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Abstract

In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential
to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for
identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method
was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into
account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which
allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured
in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to
derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field
connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We
address these concerns by applying this method to the isolated and internally complex AR 11158 with different
magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different
extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We
conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising
tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.
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1. Introduction

Magnetic helicity is a signed scalar quantity that measures
the 3D complexity of a magnetic field in a volume (e.g., Finn &
Antonsen 1985). Moffatt (1969) and Berger & Field (1984)
showed that magnetic helicity has a well-defined geometrical
interpretation in terms of the entanglement, or braiding, of
magnetic field lines. Magnetic helicity thus generalizes more
local properties such as magnetic twist and shear.

The emergence of twisted/sheared magnetic fields from the
convection zone into the solar corona (e.g., Leka et al. 1996;
Moreno-Insertis 1997; Longcope & Welsch 2000; Démoulin
et al. 2002a; Green et al. 2002; Georgoulis et al. 2009;
Pevtsov 2012; Poisson et al. 2015) and the stressing of the
coronal magnetic field by plasma flows along the photosphere
(e.g., van Ballegooijen & Martens 1989; Klimchuk &
Sturrock 1992; Chae et al. 2001; Moon et al. 2002; Liu &
Schuck 2012; Zhang et al. 2012; Vemareddy 2015) slowly and
continuously build up magnetic helicity in the solar atmos-
phere. Because of its conservation property in highly conduct-
ing plasmas (e.g., Woltjer 1958; Taylor 1974, 1986;
Berger 1984; Pariat et al. 2015), magnetic helicity is thus
believed to be a fundamental component for understanding the
dynamics of the coronal magnetic field (e.g., Zhang
et al. 2006, 2008; Kazachenko et al. 2012; Tziotziou
et al. 2012; Romano et al. 2014).

Magnetic helicity is hence at the heart of several MHD
theories of coronal processes, including, but not limited to,
coronal heating through the relaxation of braided magnetic
fields (e.g., Heyvaerts & Priest 1984; Russell et al. 2015;
Yeates et al. 2015), the formation of filament channels through

the inverse cascade of magnetic helicity (e.g., Antiochos 2013;
Knizhnik et al. 2015), the existence of CMEs as the mean for
the Sun to expel its magnetic helicity excess (e.g., Rust 1994;
Low 1996), and the production of very high energy flares via
magnetic helicity annihilation (Linton et al. 2001; Kusano
et al. 2004). Recently, Pariat et al. (2017) even showed that
specific quantities derived from magnetic helicity have a strong
potential for greatly improving the prediction of solar
eruptions.
Methods to estimate magnetic helicity in the solar context

are reviewed by Valori et al. (2016). Among these methods,
analyzing the temporal evolution of the helicity flux through
the photosphere provides valuable information about the
helicity content of active regions (ARs) and is one of the
means for better understanding the role of magnetic helicity in
their dynamics (see review by, e.g., Démoulin & Pariat 2009,
and references therein). When an AR is followed from the
beginning of its emergence, the temporal integration of the
photospheric helicity flux gives an estimate of its coronal
helicity (e.g., Chae 2001; Kusano et al. 2003; Mandrini
et al. 2004; Jeong & Chae 2007; LaBonte et al. 2007; Yang
et al. 2009; Guo et al. 2013). On the other hand, the
photospheric distribution of helicity flux during the early
stages of AR formation reflects the subphotospheric distribu-
tion of magnetic helicity in the associated emerging magnetic
field (e.g., Kusano et al. 2003; Chae et al. 2004; Yamamoto
et al. 2005; Pariat et al. 2006; Jing et al. 2012; Park et al. 2013;
Vemareddy & Démoulin 2017). This, in turn, gives constraints
on the processes generating the magnetic field in the solar
interior (e.g., Kusano et al. 2002; Pariat et al. 2007). Later on
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during the lifetime of an AR, the distribution of the helicity flux
allows us to track where magnetic helicity is being locally
accumulated in response to additional magnetic flux emergence
and photospheric flows (e.g., Chandra et al. 2010; Vemareddy
et al. 2012b).

Studying the distribution of the helicity flux in ARs is not
straightforward because it requires the use of a surface density
of a quantity that is inherently 3D and not local. While
magnetic helicity density per unit volume is an unphysical
quantity, Russell et al. (2015) recently showed that it is
possible to construct and study a magnetic helicity density per
unit surface from the recent developments of Yeates & Hornig
(2011, 2013, 2014). Previously, Pariat et al. (2005) had shown
that it was possible to define a useful proxy of surface density
of helicity flux by explicitly expressing magnetic helicity in
terms of linkage of magnetic field lines. Such an approach is
achieved by including the connectivity of magnetic field lines
in the definition of the total helicity flux, leading to the
construction of a so-called connectivity-based surface density
of helicity flux (further details are provided in Section 2.1).

Dalmasse et al. (2014) recently developed a method for the
practical computation of the connectivity-based helicity flux
density to be used in observational studies. Using analytical
case studies and numerical simulations, they showed that the
connectivity-based calculations provide a reliable and faithful
mapping of the helicity flux. In particular, the method is
successful in revealing real mixed signals of helicity flux in
magnetic configurations, as well as in relating the local transfer
of magnetic helicity with the location of regions favorable to
magnetic reconnection. The former makes the method
particularly interesting for testing the very high energy flare
model of Kusano et al. (2004) in observational surveys of solar
ARs, while the latter provides a new way of analyzing the role
of magnetic helicity accumulation in flaring activity.

For analytical models and numerical MHD simulations, the
3D magnetic field is known in the entire volume of the modeled
solar atmosphere and can be readily used to integrate magnetic
field lines. In observational studies, however, polarimetric
measurements in the corona are not as numerous and routinely
made as the photospheric and chromospheric ones. And as for
photospheric and chromospheric measurements, coronal polari-
metric measurements are also 2D and thus cannot lead to
magnetic field data in the full coronal volume without the use
of some 3D modeling. On top of this, their inversion into
magnetic field data is a very challenging task (e.g., Rachmeler
et al. 2012; Kramar et al. 2014; Plowman 2014; Dalmasse et al.
2016; Gibson et al. 2016, and references therein). Hence, one
must rely on the approximate 3D solution of, e.g., nonlinear
force-free field (NLFFF) models (e.g., Wheatland et al. 2000;
Wiegelmann 2004; Amari et al. 2006; Valori et al. 2007; Inoue
et al. 2012; Malanushenko et al. 2012) to extrapolate the
coronal magnetic field from the photospheric maps of the
magnetic field (vector magnetograms). Unfortunately, different
methods and assumptions can lead to markedly different
3D magnetic field solutions. These strong differences between
reconstructed magnetic fields affect all subsequently derived
quantities. For instance, DeRosa et al. (2009, 2015) reported
variations between extrapolation methods that can reach up to
30% in free magnetic energy and 200% in magnetic helicity.

The analyses of DeRosa et al. (2009, 2015) raise concerns
about the reliability and relevance of the connectivity-based
helicity flux density approach in observational applications. In

this paper, we address these concerns by applying the
connectivity-based method to observations of an AR with
different magnetic field extrapolation models and implementa-
tions. The selected AR is internally complex but externally
simple (i.e., no neighboring large-flux systems). The con-
nectivity-based helicity flux density method is reviewed in
Section 2. Section 3 describes the data set and the approach
taken to estimate uncertainties in the helicity flux intensity. The
magnetic field extrapolations are discussed in Section 4.
Section 5 presents the results of our analysis. A discussion
and interpretation of our results are provided in Section 6. Our
conclusions are summarized in Section 7.

