed and † means the transpose
operation.
We note that this way of estimating the uncertainties on

the power spectrum reconstruction is also relevant for
maximum-likelihood approaches; see, e.g., Ref. [40].

3. Pure pseudospectrum

Third, we make use of the X2PURE code and
Monte Carlo (MC) simulations to estimate the covariance
matrix expected for the pure pseudospectrum approach.
Details on the pure pseudospectrum estimator can be found
in Refs. [20,22]. In practice, the power spectrum is
estimated within the bandpower and the covariance matrix
reconstructed from the MC simulations is directly Σbb0. The
numerical cost of this scales asOðN3=2

pix Þ, allowing for rapid
MC simulations.
For each sky coverage and for each value of r considered

here, we compute optimized sky apodizations to apply to
the maps ofQ andU. Those optimized sky apodizations are
described in Refs. [21,22], and they allow for having the
smallest error bars on the B-mode power spectrum
reconstruction within the context of pure pseudospectrum
techniques. Those sky apodizations are a set of spin-0, spin-
1, and spin-2 window functions to be applied to the maps of
the Stokes parameter. They can be interpreted as the
window functions, which make the pure pseudospectrum

1We note that, from the complete definition of σr given by,

ðσrÞ−2 ¼
1

2
Tr

�∂C
∂r C−1 ∂C

∂r C−1
�
;

with C the covariance matrix assuming that all the angular power
spectra do depend on r, Eq. (3) is therefore replaced by

ðσrÞ−2 ¼
X

A;A0

X

l;l0

�∂CA
l

∂r
�
ðΣ−1ÞAA0

ll0

�∂CA0
l0

∂r
�
:

In the above, the indices A; A0 run over TT; EE; BB; TE; TB, and
EB. Equation (3) is finally obtained assuming that only CB

l in C
does depend on the tensor-to-scalar ratio.
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estimator as close as possible to the minimum-variance
quadratic estimator [21].
Numerically speaking, computing those optimized sky

apodizations may be long, especially for the intricate shape
of the observed region and/or the low level of noise. Using
an iterative method, the numerical cost isOðNiterN2

pixÞ, with
Niter a number of iterations ranging from a few tens to a few
hundreds for the simple patch geometry and noise level
considered here (see Sec. III in Ref. [22]). We stress that for
a given sky patch those sky apodizations are to be
optimized for each value of the tensor-to-scalar ratio and
bin by bin. Taking into account the number of bins (see
Sec. II C), the number of sky fractions and the number of
values of r, which are sampled in this study, this means that
1664 of such sky apodizations have to be computed.
Fortunately, in the case of homogeneous noise and patches
with relatively simple contours (which is obviously the case
for a spherical cap), it was demonstrated in Ref. [22] that an
approximated but numerically fast computation of those
sky apodizations in the harmonic domain is possible and
indeed leads to error bars equal to those obtained thanks to
a direct, pixel-based computation of the optimized sky
apodizations. The numerical cost of this technique is
reduced to OðN3=2

pix Þ which allows us to derive optimized
sky apodizations for each value of the sky coverage and for
each value of the tensor-to-scalar ratio.

C. Power spectrum uncertainties

Our chosen bandpowers for reconstructing CB
l are the

following.
The first bin starts at l ¼ 20, and we use a constant

bandwidth, Δb ¼ 40. Our last bin extends up to l ¼ 1020.
The value of the maximum multipole is chosen in order to
include all the relevant contributions from the primordial B-
mode, that is until the lensing B-mode is the dominant
contribution to the total B-mode power. In addition, for the
experimental cases under consideration in this paper, we

use beamwidths up to 8 arcminutes, corresponding to a
cutoff of l ∼ 1300. The choice of the bandwidth is mainly
motivated by the use of the pure pseudospectrum estimator.
Especially, it is mandatory for the numerical inversion of
the mode-mixing matrices to be possible. We also note that
the bandwidth is wide enough so that the correlations
between different bins are nearly uncorrelated in the
covariance of the pure pseudospectrum estimator. We
discuss the role of the bin width later on. We stress that
the multipoles ranging from l ¼ 2 to l ¼ 20 (correspond-
ing to the reionization peak and gathered in one band-
power) are actually used in the pure pseudo-Cl estimation
of CB

l . However, given the limited sky coverages consid-
ered here, such low multipoles are difficult to estimate and
hardly constrained by the data. This bin is therefore not
included in our analysis of the signal-to-noise ratio.
The uncertainties on the estimated power spectrum of

the B-mode as functions of the sky fraction are shown in
Fig. 1 where four selected values of the sky coverage are
depicted: 1%, 3.5%, 7%, and 10%. The tensor-to-scalar
ratio chosen for this figure is r ¼ 0.1. Each panel corre-
sponds to a different approach to derive the covariance
matrix, Σbb0 : mode counting, the minimum-variance quad-
ratic estimator, and the pure pseudospectrum estimator
(from left to right).
As expected, we do observe that the lowest error bars are

the ones from the mode-counting estimation of the uncer-
tainties, while the highest error bars are obtained from
the pure pseudo-Cl estimator. The error bars from the
minimum-variance quadratic estimator lie between those
two. At the largest accessible scales, 20 ≤ l ≤ 100, the
error bars from the pure pseudospectrum estimator are
∼1.25 greater than the optimistic mode-counting estima-
tion. Similarly, the error bars from the pure pseudospectrum
estimators are at most ∼1.1 higher than the ones derived
from the minimum-variance quadratic estimators. At the
smaller angular scales where lensing dominates, the three
approaches lead to almost the same uncertainties.

FIG. 1 (color online). Uncertainties on the reconstructed B-mode power spectrum (dashed color curves) for four values of fsky: 1%,
3.5%, 7%, and 10%. The solid black curve is the input CB

l for r ¼ 0.1. Each panel corresponds to a different approach to derive the
covariance matrix Σbb0 : mode counting, minimum-variance quadratic estimator, and pure pseudospectrum estimator (from left to right).
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The behavior of the uncertainties as a function of the sky
fraction is common to the three approaches. At the smaller
angular scales first (for multipoles greater than ∼100), the
behavior is monotonic since the uncertainties systemati-
cally increase with the value of fsky. This is because at these
scales the variance is dominated by the noise, which
increases with the sky fraction. At larger scales (for
multipoles smaller than ∼100), however, the uncertainties
have a more intricate behavior. First, one notes that the
uncertainties decrease from fsky¼1% to fsky ¼ 3.5%. This
is because the variance is dominated by sampling variance,
which decreases for higher values of fsky. Second, one
notes that uncertainties at l < 100 then increase for a sky
coverage ranging from 3.5% to 10%. This means that for
fsky > 3.5% the noise is now dominating the variance.
Once this transition value of fsky ∼ 3.5% is crossed, the
noise contribution dominates the variance for all our
considered angular scales, l ∈ ½20; 1020�. Therefore, the
variance will monotonically increase with fsky at all the
relevant angular scales once fsky > 3.5%. (Note that an
identical behavior is observed for the other values of r,
though the specific value of fsky at which the transition
occurs depends on the specific value of r.)

D. Signal-to-noise ratio on r

1. Numerical results

The signal-to-noise ratio on r is computed using
Eq. (3), considering the three above-described methods
to estimate the uncertainties on the B-mode reconstruction,
Σbb0 . We remind the reader that the summation in (3) is
performed over bandpowers with a bandwidth of Δb ¼ 40
and considering a range of multipoles from l ¼ 20
to l ¼ 1020.
Our numerical results on the signal-to-noise ratio for r

are gathered in Fig. 2, showing ðS=NÞr as a function of the
sky coverage. Each panel corresponds to a given value of
the tensor-to-scalar ratio, r ¼ 0.07; 0.1; 0.15, and 0.2
(from top to bottom). For each panel, the black, red,
and blue crosses correspond to the signal-to-noise ratio
derived by using mode counting, the minimum-variance
quadratic estimator, and the pure pseudo-Cl estimator,
respectively. The horizontal, dashed line marks a 3σ
detection. The sky fraction varies from 0.1% to 10%,
which is wide enough to sample the maximal values of the
signal-to-noise ratio. We note that the signal-to-noise ratio
keeps decreasing for fsky > 10%. This is because, for the
level of noise and values of r considered here, the
uncertainties on the reconstructed B-mode are noise
dominated at all scales for fsky > 10%. Similarly, the
ðS=NÞr keeps decreasing for fsky < 0.5% because the
uncertainties on angular scales greater than a degree are
dominated by the sampling variance for such low values
of the sky fraction.

