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Age is not only the greatest risk factor for Alzheimer’s disease (AD) but also a key modifier of disease
presentation and progression. Here, we investigate how longitudinal atrophy patterns vary with age in
mild cognitive impairment (MCI) and AD. Data comprised serial longitudinal 1.5-T magnetic resonance
imaging scans from 153 AD, 339 MCI, and 191 control subjects. Voxel-wise maps of longitudinal volume
change were obtained and aligned across subjects. Local volume change was then modeled in terms of
diagnostic group and an interaction between group and age, adjusted for total intracranial volume,
white-matter hyperintensity volume, and apolipoprotein E genotype. Results were significant at p < 0.05
with family-wise error correction for multiple comparisons. An age-by-group interaction revealed that
younger AD patients had significantly faster atrophy rates in the bilateral precuneus, parietal, and
superior temporal lobes. These results suggest younger AD patients have predominantly posterior
progressive atrophy, unexplained by white-matter hyperintensity, apolipoprotein E, or total intracranial
volume. Clinical trials may benefit from adapting outcome measures for patient groups with lower
average ages, to capture progressive atrophy in posterior cortices.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Age is the largest risk factor for Alzheimer’s disease (AD) (Launer
et al., 1999). However, AD can develop at any point during the adult
life span as early as the fourth decade. Patients and their carers need
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clear and accurate information regarding the presentation and
progression of AD; therefore, investigating how disease progression
varies with age is important for clinicians and health care
professionals. Understanding the neurobiology of underlying age
effects may also result in different markers for diagnosis and dis-
ease tracking for different age ranges. Finally, age differences in AD
may impact the recruitment strategy for clinical trials and the
choice of trial outcome measures.

The course of AD appears different in older versus younger AD
subjects. In the clinic, younger AD patients are more likely to have
nonmemory cognitive symptoms such as difficulties in language
processing, attention, and visuospatial abilities (Barnes et al., 2015).
About one-third of early-onset AD patients (typically defined as
aged less than 65 years) have nonamnestic presentation, compared
with 6% of late-onset AD patients (Koedam et al., 2010). Single time
point studies reveal smaller volumes in association cortices such as
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the precuneus and posterior parietal cortex in younger compared
with older patients; older patients have been found to have lower
gray matter (GM) volumes in the medial temporal lobe (Frisoni
et al., 2005; Möller et al., 2013). Neuropathological subtypes of
dementia have been proposed, which divide atypical individuals
into hippocampal-sparing AD and limbic-predominant AD,
depending on the predominance of plaques and tangles in
neocortical and medial temporal areas respectively (Murray et al.,
2011); in vivo tissue loss in corresponding anatomical regions has
been confirmed in these subtypes with ante-mortem magnetic
resonance imaging (MRI) (Whitwell et al., 2012). Previous studies
investigating longitudinal atrophy differences with age have found
differences with respect to age, although being small in scale
(Cho et al., 2013a), lacking adjustment for normal aging effects on
atrophywithin patient groups (Cho et al., 2013a; Hua et al., 2010), or
having used regions of interest that are more associated with
typical patterns of AD, and thus may not reflect the anatomical
differences more often found in younger cases (Holland et al., 2012;
Nosheny et al., 2015). A further article by Holland et al. found
numerous regions more atrophic at younger ages in AD, including
the medial temporal lobe and the inferior parietal lobe (Holland
et al., 2013).

AD pathology is not the only driver of brain atrophy with age;
there are other biological reasons which may explain why AD
differs with age. Although baseline age may act as a potential
marker of AD heterogeneity at younger ages, aging, or the accrual
of damaging processes with time, also results in cerebral atrophy.
Vascular disease is an important and potentially modifiable
determinant of brain aging (Viswanathan et al., 2009). One mea-
sure of vascular disease burden is the volume of white-matter
hyperintensities (WMHs) of presumed vascular origin observed
on MRIs, which increase with age and are associated with subse-
quent atrophy and cognitive decline (Barnes et al., 2013;
Kloppenborg et al., 2012; Schmidt et al., 2005, 2011). Genes also
influence AD: the apolipoprotein E (APOE) e4 allele is another
important risk factor for atrophy patterns and age at onset; it is
implicated in an earlier age at onset (Breitner et al., 1998; Corder
et al., 1993), targeted hippocampal atrophy (Manning et al.,
2014), and although it is a risk factor for 1 presentation of atyp-
ical early-onset AD: posterior cortical atrophy (PCA) (Schott et al.,
2015), its effects are weaker than for typical AD.

In this study, we investigated the effect of age on atrophy rate
patterns in a large multisite data set of predominantly late-onset
MCI and AD patients allowing for normal aging effects, WMH vol-
ume, and APOE e4 status. We used a novel multi-time point voxel-
wise technique to investigate the age effects on brain atrophy over
time without a priori anatomical hypotheses. We also looked to see
if any differences with age remained in a cohort of individuals with
confirmed underlying AD pathology from cerebrospinal fluid (CSF)
data. The longitudinal registration and statistical modeling tech-
niques used in this study allowed voxel-wise change across the
brain to be studied while allowing for missing data, therefore
enabling inclusion of patients with at least 1 follow-up scan, who
dropout before the end of the study. This is important in the context
of age, as it has been shown that dropout is unlikely to be random
and may be due to higher levels of frailty, poorer vascular health, or
rapid decline (Fiford et al., 2017; Manning et al., 2017). Whole brain
and hippocampal boundary shift integral (BSI) results were used to
supplement voxel-wise findings (Leung et al., 2012). We hypothe-
sized that AD patients with a younger age at baseline would show
more widespread cortical atrophy relative to controls than older
patients, which would not be accounted for by APOE e4 carrier
status or vascular disease as measured byWMH burden. We further
hypothesized that the MCI group would show similar but less
extensive effects.
To compare younger and older AD subjects while accounting for
normal aging, which may incur additional tissue loss for older AD
subjects, we built a model to predict atrophy rate with an interac-
tion term between disease group and baseline age. The interaction
term allows the effect of age on atrophy rate in controls to be
subtracted from the slope of age and atrophy rate in patient groups.
This approach shows the relationship of baseline age on atrophy
rate in patient groups after accounting for normal aging.