2. Method

2.1. Magnetic Helicity Flux Densities

Under ideal conditions, the transfer of magnetic helicity
through the photosphere,  , and into the solar atmosphere is
(e.g., Démoulin et al. 2002b; Pariat et al. 2005)

x
dH

dt
G d . 1


ò= q ( ) ( )

xGq ( ) is a surface density of magnetic helicity flux defined as
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is the relative rotation rate (or relative angular velocity)
between pairs of photospheric magnetic polarities located at x
and x¢ and moving on the photospheric plane  with flux
transport velocity u u x= ( ) and u u x¢ = ¢( ). The flux transport
velocity u is (Démoulin & Berger 2003)

u v B
v

B
, 4t

n

n
t= - ( )

where subscripts “t” and “n” denote the tangential and normal
components of photospheric vector fields, respectively, and v
and B are the photospheric plasma velocity and magnetic
fields, respectively.
Equations (1)–(4) show that the total flux of magnetic

helicity through the photosphere,  , can be expressed as the
summation of the net rotation of all pairs of photospheric
elementary magnetic polarities around each other, weighted by
their magnetic flux. It further shows that, at any given time, t,
the total flux of magnetic helicity can be solely derived from
photospheric quantities, i.e., from a time series of vector
magnetograms from which the flux transport velocity can also
be derived (Schuck 2008).
The surface density of helicity flux, Gq, measures the

variation of magnetic helicity in an AR only from the relative
motions of its photospheric magnetic polarities. However, we
recall that magnetic helicity describes the global linkage of
magnetic field lines in the volume. Therefore, what effectively
modifies the magnetic helicity of an AR is the relative
reorientation of magnetic field lines, i.e., the variation of their
mutual helicity, in response to the motions of their photo-
spheric footpoints. Such a global, 3D nature of magnetic
helicity and its variation is not taken into account in the
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definition of Gq. As a consequence, Gq has a tendency to
misrepresent the local variation of magnetic helicity in ARs by
hiding the subtle effects of the mutual helicity variation
between magnetic field lines and by overestimating the local
helicity flux when an AR is associated with opposite helicity
fluxes (e.g., Dalmasse et al. 2014).

Pariat et al. (2005) showed that it is possible to remedy this
issue by explicitly rearranging those terms in Equation (1) that
are related to the connectivity of elementary magnetic flux
tubes. That allows us to express the total flux of magnetic
helicity in terms of the sum of the magnetic helicity variation
of each individual elementary flux tube of the magnetic field,
such that

dH

dt

dh

dt
d , 5c cò= F

F

F ∣ ( )

where hF is the magnetic helicity of the elementary magnetic
flux tube, c, and d cF its elementary magnetic flux. hF is the
magnetic helicity density and describes how any elementary
flux tube is linked to/winded around all other elementary flux
tubes (e.g., Berger 1988; Aly 2014; Yeates & Hornig 2014). It
can be shown that
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where xc+ (xc-) is the positive (negative), photospheric,
magnetic polarity of the elementary magnetic flux tube c (see
Figure1 of Dalmasse et al. 2014, for a generic sketch of
elementary flux tubes and their photospheric connectivity), and
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Note that the advantage of using Equation (7) over Equation (6)
is to avoid artificial numerical singularities when xBn ( ) is very
small.

Then, Pariat et al. (2005) defined a new surface density of
helicity flux by redistributing dh dtF at each photospheric
footpoint of the elementary magnetic flux tube, c, to map the
photospheric flux of magnetic helicity

x xG
dh

dt
B

1

2
. 9c c n c=F

F
 ( ) ∣ ∣ ( )∣ ( )

Note that the factor 1/2 in Equation (9) assumes that both
photospheric footpoints of an elementary flux tube contribute
equally to the variation of its magnetic helicity (a more general
case is described in Pariat et al. 2005). Note also that the
calculations of dh dtF and GF require one significant
additional piece of information as compared with Gq, i.e., the
connectivity of the magnetic field.

Finally, we stress here that both Gq and GF are instantaneous
estimations of injected helicity at a particular location on the
photosphere, and not the total helicity content in the associated
field line.

2.2. Numerical Method

Dalmasse et al. (2014) introduced a method to compute the
connectivity-based helicity flux density proxy, GF. Using
various analytical case studies and numerical MHD

simulations, they showed that GF properly tracks the site(s)
of magnetic helicity variations.
Their method is based on field-line integration to derive the

magnetic connectivity required to compute GF. For observa-
tional studies, routine magnetic field measurements are mostly
realized at the photospheric level (see Section 1). We thus
perform force-free field (FFF) extrapolations to obtain the
coronal magnetic field of the studied AR (see Section 4) and
compute the photospheric distribution of magnetic helicity flux
from Equations (7) and (9).
Each pixel of the photospheric vector magnetogram is

identified as the cross section of an elementary magnetic flux
tube with the photosphere. Each of these elementary flux tubes
is associated with one magnetic field line that is integrated to
obtain the connectivity. For any closed magnetic field line,
we thus obtain a pair (x x;c c+ -) of photospheric footpoints,
where xc+ is the positive magnetic polarity of the elementary
flux tube and xc- is its negative magnetic polarity at the
photosphere (z= 0). We then introduce a slight modification to
the method proposed in Dalmasse et al. (2014). Instead of
computing GF from Equation (6), which can lead to artificial
numerical singularities when xBn ( ) is very small, we compute
dh dtF and GF from Equations (7) and (9). Hence, once the
conjugate footpoint of a field line is found, we compute

xB cQ +( ˙ ( ); xB cQ -
˙ ( )) using bilinear interpolation. Finally, field

lines for which the conjugate footpoint reaches the top or lateral
boundaries are treated as open field lines, and both dh dtF and
GF are simply set to zero. This is a second modification to the
method of Dalmasse et al. (2014) justified by the fact that, in
this paper, we focus on comparing dh dtF and GF computed
using different magnetic field extrapolations, i.e., two quan-
tities that are only defined for closed field lines.

2.3. Metrics for Validation and Quantification of GF Maps

In the connectivity-based helicity flux density approach, half
the total helicity flux computed from Gq over the ensemble of
positive magnetic polarities is redistributed over the ensemble
of negative magnetic polarities, and vice versa. For this
redistribution to be perfect, the total magnetic flux summed
over the magnetic polarities where GF is computed must
vanish. If, for instance, the magnetic flux from the negative
magnetic polarities is smaller than that of the positive ones,
then a fraction of the total helicity flux computed from Gq over
the positive magnetic polarities is not redistributed in the
negative ones. This means that part of the total helicity flux
computed with Gq for the entire magnetic configuration is
missing from that computed with GF. We thus introduce a first
metric to validate GF maps, i.e., the percentage of magnetic flux
imbalance, imb.tF , for the closed magnetic flux where GF is
computed:

x

x x
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where cl.F is the part of the photosphere associated with the
closed magnetic flux, cl.F .
By definition, the fluxes measured by GF are simply a

redistribution of the fluxes measured byGq at both footpoints of
each elementary magnetic flux tube in the closed magnetic
field. Thus, the intensity of the magnetic helicity flux in one
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pixel can be different for GF and Gq. However, the total flux of
magnetic helicity integrated over the closed magnetic flux from
GF must be the same as that integrated from Gq because
Equation (5) is equal to Equation (1) for the closed magnetic
field. The second metric we defined for the validation of GF
maps is thus

x x

x
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G G d

G d
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In theory, C
cl.F should be strictly equal to 0. In practice,

however, its value depends on departures of imb.tF from 0.
Accuracy and validation of the GF map require that both imb.tF
and C

cl.F be close to 0.
Finally, we define two quantification indices to compare the

signal intensity between GF and Gq within the closed magnetic
field:
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C+ and C- respectively compare the total positive and total
negative magnetic helicity fluxes derived from Gq with those
derived from GF in the closed magnetic flux. Pariat et al. (2005)
and Dalmasse et al. (2014) showed that the helicity flux density
proxy Gq hides the true local helicity flux and tends to exhibit
larger and spurious helicity flux intensities as compared with
the GF proxy when opposite helicity fluxes are present in an
AR.C+ andC- allow us to quantify the intensity of the spurious
signals in Gq, thus providing an idea of the global improvement
of the GF maps relative to the Gq ones. In particular, large
departures of C from 1 are indicative of strong spurious
signals in Gq.