FIG. 2 (color online). Signal-to-noise ratio for the estimation
of r from B-mode polarization data shown as a function of the
sky coverage. The uncertainties are computed using three
different approaches: mode counting (black crosses), the
minimum-variance quadratic estimator (red crosses), and the
pure pseudospectrum estimator (blue crosses). Each panel cor-
responds to a different fiducial value of the tensor-to-scalar ratio,
r ¼ 0.07; 0.1; 0.15, and 0.2 from top to bottom.
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For the case of the mode counting first, the signal-to-
noise ratio is systematically greater than 3 for all the
considered values of the sky coverage and for all the
considered values of the tensor-to-scalar ratio.
Considering then the case of the minimum-variance

quadratic estimator, the signal-to-noise ratio on r is
systematically greater than 3 for r ¼ 0.1; 0.15, and 0.2.
For a tensor-to-scalar ratio of r ¼ 0.07, the ðS=NÞr is
greater than or equal to 3 for 1% ≤ fsky ≤ 9%.
Assuming finally a pure pseudospectrum reconstruction

of the B-mode, the signal-to-noise ratio is systematically
greater than 3 for r ¼ 0.15 and r ¼ 0.2 only. For a tensor-
to-scalar ratio of r ¼ 0.1, a measurement of it with a
ðS=NÞr of at least 3 is possible for fsky ≥ 1%. For a smaller
value of r ¼ 0.07, its measurement with ðS=NÞr ≥ 3 is
possible, assuming 1.5% ≤ fsky ≤ 7%. We note, however,
here that for r ¼ 0.07 and r ¼ 0.1 the signal-to-noise ratios
remain greater than 2, assuming a pure pseudospectrum
reconstruction of CB

l .
As expected from the error bars on the reconstructed B-

mode, the highest and lowest ðS=NÞr’s are, respectively,
obtained from the mode-counting estimation and the pure
pseudospectrum estimator, while the ðS=NÞr from the
minimum-variance quadratic estimator lies between those
two. This is the case for all the values of the tensor-to-scalar
ratio we consider. At the peak, the signal-to-noise ratio
from the pure pseudospectrum estimation of the CB

l is
∼15% (r ¼ 0.2) to ∼20% (r ¼ 0.07) smaller than the
signal-to-noise ratio derived from the optimistic mode
counting. This means that the statistical significance on
the measurement of r by using the optimistic mode
counting is overestimated by a factor ∼1.25 as compared
to the more realistic case of the pure pseudoreconstruction
of the B-mode.
Similarly, the ðS=NÞr from the pure pseudospectrum

estimator is ∼1.5% (r ¼ 0.2) to ∼8% (r ¼ 0.07) smaller
than the signal-to-noise ratio derived from the minimum-
variance quadratic estimator. Using the minimum-
variance, quadratic estimator to estimate the B-mode, as
compared to the use of the pure pseudospectrum, thus
translates into a gain in the statistical significance on the
measurement of r, of a factor 1.01 to 1.08. This gain
appears rather small but is larger for smaller values of the
tensor-to-scalar ratio.

2. Optimization of the sky coverage

As clearly shown in Figs. 2, there exists a value of the
sky coverage, which maximizes the signal-to-noise ratio on
r. This optimal value of fsky was already observed in
Ref. [41], using only the mode-counting expression for the
statistical error bars on the B-mode estimation though. We
found that such an optimal value also exists using the
minimum-variance quadratic estimator or the pure pseudo-
Cl estimator. This is intuitively understood as follows. The

statistical uncertainties on the angular power spectrum
estimation have two sources, the sampling variance, which
is dominant at the largest angular scales, and the noise
variance dominating at the smallest angular scales.
Reducing the sampling variance is obtained by covering
a large fraction of the sky. However, for a given sensitivity
and a given time of observation, covering a large fraction of
the sky inevitably translates into a higher level of noise per
pixel. One should therefore find the good balance between
sampling and noise variance so as to minimize the total
error on given targeted parameters, which is r here.
The salient features of those results are summarized in

the Table I. For each value of the tensor-to-scalar ratio and
for each technique used to compute uncertainties on the
B-mode, we provide the values of the sky fraction maxi-

mizing the signal-to-noise ratio, fðoptÞsky . Its associated (thus

maximal) value of the signal-to-noise ratio, ðS=NÞðoptÞr , is
also reported in this table. We stress that the position of the
peak of ðS=NÞr is well defined for the mode counting and
the minimum-variance quadratic estimator. Such a position
of the peaking signal-to-noise ratio is, however, less
pronounced for the case of the pure pseudo-Cl estimation
of the B-mode [see, e.g., the case r ¼ 0.7 for which a range
of 2%≲ fsky ≲ 6% leads roughly to the same ðS=NÞr].
This means that the values of fðoptÞsky reported in Table I for
the case of the pure pseudospectrum approach are more
indicative than a sharply defined value.
For all the approaches used to estimate the uncertainties

on the B-mode, we observe that the optimal sky fraction
increases with the value of the tensor-to-scalar ratio. This is
because for higher values of r the signal in the B-mode is
higher. One should therefore minimize first the sampling
variance by increasing the observed part of the sky.
Except for the case of r ¼ 0.2, we note that the optimal

sky coverage assuming a minimum-variance quadratic
estimator slightly differs by 0.5% (either higher or lower)

TABLE I. Values of the sky fraction maximizing the signal-to-
noise ratio on r, fðoptÞsky , and maximal values of the signal-to-noise

ratio, ðS=NÞðoptÞr . This is given for each technique used to estimate
the uncertainties on the reconstruction of the B-mode. We notice
that, concerning the pure method, the position of the maximum
value is not as defined as the other methods (see the text).

r 0.07 0.1 0.15 0.2

fðoptÞsky ð%Þ:
Mode counting 2.0 3.0 4.0 5.0
Minimum-variance Cl 2.5 2.5 3.5 5.0
Pure pseudo-Cl 3.5 3.5 5.0 4.0

ðS=NÞðoptÞr :
Mode counting 4.4 5.5 7.0 8.2
Minimum-variance Cl 3.7 4.7 5.9 7.0
Pure pseudo-Cl 3.4 4.4 5.8 6.9
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than the value of fðoptÞsky (in %) as inferred from the mode
counting. We also note that the optimal sky fraction
obtained for the pure pseudo-Cl reconstruction of the B-
mode differs by 1% to 1.5% (depending on the value of r)
from the one inferred from the mode-counting estimation of
the uncertainties on the B-mode. Nevertheless, the values of
the sky fraction for which the detection of the tensor-to-
scalar ratio is peaking in the case of the mode-counting
expression and the minimum-variance quadratic estimator
fall in the range of optimized fsky as derived from the pure
pseudo-Cl estimator. Those numerical results therefore
show that (at least) for the range of values of r considered
here, the value of the sky coverage, which maximizes the
measurement of the tensor-to-scalar ratio, is rather inde-
pendent of the adopted method for evaluating the statistical
uncertainties on the B-mode reconstruction. This means
that using the mode-counting expression, though under-
estimating the error bars, allows for a rapid and reliable
search of the range of values of the optimized sky fraction.
(Obviously, such an optimization of fsky based on the
mode-counting expression is reliable, providing the final
data set to be analyzed using either the minimum-variance
quadratic estimator or the pure pseudospectrum estimator.)