2. Methods

2.1. Participants

All study data were obtained from the Alzheimer’s disease
neuroimaging initiative (ADNI) database (adni.loni.usc.edu). Par-
ticipants took part in baseline clinical, neuropsychometric and MRI
assessments, and periodical assessments thereafter. Written
informed consent was approved by the institutional review board
at each of the >50 participating centers. ADNI is a multicentre
longitudinal private-publicly funded study launched in 2003
investigating healthy controls, MCI, and AD subjects. Based in USA,
ADNI is headed by Michael W. Weiner. The principle goal of ADNI
has been to test whether serial MRI, positron emission tomography
(PET), biomarkers, and clinical and neuropsychological data usage
could measure the progression of MCI and early AD. For up to date
information please see www.adni-info.org.

All MCI and AD patients were required to have a memory
complaint confirmed by a study partner and abnormal education-
adjusted score on the Logical Memory II (Delayed Paragraph
Recall) from the Wechsler Memory Scale.

2.2. Image acquisition and assessment

The ADNI MRI protocol is detailed elsewhere (Jack et al., 2008).
After the acquisition, quality controlwas completed at theMayo clinic
(Rochester, MN, USA) including a protocol compliance check, image
quality control, and inspection for clinically significant medical ab-
normalities. Standard ADNI image preprocessing was then applied,
including gradient warping (Jovicich et al., 2006), B1 nonuniformity
(Narayana et al., 1988), and intensity nonuniformity correction (Sled
et al., 1998). In addition, internal visual quality control checking was
performed before analysis, excluding images with significant motion
artifacts resulting in severe blurring of tissue boundaries.

2.3. Statistics: demographics and baseline volumetrics

WMH volumes were downloaded from the ADNI Laboratory of
Neuro Imaging Image Data Archive (http://adni.loni.usc.edu/),
which were previously segmented using an automated technique
from baseline PD, T1, and T2 weighted images (Carmichael et al.,
2010; Schwarz et al., 2009). These volumes were log-transformed
(base 2) to reduce skewness. Linear regression analyses, with F
tests, were used to test for between-group (control, MCI, and AD)
differences in baseline age, MinieMental State Examination
(MMSE), total intracranial volume (TIV), WMH, whole-brain and
hippocampal volume. Fisher’s exact test was used to investigate
gender differences. For WMH, brain and hippocampal volume an-
alyses, TIV was added as a covariate. TIVs were calculated using a
previously described SPM12b-based automated technique (Malone
et al., 2015).

2.4. Image analysis: longitudinal voxel-based morphometry (VBM)

Imaging data consisted of all available ADNI1 time points from
baseline to 36 months (0-, 6-, 12, 18-, 24-, and 36- month scans),
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where a T1-weighted volumetric scan acquired on a 1.5-T scanner
was available and of sufficient quality. Using the serial longitudinal
registration tool in SPM12, all scans for a given subject were non-
linearly registered to a within-subject space unique to that indi-
vidual, incorporating a bias field correction accounting for any
differences in image inhomogeneities between scans (Ashburner
and Ridgway, 2012). Resultantly, an unbiased average image was
produced corresponding to a midpoint between all time points for
that person. From the nonlinear registrations, Jacobian images of
the rate of volumetric voxel expansion and contraction were
additionally produced for each time point encoding the voxel
change for each image with reference to the individual’s midpoint
image. These volume-change maps and within-subject averages
were visually checked for registration errors.

The midpoint average images were segmented into GM and
WM, then registered with DARTEL (Ashburner, 2007), which non-
linearly registers the individuals to create a group-specific space
based on the simultaneous alignment of each tissue type. GM, WM
segments, and volume-change maps from the longitudinal regis-
trations were then transformed to the group-wise space by
applying the flow fields from the previous step.

Using the DARTEL-transformed GM and volume-change maps,
tissue-weighted smoothing (also known as normalized convolu-
tion) was applied to smooth the volume-change maps with a
Gaussian kernel (of 6 mm full width at half maximum) using only
data within the limits of the tissue segments (binarized at 0.5). This
produced a tissue-specific smoothed volume-change map in which
each voxel’s value represents the expansion or contraction of that
tissue during serial longitudinal registration. These steps were
repeated for WM. The resultant smoothed GM and WM tissue-
weighted volume-change maps were then used for longitudinal
analysis. Masks for analysis were made using the smoothed,
modulated, DARTEL-warped segments. The technique used aver-
ages all segments and creates a mask based on optimal thresh-
olding of the average, which maximizes the correlation between
the original segment and the thresholded segment (Ridgway et al.,
2009).

2.5. Image analysis: volumes and volume changes

Brain and hippocampal volumes were estimated automatically
from the 1.5-T volumetric T1-weighted images using BMAPS (Leung
et al., 2011 and HMAPS respectively (Leung et al., 2010), multi-atlas
template segmentation methods. The BSI was used to estimate
change directly from scan pairs following segmentation (Leung
et al., 2012), the outcome representing change in volume of brain
or hippocampus (mL) during the scan interval.