3. Observations and Error Analysis

3.1. Data

We test the robustness of the connectivity-based helicity flux
density method against different magnetic field extrapolation
models of the internally complex AR 11158. This AR appeared
on the solar disk at the heliographic coordinates S19 E42 on
2011 February 10. The AR was the result of fast and strong
magnetic flux emergence that produced two large-scale bipoles,
a northern and a southern one, in close proximity (see Figure 1;
e.g., Schrijver et al. 2011). The complex, quadrupolar magnetic
field of this AR produced several C-/M-/X-class flares and
CMEs during its on-disk passage (e.g., Toriumi et al. 2014). A
large fraction of this flaring activity was associated with the
collision between the negative magnetic polarity of the
northern bipole, NN, and the positive magnetic polarity of
the southern bipole, SP, which led to a strong and continuous
shearing of their polarity inversion line. More details on the
configuration, evolution, and flaring activity of the AR can be
found in, e.g., Sun et al. (2012), Jiang et al. (2012), Vemareddy
et al. (2012a), and Inoue et al. (2013).

The coronal models of AR 11158 are computed using vector
magnetograms taken by the Helioseismic and Magnetic Imager

(HMI, e.g., Schou et al. 2012) on board the Solar Dynamics
Observatory (SDO; e.g., Pesnell et al. 2012). SDO/HMI
provides full-disk vector magnetograms of the Sun with a pixel
size of 0. 5 . For the purposes of this paper, we reuse part of the
data from Dalmasse et al. (2013), who had applied the
connectivity-based approach to AR 11158 with an NLFFF
extrapolation without addressing the possible dependency of
the results on the choice of extrapolation method. In particular,
vector magnetograms at 06:22 UT and 06:34 UT on 2011
February 14 from the HMI-SHARP data series, HARP number
377 (Hoeksema et al. 2014), are reused.
These two vector magnetograms are used to derive the

photospheric flux transport velocity field with the differential
affine velocity estimator for vector magnetograms
(DAVE4VM; Schuck 2008), using a window size of 19 pixels
as suggested by Liu et al. (2013). The computed flux transport
velocity field effectively represents an instantaneous flux
transport velocity field at ∼06:28 UT. The two vector
magnetograms taken at 06:22 UT and 06:34 UT are averaged
to construct an instantaneous vector magnetogram associated
with the flux transport velocity field at ∼06:28 UT. The
constructed vector magnetic field is then used both to compute
Gq and as the photospheric boundary condition for the different

Figure 1. Top: SDO/HMI photospheric vector magnetogram at ∼06:28 UT.
The gray scale displays the vertical component, Bz (in G), while the yellow and
blue arrows show the transverse component of the magnetic field. Bottom:
vertical magnetic field overplotted with the flux transport velocity field (green
and orange arrows). Pink and cyan solid lines show B 500 Gz =  isocontours.
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FFF extrapolations presented in Section 4. The vector magnetic
field and flux transport velocity field at ∼06:28 UT are shown
in Figure 1.

3.2. Estimation of Helicity Flux Uncertainties

As part of testing the reliability of the connectivity-based
helicity flux density method, we also wish to evaluate
uncertainties in Gq and GF maps caused by those in the
photospheric magnetic field. In particular, our error analysis
includes both the effect of photon noise ( 10» G) and several
sources of systematic errors. Hoeksema et al. (2014) recently
performed an extensive analysis of the uncertainties in the
measurements of the magnetic field strength by SDO/HMI. In
particular, they focused on the uncertainty analysis for NOAA
11158. Among several sources of systematic errors, including
those related to the inversion code, they found that the
dominant contribution of uncertainty in SDO/HMI magnetic
field measurements is coming from the daily variation of the
radial velocity of the spacecraft along its geosynchronous orbit.
Their analysis concludes that the typical uncertainty in SDO/
HMI measurements of the magnetic field strength is about 100
G. The latter can be easily checked from the estimated field
strength error map of NOAA 11158 provided by the SDO/
HMI pipeline and that can be downloaded from JSOC.5 We
also want to compare these errors with those related to the
choice of magnetic field extrapolation used to compute GF.

For that purpose, we conduct a Monte Carlo experiment as
proposed by Liu & Schuck (2012) for error estimation of the
total helicity flux. Random noise with a Gaussian distribution
having a width (σ) of 100 G is added to all three components of
the magnetic field for both vector magnetograms taken at 06:22
UT and 06:34 UT. The value of 100 G is the 1s» uncertainty
in the total magnetic field strength from HMI data estimated by
Hoeksema et al. (2014) and further reported in Bobra et al.
(2014). The uncertainty is then propagated through the chain of
helicity flux density calculations to the flux transport velocity
field at the photosphere derived from DAVE4VM, to the
corresponding vector magnetogram at ∼06:28 UT, and finally
to the Gq and GF maps.

Although they did not perform a full parametric analysis,
Wiegelmann et al. (2006) showed that extrapolations with the
optimization method were not significantly affected by modest
noise in the photospheric vector magnetogram. They found that
the preprocessing of the photospheric data toward a more force-
free state (see, e.g., Section 4.2) strongly helps in that matter.
This may be expected considering that the random noise on the
photospheric vector magnetic field acts as a source of non-
force-free signals on high spatial frequencies while the
preprocessing filters such signals out. Even if FFF reconstruc-
tions would likely be differently affected by noise in the
photospheric data, its global effect on the extrapolations should
be limited by the preprocessing stage. On the other hand, FFF
extrapolations are more likely to be affected by more global
effects, including, but not limited to, large-scale non-force-free
regions not suppressed by the preprocessing, magnetic flux
imbalance, and lateral boundary conditions. Then, as far as GF
is concerned, the effect of random noise on the extrapolation
results is to introduce uncertainties in the connectivity of the
magnetic field. In this regard, we believe that the choice of
extrapolation method and preprocessing level is more

fundamental and has a stronger impact on the magnetic
connectivity and hence on GF. For these reasons, we decided
not to propagate the noise to the FFF extrapolations.
The noise propagation experiment is repeated 100 times,

producing 100 noise-added Gq and GF maps for all three FFF
extrapolations considered in this paper. For each scalar
quantity,  , the 1s estimated error, s , is computed as the
mean, over all n pixels of the map, of the rms of the N=100
noise-added  -maps, xi

jn.a. ( ), compared with the no-noise
 -map, xjn.n. ( ):

x x
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1 1
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4. Force-free Magnetic Field Extrapolations