3. Impact of binning

For the two specific cases of the mode-counting uncer-
tainties and the minimum-variance quadratic estimator, we
note that an explicit reconstruction of the power spectrum is
not mandatory to derive the ðS=NÞr in the Fisher formalism.
One can indeed directly plug into Eq. (3) the formulas (6)

or (14). This allows for a study of the impact of binning on
the signal-to-noise ratio, letting the bandwidth vary from
Δb ¼ 1 (i.e., no binning) to Δb ¼ 40 (i.e., the binning
imposed by the use of the pseudospectrum estimator in this
analysis).
The impact of binning is illustrated in Fig. 3, showing the

signal-to-noise ratio on r ¼ 0.1 as a function of the sky
coverage. The gray (red) area corresponds to the ðS=NÞr
using the mode counting (minimum-variance quadratic
estimator) to estimate the uncertainties of the B-mode
power spectrum. For each shaded area, the highest sig-
nal-to-noise ratio is obtained for Δb ¼ 1 and the lowest for
Δb ¼ 40. As a reference, we also show the ðS=NÞr obtained
with pure pseudospectrum reconstruction (thus using a
bandwidth of Δb ¼ 40) depicted by the blue crosses. The
overall effect of increasing the width of the bandpower is to
lower the signal-to-noise ratio. The decrease is, however,
more pronounced for the case of the minimum-variance
quadratic estimator than for the mode-counting estimation
of the error bars on the reconstructed B-mode. This is due to
the fact that correlations between multipoles (or band-
powers) are accounted for in the minimum-variance
quadratic estimator, while those are supposed to be sys-
tematically vanishing for the mode-counting estimation of
the covariance matrix. This additional piece of information
contained in the correlations is therefore partially lost by
averaging over bandpowers. We also checked that artifi-
cially imposing those off-diagonal correlations to be zero
lowered the signal-to-noise ratio in the minimum-variance
method, although we note that once the bins are sufficiently
wide the effect of the bin width on the ðS=NÞr should
be weak.
The maximum values of the ðS=NÞr obtained using a

bandwidth of Δb ¼ 1, and a bandwidth of Δb ¼ 40, are
reported in Table II, for each value of r and for the mode
counting and the minimum-variance quadratic estimator.
For each case, we also report the value of the sky coverage
corresponding to that maximum. For the mode-counting
approach, increasing the bandwidth from Δb ¼ 1 to Δb ¼
40 degrades the maximum ðS=NÞr by a factor ∼9% for
r ¼ 0.07 and 0.1 and by a factor ∼2% for r ¼ 0.15 and 0.2.
This, however, only mildly affects the values of the sky
fraction at which the maximum is achieved. The impact of
binning is more marked for the minimum-variance quad-
ratic estimator, however. Increasing the bandwidth from
Δb ¼ 1 to Δb ¼ 40 here degrades the maximum ðS=NÞr by
a factor ∼11% for all the values of the tensor-to-scalar ratio
considered in this study. Similarly, the values of the sky
fraction (in %) at which this maximum is achieved is
systematically lowered (except for the case r ¼ 0.7), by 1%
for r ¼ 0.1 and by 2% for r ¼ 0.2. We note that, despite

these changes in the value of fðoptÞsky with the bandwidth, the
optimized values of the sky fraction still fall in the range of
optimized fsky as derived from the pure pseudo-Cl

estimator.

FIG. 3 (color online). Signal-to-noise ratio for r ¼ 0.1 as a
function of the observed sky fraction, derived for three methods
used to estimate the uncertainties on the B-mode reconstruction:
mode counting (black area), minimum-variance quadratic esti-
mator (red area), and, pure pseudospectrum estimator (blue
crosses). For the two first methods, we let the bandwidth of
the bins to vary from Δb ¼ 1 (highest ðS=NÞr) to Δb ¼ 40
(lowest ðS=NÞr). For the specific case of the pure pseudospectrum
estimator, the reconstruction of the CB

l requires to use the
bandwidth Δb ¼ 40. (We remind that the range of multipoles
used to compute the signal-to-noise ratio is 20 ≤ l ≤ 1020.)
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III. MEASURING THE TENSOR-TO-SCALAR
RATIO: SELECTED EXAMPLES

A. Experimental setups

We turn to the question of the detection of r in more
realistic cases. Clearly, a spherical cap is ideal. The issue of
leakages is strongly related to the detailed shape of the
contours of the observed (or kept-in-the-analysis) portion
of the sky (see, e.g., Fig. 20 of Ref. [22] for the impact of
the shape of the mask on the statistical error bars). A
spherical cap then leads to the smallest amount of leakages
for a given sky fraction since its contour has the smallest
perimeter for that given sky fraction. To this end, we
consider three archetypal cases, which capture the main
characteristics of ongoing, or being-deployed, small-scale
experiments (ground based or balloon borne); a possible
upgrade of those ground-based experiments to an array
covering a rather large fraction of the sky (∼50%); and a
possible satellite mission covering the entire celestial
sphere.
First, we consider a part of the sky, which is typical of

small-scale experiments, inspired by the design study of the
EBEX experiment [42] and very similar to the patch and

noise level used in Ref. [43] mimicking current ground-
based efforts such as ACTPOL or POLARBEAR. This roughly
covers 1% of the sky with a highly inhomogeneous noise,
as shown in the left panel of Fig. 4. The average noise level
is∼5.75 μK-arcminute, and the beamwidth is 8 arcminutes.
This setup will be referred as the “small-scale experiment”
hereafter.
Second, we consider the potential case of an array of

ground-based telescopes allowing for covering ∼50% of
the celestial sphere with a (considered homogeneous here)
noise of 1 μK-arcminute and a beamwidth of 3 arcminutes.
These specifications roughly correspond to Stage IV of
future CMB experiment as reported in, e.g., Ref. [44]. For
such a large fraction of the sky, masking the regions with
high foreground galactic emissions is needed. To this end,
we consider that the entire galactic south hemisphere would
be observed, and we apply a galactic mask and a mask for
point sources. We make use of the R9 galactic mask used
for polarized data of WMAP and add the point-sources mask
[45]. The resulting sky coverage is depicted in the middle
panel of Fig. 4, and it roughly covers ∼36% of the sky.
(We note that this sky coverage is just the restriction to
the galactic south hemisphere of the kept-in-the-analysis

FIG. 4 (color online). Left Panel:A potential noise distribution (number of hits per pixel) for small-scale experiments covering ∼1% of
the sky. The noisiest pixels have been discarded, and the noise distribution ranges from 105 to 107.Middle panel: Portion of the sky kept
for estimating the B-mode angular power spectra for a possible array of ground-based telescopes. It roughly covers 36% of the sky (note
that for this analysis the choice of the galacatic or the ecliptic south hemisphere is equivalent; see the text for more information). Right
panel: Portion of the sky kept for estimating the B-mode angular power spectra for a possible satellite mission, roughly covering 71%
of the sky.

TABLE II. Maximum values of the ðS=NÞr for the mode-counting method (upper part) and the minimum-variance
quadratic estimator (lower part). This is derived assuming no binning (i.e., Δb ¼ 1) or using a binning with a
bandwidth of Δb ¼ 40. In parentheses is the values of fsky (in %) at which this maximum is reached.

r 0.07 0.1 0.15 0.2

ðS=NÞðoptÞr and fðoptÞsky :
Mode counting:
Δb ¼ 1 4.6 (2.5%) 5.7 (3%) 7.2 (4%) 8.4 (5.5%)
Δb ¼ 40 4.4 (2.0%) 5.5 (3%) 7.0 (4%) 8.2 (5%)
Minimum-variance Cl:
Δb ¼ 1 4.2 (2.5%) 5.3 (3.5%) 6.8 (5%) 8.0 (7%)
Δb ¼ 40 3.7 (2.5%) 4.7 (2.5%) 5.9 (3.5%) 7.0 (5%)

DETECTING THE TENSOR-TO-SCALAR RATIO WITH THE … PHYSICAL REVIEW D 92, 083510 (2015)

083510-9



portion of the sky for a satellite mission as defined below.)
This configuration will be referred as the “array of tele-
scopes” in the following. One could have chosen also
the south ecliptic hemisphere; however, while this consid-
eration is important for, e.g., the scanning strategy and
foreground treatment, this is less relevant for the minimi-
zation of the E-to-B leakage for which one key point is the
complexity of the contours of the patch, which would be
reflected in both choices of observation.
Third, we consider a potential satellitelike mission with

homogeneous noise at a level of 2.2 μK-arcminute and a
beamwidth of 8 arcminutes [46]. The portion of the sky to
be analyzed is displayed in the right panel of Fig. 4. It
corresponds to 71% of the entire celestial sphere. As for the
previous case, the removed portion of the sky corresponds
to the WMAP galactic and point-sources mask. This will be
referred as the “satellite mission” hereafter.

