Alsaieedi, Ahdab Abdulazim;
(2017)
T cell delivery of immune-stimulatory cytokines to enhance cancer immunotherapy.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Alsaieedi_10040720_Thesis.pdf Download (32MB) | Preview |
Abstract
Adoptive cell therapy using TCR-engineered T cells is an exciting area of research and has emerged as a promising strategy for treating cancer patients. However, the effector function of TCR-engineered T cells can be tuned down by local mechanisms of tumour-associated immunosuppression. The potential of cytokines to reverse local immune suppression and enhance tumour immunity has been described in the past. The main aim of this project was to engineer T cell specificity as well as effector cytokine production as a strategy to enhance cancer immunotherapy. This was achieved by combining TCR gene transfer with genetic engineering to achieve IL-12 and IL-27 production in therapeutic T cells. In vitro validation data demonstrated not only an enhanced production of IL-12 and IL-27 by the engineered T cells but also an enhanced effector function upon antigen-specific stimulation. In order to circumvent previously described toxic side effects observed with systemic IL-12 delivery, a tet-regulated gene expression system was utilised to regulate cytokine production by engineered T cells in vivo. Adoptive transfer of TCR-redirected T cells expressing regulated IL-12 in B16F10 melanoma-bearing mice resulted in an enhanced accumulation of transferred CD8+ T cells in the tumour and in a change of the innate immune cell composition in the tumour microenvironment. Importantly, regulated IL-12 delivery resulted in enhanced therapeutic efficacy of the transferred T cells without causing systemic toxicity. IL-27 delivery in engineered T cells also showed some effectiveness when combined with TCR gene therapy, although the therapeutic benefit of IL-27 was inferior to IL-12. The data in this study demonstrate the potency of additional genetic manipulation to tailor the TCR-redirected T cell effector function which can result in a substantial enhancement in their therapeutic efficacy, and thus, enhanced antitumor immune response.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | T cell delivery of immune-stimulatory cytokines to enhance cancer immunotherapy |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10040720 |
Archive Staff Only
View Item |