2.6. Image statistics: voxel-wise statistical analysis

Using the Sandwich Estimator toolbox (http://www.fil.ion.ucl.
ac.uk/spm/ext/#SwE) in SPM, a marginal model was fitted to the
voxel-wise volume-change data (Guillaume et al., 2014). The mar-
ginal model accounts for the intra-visit correlations, which exist
longitudinally, as well as the unbalanced nature of the data; sub-
jects have different numbers of time points due to study design and
also subject dropout. Other mixed modeling methods exist for
longitudinal imaging (Bernal-Rusiel et al., 2013; Li et al., 2013; Skup
et al., 2012; Ziegler et al., 2015) but require iterative optimization at
each voxel and sometimes fail to converge. In addition, these
models require specification of the random effects and covariance
structure of the error terms; such specifications are complex, and
their misspecification can lead to invalid results. In the Sandwich
Estimation method used, fixed effects only are estimated in the
marginal model, and random components are modeled as
nuisance; as such the random effects do not need to be specified
(Guillaume, 2015).

For each volume-change map, the interval in years from the
image to midpoint was included as a fixed effect in the model
(time-from-midpoint), to model annualized voxel change as an
outcome. All covariates were allowed to interact with time-from-
midpoint, in order that their inclusion could influence the rate of
change in volume. We used TIV, WMH, and APOE e4 as covariates.
TIV was used as a proxy for maximal (premorbid) brain size, WMH
was chosen to remove the effect of vascular disease, and APOE e4
genotype (a binary variable indicating possession of at least one e4
allele) was included as it has been known to influence patterns of
atrophy and age at onset. We also constructed models without
WMH and APOE e4 genotype to understand whether their exclu-
sion influenced the relationship between baseline age and atrophy
patterns.

Notably, age at baseline (age at first assessment in the study)
was used as our measure of age.We chose to use baseline age as the
passing of time during which the study was encoded in the interval
variable (time-from-midpoint). Where age is mentioned
throughout the text, we are referring to age at baseline.

The primary model investigated GM volume change (outcome)
with amain effect of group, a linear interaction termbetween group
and baseline age, and covariates of TIV, WMH, and APOE e4 geno-
type (model 1). The secondarymodel was constructed identically to
the previous, omitting WMH and APOE e4 genotype, (model 2).
These 2 models were repeated using the outcome of WM volume
change in place of GM volume change (model 3, with WMH
and APOE adjustment, and model 4 without WMH and APOE
adjustment).

For each model, an F-contrast was applied to test the overall
significance of the age-by-group interaction term across all groups.
The age-by-group interaction term was also used to investigate
pair-wise differences between groups using t tests. The first t test
was applied to investigate whether the relationship between age
and atrophy rate was significantly different in control and AD
groups at each voxel, by calculating the difference in the age-by-
group interaction term for these groups. Differences between
control and MCI groups were subsequently explored.

Models were run using the wild bootstrap with 2000 iterations
to obtain results corrected for multiple comparisons using family-
wise error (FWE); results were then thresholded at p < 0.05.

For the model investigating GM volume change (model 1), in-
dividual summarized slopes of volume change were generated at
specific voxels, which were then used to make graphs. Voxels were
chosen within clusters which survived FWE correction, and sum-
mary slopes at that voxel were plotted against baseline age for each
individual [for illustrative purposes, cf (Kriegeskorte et al., 2010)].

2.7. Image statistics: change in volumes

We fitted multilevel linear mixed-effects regression models for
repeated measures of direct change, with the dependent variable
BSI (mL of brain/hippocampal change during the scan interval)
(Frost et al., 2004). Interval in years between baseline and follow-up
was included as a fixed effect, in order that the resulting coefficient
represented volume change in milliliter per year (outcome). The
following covariates were included as interaction terms with in-
terval, in order that their inclusion could affect atrophy rate:
diagnostic group, an interaction between baseline age and diag-
nostic group, WMH, APOE e4 carrier status, and TIV. A participant
level random effect for scan interval was included to permit
between-participant heterogeneity in atrophy rate, with different
random slope terms fitted for control, MCI, and AD groups, as the
variability in atrophy rate is often higher in AD patients. For each
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Fig. 1. Flowchart showing the selection of subjects for analysis. Abbreviation: WMH,
white-matter hyperintensity.
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diagnostic group, a different participant level random intercept
term was included to allow for the correlation between BSI mea-
sures from the same baseline scan. No intercept was included in the
model due to the assumption that the estimated atrophy rate over a
scan interval of zero is zero.

After estimation, the difference in the age effect on atrophy
rate for MCI/AD and the age effect on atrophy rate in controls was
estimated to determine the increased or decreased atrophy rate
with respect to normal aging. Models were fitted for the hip-
pocampus and whole brain separately. To aid comprehension,
the results of the ageediagnostic group interaction for each
diagnostic group are given as the effect of age on atrophy rates,
rather than relative to controls, although the difference versus
controls was tested to see if there was an MCI or AD specific
effect of age.

2.8. Further analyses

We also tested whether the relationship between age and at-
rophy rates remained in a subset with confirmed amyloid pathol-
ogy from CSF data. Voxel-wise and region of interest (ROI) analyses
were repeated as aforementioned (Sections 2.6 and 2.7). See
Supplementary Material for more information on subject selection,
methods, and results.

To investigate whether disease severity differed according to
age, we looked at the effect of age on baseline brain volume. Details
of this analysis and results can be found in the Supplementary
Material.

To explore whether age affected cognitive decline, we investi-
gated whether age predicted change in MMSE using linear mixed-
effects models, see Supplementary Material for methods and
results.