B. Sky apodizations

For each of those cases, the uncertainties on the
reconstructed angular power spectrum are obtained using
the pure pseudospectrum estimator, using the same set of
bandpowers as in Sec. II C. We note, however, that the first
bandpower, ranging from l ¼ 2 to l ¼ 20, will be
explictly shown hereafter since those scales are now
accessible for the case of an array of telescopes and the
case of a satellite mission.
Optimizing the sky apodization to be applied to the maps

is a key step to reach better performance on the recon-
structed CB

l . Two classes of sky apodizations have been
proposed in the literature (see Refs. [21,22]). The first class
consists of an analytical formula fulfilling the appropriate
Neuman and Dirichlet boundary conditions using arches
of a sine function. The apodization length can be sub-
sequently optimized, bin per bin, to minimize the uncer-
tainties on the estimated CB

l . The second class is a set of
minimum-variance optimized sky apodizations. They can
be computed either in the pixel domain as originally
proposed in Ref. [21] (thus allowing for relaxing the

boundary conditions and keeping track of the information
about the B-modes contained in the so-called ambiguous
modes) or in the harmonic domain as proposed in Ref. [22]
providing the noise is homogeneous and imposing the
Neuman and Dirichlet boundary conditions. The pixel-
based computation is more flexible and general (being, e.g.,
applicable to cases of inhomogeneous noise), and it was
shown to generically lead to better performance. It is,
however, numerically costly, while the harmonic-based
computation is very rapid.2

To illustrate the specific case of the minimum-variance
sky apodizations (computed in the pixel domain), an
example of its scalar, spin-0 component is depicted in
Fig. 5 for the three experimental setups. This sky apodiza-
tion has been optimized for the bandpower in a bin between
l ¼ 60 and l ¼ 100 and for a value of the tensor-to-scalar
ratio r ¼ 0.05. We note that the sky apodization computed
on the sole galactic south hemisphere for an array of
telescopes (see the middle panel of Fig. 5) is not the
restriction to the galactic south hemisphere of the sky
apodization for a satellite mission computed on both
hemispheres (see the right panel of Fig. 5). (This would
obviously be the case for analytic sky apodizations.) This is
mainly due to the fact that the global shape of the observed
portion of the sky is taken into account in the optimization
process. This is clearly seen by noticing that, for a typical
patch covering both hemispheres, there is a rather large
apodization length parallel to the azimuthal direction while
the apodization length along the zenithal direction is rather
small. On the contrary for a typical patch covering only the
south hemisphere, the apodization length is essentially
along the zenithal direction. Such a difference is explained
by the important hole along the zenithal direction in the

FIG. 5 (color online). Spin-0 (scalar) component of the optimized sky apodization for a small-scale experiment covering ∼1% of the
sky with inhomogeneous noise (left panel), for a possible array of ground-based telescope covering ∼36% of the sky with homogeneous
noise (middle panel), and, for a possible satellite mission covering ∼71% of the sky with homogeneous noise (right panel). This sky
apodization is optimized for a bandpower ranging from l ¼ 60 to l ¼ 100 and for a value of the tensor-to-scalar ratio r ¼ 0.05.

2This is because those optimized sky apodizations are obtained
as the solution of linear system of size Npix. This linear system
corresponds to a convolution, which is drastically simplified in
the harmonic domain (the convolution kernels becoming diago-
nal) assuming the noise is homogeneous.
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north hemisphere, which leaves its footprint on the final
shape of the sky apodization. (There is a second source of
differences due to the different beamwidth and noise level,
which are considered for both types of experiments. They,
however, have a tiny impact on the orientation of the
apodization length since they are evenly distributed over
the sky and therefore do not have any preferred directions.)
A couple of comments about the numerical computation

of the pixel-based, minimum-variance sky apodizations are
in order here. They are theoretically built to give the
smallest uncertainties in the context of the pure pseudo-
spectrum estimators. However, they are practically com-
puted from a Preconditionned Conjugate Gradient (PCG)
algorithm, the efficiency of which strongly depends on
the experimental configurations, especially with respect to
the noise level and its distribution over the patch as well as
with respect to the complexity of the contours of the mask.
First, the number of iterations in our implemented PCG

rapidly increases for lower levels of noise: at the largest
angular scales (l ≤ 20), the number of iterations ranges
from∼100 for a noise level of 5.75 μK-arcminute to ∼3000
for a noise level of 1 μK-arminute (the number of iterations
being 1 order of magnitude smaller for smaller angular
scales, l ≥ 20). The B-mode angular power spectrum is
estimated using the same binning as in the previous section,
leading to Nbin ¼ 26, and we selected six values of r.
Considering three experimental setups, this would translate
into ∼500 optimized sky apodization to compute, which is
numerically too costly. We therefore compute the optimized
sky apodization for r ¼ 0.05 only but use them for all the
values of r considered here, meaning that the signal-to-
noise ratios obtained for r ≠ 0.05 may be suboptimal
within the context of the pure pseudospectrum estimator.3

Second, it is not guaranteed that the algorithm converges
toward the optimal solution, especially for inhomogeneous
noise (see Sec. IV C of Ref. [22] where it was shown that
trimming out the external, noisiest pixels is required) or a
very low level of noise (see Ref. [21], which mentions that
convergence is not reached for a noise level of ∼1 μK-
arminute, corresponding to the level of the array of tele-
scopes case). This means that the performances of those sky
apodizations have to be assessed using numerical simu-
lations at the level of the power spectrum reconstruction,
comparing the resulting error bars on the estimated power
spectra to the error bars obtained by using the other types of
sky apodizations.

C. Power spectrum uncertainties

The relative performances of the different sky apodiza-
tions are appraised at the level of power spectrum uncer-
tainties. For each case we performed a series of 500
Monte Carlo simulations to compute the statistical uncer-
tainties on the reconstructed B-mode angular power spec-
tra, assuming different kinds of sky apodizations. Such
performances have been exhaustively studied for the small-
scale experiment case and the satellite mission case (see
Refs. [21,22] and Ref. [28], respectively). On the contrary,
the applicability of the pure pseudospectrum estimator for
the case of an array of telescopes was hitherto not studied.
We then performed numerical simulations using the differ-
ent classes of sky apodizations to assess the efficiency of
the pure pseudospectrum reconstruction of the B-mode and
subsequently selected those sky apodizations, which led to
the smallest uncertainties.
In this section, we only briefly review the major

conclusions concerning the cases of a small-scale experi-
ment and a satellite mission. Then, we present the results of
our numerical investigations for the case of an array of
telescopes.

1. Optimal apodizations: Small-scale experiments and
satellite missions

For the small-scale experiment case, it was shown that
the lowest uncertainties in the range l ∈ ½2; 1020� were
obtained using either the pixel-based optimized sky apod-
izations or analytic sky apodizations appropriately chosen
to minimize the variance per each bin. However, the
harmonic-based computation of the sky apodization fails
in providing error bars comparable to the previous ones in
the entire range of multipoles considered here, simply
because the noise is inhomogeneous. (We refer to Fig. 24 of
Ref. [22] and discussions therein.)
For the satellite mission case, the pixel-based com-

putation of the minimum-variance sky apodization yields
the smallest uncertainties for the range l ∈ ½2; 1020�. A
similar performance is obtained by using the harmonic-
based computation of these sky apodizations for 150≲
l≲ 600. The error bars, however, drastically increase for
larger angular scales, the reason for that being the intricate
contours of the galactic mask and the point-sources mask,
which require one to relax the Neuman and Dirichlet
boundary conditions to keep (part of) the information
about the B-mode contained in the ambiguous modes.
For such a case, analytic sky apodizations fail in providing
comparable error bars at the largest angular scales. (We
refer to Fig. 4 of Ref. [28] and discussions therein.)