We perform three FFF extrapolations using different
assumptions and methods: (1) the potential magnetic field,
(2) an NLFFF reconstruction using the magnetofrictional
method of Valori et al. (2010), and (3) an NLFFF generated
with the optimization method of Wiegelmann (2004). The
extrapolations and setup used to produce them are described
hereafter.
At this stage, we wish to emphasize that many more

extrapolation assumptions, methods, and implementations exist
in the literature. These different methods are further distin-
guished in terms of the physical information that they extract
from the photospheric vector magnetograms and use as
boundary conditions. For instance, some NLFFF codes use
vector magnetograms as boundary conditions, as is the case of
the magnetofrictional relaxation implemented by, e.g., Valori
et al. (2010), or the optimization method implemented by, e.g.,
Wiegelmann & Inhester (2010). Others built on the Grad–
Rubin approach (Grad & Rubin 1958) use the normal
component of the photospheric magnetic field and the force-
free parameter—derived from the vector magnetograms—as
boundary conditions (e.g., Amari et al. 2006; Wheatland 2007).
Recently, Malanushenko et al. (2012) also proposed a Quasi-
Grad–Rubin method that only uses the photospheric normal
magnetic field, but combined with coronal loops fitting to
constrain the coronal distribution of the force-free parameter.
Finally, several codes have been recently developed to perform
a full MHD relaxation using photospheric vector magneto-
grams, thus distinguishing them from NLFFF models through
the inclusion of plasma forces in the reconstruction of the 3D
magnetic field of ARs (e.g., Inoue & Morikawa 2011; Jiang &
Feng 2012; Zhu et al. 2013). All these different codes and
methods can be used to model the coronal magnetic field of
ARs, from which we can derive the magnetic connectivity
required to use the connectivity-based helicity flux density
approach to map the helicity flux in ARs.
Several of these methods have been compared with each

other in, e.g., DeRosa et al. (2009, 2015), including the two
NLFFF methods used in this paper. From these studies, it
appears that the three extrapolation methods considered here
generally produce differences in field-line distribution that are
representative of the differences that can be expected between
the coronal magnetic fields reconstructed with other FFF
methods. We thus expect the differences in the dh dtF and GF
calculations presented in this paper to be representative of the
differences that would be obtained when computing the
connectivity-based helicity flux density with other5 http://jsoc.stanford.edu/ajax/lookdata.html
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extrapolation methods. For this reason, we limit ourselves to
the analysis of helicity flux density calculations with the three
extrapolations described below.

The extrapolations presented hereafter are performed on a
finite field of view with open side and top boundaries, but
without assuming magnetic flux balance. Magnetic flux is thus
free to leave the extrapolation domain as open-like magnetic
field. Such open-like magnetic field may represent truly open
magnetic field and/or connections with the very distant quiet
Sun and surrounding ARs. Helicity flux density calculations are
not performed for open-like field lines because GF and dh dtF
are not defined for open magnetic flux tubes (see Section 2.2).
For that reason, open field lines are not plotted in any of the
field-line plots presented throughout the paper.

Working with a finite field of view may be a strong
limitation to reconstructing the magnetic field of ARs. Not only
is the entire photosphere always populated with quiet-Sun
magnetic flux, but there is also often more than one AR on the
Sun at a given time (e.g., Schrijver et al. 2013). The effect of
using a limited field of view is to remove large-scale
connections with the distant quiet Sun and surrounding
ARs that are outside the field of view considered for
the extrapolation. Such distant connections may influence the
results of the helicity flux density calculations with the
connectivity-based method. To test such an influence, one
needs to compare the connectivity-based helicity flux density
computed from a global, full-Sun magnetic field reconstruction
in spherical geometry versus that from a local magnetic field
extrapolation. However, current global reconstructions of the
solar magnetic field are limited by the fact that there are no full-
Sun vector magnetograms at any single time, and hence no
proper data for the boundary conditions of full-Sun extrapola-
tion codes. A proper analysis of the effect of distant ARs on
the helicity flux density calculations would therefore require
numerical modeling. Such a study is not the goal of the present
work. The vast majority of investigations relying on NLFFF
extrapolations are focusing on single ARs with the same type
of limited field of view and inherent hypotheses that are also
used in the present manuscript. In this paper, we are testing the
reliability of connectivity-based helicity flux density calcula-
tions with regard to such NLFFF modeling, i.e., we aim to
determine whether and to what extent different choices of
NLFFF computation schemes applied to a compact AR can
impact the distribution of the helicity flux density.

4.1. Potential Field

The current-free magnetic field is the minimal-energy
possible state for the given distribution of magnetic field at
the boundaries of the considered volume. In addition, the
potential field is often used as an initial state of numerical
methods that build the more complex NLFFF models (see
review by, e.g., Wiegelmann & Sakurai 2012). It is therefore an
important candidate to consider for testing the connectivity-
based helicity flux density method, despite its limitation in
reproducing nonlinear features of the coronal field.

The potential field can be directly computed using the
potential theory and the reflection principle to solve the Laplace
equation for the scalar potential in terms of the flux through the
photospheric boundary (Schmidt 1964). However, in order to
speed up the calculation, such a method is actually used only to
compute the scalar potential on all six boundaries of the
considered volume. The magnetic scalar potential in the

volume is then computed solving the Laplace equation,
subjected to the obtained Dirichlet boundary conditions, using
a fast Helmholtz solver from the Intel Mathematical Kernel
Library. For the required vertical component of the field on the
lower boundary, the same vertical component as for the NLFFF
extrapolation described in Section 4.2 is used. The potential
field extrapolation is referred to as POT in the following, and
selected field lines for this extrapolation are shown in the left
panel of Figure 2.

4.2. NLFFF from Magnetofrictional Relaxation

NLFFF extrapolations are models of the coronal magnetic
field that assume the corona to be static on the timescale of
interest and to be dominated by magnetic forces that are
distributed in such a way that the resulting Lorentz force is
everywhere vanishing. Such assumptions are supposed to be
valid in the entire volume of interest, boundaries included. The
magnetofrictional relaxation method implements numerical
relaxation and multigrid techniques to solve the corresponding
equations (see Valori et al. 2007, 2010; DeRosa et al. 2015, for
more details).
The remapped and disambiguated vector magnetograms

from the HMI-SHARP data series were interpolated to 1
resolution and averaged to construct the vector magnetogram at
06:28 UT (see Section 3.1) used for the NLFFF extrapolation.
Vector magnetograms are inferred from spectropolarimetric
measurements taken at photospheric heights, where the plasma
is non-force-free. Therefore, in order to use the vector
magnetogram as a boundary condition for the NLFFF
extrapolation code, the forces acting on the magnetogram need
to be reduced (preprocessing). To this purpose we use the
method of Fuhrmann et al. (2007, 2011). In this application,
only the horizontal components of the field are preprocessed,
yielding a reduction of the forces from 0.035 to 0.002 in the
nondimensional units used in Metcalf et al. (2008). Since
smoothing is not necessarily facilitating the extrapolation
(Valori et al. 2013), no smoothing was applied. The resulting
magnetogram was then extrapolated using the magnetofric-
tional code into a volume of about 208×202×145Mm3.
The resulting extrapolated field has solenoidal errors that can

be quantified using the formula by Valori et al. (2013) into 9%
of the total magnetic energy. The fraction of the total current
that is perpendicular to the field is 0.48Js = (Wheatland
et al. 2000), a rather high value that is not uncommon for
extrapolation of HMI vector magnetograms with the magneto-
frictional method (see Valori et al. 2012, for an application to
the Hinode/SP magnetogram with a much lower Js ). Selected
field lines of the NLFFF obtained in this way, and referred to as
NLFFF-R in the following, are shown in the middle panel of
Figure 2.