To assess the validity of using baseline age as a proxy for age at
onset (estimated by the study partner), analyses were run to
investigate GM volume change with (1) baseline age and (2) age at
onset as predictors. These were then visually compared. See
Supplementary Material for detailed information and results.

To test for nonlinearity in the ageeatrophy relationship, a
quadratic term was added to the models of GM change, see
Supplementary Material for information and results.

3. Results

3.1. Group demographics

Data from 840 participants were downloaded from the ADNI
website. Following quality control (see Section 2.2), 143 subjects
were excluded (see Fig. 1); of which, 22% were controls, 34% had a
diagnosis of MCI and 27% were diagnosed with AD, and 17% had
no diagnostic information available (scans without diagnostic
information were failed at initial visit by Laboratory of Neuro
Imaging). After longitudinal registration (Section 2.4), 14 further
subjects were dropped due to registration errors (7 controls, 6
individuals with MCI, and 1 with AD).

A total of 683 participants were included in this study, 191
controls, 339 individuals with MCI, and 153 individuals with AD
passed quality control; amounting to 2972 images, see Table 1 for
demographic and imaging information. Subjects differed in base-
line MMSE, baseline brain and hippocampal volume, and APOE e4
genotype in a manner consistent with a diagnosis of MCI or AD.
There were significantly more males in the MCI group, which likely
explains the observed difference in TIV size between groups. For
subject demographics split by mean age in each diagnostic group,
see Supplementary Table 1.
3.2. Longitudinal VBM results

3.2.1. Group differences in ageeatrophy relationship
Fig. 2A) shows the results of the F-test across all groups showing

the interaction between age and atrophy. These results are FWE
corrected, thresholded at p< 0.05 and adjusted for APOE andWMH.
The precuneus, angular gyrus, superior temporal lobes, andmidline
of the third ventricle showed significantly different relationships
between baseline age and volume change in each group. The graphs
in Fig. 2B show the slope of volume change at a voxel plotted
against baseline age within each cluster region (indicated by the
crosshairs); this represents the effect of age in each group at that
voxel. For AD patients, the left angular gyrus and precuneus showed
a negative correlation between increasing baseline age and voxel
contraction, indicating greater atrophy at younger ages in the voxel
examined. This relationship was also seen in MCI, but to a lesser
degree. For controls, there was little correlation between baseline
age and atrophy, with a tendency toward greater contraction with
increasing age. These relationships were seen bilaterally.

The cluster on the midline of the third ventricle is likely partial
volume, reflecting differences in the effect of age on ventricular
change rates. An increase in voxel expansion with age is seen in
controls, as opposed to greater expansion at younger ages in AD
subjects. The results for models without adjustment for WMH
and APOE genotype are shown in Supplementary Material
(Supplementary Fig. 1), as are all models for WM (Supplementary
Fig. 2).

3.2.2. Differences between controls and AD patients in ageeatrophy
relationship

A T contrast between control and AD groups revealed an
extensive posteromedial region with differential age relationships
(see Fig. 3 for FWE corrected, APOE- and WMH-adjusted results).
This area encompasses the bilateral precuneal, posterior cingulate,
parietal, and superior temporal lobes. The left supramarginal gyrus,
left fusiform, and right prefrontal cortex also demonstrate this



Table 1
Subject demographics and basic imaging information

Controls MCI AD p-value across groups

N 191 339 153
Age at baseline, y 75.9 (5.2) 75.0 (7.2) 75.0 (7.7) 0.3
Percentage male 51.8 62.5 54.2 0.03
MMSE at baseline,/30 29.1 (1.0) 27.0 (1.8) 23.4 (1.9) <0.001
Length of follow-up, y
Minimum, maximum

2.6 (0.8)
0.5, 3.7

2.3 (0.8)
0.5, 3.5

1.7 (0.6)
0.5, 3.1

<0.001

BSI measurements per subject, No.
Minimum, maximum

3.2 (0.9)
1, 4

3.6 (1.3)
1, 5

2.3 (0.8)
1, 3

<0.001

Total brain volume, mL 1068 (102) 1059 (114) 1022 (115) <0.001a

Total hippocampal volume, mL 5.2 (0.7) 4.5 (0.8) 3.9 (0.9) <0.001a

Total intracranial volume, mL 1446 (135) 1466 (145) 1450 (163) 0.3
White-matter hyperintensity, mL
log2 WMH, mL

0.22 (0.5)
�2.39 (2.3)

0.28 (0.6)
�2.07 (2.4)

0.40 (1.0)
�1.37 (2.2)

<0.001a

Percentage of APOE e4 carriers 27 56 70 <0.001
Percentage of hypertension 43 50 52 0.1
Percentage of diabetes 6 7 6 0.8
Percentage of hypercholesteremia 26 30 36 0.1
Years of education 16.05 (2.86) 16.66 (3.00) 14.81 (3.09) <0.001
Years since AD symptom onset e e 3.6 (2.6) e

Values are mean (standard deviation) unless reported. White-matter hyperintensity values reported as median with interquartile range.
Key: AD, Alzheimer’s disease; BSI, boundary shift integral; MCI, mild cognitive impairment; MMSE, MinieMental State Examination; TIV, total intracranial volume.

a Adjusted for TIV.
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relationship. A midline cluster is also present with the reverse
contrast (visualized in blue in Fig. 3), this is likely to represent
partial volume, reflecting differences between groups in ventricular
expansion with age, as explained in Section 3.2.1 and illustrated
in Fig. 2.

3.2.3. Differences between controls and MCI patients in
ageeatrophy relationship

There were no significant differences in ageeatrophy relation-
ships between control and MCI patients.