2. Optimal apodizations: Array of telescopes

For the case of an array of telescopes, we systematically
search for the type of sky apodizations, which leads to the
smallest uncertainties bin per bin and for each value of r

3In the specific case of small-scale experiments, it was,
however, shown in Ref. [22] that the optimization process is
mainly driven by the noise level and the amount of E-modes
leaking into the B-mode and poorly affected by the amplitude of
the primordial B-mode. This means that the resulting sky
apodizations may be mildly dependent on the assumed value
of r and that the derived signal-to-noise ratios are only slightly
suboptimal for the case of small-scale experiments.
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considered in this study. We first found that the harmonic-
based, optimized sky apodizations yield to error bars higher
than the analytic sky apodizations or the pixel-based,
optimized sky apodizations. This is similar to what was
observed for the case of a satellite mission, and the
inefficiency of the harmonic-based, optimized sky apod-
izations is due to the complexity of the contours of
the mask.
An example of the uncertainties for r ¼ 0.1 and using

the pixel-based, optimized sky apodizations (the dashed-
red curve) or the analytic ones for different values of the
apodization length (the dashed-blue curves) is shown in
Fig. 6. The solid-black curve stands for the input angular
power spectrum, and the dashed-black curve stands for the
binned, mode-counting computation of the error bars. This
first shows that the pixel-based, optimized sky apodizations
perform the best at the largest angular scales. This is
systematically so for the two first bins. For the third bin, the
pixel-based, sky apodizations and the analytic ones perform
the same for r > 0.1, while for r ≤ 0.1, the analytic sky
apodizations with an apodization length of 4° lead to a
smaller error bar than the pixel-based, optimized sky
apodization. However, at smaller scales, l≳ 100, the
smallest error bars are systematically obtained by using
an analytic sky apodizations with an apodization length of 2
degrees for intermediate scales, 100≲ l≲ 300, and an
apodization length of 1 degree for small scales, l≳ 300.
We found this to be independent of the value of r (at least
for the grid of values considered here).
We note that the apparent failure of the pixel-based,

optimized sky apodizations here may be rather due to
practical difficulties in computing such apodizations

sufficiently accurately, rather than an indication of some
fundamental problems. Indeed, we have found that for the
noise levels the iterative solver used to compute the
apodizations converges extremely slowly (as also observed
in Ref. [21]), potentially preventing us in practice from
achieving sufficient precision.

3. Summary on the power spectrum uncertainties

As a summary, the smallest statistical uncertainties
obtained for r ¼ 0.1 are shown in Fig. 7 in which the
orange, red, and burgundy curves stand for the small-scale
experiment, an array of telescopes, and a satellite mission,
respectively. For each experimental setup, we show the
smallest error bars, which are attained for each bandpower.
For the cases of a small-scale experiment and a satellite
mission, this is obtained by using the pixel-based, opti-
mized sky apodizations throughout the entire range of
angular scales. For the case of an array of telescopes,
the pixel-based, optimized sky apodizations are used for
multipoles lower than 100, while analytic sky apodizations
with an apodization of 2 degrees and 1 degree are used
in the range 100 ≤ l ≤ 300 and in the range l > 300,
respectively.
As expected, the higher uncertainties are the ones from a

small-scale experiment due to the tiny fraction of the sky it
covers and the relatively high level of instrumental noise.
We provide the uncertainties for the first bandpower,
2 ≤ l < 20, for completeness. These scales are nonetheless
inaccessible starting from a map covering 1% of the sky
due to the high uncertainties, as already stated in Sec. II.
For angular scales going from l ¼ 2 to l ∼ 600, the

smallest error bars correspond to a satellite mission. This is
because at these angular scales the uncertainties are
dominated by sampling variance and a satellite mission,
as compared to an array of telescopes, benefits from its

FIG. 6 (color online). Statistical uncertainties on the recon-
structed B-mode for the case of an array of telescopes. The solid-
black curve stands for the input angular power spectrum with a
tensor-to-scalar ratio equal to r ¼ 0.1. The dashed-black curve is
for the binned, mode-counting uncertainties used as a benchmark.
The error bars obtained by using the pixel-based, optimized sky
apodizations (called PCG in the figure legend) is represented by
the dashed-red curve. The different dashed-blue curves correspond
to the error bars obtained by using analytic sky apodizations with
an apodization length ranging from 1° to 6°.

FIG. 7 (color online). Statistical uncertainties on the recon-
structed B-mode’s angular power spectra with the pure pseudo-
spectrum estimator. The orange, red, and burgundy lines stand for
the small-scale experiment, an array of telescopes, and a satellite
mission, respectively. The black line corresponds to the input
angular power spectrum for r ¼ 0.1.
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larger sky fraction. For multipoles smaller than ∼100, the
error bars from a satellite mission are roughly 1.5 to 2 times
smaller than the error bars obtained from an array of
telescopes, which is in line with the fact that the sky
fraction for a satellite mission is two times higher than the
sky fraction observed by an array of telescopes, thus
reducing the error bars by a factor of ∼

ffiffiffi
2

p
as compared

to the error bars from an array of telescopes.
Nevertheless, at small scales, l > 600, smaller error bars

are obtained from an observation by an array of telescopes.
This is because in that regime the uncertainties for the case
of a satellite mission are dominated by the noise term,
Nl=B2

l. Since the noise for a satellite mission is four times
higher (in the power spectrum) than the noise for an array
of telescopes and the beam is more than two times higher,
this increase of the variance largely overcomes the decrease
due to a larger sky coverage. This quantitatively explains
why at those small angular scales the lowest error bars on
the B-mode reconstruction are obtained from an array of
telescope. (One can even notice that for the range of angular
scales considered here the uncertainties obtained for an
array of telescopes is dominated by sampling variance.)

D. Signal-to-noise ratio on r

The computation of the signal-to-noise ratio on the
tensor-to-scalar ratio is done by using the same Fisher
matrix formalism as employed in the previous section,
Eq. (3). For each experimental configuration and each value
of r, we select the smallest error bars we obtained bin per
bin. This means that for the specific case of an array of
telescopes the estimation of the B-mode angular power
spectra is done by mixing different kinds of sky
apodizations.4

We use the same bandpowers as in Sec. II and now add
the largest angular scales, from l ¼ 2 to l ¼ 20 gathered in
one single bandpower, in the summation in Eq. (3). Adding
these scales is relevant for the case of an array of telescopes
and the case of a satellite mission. We will first add this
bandpower at the largest scales for the three experimental
setups, Sec. III D 1. We will subsequently study its impact
on the measurement of r, Sec. III D 2. (Note that we use the
binned covariance for both the mode counting and the pure
pseudospectrum reconstruction of CB

l .)

1. Numerical results

Our results on the signal-to-noise ratio for r ranging from
0.001 to 0.2 are shown in Fig. 8 (note that for the specific
case of a satellite mission the value r ¼ 5 × 10−4 has been
added in order to fall below the 3σ limit). The red and black
crosses correspond to a covariance matrix computed using
the mode-counting expression for error bars on CB

l and the
pure pseudospectrum error bars, respectively. The solid red
line is the 3σ limit. The left panel corresponds to a small-
scale experiment covering ∼1% of the celestial sphere with
a highly inhomogeneous noise distribution. The middle
panel corresponds to an array of telescopes covering ∼36%
of the sky with a low level of (homogeneous) noise. Finally,
the right panel is for a satellite mission covering ∼71% of
the sky with a low level of homogeneous noise.
For the case of a small-scale experiment, the signal-to-

noise ratio on r ranges from 0.06 for r ¼ 0.001 to 4 for
r ¼ 0.2 assuming a pure pseudo-Cl reconstruction of the
B-mode power spectrum (meaning that a “measurement” of
r ¼ 0.001 would be consistent with r ¼ 0). This has to be
compared to what would be inferred from the idealized
mode-counting evaluation of the uncertainties, for which
the signal-to-noise ratio varies from 0.25 for r ¼ 0.001 to
6.7 for r ¼ 0.2. For r ¼ 0.001; 0.01, and 0.1, the ðS=NÞr
derived from a mode-counting estimation of the uncertain-
ties on the B-mode is overestimated by factors 4.2, 2.3, and
1.8, respectively, as compared to the ðS=NÞr obtained from

FIG. 8 (color online). Signal-to-noise ratio for the detection of r using pure pseudospectrum reconstruction for a potential small-scale
experiment (fsky ¼ 1% and inhomogeneous noise at an average level of 5.75 μK-arcminute) in the left panel, an array of telescope
(fsky ¼ 36% and homogeneous noise at 1 μK-arcminute) in the middle panel, and a satellite mission (fsky ¼ 71% and homogeneous
noise at 2.2 μK-arcminute) in the right panel. Red crosses assume the mode-counting expression for the error bars on the reconstructed
CB
l , and black crosses assume the pure pseudospectrum error estimated using Monte Carlo simulations.