4.3. NLFFF from Optimization Method

For the second NLFFF model considered in this paper we
use the weighted optimization method (Wiegelmann 2004),
which is an implementation and modification of the original
optimization algorithm of Wheatland et al. (2000). The
optimization method minimizes an integrated joint measure,
which comprises the normalized Lorentz force, the magnetic
field divergence, and treatment of the measurement errors, over
the computational domain (for more details, see Wiegelmann &
Inhester 2010; Wiegelmann et al. 2012).
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To perform the extrapolation, the vector magnetogram
(Figure 1) is first rebinned to 1 per pixel and preprocessed
toward the force-free condition using the method of Wiegelmann
et al. (2006). The extrapolation is finally performed on a uniform
grid of 256 256 200´ ´ points covering ∼185×185×
144Mm3. We find a solenoidal error of 1% of the total magnetic
energy and a fraction of total current perpendicular to the
magnetic field 0.20Js = . These values are lower than for the
NLFFF-R model (Section 4.2), which is due to both different
preprocessing and extrapolation methods and different strategies.

In the following, the NLFFF model built with the
optimization method is referred to as NLFFF-O. A set of
selected magnetic field lines is shown in the right panel of
Figure 2.

5. Results

In this section, we analyze the results from the connectivity-
based helicity flux density calculations. The validation of the
maps, error estimations, and qualitative comparisons are briefly
presented in Section 5.1. The one-to-one quantitative compar-
isons are discussed in Section 5.2.

5.1. Helicity Flux Density Distribution

Table 1 presents the validation metrics for the GF maps
computed from the three FFF extrapolation models described in
Section 4. For all three GF maps, we obtain imb.tF below 1% and
C

cl.F below 5%. This allows us to verify that the magnetic flux
over which the connectivity-based helicity flux density is
computed is very well balanced and that the calculation of
dh dtF and GF well preserves the total helicity flux in that
region in the closed magnetic flux. Together, these numbers
enable us to confirm the accuracy of the GF and dh dtF
calculations discussed in the following.

Figure 3 presents the surface density of helicity flux from the
purely photospheric proxy, Gq, and the connectivity-based
proxy, GF, computed from all three FFF extrapolations. The
mean of the absolute value of the helicity flux signal in most of
the AR (i.e., B 100 Gz ∣ ∣ ) is 2.8×106 Wb2 m−2 s−1 for the
Gq map and 1.7×106Wb2 m−2 s−1 for the GF maps, while a
large fraction of the maps are associated with local helicity
fluxes of 107 Wb2 m−2 s−1. As shown in Table 2, the errors for

Gq and GF estimated from our Monte Carlo experiment are
3.7×105Wb2 m−2 s−1 for Gq and lower than 3×105Wb2

m−2 s−1 for GF. The signal intensity of the surface density
maps in Figure 3 is thus well above the estimated noise level.
Figure 3 shows that the largest differences in helicity flux

density maps are between Gq and the three GF maps. In
particular, the strongest differences are associated with
magnetic flux systems that connect footpoints of opposite Gq
signs, i.e., footpoints of NN connected to NP, footpoints of SN
connected to SP, and footpoints of SN connected to NP. On the
other hand, the Gq map is relatively similar to the three GF
maps for the flux system connecting NN to SP, because
magnetic field lines are connecting footpoints with similar
values of x xG Bnq ( ) ∣ ( )∣. This is consistent with the work of
Pariat et al. (2005) and Dalmasse et al. (2014), who showed
that Gq hides the true helicity flux signal when simultaneous
opposite helicity fluxes are present in a magnetic configuration.
This effect is inherent to the definition of Gq that does not
acknowledge the fact that the variation of magnetic helicity in
an elementary magnetic flux tube comes from the motions of its
two photospheric footpoints with respect to the other
elementary flux tubes of the entire magnetic configuration.
As a result, the comparison of the total positive helicity flux
and total negative helicity flux from Gq in the closed magnetic
flux with the same quantities computed for each one of the GF
maps leads to values of C 1.2>+ and C 1.5>- (see Table 1).
Such values indicate that Gq is affected by moderate spurious
positive signals and rather high spurious negative helicity
fluxes that are corrected for by the use of GF (see Section 2.3).
Figure 3 thus highlights the fact that the redistribution of
helicity flux operated by GF is crucial to the photospheric

Figure 2. Selected closed field lines of the 3D extrapolated magnetic field for the potential field (labeled POT; left), the NLFFF from the magnetofrictional relaxation
method (labeled NLFFF-R; middle), and the NLFFF from the optimization method (labeled NLFFF-O; right). The magnetic field lines were integrated from the same
(randomly selected) photospheric footpoints for all three extrapolations (the same color is used for the same footpoint). The gray scale displays the photospheric
vertical magnetic field, Bz, with ±500 G isocontours (purple and cyan solid lines).

Table 1
Metrics for Validation and Quantification of GF Maps

FFF Model imb.tF C
cl.F C+ C-

POT 1.2×10−3 4.2×10−4 1.32 1.71
NLFFF-R −7.6×10−3 4.7×10−2 1.21 1.67
NLFFF-O 2.6×10−3 3.2×10−2 1.23 1.57

Note. The table presents the validation and quantification metrics for the maps
displayed in Figure 3. All metrics are dimensionless ratios defined by
Equations (10)–(13).
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mapping of helicity flux in ARs, regardless of the coronal
magnetic field modeling.

All three GF maps in Figure 3 are in very good qualitative
agreement, showing (i) a negative helicity flux in SN, (ii) a
strong positive helicity flux in NN and SP, and (iii) strong
positive and negative helicity fluxes with a strongly marked
interface in NP. The GF maps from the two NLFFF models are
very similar. Setting aside the white signal in SN, which is due
to open field lines where GF is not computed, and focusing on
the common areas where all three extrapolations have closed
magnetic flux, we find that the helicity flux density map
derived from the potential field is also similar to the GF maps
derived from the two NLFFF models. The most noticeable
difference is in the southeast part of NN, which does not show

any significant helicity flux for GF(POT), contrary to both
GF(NLFFF-R) and GF(NLFFF-O).

Finally, the good qualitative agreement between the
connectivity-based helicity flux density calculations from the
three FFF extrapolations is further emphasized by the 3D
representation of dh dtF in Figure 4. They all show that the
inner part of the AR is dominated by strong positive helicity
fluxes and is embedded within a magnetic field region
dominated by strong negative helicity fluxes. The core results
of Dalmasse et al. (2013) are thus confirmed with a weak
dependence on the extrapolation method.

5.2. Quantitative Analysis

We now focus on the quantitative comparison of the helicity
flux density calculations obtained from the three FFF models.
We restrict our analysis to the pixels of the GF maps that are
above the noise level (different for each map) estimated from
the Monte Carlo experiment. The error levels are given in
Table 2.
Figure 5 displays the three maps of sign agreement. The

regions where our analysis can be carried out (white and black)
are mostly associated with the strong magnetic field of AR
11158, i.e., where B 500z ∣ ∣ G. These regions correspond to
the area where most of the helicity flux (at least 88% of the total

Figure 3. Surface densities of helicity flux for AR 11158 at ∼06:28 UT on 2011 February 14 (in units of 107 Wb2 m−2 s−1) computed from the purely photospheric
proxy (G ;q top left) and the connectivity-based proxy (GF) derived using the three FFF extrapolations (top right and bottom row). Purple and cyan solid lines show
B 500 Gz =  isocontours from the original photospheric vector magnetogram of SDO/HMI. The presence of strong white (i.e., zero) signals in the left part of SN
and the north-right part of NP for all three GF maps is due to open-like magnetic flux where dh dtF and GF are not defined and hence not computed.