3.2.4. Age atrophy association without correction for APOE
genotype and WMH

Results for the overall test of the ageeatrophy interaction term,
and for the comparison between controls and AD appear materially
unchanged with the omission of APOE genotype and WMH as
covariates, see Supplementary Fig. 1. Differences with and without
APOE and WMH covariates (Fig. 2 and Supplementary Fig. 1) were
not directly compared; therefore, visual differences between the 2
models should be interpreted with caution.

3.2.5. Ageeatrophy association in white matter
Strong differences in age and atrophy relationships between

groups were also found in the white matter, with and without
correction for WMH and APOE genotype, see Supplementary Fig. 2.
The white matter subjacent to the GM in these subjects appears to
be similarly affected by age; areas of white matter with differential
age atrophy patterns across groups were found directly proximal to
regions of GM exhibiting similar age effects as seen in equivalent
earlier models (see Fig. 2 and Supplementary Fig. 2).

3.3. Longitudinal age atrophy rate associations

Table 2 shows the partial regression coefficients for the associ-
ation between age and longitudinal brain and hippocampal change,
adjusted forWMH and APOE genotype. AD patients had the highest
atrophy rates of 14 mL/y (95% CI: 12.94e15.12), for the whole brain
and 0.2 mL/y (0.16e0.20) for the hippocampus, MCI followed with
rates of 10 mL/y (9.17e10.70) for the whole brain and 0.1 mL/y
(0.11e0.14) for the hippocampus, for APOE negative individuals
with the mean age, TIV and WMH load. Controls had an average
atrophy rate of 6 mL/y (5.66e6.72) for the whole brain and
0.06 mL/y (0.05e0.07) for the hippocampus, for APOE negative
individuals with the mean TIV and WMH load.

3.3.1. Effect of age on atrophy rate in controls (normal aging)
We found that greater age at baseline was associated with

significantly increased hippocampal atrophy rate (0.03 mL/y for a
10-year increase [0.01e0.04]) for controls, see Table 2; there was no
evidence of an age effect on whole-brain volume change. The in-
crease in hippocampal atrophy rate in controls was equivalent to an
acceleration of 50% for a decade increase in age, for someone of
average age at baseline (75 years).

3.3.2. Differences between controls and AD patients in ageeatrophy
relationship

There were significant differences between ageeatrophy re-
lationships in controls and AD for whole-brain and hippocampal
atrophy rates. Although there was no effect of age on whole-brain
atrophy rate in controls, a 10-year increase in age from average
was associated with a reduction in atrophy rate for AD patients of
3 mL/y (1.03e4.25) after adjusting for WMH and APOE e4 and
subtracting the ageeatrophy effect in controls. In contrast to con-
trols, younger age was associated with greater hippocampal atro-
phy rate in AD patients, corresponding to a reduction in atrophy
rate of 0.03 mL/y (0.05, 0.001) for a 10-year increase in age after
adjusting for WMH and APOE e4 and subtracting the ageeatrophy
effect in controls. The reductions in atrophy rate for AD patients
correspond to a decrease of 20% for the whole brain and 15% for the
hippocampus, for a decade increase in age, for someone of average
age at baseline (75 years).

3.3.3. Differences between controls and MCI patients in
ageeatrophy relationship

There were also significant differences between ageeatrophy
relationships between controls and MCI for whole-brain and hip-
pocampal atrophy rates. Similarly to AD patients, age was associ-
ated with a reduction in atrophy rate for MCI patients of 2 mL/y
(0.60e3.19) for a 10-year increase in age after adjusting for WMH
and APOE e4 and subtracting the ageeatrophy effect in controls.
Younger age was also associated with greater hippocampal atrophy
rate in MCI, in which a reduction in atrophy rate of 0.04 mL/y



Fig. 2. Results of the F test to test the age-by-group interaction term to predict volume change. (A) Clusters in the images represent voxels in which there is a significant difference
in the relationship between age and atrophy rate across the 3 groups. (B) Graphs explain these relationships; summary slopes of voxel change for each individual at the voxel of
interest are plotted against baseline age in controls, MCI, and AD patients. Positive values of change in voxel volume indicate expansion, and negative values represent voxel
contraction. Results are adjusted for APOE genotype and white-matter hyperintensity volume. Each voxel of interest is located within an FWE corrected p < 0.05 cluster indicated by
the crosshairs in the images. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment.
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(0.02e0.06) for a 10 year increase in agewas seen after adjusting for
WMH and APOE e4 and subtracting the age-atrophy effect in con-
trols. ForMCIs, the reduction in atrophy rate for a decade increase in
age corresponds to 20% for the whole brain and 15% for the hip-
pocampus, for someone of average age at baseline (75 years).

3.4. Further analyses

Posterior atrophy at younger ages in AD remained in a CSF
subset of amyloid positive AD and MCI patients, compared with
amyloid negative controls, although the extent of the effects was
much reduced, see Supplementary Fig. 4. The CSF amyloid
confirmed subset also experienced greater whole-brain atrophy at
younger ages, see Supplementary Table 3.

There was no significant effect of age on baseline brain
volume in AD, after adjustment for TIV and normal aging, see
Supplementary Table 2.
In analyses investigating change in MMSE and age, younger AD
patients were found to have faster decline in MMSE, whereas the
opposite was found in controls, see Supplementary Table 4.

Results from models investigating the effect of age at onset on
AD are shown in Supplementary Fig. 5 and Table 5. Similar effects
compared with baseline age were found for VBM and BSI analyses.

Results from models investigating the linearity of the effect of
age on atrophy rates are shown in Supplementary Table 6. No evi-
dence of nonlinearity was found.