4We mention that mixing sky apodizations could lead to
practical difficulties for computing the correlations between
different bandpowers, though this remains conceptually similar
to a case without mixing different types of sky apodizations.

DETECTING THE TENSOR-TO-SCALAR RATIO WITH THE … PHYSICAL REVIEW D 92, 083510 (2015)

083510-13



a pure pseudo-Cl reconstruction of the angular power
spectrum.
For the case of an array of telescopes and assuming the

pure pseudospectrum estimation of the B-mode, the signal-
to-noise ratio varies from 0.67 to 41 with r varying from
0.001 to 0.2. Values of r ¼ 0.01 and r ¼ 0.1 would be
measured with statistical significances of 5.75σ and 28.16σ,
respectively. Using instead the mode-counting estimation
of the uncertainties on CB

l , the ðS=NÞr varies from 3 to 54
for r ranging from 0.001 to 0.2. For the three selected
values of r ¼ 0.001; 0.01, and 0.1, the signal-to-noise ratio
obtained from the mode-counting approach is, respectively,
overestimated by factors 4.5, 2.5, and 1.3, as compared to
the realistic ðS=NÞr derived from the pure pseudo-Cl

estimation of CB
l .

For the case of a satellite mission, the signal-to-noise
ratio varies from 0.66 for r ¼ 0.0005 to 59 for r ¼ 0.2,
assuming the pure pseudospectrum estimation of CB

l . The
values of r ¼ 0.001, r ¼ 0.01, and r ¼ 0.1 would be
detected with statistical significances of 1.34, 10.84, and
46.19, respectively. If one instead makes use of the mode-
counting estimation of the error bars on the B-mode
reconstruction, the ðS=NÞr varies from 2 to 72 for values
of the tensor-to-scalar ratio ranging from 0.0005 to 0.2. For
r ¼ 0.001; 0.01, and 0.1, the mode-counting evaluation
overestimates the signal-to-noise ratio, as compared to
the pure pseudo-Cl reconstruction, by factors 2.2, 1.59,
and 1.22.
From a qualitative viewpoint, the signal-to-noise ratios

computed in the framework of the mode-counting expres-
sion are always higher compared to the signal-to-noise
ratios assuming the pure pseudospectrum reconstruction of
the B-mode. (This is obviously expected from the fact that
the mode-counting approach is an idealized and under-
estimated computation of the uncertainties.) We observe
that the overestimation using the mode-counting expression
(as compared to the more realistic pure pseudospectrum
reconstruction of CB

l ) is less marked for higher values of r.
This behavior is common to the three experimental con-
figurations considered here, though there are differences
from a quantitative viewpoint. The reason is that for low
values of r most of the information comes from the largest
scales, and it is precisely at those large scales that the
underestimation of the B-mode reconstruction using the
mode-counting formula is more marked.
We also stress that in the case of the mode-counting

approach the leakages are ignored. On the contrary, the
pure pseudospectrum approach consistently includes them
but corrects them in the analysis. This explains why the
mode-counting approach overestimates the signal-to-noise
ratio on r.

2. Relative importance of the reionization peak

CMB observations covering a large fraction of the sky
are automatically contaminated by various astrophysical

foregrounds with complex physics involved among which
the emission from our Galaxy is the strongest. Masks are
used to remove from the analysis the portion of sky with the
highest foreground level, but the foreground emission is
present on the entire celestial sphere. Usually techniques—
such as parametric component separation [47] used to
determine the spectral parameters or template fitting
method, which deprojects the template of the foreground
from the map [48,49]—are used to minimize the impact of
the foreground. The residual level of foreground contam-
inants depends on the technique actually chosen. However,
the power spectrum of the galactic dust, polarized emission
(which is the major contaminant of CMB measurements at
frequencies above ∼100 GHz) behaves as l−2.4, to be
compared to l−2 for the CMB B-mode angular power
spectrum at scales above a degree [50]. The impact of such
a galactic foreground is therefore expected to be more
pronounced at the largest angular scales.
Here, we considered the worst case scenario where the

foreground contamination could not be removed at all on
the largest scale, meaning that the information from the
reionization peak is no more taken into account in the
computation of the signal-to-noise ratio. In practice, we
discard the first bin (2 ≤ l < 20) from the analysis, which
necessarily lowers the signal-to-noise ratio on r. We define
this relative decrease as

δ ¼
				
ðS=NÞðl>20Þr − ðS=NÞr

ðS=NÞr

				; ð15Þ

with ðS=NÞr the signal-to-noise ratio on r accounting for all
the angular scales and ðS=NÞðl>20Þr the signal-to-noise ratio
obtained by discarding the first bandpower. This relative
decrease can alternatively be interpreted as the relative
contribution from the first bin to the signal-to-noise on r
since

δ ¼
				
ðS=NÞðl<20Þr

ðS=NÞr

				; ð16Þ

with ðS=NÞðl<20Þr the signal-to-noise ratio on r that would
be obtained by using the first bandpower only.
This relative decrease of ðS=NÞr is shown in Fig. 9. The

red crosses correspond to the mode-counting estimation of
the error bars on the reconstruction of CB

l , while the black
crosses correspond to the error bars from a pure pseudo-
spectrum estimation of CB

l . The left, middle, and right
panels, respectively, stand for the case of a small-scale
experiment, an array of telescopes, and a satellite mission.
The case of a small-scale experiment is poorly affected

by the removal of the first bin using the pure peudospec-
trum reconstruction of CB

l , the relative decrease being
systematically smaller than 0.1%. This is because in such
a case the signal-to-noise ratio for the first bandpower,
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CB
b¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σb¼1;b¼1

p
, is much smaller than unity for all the

values of r considered here. This bandpower therefore does
not bring any significant amount of information on r. This
drastically differs if one uses the mode-counting evaluation
for which δ varies from 0.7% for r ¼ 0.2 to 32% for
r ¼ 0.001. This is because in this case the signal-to-noise
ratio in the first bandpower, CB

l=
ffiffiffiffiffiffiffiffi
Σl;l

p
with 2 ≤ l < 20,

becomes greater than unity though the sky coverage is only
of ∼1%. The fact that the relative decrease is more
pronounced for small values of r is understood as follows.
For lower values of r, the recombination bump at the
degree scale falls below the lensing part of the B-mode,
while the reionization bump in the first bandpower remains
above the lensing signal. As a consequence, the reioniza-
tion peak carries more information, relative to the infor-
mation carried by the recombination peak, for lower values
of the tensor-to-scalar ratio.
For the case of an array of telescopes, the relative

decrease ranges from 0.4% for r ¼ 0.2 to roughly 3%
for r ¼ 0.001. We note that this relative decrease is now
roughly constant from r ¼ 0.001 to r ¼ 0.01 and then
decreases for higher values of the tensor-to-scalar ratio.
This behavior of δ is explained by the very same reason
explaining why δ decreases for higher values of r if one
makes use of the mode-counting estimation of the uncer-
tainties on the estimated CB

l and because for an array of
telescopes the angular power spectrum in the first band-
power can now be measured with a signal-to-noise ratio
greater than unity. We note that the relative decrease using
the mode counting behaves the same as in the case of a
small-scale experiment (with minor quantitative differences
at high values of r).
For the case of a satellite mission, the relative decrease

varies from 0.35% for r ¼ 0.2 to 9% for r ¼ 0.0005, with
δ ¼ 8% for r ¼ 0.001. This relative decrease now mono-
tonically increases with lower values of r (though our
results suggest that a plateau is reached for r < 0.001). This
behavior is explained by the same reason explaining the
decrease of δ for higher values of r in the case of an array
of telescopes. We also note that δ obtained from the

mode-counting expression behaves the same as in the case
of a small-scale experiment and an array of telescopes. As
is clear from Fig. 9, the shape of δ as derived using the
mode-counting expression is qualitatively the same for the
three experimental configurations, though sky fractions and
shapes of the masks drastically change. This is because the
impact of the limited sky fraction is simply modelled as an
overall renormalization of the error bars, equally applied at
all angular scales [see Eq. (5)]. Neglecting the noise
contribution to the error bars on the B-mode reconstruction
(which is a relatively fair assumption here), it is easy to
figure out that this overall 1=

ffiffiffiffiffiffiffiffi
fsky

p
does not enter in the

final expression of δ. (We note that minor differences are,
however, expected because of the different noise level and
beamwidth.) At low values of r, the relative decrease is
much less marked in the context of the pure pseudospec-
trum reconstruction of CB

l , with respect to the mode-
counting expression. This is because the different leakages
have stronger impacts at large scales (in terms of the
increase of the error bars on the estimated CB

l ), thus
reducing the relative contribution of the first bandpower
to the constraint that can be set on r. The impact of leakages
in terms of error bars onCB

l at large angular scales increases
with smaller fsky, which therefore reduces the relative
contribution of the first bandpower to the constraints on r.
This is clearly seen in Fig. 9 where δ is more important
from the case of a small-experiment, to the case of an array
of telescopes, to the case of a satellite mission.