Table 2
Error Estimations from Monte Carlo Experiment

Gq GF(POT) GF(NLFFF-R) GF(NLFFF-O)

σ 3.7 2.6 2.2 3.0

Note. The errors are in units of 105 Wb2 m−2 s−1, i.e., ∼10–100 times smaller
than the typical values displayed by the Gq and GF maps from Figure 3. See
Section 3.2 for a description of error calculations.

8

The Astrophysical Journal, 852:141 (15pp), 2018 January 10 Dalmasse et al.



unsigned helicity flux) computed with GF is coming from. This
is because the helicity flux intensity outside these regions is
below the noise level of the respective GF maps. Despite the
presence of some relatively small areas of disagreement (black
patches), we find that these regions are dominated by
agreement (white signal) over the sign of helicity flux derived
using different FFF extrapolations. In particular, the percentage
of surface area for which pairs of GF maps agree is always
larger than 85%, which translates into more than 84%» in
terms of magnetic flux. Therefore, the local sign of helicity flux
computed from the connectivity-based helicity flux density
method is very robust to the different FFF models and
assumptions used for calculations.

Figure 6 displays the linear correlation plots of GF values in
each pixel, for different pairs of FFF extrapolations. For
comparisons between GF from the potential field model and
one of the two NLFFFs, the points are colored according to the

strength of the photospheric electric current density, jz∣ ∣, from
the different preprocessed boundary employed in the NLFFF
model under consideration. For the plot comparing GF from the
two NLFFF extrapolations, the points are colored according to

j jNLFFF R NLFFF Oz z
1 2(∣ ( ‐ )∣ · ∣ ( ‐ )∣) . Such a color coding was

introduced in order to investigate the dependency of the scatter
on the electric current density of magnetic field lines where GF
is computed.
In each scatter plot, we find that the spatial distribution of

points exhibits a clear ellipsoidal shape aligned along the y=x
diagonal line. Each one of these distributions displays a moderate
dispersion. The three standard deviations computed from each
scatter plot of Figure 6 are �2.6×106 Wb2 m−2 s−1, which is
5–10 times smaller than most of the signal in the four main
magnetic polarities. These standard deviations are 10» times
larger than the GF errors estimated from the Monte Carlo
experiment (Table 2). As anticipated, it means that, despite the

Figure 4. 3D representation of the connectivity-based helicity flux density for each FFF extrapolation. The magnetic field lines were integrated from the same
(randomly selected) photospheric footpoints for all three extrapolations. They are colored according to their dh dtF value. Purple and cyan solid lines show
B 500 Gaussz =  isocontours from the FFF extrapolation.
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substantial agreement on the sign of the injected helicity between
different extrapolations, a significant uncertainty in the connectivity-
based calculations is coming from the choice of extrapolation
model used to derive the field line connectivity.

Figure 6 further shows that the ellipsoidal pattern of the
distribution of points is present independently of the electric
current density, i.e., of the color of the points. We also notice
that the scattering of points away from the y=x line presents
some relatively weak dependence on the electric current
density of the field lines used for the connectivity-based
calculations. In particular, we find a dispersion in the range
≈[1.5, 2.0]×106 Wb2 m−2 s−1 for black to green points and

≈[2.6, 4.1]×106 Wb2 m−2 s−1 for green to red points (finer
details are provided in Table 3). In addition, the number of
pixels with average to strong electric current density (i.e., green
to red points) is sensibly the same as the number of pixels with
very weak to average electric current density (i.e., black to
green points). This implies that the correlation coefficients,
displayed in Figure 6 and discussed below, are not dominated
by the differences in GF values from nearly potential magnetic
field lines.
For all three scatter plots, we find that the Pearson, cP, and

Spearman, cS, correlation coefficients are such that c 0.75P 
and c 0.72S  . We checked that these values are statistically
significant by conducting a null hypothesis test (details and
results of this test are provided in the Appendix). We therefore
conclude that the calculations of the connectivity-based helicity
flux density derived from different FFF extrapolations are
highly correlated and consistent with each other.
For further comparison, we compute the vector correlation

metric,Cvec, comparing the three 3D magnetic field extrapolations
as defined by Equation(28) of Schrijver et al. (2006). For that
purpose, the POT and NLFFF-R 3D magnetic fields are
interpolated on the same grid as the NLFFF-O (whose
extrapolation domain is common to all three models) using
trilinear interpolation. We find B BC , 0.84vec NLFFF R POT =-( ) ,

B BC , 0.90vec NLFFF O POT =-( ) ,and B BC ,vec NLFFF O NLFFF R =- -( )
0.90. Such values for the vector correlation metric of the magnetic
fields are very high even though the 3D distributions of the
magnetic field lines are relatively different when comparing the
three extrapolations, as inferred from Figure 2. We thus find that
the vector correlation metric for the magnetic fields is higher than
the Pearson and Spearman correlation coefficients found when
comparing the helicity flux density calculations.

6. Discussion

At this point, we wish to emphasize that the robustness of the
connectivity-based method against different magnetic field
extrapolations does not mean that the extrapolations are very
much alike. On the contrary, all three extrapolations considered
here produce 3D magnetic fields that are different from each
other as shown in Figure 2. So, what does it mean that the
connectivity-based helicity flux density calculations are robust
against different extrapolation methods?
First of all, we remind the reader that the surface density of

helicity flux, GF, only explicitly depends on the connectivity of
magnetic field lines and not on their 3D geometry; the latter
only has an implicit effect on GF by affecting the magnetic
connectivity. Second, expanding Equation (9) using
Equation (7) leads to

x
x

x xG
B

2
. 15n

B B= Q - QF +
+

+ -( ) ∣ ( )∣ ( ˙ ( ) ˙ ( )) ( )

Equation (15) shows that, for a given footpoint x+, the helicity
flux density GF from different extrapolation models will be
exactly the same (1) if they have the exact same magnetic field
connectivity or (2) if they have a different connectivity, the first
extrapolation links x+ to x1- and the second links x+ to
x x2 1¹- -, but x xB B2 1Q = Q- -

˙ ( ) ˙ ( ). The same type of conclusion
can be drawn for xGF -( ) by simply exchanging x+ and x-.
Note that condition 2 relates to the spatial smoothness of xBQ̇ ( )
and, by extension, xGq ( ).