4. Discussion

In this largemultisite study designed tomimic a clinical trial, we
used a novel voxel-wise approach to demonstrate extensive pro-
gressive posterior atrophy patterns in AD at younger ages, which
remain in a cohort with confirmed AD pathology using CSF data.We
found that atrophy rate and patterns of atrophy varied differentially



Fig. 3. Results of the T tests to directly compare the age-by-group interaction between controls and AD patients. Clusters indicate regions in which the relationships between age
and atrophy are different between groups, that is, differences in age-by-group interaction. Red clusters signify regions in which there is greater atrophy at younger ages in AD
patients, whereas for controls, there is little ageeatrophy relationship. Blue clusters indicate voxels which expand more at younger ages in AD patients, whereas controls expand
more at older ages. There were no differences between control and MCI patients. Analyses are corrected for multiple comparisons, FWE p < 0.05, and are also corrected for APOE
genotype and WMH volume. Abbreviations: AD, Alzheimer’s disease; FWE, family-wise error; MCI, mild cognitive impairment; WMH, white-matter hyperintensity. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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with age between cognitively normal, mildly impaired, and clinical
AD patients. Younger AD subjects showed faster whole-brain and
hippocampal atrophy rates and greater volume loss in association
cortices with predominantly posterior and posteromedial regions
affected compared to older AD patients. In contrast, the hippo-
campal atrophy rates were slower among younger controls, and
controls had little other difference in atrophy with age. In MCI and
AD patients, atrophy rate reduced with age. These findings were
Table 2
Results from the regression model assessing the relationship between change in
brain and hippocampal volume (left and right summed) and age by each diagnostic
group (estimated using an age-by-diagnostic group interaction)

Whole brain Hippocampus

Atrophy rate (mL/y)
Controls 6.19 0.06

(5.66, 6.72) (0.05, 0.07)
(<0.001) (<0.001)

MCI 9.93 0.13
(9.17e10.70) (0.11, 0.14)
(<0.001) (<0.001)

AD 14.02 0.18
(12.94, 15.12) (0.16, 0.20)
(<0.001) (<0.001)

Age interaction (mL/y/decade)a

Controls 0.16 0.03
(�0.79, 1.11) (0.01, 0.04)
(0.8) (<0.001)

MCI* �1.90 �0.04
(�3.19, �0.60) (�0.06, �0.02)
(0.003)* (<0.001)*

AD* �2.64 �0.03
(�4.25, �1.03) (�0.05, �0.001)
(0.001)* (0.04)*

Average brain and hippocampal atrophy rates with p value and 95% confidence
intervals are shown in mL/y.
For MCI and AD groups, age interaction estimates are given after subtraction of the
estimate effect in controls (to account for normal aging), p-values for MCI and AD
indicate whether the ageeatrophy relationship is significantly different from con-
trols (*).
Key: MCI, mild cognitive impairment; AD, Alzheimer’s disease.

a Age interaction estimates represent an increase in atrophy rate for a 10-year
increase in baseline age (mL/y/decade), adjusted for total intracranial volume,
APOE genotype, and WMH volume.
apparent after WMH and APOE e4 adjustment, suggesting that this
difference is unlikely to be explained by small vessel disease or by
APOE genotype. Given that results are adjusted for variables that
have been associated with the aging process (WMH), and represent
differences in slopes from normal controls, these differences in
disease progression are likely to be driven by differences in age at
onset in MCI and AD.
4.1. Effect of baseline age on atrophy patterns

We found that the bilateral posterior parietal, posterior cingu-
late, posterior temporal, and precuneal regions were more vulner-
able to atrophy in younger AD patients. This is consistent with
cross-sectional findings that younger AD subjects have less vol-
ume in association cortices (Aziz et al., 2017; Frisoni et al., 2005;
Harper et al., 2017). In a small scale study, Cho et al. found similar
regions affected more in early-onset AD versus late-onset AD (Cho
et al., 2013a). The precuneus has been found to be involved in early-
onset AD before by other studies (Karas et al., 2007; Möller et al.,
2013), as have the parietal lobes (Frisoni et al., 2007; Holland
et al., 2012, 2013), particularly at the temporoparietal junction
(Frisoni et al., 2005). However, unlike Cho et al., we did not find the
caudate, thalamus, or basal ganglia to be involved in patients at
younger ages (Cho et al., 2013b). In addition, our results do not fit
with a recent study by Knopman et al., who found early-onset pa-
tients showed greater deficits in glucose metabolism compared to
late-onset patients but no differences in cerebral atrophy
(Knopman et al., 2016). Knopman was an observational
community-based study, whereas the present study is a mock
clinical trial. The difference in findings may be due to the restricted
usage of AD-signature regions of interest for the atrophy measures
(entorhinal, inferior temporal, middle temporal, and fusiform gy-
rus) but a more inclusive set of ROIs for the 18F-fluorodeoxyglucose
(FDG) positron emission tomography analyses (including the
angular gyrus and posterior cingulate regions). These posterior
regions have been found to be particularly vulnerable to atrophy in
younger subjects, and others have also reported their metabolic
vulnerability at younger ages (Kemp et al., 2003; Rabinovici et al.,
2010). Our results suggest that if ROI approaches are used, then
the ages of the subjects concerned require consideration; different
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ROIs may be needed for young-onset subjects to fully capture AD-
related changes.