3. Performances on r detection

As a result, at a given r and considering all the angular
scales from 2 to 1020, the value of the signal-to-noise ratio
is the highest in the case of a satellite mission. As an
example, a tensor-to-scalar ratio r ¼ 0.1 would be detected
at a statistical significance of about 46σ. In the case of an
array of telescopes, the value of the signal-to-noise ratio
remains high for a large range of values of the tensor-to-
scalar ratio, showing a detection of 28σ at r ∼ 0.1. Finally, a
small-scale experiment would set mild constraints on low
values of the tensor-to-scalar ratio, reaching 3σ at r ∼ 0.1.

FIG. 9 (color online). The relative decrease of the signal-to-noise ratio (in %) if the information from the reionization peak (i.e., the
first bin) is discarded from the analysis. The left, middle, and right panels are for the small-scale experiment, an array of telescopes, and a
satellite mission, respectively.

DETECTING THE TENSOR-TO-SCALAR RATIO WITH THE … PHYSICAL REVIEW D 92, 083510 (2015)

083510-15



In the frame of the primordial B-mode detection pros-
pects, the minimal value of the tensor-to-scalar ratio r that
could be detected regarding the experimental setups is a
relevant result. Table III summarizes in this perspective the
aforementioned results, considering a measurement of r
with at least a 3σ statistical significance as a threshold. The
minimal accessible value of r is shown with respect to the
experimental setups and the estimation of the B-mode
variance over all the range of multipoles (referred to as
Case A in the table). As explained above, the mode-
counting estimation of the variance overestimates the
forecasts made on the minimal accessible r as compared
to the realistic B-mode estimation. In the case of a potential
satellite mission for instance, the lowest accessible r we
could realistically expect is 2.88 greater than the one
estimated using the mode-counting estimation. These
results therefore highlight the inaccuracy that an approx-
imative estimation of the B-mode induces on the performed
forecasts of the detectable r values. Thus, considering the
realistic forecasts performed thanks to the pure estimation
of the B-mode power spectrum, we conclude that a satellite
mission would give access to the largest range of r, with a
minimal r value of 2.6 × 10−3. A typical small-scale
experiment is indeed expected to reach only r higher than
0.1 at 3σ (note that r ¼ 0.05 is detectable at 2σ). Between
these two cases lies the one of an array of telescopes, which
warrants a detection of the tensor-to-scalar ratio if it is
higher than 5.1 × 10−3. As a result, each studied experi-
ments widens the accessible range of the tensor-to-scalar
ratio r. In terms of minimal detectable value of r, one gains
about a factor 20 from small-scale experiments to an array
of telescopes and about a factor 2 between the latter and a
satellite mission.
Furthermore, Table III also displays the minimum

accessible r obtained without the information from the
first bin (l < 20) of the B-mode power spectrum (referred
to as Case B). This lack of information obviously leads to a
smaller range of accessible r than in Case A for a naive

estimation of the B-mode variances, as explained in the
previous subsection. In particular, while the accessible r
range is little affected by removing the first bin in the case
of a small-scale experiment, the minimal accessible r is
∼1.44 (∼1.04) greater for a satellite mission (an array of
telescopes) as the largest angular scales are relevant for
these experimental setups. We note here that, contrary to
what one might expect, a large-scale experiment would still
succeed in detecting r of at least 10−3. For l between 20
and 90, the amplitude of the primordial signal is roughly
10% of the lensing signal, while the total (mode-counting
estimated) error budget varies from few percent to 10% of
the lensing signal. Summing over the multipoles range
thus enables a detection of r ∼ 10−3 with a 3σ statistical
significance.
Nonetheless, in this Case B, the orders of magnitude of

the realistic forecasts remain unchanged if the B-mode
power spectrum is reconstructed from the pure pseudo-Cl
approach. The values of r that could be detected at 3σ
increase by a factor of less than 1% for a small-scale
experiment, a factor of a few percent for an array of
telescopes, and a factor of almost 10% for a satellite
mission. (This obviously reflects the values of δ found
in the previous section, Sec. III D 2.) This means that the
pure pseudo-Cl estimation of the reionization peak of the
B-mode mildly constraints the tensor-to-scalar ratio. To
take full advantage of the range 2 ≤ l ≤ 20 (so as to lower
the minimal detectable value of r and to enlarge the lever
arm to constrain, e.g., the spectral index), one should
probably rely on more optimal techniques for reconstruct-
ing CB

l at those largest angular scales.5

IV. CONCLUSION AND DISCUSSION

We have investigated the detection of the tensor-to-scalar
ratio, r, from forthcoming and potential future measure-
ments of the CMB polarized anisotropies. We considered
the B-mode as the main source of information on r and
assumed the pure pseudospectrum reconstruction of its
angular power spectra from the maps of Stokes Q and
Stokes U, previously shown to be a method of choice for
analyzing coming data sets. We focused on realistic
statistical uncertainties (i.e., sampling and noise variance)
as incurred by such a numerical method, and we purpose-
fully did not consider the potential gain thanks to delensing
nor the loss due to polarized foreground contamination and
instrumental systematics.
We emphasize that in this paper we consider only the

E-to-B leakage due to a cut sky. In CMB practice there are
numerous other potential sources of such leakages. For
instance, they can arise from instrument limitations, such as
beam mismatch [51] or polarimeter orientation uncertainty

TABLE III. The minimal accessible value r with at least a 3σ
statistical significance, regarding the experimental setups and the
estimation of the variance on the B-mode reconstruction. Case A
means that all the bins are used. Case B means that the
information from the reionization peak (i.e., the first bin from
l ¼ 2 to l ¼ 20) has been removed. This is obtained by linearly
interpolating the computed ðS=NÞr on our grid of values of r.

Small-scale
exp.

Telescopes
array

Satellite
mission

Mode counting:
Case A r ≳ 0.038 r ≳ 0.0011 r ≳ 0.0009
Case B r ≳ 0.04 r ≳ 0.0016 r ≳ 0.0013
Pure pseudo-Cl :
Case A r ≳ 0.11 r ≳ 0.0051 r ≳ 0.0026
Case B r ≳ 0.11 r ≳ 0.0053 r ≳ 0.0028