Figure 5. Maps of GF-sign agreement between the surface density maps
obtained with the three FFF models. For each map, [white; black]=[agree;
disagree], while gray corresponds to pixels either that are associated with open-
like field lines (where GF is not computed) or where GF is below the noise level
for at least one of the two models being compared. Purple and cyan solid lines
show B 500 Gz =  isocontours from the original photospheric magnetogram
of SDO/HMI.
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In general, GF can distinguish two magnetic fields that have
different photospheric magnetic connectivities. This is evident
from the connectivity-based flux density maps shown Figure 3
and the clear dispersion shown in the scatter plots of Figure 6.
However, we argue that as long as two different 3D magnetic
fields have, on average, a similar magnetic connectivity, then
the GF maps computed from these magnetic fields should
display a good overall agreement. Note that, although not
discussed, this was already observed by Dalmasse et al. (2014)
for the models analyzed in their Figures 8, 10, 11, and 12. The
strongest differences would then be expected in localized
regions where the magnetic connectivity from the extrapola-
tions is markedly different, typically in the close surroundings
of quasi-separatrix layers (QSLs), which are regions of strong
gradients of the magnetic connectivity that are favorable to
magnetic reconnection (e.g., Démoulin et al. 1996; Titov
et al. 2002; Aulanier et al. 2006; Janvier et al. 2013). This is
indeed what we find in our analysis of AR 11158, e.g., at the
interface of positive and negative helicity fluxes in NP (see
Figure 3) that coincides with a large-scale QSL that separates
field lines connecting NP to NN and NP to SN.

Then, we recall that GF is only a 2D representation of the
physical, 3D definition of local magnetic helicity variation,
dh dtF . dh dtF is only defined for elementary magnetic flux
tubes. Its 3D representation thus requires us to plot individual
field lines. Since different magnetic field extrapolation methods
and assumptions generally produce 3D magnetic fields that can

differ significantly in the details of individual field lines (e.g.,
DeRosa et al. 2009), then, differently from GF, dh dtF can
always differentiate two magnetic fields. This is indeed what
we see in Figure 4, where the three plots of dh dtF are easily
distinguishable because of the different 3D geometry of
magnetic field lines. Thus, the robustness of dh dtF against
different extrapolation models should be understood in terms of
average or global distribution of helicity flux density over the
different magnetic flux systems of an AR, and not in terms of a
one-to-one field-line and dh dtF correspondence. For AR
11158, this means looking at the AR in terms of the four flux
systems NN–NP, NN–SP, SN–SP, and SN–NP. While the
actual distribution of the magnetic field lines and dh dtF in
these four flux systems vary from one extrapolation to the other
(see Figure 4), the sign and average helicity flux intensities
agree very well, hence the robustness of the calculations.
On the other hand, local differences exist in the connectivity-

based helicity flux density calculations performed with different
extrapolations. Such local differences can be significant and are
extremely important for physically interpreting the local
helicity flux, i.e., at the scale of a particular field line. This is
illustrated in Figure 7, which shows dh dtF for five field lines
that have been integrated from the same photospheric starting
footpoints for all three extrapolations of AR 11158. The
connectivity and 3D geometry of these field lines strongly
differ from one extrapolation to the other, which results in
different helicity flux intensities and signs. For instance, field
line 5 links SN to a small-scale positive magnetic polarity on
the north of SN with a strong negative helicity flux for POT,
while it links SN to NP with a medium negative helicity flux for
NLFFF-R and links SN to SP with a medium positive helicity
flux for NLFFF-O. When comparing the three extrapolations,
the five field lines displayed in Figure 7 are so different in
geometry and orientation with respect to each other that the
physical interpretation of their helicity flux density, based on
field-line reorientation in response to the motions of their
photospheric footpoints (see Section5 and Figure9 of
Dalmasse et al. 2014), is entirely extrapolation dependent.

Figure 6. Scatter plots of pixel-to-pixel comparison of the surface density of helicity flux. The black solid line shows the y=x line. “Pearson,” “Spearman,” and
“Stand. dev.” are the Pearson correlation coefficient, the Spearman correlation coefficient, and the standard deviation, respectively. The standard deviation is in units
of 107 Wb2 m−2 s−1. From the left to the right, the color scale corresponds to j NLFFF Rz∣ ( ‐ )∣, j NLFFF Oz∣ ( ‐ )∣, and j jNLFFF R NLFFF Oz z∣ ( ‐ )∣ · ∣ ( ‐ )∣ . Notice that the
color scale for the current density is not linear, but was instead chosen as 1 4 · with saturation at 50 mA m−2 for dynamic range optimization.

Table 3
Scatter Plot Dispersion versus Electric Current Density

jz ]0, 0.2] ]0.2, 3.1] ]3.1, 15.6] ]15.6, 50.0]

Gs F [1.5, 1.8] [1.8, 2.0] [2.6, 3.6] [3.0, 4.1]

Note. The interval for the standard deviation, Gs F, is derived from the values
obtained for the three scatter plots of Figure 6. The electric current density is in
units of mA m−2, and the dispersion is in units of 106 Wb2 m−2 s−1. From
left to right, the four ranges of electric current density correspond to
black; dark blue] ], dark blue; green] ], green; yellow] ], and yellow; red] ] of
the color scale in Figure 6.
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Considering the current limitations of magnetic field
extrapolations, we conclude that the physical interpretation of
the connectivity-based helicity flux density calculations in
observational analyses will be robust at the scale of the
different flux systems forming an AR, but not necessarily at the
extremely local scale of individual magnetic field lines for
which interpretation of the signal should be taken with a lot of
caution.

Finally, we recall that the analysis presented in this paper
was conducted using NLFFF extrapolations performed with a
finite field of view. As mentioned in Section 4, this is a
limitation since it disregards the effect of the distant quiet Sun
and surrounding ARs that are outside the field of view
considered for the extrapolation. Such effects would need

another study with large-scale magnetic field extrapolations, or
even with full-Sun numerical simulations.

7. Conclusion

Thanks to the conservation properties of magnetic helicity in
the solar atmosphere, studying the photospheric flux of
magnetic helicity appears to be a key element for improving
our understanding of how this fundamental quantity affects the
dynamics of solar ARs. For that purpose, a connectivity-based
helicity flux density method, built on the work of Pariat et al.
(2005), was recently developed and tested on various analytical
case studies and numerical MHD simulations (Dalmasse
et al. 2014). The ability of this method to correctly capture
the local transfer of magnetic helicity relies on its exploitation
of the connectivity of magnetic field lines, which enables it to
embrace the 3D and global nature of magnetic helicity.
For the solar atmosphere, the application of the connectivity-

based helicity flux density method relies on approximate 3D
solutions obtained from FFF extrapolations of the photospheric
magnetic field to derive the connectivity of magnetic field lines.
In general, such FFF models provide reconstructed magnetic
fields whose 3D distribution strongly depends on the extra-
polation method used (e.g., DeRosa et al. 2009, 2015). As a
consequence, the values of subsequently derived quantities,
such as free magnetic energy and magnetic helicity, exhibit
large variations from one FFF model to another. Since the
magnetic connectivity also depends on the 3D distribution of
the extrapolated magnetic field, the connectivity-based helicity
flux density calculations may be strongly affected by the choice
of FFF reconstruction method. In this paper, we addressed this
concern by applying the connectivity-based approach to solar
observations with different magnetic field extrapolation models
and implementations.
To assess the reliability of the connectivity-based helicity

flux density method and its relevance to solar observations, we
considered the internally complex (several bipoles) and
externally simple (i.e., no neighboring large-flux system) AR
11158 using the vector magnetogram data from SDO/HMI.
Three FFF extrapolations, i.e., a potential field, an NLFFF
extrapolation using the magnetofrictional method of Valori
et al. (2010), and a second NLFFF from the optimization
method of Wiegelmann (2004), were performed to reconstruct
the coronal magnetic field of AR 11158 and apply the
connectivity-based approach. Our analysis indicates that the
helicity flux density calculations derived from different
FFF extrapolations are highly correlated (with Pearson and
Spearman correlation coefficients larger than 0.72» ) and
consistent with each other, showing a very good agreement
over identifying the local sign of helicity flux (i.e., for more
than 85%» of the surface where they were compared). We thus
conclude that the connectivity-based helicity flux density
method can be reliably used in observational analyses of ARs.
The results presented in this paper also enable us to propose

a procedure for estimating uncertainties in the connectivity-
based helicity flux density calculations applied to solar
observations, as follows:

1. Perform a Monte Carlo experiment, as described in
Section 3.2 and proposed by Liu & Schuck (2012), by
adding random noise with a Gaussian distribution to the
photospheric vector magnetic fields used for computation
and propagate it through the chain of helicity flux density

Figure 7. 3D representation (top view) of the connectivity-based helicity flux
density, as in Figure 4, illustrating local differences between dh dtF from the
different FFF extrapolations. The magnetic field lines are labeled according to
the common photospheric footpoint from which they were integrated and that
is indicated by the yellow disk. The color scale for the vertical magnetic field
(gray scale) and its isocontours are the same as in Figure 4.
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calculations. This allows us to estimate uncertainties
related to magnetic field measurement errors for the flux
transport velocity, Gq, and dh dtF and GF from the
NLFFF method chosen for the analysis.

2. Apply the connectivity-based calculations with the
NLFFF and the potential field to derive the standard
error from the comparison of GF computed with each
magnetic field model. This allows us to derive the error
contribution related to the uncertainty in the magnetic
field connectivity due to the choice of magnetic field
extrapolation method.

3. Sum the squared errors of GF to estimate the overall
uncertainty in helicity flux density calculations.

This procedure, and in particular step 2, is motivated by the fact
that our analysis indicates that comparing the calculations with
the potential field and one of the two NLFFF models gives a
standard error that is extremely close to the standard error
obtained from comparing the helicity flux density calculations
from the two NLFFF models. Computing the potential field is
relatively inexpensive as compared with computing an NLFFF
model and, in fact, is already part of most NLFFF algorithms
(see, e.g., review by Wiegelmann & Sakurai 2012) that use it as
an initial state.

The reliability of the connectivity-based helicity flux density
calculations against different FFF models offers several
interesting perspectives for analyzing the 2D and 3D transfer
of magnetic helicity in solar ARs. During the early stages of
AR formation, the connectivity-based method provides infor-
mation on the distribution of magnetic helicity in the emerging
magnetic field, which is an important constraint for models of
generation and transport of magnetic flux in the solar
convection zone (e.g., Berger & Ruzmaikin 2000; Pariat
et al. 2007; Vemareddy & Démoulin 2017).

On the other hand, the study of the helicity flux distribution
at later stages of AR evolution allows us to track the sites
where magnetic helicity is transferred to the corona, probing in
this way the relationships between magnetic helicity accumula-
tion and the energetics of solar flares and coronal mass
ejections (CMEs). The connectivity-based approach may
further be used to test the very high energy flare model of
Kusano et al. (2004) based on magnetic helicity annihilation.
Such a flare model requires the prior transfer and accumulation
of magnetic helicity of opposite signs in different magnetic flux
systems of an AR that would later reconnect together.
Identifying AR candidates for hosting such a flare model
requires reliable maps that are not polluted by false helicity flux
signals of opposite signs. The present study shows that the
connectivity-based helicity flux density method is very well
suited for that purpose.

In summary, the connectivity-based helicity flux density
method is a very promising tool for helping us unveil the role
of magnetic helicity in the dynamics of the solar corona.
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Appendix
Null Hypothesis Testing

To determine whether the values of correlation coefficients
reported in Section 5.2 are statistically significant, we perform
a null hypothesis test (e.g., Neyman & Pearson 1933; Moore &
McCabe 2003; Cox 2006). The null hypothesis states that an
observed result, or relationship between two variables, is due to
random processes alone. The null hypothesis test is an
argumentum ad absurdum approach. The goal is to show that
an observed relationship or result is very unlikely to occur
under the null hypothesis, in which case the null hypothesis can
be rejected and the alternative accepted. In the context of this
paper, they can be formulated as follows:

1. Null hypothesis: the values ofGF computed from different
FFF models are not correlated.

2. Alternative hypothesis: the values of GF computed from
different FFF models are correlated.

To test this null hypothesis, we perform a permutation test.
Let X x x x, ,..., n1 2= { } and Y y y y, ,..., n1 2= { } be two data sets.
c c X Y,S S

0 = ( )( ) is the Spearman correlation coefficient of the
two original data sets X and Y, and for which we want to
determine the statistical significance. The permutation test
consists of the following steps:

1. Create a new data set Y k( ) by randomly permuting the
elements of Y, for instance, Y y y y, ,...,k

n4 10 2= -{ }( ) .
2. Compute the Spearman correlation coefficient,

c c X Y,S
k

S
k= ( )( ) ( ) .

3. Repeat steps 1 and 2 N times, where N is large (typically
larger than 1000). This leads to N sets of random
permutations of Y and hence N 1+ Spearman correlation
coefficients, c c c c c, , , ,...,S S S S S

N0 1 2 3{ }( ) ( ) ( ) ( ) ( ) .

We then determine the p-value of cS
0( ), i.e., the probability of

obtaining the Spearman correlation coefficient, cS
0( ), between

the two original data sets, X and Y, if the null hypothesis were
true. The p-value associated with cS

0( ) and estimated from the
permutation test is the fraction of cS

k n0,1, ,= ¼( { }) that are larger
than the Spearman correlation coefficient from the two original
data sets, cS

0( ), i.e.,

p
m

N 1
, 16=

+
( )

where m is the number of cS
k n0,1, ,= ¼( { }) that are cS

0 ( ). The same
method is applied with the Pearson correlation coefficient. We
reject the null hypothesis and accept the alternative if the
estimated p-value for both the Pearson and Spearman
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correlation coefficients is strictly smaller than 0.001, i.e., the
level below which we consider the correlation coefficients from
the two original data sets to be statistically significant.

The results from the permutation tests are summarized in
Table 4 for the Spearman correlation coefficient of GF(POT)
versus GF(NLFFF-R) only, because we obtained very similar
results for both the Pearson and Spearman correlation
coefficients of all three scatter plots from Figure 6. For all
permutation tests reported in Table 4, the distribution of
Spearman correlation coefficients (not shown here),
cS

k n0,1, ,= ¼( { }), exhibits a Gaussian-like profile with a mean,
0m » ( 10 4m < -∣ ∣ ), and a very small standard deviation,
10 2s - . We varied the number of random permutations and

verified that the mean and standard deviation of the resulting
distributions are not strongly dependent on the number of
permutations as long as this number is large enough (typically
N 104 ). Table 4 shows that the p-value of cS

0( ) is at most 10−6

(as taken from the test with N 106= ) for all permutation tests.
This is only an upper bound for the p-value as suggested by
their N 1- dependency visible in Table 4 and the comparison
between cS

0( ) and the standard deviation, which places cS
0( ) at an

100s» distance from the mean in the tail of the distribution of
cS

k n0,1, ,= ¼( { }). Note that the N 1- dependency occurs because we
obtain c cS

k
S

0<( ) ( ) for all k 0> for all permutation tests, leading
to m=1 in Equation (16). The correlation coefficients reported
in Figure 6 are thus statistically significant. We thus reject the
null hypothesis and accept the alternative hypothesis. We
therefore conclude that the calculations of the connectivity-
based helicity flux density derived from different FFF
extrapolations are highly correlated and consistent with each
other.
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