The association cortices were found to be more vulnerable at
younger ages in AD, corresponding to previously reported cognitive
deficits that are more often experienced by younger patients.
Younger patients are more likely to first experience an impairment
in judgment, problem solving, language, or visuospatial function
than older patients (Barnes et al., 2015; Koedam et al., 2010). Early-
onset AD patients are also more likely to perform poorly on tests of
attention and frontoexecutive function (Cho et al., 2013a; Frisoni
et al., 2007). Our study included a very small number of early-
onset AD patients (n < 65 years ¼ 17), symptoms described as
occurring more frequently in younger patients correspond to pa-
rietal, precuneal, and frontal lobe atrophy patterns found in our
study. Our results also show that younger AD patients have faster
MMSE decline as well as faster atrophy rates compared with older
patients (see Supplementary Table 4). Studies categorizing AD pa-
tients according to their patterns of atrophy find increased proba-
bility of posterior cortical involvement at younger ages (Na et al.,
2016; Shiino et al., 2006; Whitwell et al., 2012). Na et al. also
found parietal subtypes to have faster progression in multiple
cognitive domains compared with cases with either medial tem-
poral or diffuse atrophy patterns (Na et al., 2016). Younger patients
are more likely to have diffuse cortical neurofibrillary tangles and
sparing of the hippocampi at autopsy, whereas those with AD pa-
thology in predominantly limbic areas are more likely to be older
and of the APOE e4 genotype (Murray et al., 2011). Suarez-Gonzalez
et al. have shown that even within an atypical cohort of patients
with PCA, early-onset patients display atrophy in more posterior
regions (Suárez-González et al., 2016).

As ADNI was designed to emulate a clinical trial, the presence of
such diverse neuroimaging atrophy patterns within a trial popu-
lation may be an important source of variability in trials where
atrophy rates are used as outcome measures. Furthermore,
although diminished, the phenotype of extrahippocampal atrophy
at younger ages remained in a smaller subset of participants with
confirmed underlying amyloid pathology, as measured by CSF
amyloid beta 1e42 (see Supplementary Fig. 4, Table 3). Although
early-onset patients are more likely to have faster rates of atrophy
and provide greater power to detect a disease-modifying effect
(Holland et al., 2012), the etiology underlying extrahippocampal
atrophy patterns in younger patients may have an impact on drug
effectiveness. More research is required to understand whether
specific outcome measures that are appropriate for older pop-
ulations (hippocampal rates and memory-weighted tests) are the
optimal choice in clinical trials in younger patients. Trials may
benefit from restricting samples to individuals with a typical
pattern of atrophy as previously suggested (McEvoy et al., 2008; Yu
et al., 2014) or by stratifying for atrophy pattern. In addition, vari-
ability in individuals’ rates of atrophy in clinical trials can
compromise detection of an overall group treatment effect. Usage
of clinical trial run-in to assess each subject’s initial rate of pro-
gression may provide greater power to detect a treatment effect
when testing a trial population containing both younger and older
AD subjects (Frost et al., 2008).

Here, we provide evidence that a posterior predominance in at-
rophy rate at younger ages is unlikely to be accounted for by APOE e4
genotype. Genetic differences have previously been used to explain
differences in age at onset, clinical phenotype, and brain regions
affected in AD. The effect of APOE e4 on age at onset is complex.
Although APOE e4 has been found to accelerate disease onset
(Breitner et al., 1998), it is thought to be less common in atypical
early-onset AD (van der Flier et al., 2011). The APOE e4 allele has been
found to be associated with typical AD; memory problems
(Lehtovirta et al., 1996), targeted hippocampal atrophy (Manning
et al., 2014), and greater burden of AD pathology present in the
hippocampus at autopsy (Murray et al., 2011). Holland et al. found
that the effect of atrophy slowing with age in AD was stronger in
APOE e4 noncarriers than carriers in the entorhinal cortex; this
corroborates the finding by Na et al., of faster cognitive decline in
early-onset atypical AD cases, which trended toward absence of an
APOE e4 allele (Holland et al., 2013; Na et al., 2016). However, the
presence of anAPOE e4 allele is a significant risk factor for PCA, a type
of atypical early-onset AD; although the risk conferred by the gene
for PCA is reduced compared with typical AD (Schott et al., 2015). In
addition to APOE genotype, including WMH as a covariate in our
study did not affect the results, indicating that the posterior patterns
of atrophy at younger ages are unlikely to be driven byWMHor APOE
genotype. This is important since WMH in AD subjects may also
reflect pathologic AD processes, such as axon demyelination, Wal-
lerian degeneration, or cerebral amyloid angiopathy (Ryan et al.,
2015; Schmidt et al., 2011). Yet unknown genes and other factors
may underlie the causes of extramedial temporal lobe atrophy, faster
progression, and younger onset of clinical symptoms.