5We note that the reconstruction of CB
l at large scales is also

plagued by other sources of uncertainties such as the level of
residual foregrounds and/or the impact of filtering of the maps.
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[52], or be generated by data processing, say, via time-
domain filtering [12,53]. Such leakages would also have an
effect on the estimated B-mode power spectrum. The effect
will in general depend on a specific method used for the
estimation but also on the detailed nature of the leakage
itself and thus would have to be studied case by case. In
many situations, such leakages could be corrected for
already on the map-making stage, leaving therefore the
cut sky as the only fundamental source of the leakage to
contend with on the power spectrum estimation level as
assumed in this work.
In contrast, we include the effects of the gravitational

lensing, i.e., of the “cosmological E-to-B leakage,” in the
total uncertainty budget, in spite of the fact that map-
making-level, delensing procedures, which could correct
for part of this effect, have been proposed [14]. The
improvements on the detection of r those methods could
give depend on the noise level and the resolution of the
experiment and on the potential use of external data sets (if
delensing cannot be done internally). By including the
lensing-induced B-mode, we adopt a more conservative
viewpoint as far as forecasts on the tensor-to-scalar ratio are
concerned.
In this framework, we first consider the case of small-

scale (either ground-based or balloon-borne) experiments
in an idealized way, assuming the observed sky patch
is azimuthally symmetric. We consider four values of
r ¼ 0.07; 0.1; 0.15, and 0.2 and let the sky fraction to vary
from 0.5% to 10% (with a noise level of 5.75 μK-arcminute
at fsky ¼ 1%). We compare the signal-to-noise on r as
obtained from the pure pseudospectrum reconstruction of
the B-mode to the signal-to-noise ratio that would obtained
assuming either the mode-counting estimation of the
uncertainties on the B-mode or a minimum-variance
quadratic estimator. We show that the statistical signifi-
cance on the detection of r using the mode counting is
overestimated by a factor ∼1.25 as compared to the more
realistic case of the pure pseudospectrum estimation. (The
mode counting also overestimates this significance by a
factor ∼1.17 as compared to the minimum-variance quad-
ratic estimator.) Similarly, the ðS=NÞr obtained from the
pure pseudospectrum estimator is reduced by 1.5% (at
r ¼ 0.2) to 8% (at r ¼ 0.07) as compared to the lossless
minimum-variance quadratic estimator.
For the case of a small-scale experiment for which the

reionization bump is not accessible, and in the limitation of
azimuthally symmetric patches, the pure pseudospectrum
approach for B-modes reconstruction is thus almost as
accurate as the more computationally costly minimum-
variance quadratic estimator [the former scaling asOðN3=2

pix Þ
and the latter as OðN3

pixÞ if the observed sky patch is not
azimuthally symmetric]. As shown in Fig. 20 of Ref. [22],
nonazimuthal symmetry basically does not change the
uncertainties on the B-mode reconstruction with the pure
pseudospectrum estimator (except for unrealistic, highly

squeezed shapes). We can thus except this conclusion to
hold for more intricate shapes of the observed sky.
Our results (summarized in Table I) show that for a given

sensitivity typical of forthcoming small-scale experiments
the value of the sky fraction maximizing the signal-to-noise
ratio on r is rather insensitive to the method adopted to
compute the uncertainties on the reconstructed CB

l (either
the mode-counting expression, a minimum-variance quad-
ratic estimator, or the pure pseudo-Cl approach). We also
show that the choice of the bandwidth only mildly affects
this optimized sky fraction in the case of the mode-counting
approach to estimate the uncertainties on the B-mode
reconstruction (see Table II). This means that the mode-
counting expression provides a rather reliable estimate of
the optimized sky fraction even if it systematically under-
estimates the statistical uncertainty.
Second, we consider the detection of the tensor-to-scalar

ratio for three selected examples, each of them mimicking
three archetypal experimental configurations. Realistic sky
coverage (with intricate contours) and realistic noise dis-
tribution for the small-scale experimental setup are con-
sidered, and the statistical uncertainties on the B-mode
reconstruction are derived from the mode-counting expres-
sion first (used as a benchmark) and second from the pure
pseudospectrum estimators using optimized sky apodiza-
tions. Our results are summarized in the Table III. For each
experimental setup, it shows the minimal values of r that
could be measured with at least a statistical significance of
3σ. One gains more than 1 order of magnitude for the
minimal detectable value of r from the small-scale experi-
ment to an array of telescopes and another factor 2 from an
array of telescopes to a satellite mission. This conclusion
stands even if the largest angular scales (l ≤ 20) cannot be
used in the analysis.
Let us briefly discuss the impact of those results in the

context of single-field, slow-roll inflation. Our purpose here
is to give a rough translation of the potential measurement
of the tensor-to-scalar ratio with the pure pseudo-Cl
estimation of the B-mode into a potential discrimination
between small fields and large fields models of inflation. (A
more detailed study of inflationary models can be found
in Ref. [54], though it is restricted to satellite missions
and assumes a different evaluation of the error budget for
the B-mode reconstruction.)
The tensor-to-scalar ratio is a valuable source of infor-

mation for the physics of the primordial Universe. First, it is
a direct measure of the energy scale of inflation, V1=4 with
V the value of the inflaton potential during inflation:

V1=4 ¼ 1.06 × 1016 GeV

�
r

0.01

�
1=4

: ð17Þ

This means that a measured value of r ≥ 0.01 corresponds
to test a physical regime in the playground of grand unified
theories. Second, the tensor-to-scalar ratio is directly
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related to the number of e-folds, Ninf , and the excursion of
the scalar field, Δϕ, from the instant when cosmological
fluctuations observed in the CMB are created during
inflation to the end of inflation [5],

Ninf ¼
ffiffiffi
8

r

r

×
Δϕ
mPl

; ð18Þ

with mPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
the reduced Planck mass. (We note

that Ninf can be determined from the knowledge of the
inflaton potential. We, however, let it free in order not to
assume a too specific shape of this potential.) Single field
inflationary models can be roughly classified between
large fields models and small fields models, whether the
excursion of the scalar field is trans-Planckian or sub-
Planckian, respectively. Though the value Δϕ=mPl ¼ 1
should not be considered as a sharp and univocally
defined frontier between small fields and large fields
models,6 a precise measure of r then allows for dis-
criminating between these two classes of models. For
Ninf ∼ 30 and considering zero runnings of the spectral
index (see Ref. [55] for extensions of the Lyth bound
with runnings), values of r greater than ∼0.01 would
correspond to large fields models of inflation (see also

Ref. [56] and references therein for examples of small
fields models evading the Lyth bound).
Figure 10 shows the ranges of Δϕ=mPl as a function

of Ninf accessible assuming that the tensor-to-scalar
ratio has been measured with at least a 3σ statistical
significance. Blue areas correspond to the accessible
range for each experimental configuration (notice that
the higher Δϕ, the higher r). The dark blue region is for
the case of small-scale experiments, while the somewhat
lighter blue and light blue regions corresponds to the
case of the array of telescopes and of the satellite
mission, respectively. The minimal detectable value of r
with at least 3σ is the one derived from a pure
pseudospectrum reconstruction of the angular power
spectra of the B-mode and using the entire set of
angular scales (Case A of Table III). This shows that
a measurement of r from the pure pseudo-Cl
reconstruction of the B-mode thanks to data sets coming
from a small-scale experiment is impossible if small
fields models appear to be realized in the early
Universe. Though a detection is possible in the large
field models, there is still a range of such models for
which the level of primordial gravity waves is still
undetectable by a small-scale experiment. Small fields
models are only marginally accessible from the pure
pseudo-Cl estimation of the B-mode using data sets
from an array of telescopes, as Δϕ=mPl ≤ 1 is accessible
for Ninf smaller than ∼38. A detection of r consistent
with zero with a 3σ confidence level implies an
excursion of the scalar field (in Planck units) smaller
than 0.8 to 1.8 for Ninf varying from 30 to 70. Finally,
data sets coming from a satellite mission allows for a
detection of primordial gravity waves in the small fields
models with the pure pseudospectrum estimation of CB

l ,
providing that the number of e-folds is smaller than
∼55. On the range of e-folds considered here, a
measurement of the tensor-to-scalar ratio consistent with
zero then implies Δϕ=mPl ≲ 1.2, meaning that a dis-
crimination between large fields models and small fields
models is possible for a wide range of values of Ninf .
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FIG. 10 (color online). Values of the excursion of the scalar
field, Δϕ, that could be observed with, at least, a 3σ significance,
as functions of the number of e-folds during inflation. Darker
blue to lighter blue respectively stands for small-scale experi-
ment, an array of telescopes and a satellite mission. The minimal,
detectable value of r at 3σ allowing for such a measurement is the
one derived from the pure pseudo-Cl estimation of the B-mode
angular power spectra.

6The distinction between large fields and small fields models
of inflation is usually thought of in the context of effective field
theory and the UV completion of gravity. It is therefore natural,
but not necessary, to introduce a cutoff of the order of the Planck
scale.

7http://class‑code.net.
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