4.2. Effect of baseline age on summary rates of atrophy (whole
brain and hippocampus)

In our BSI analyses, we found higher hippocampal atrophy rates
with age in controls but did not find greater atrophy rates in older
AD subjects. Contrastingly, we found the opposite effect in AD
subjects compared to controls, inwhich a reduction in hippocampal
atrophy ratewith agewas present, similarly to the study by Holland
et al. (Holland et al., 2013). Others have found mixed results cross-
sectionally, with some authors reporting smaller hippocampi in
late-onset AD cases compared with early-onset cases (Frisoni et al.,
2005, 2007; Möller et al., 2013), and another reporting similar
levels of hippocampal atrophy across the AD age span compared to
healthy controls (van de Pol et al., 2006). These mixed results in the
literature may be due to differences in the way of correcting for
normal aging and differing techniques used (volumetry vs. VBM).
Cho et al. found in a longitudinal whole brain cortical thickness
study, the parahippocampal gyrus exhibited more rapid thinning in
late-onset AD compared to early-onset AD (Cho et al., 2013a);
however, a further study of longitudinal volume loss in subcortical
structures showed no difference in volume reduction in the hip-
pocampus between early- and late-onset AD (Cho et al., 2013b). In a
subset of ADNI including baseline and 12-month scans only, Evans
et al. also investigated an age-by-group interaction on atrophy;
finding higher agewas associatedwith greater whole-brain atrophy
and ventricular expansion in AD and the opposite effect in controls
(Evans et al., 2010). Our AD subjects had significantly greater WMH
volume despite being a similar age to controls. This may be due to
greater small vessel disease in AD subjects, cerebral amyloid angi-
opathy, or a feature of advanced AD due to pathologic breakdown of
white matter. As the same WMH effect was estimated across all
groups, the presence of nonaging-related WMH in younger AD
subjects may mean that the WMH effect in controls with age is not
completely removed. For controls, this may explain why an age
effect remained in the hippocampus even after controlling for
WMH. Alternatively, other factors associated with age may drive
atrophy in these subjects. The fact that the hippocampi were not
found to be differentially affected by age in each group from VBM
analyses may be due to limitations of voxel-based analyses in
medial temporal lobe areas.

4.3. Strengths and limitations

This is the largest study investigating age and voxel-wise at-
rophy patterns in patients with MCI or AD to date, and the only
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study to consider the ADeage relationship in the context of APOE
e4 genotype, presumed vascular pathology, and normal aging.
Using age as a continuous variable, we did not split cases by
arbitrary cutoffs, as has been done in previous studies where
65 years divide early- and late-onset. A major strength is that,
using the multi-time point technique, we were able to include
subjects which would have previously been excluded due to
dropout, reducing bias compared to other studies in which drop-
outs tend to have more vascular pathology and smaller brain vol-
umes (Fiford et al., 2017). Therefore, our results are unlikely to be
driven by frail older subjects, who may have progressed more
quickly, leaving the study; our statistical techniques were able to
accommodate missing data by including all subjects with at least 1
follow-up scan. However, the number of young AD subjects was
not large, and all controls were aged greater than 60 years (see
Supplementary Table 1 for demographic data split by age in each
group), this limits the generalizability of our findings, which
require replication in a more age-balanced cohort. We additionally
did not investigate the scatter plots of slopes of the age-by-group
interaction in each voxel but have made the assumption that the
relationship was similar across the different tissue types and re-
gions affected; some voxels within each cluster may exhibit
stronger or weaker effects, especially at their periphery. The
homogeneous nature of white matter provides less intensity in-
formation for registration than gray matter; therefore, localized
white-matter volume changes should be interpreted cautiously.
The use of 1.5-T MRI may be considered a limitation; many studies
are conducted using 3-T scanners. However, 1.5-T scanners are still
used at many clinical centers including those which conduct
research and clinical trials. The ROIs in this study have been limited
to the whole brain and hippocampus, in line with metrics used in
clinical trials. Future work in different datasets, investigating ROIs,
including the posterior association cortices identified in this study,
will allow assessment of the potential utility of these new ROIs in
clinical trials.

Our study included a small number of AD patients aged less than
65 years (n ¼ 17), and all patients had memory problems in line
with a typical late-onset phenotype. Our findings may not apply to
an exclusively early-onset population and require replication in a
more age-balanced sample. Therefore, our results should be
cautiously comparedwith the early-onset AD literature. Despite the
inclusion criteria and demographics of our group, we were able to
demonstrate that age influences atrophy rates and patterns of
progressive atrophy in AD. Given that this cohort replicates that of a
clinical trial, this has important ramifications for the choice of
outcome measures in studies with a similar setup. Our results
suggest a continuum of age-related differences across the age range
of AD, beyond the cutoff of 65 years for early-onset AD cases. We
also found no evidence of a nonlinear age relationship from voxel-
wise and ROI analyses (see Supplementary Data, Table 6). However,
as the data is imbalanced in terms of age of subjects, these results
should be interpreted cautiously.

We have not fully investigated differences in disease severity
with age in our study. However, we have found no evidence to
suggest subjects weremore severe or had longer symptom duration
with age; the elapsed time since diagnosis and MMSE scores were
similar in older and younger subjects, and they also remained in the
study for similar lengths of time (see Supplementary Table 1).
Similar disease severity is also suggested by the finding of no
difference in baseline brain size of AD subjects with age (see
Supplementary Table 2) after accounting for the effect of normal
aging and TIV. Finally, analysis using the age of individuals at
baseline appears to show similar results for age at symptom onset
(as estimated by a study partner), (see Supplementary Fig. 5,
Table 5).
5. Conclusions

Age is an important modifier of AD; younger amnestic AD
patients display extensive posterior and medial-posterior atrophy,
faster rates of atrophy, and cognitive decline compared with older
AD patients. Notably, our results remain in a cohort with AD
pathology confirmed using CSF amyloid beta 1e42 and demonstrate
the influence of age in AD patients is not the effect of normal aging
added to an AD atrophy signature. These distinct differences with
age were found within AD patients selected to represent a clinical
trial population and in those with CSF-confirmed amyloid pathol-
ogy; therefore, our results have important implications for drug
development. For clinical trials using atrophy rates as outcomes,
younger subjects may provide more power to detect a treatment
effect due to faster ratesof atrophy;but theymayalso require revised
outcome measures incorporating regions beyond the medial tem-
poral lobe according to the average age of the population. Finally, an
effectivedrug tested inayounger populationmaybeof limiteduse in
a general AD population if age effects on atrophy patterns represent
differing underlying causes.More research is required tounderstand
what drives tissue loss in different regions and at varying ages.
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