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Abstract: The statistical independence between the distributions of different chromophores in
tissue has previously been used for linear unmixing with independent component analysis (ICA).
In this study, we propose exploiting this statistical property in a nonlinear model-based inversion
method. The aim is to reduce the sensitivity of the inversion scheme to errors in the modelling of
the fluence, and hence provide more accurate quantification of the concentration of independent
chromophores. A gradient-based optimisation algorithm is used to minimise the error functional,
which includes a term representing the mutual information between the chromophores in addition
to the standard least-squares data error. Both numerical simulations and an experimental phantom
study are conducted to demonstrate that, in the presence of experimental errors in the fluence
model, the proposed inversion method results in more accurate estimation of the concentrations
of independent chromophores compared to the standard model-based inversion.
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1. Introduction

Photoacoustic tomography is a non-invasive biomedical imaging technique [1] relying on the
absorption of optical energy and the generation of ultrasound waves. It has a relatively low
cost of implementation and has the advantage of combining the relatively large penetration
depth and high resolution of ultrasound imaging with optical absorption based contrast which
provides high specificity. In quantitative photoacoustic tomography, the unique optical absorption
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spectra of the chromophores are exploited in spectroscopic inversions of the multiwavelength
photoacoustic images in order to estimate the concentration of each chromophore. The key
endogenous chromophores of interest for quantitative photoacoustic tomography are oxy- and
deoxyhaemoglobin, because the ratio of their concentrations is related to the blood oxygenation,
which is an important physiological parameter. Spectroscopic techniques are also valuable
tools for contrast-enhanced photoacoustic molecular imaging applications, where the detection
and quantification of the local accumulation of genetically encoded probes and extrinsically
administered contrast agents [2] can provide information on biological processes, drug delivery,
disease development and treatment response.

Quantifying the chromophore concentrations is a challenging task because the absorbed optical
energy density is not linearly related to the chromophore concentrations, but a product of the
absorption coefficient and light fluence, which varies both spatially and spectrally and depends
on the unknown chromophore concentrations. The model-based inversion scheme [3–8] is a
quantification method that accounts for the effect of the fluence by including a numerical model
of the fluence distribution in an iterative scheme to solve the inverse problem. Thus, it has the
potential to provide accurate estimation of the absolute chromophore concentrations in complex
tissue structures. However, in experimental settings, both the approximate nature of the model,
and the difficulty in determining all the “known” model parameters, such as the absorption
and scattering spectra and the intensity profile of the excitation beam, to high accuracy, lead
to model-mismatch. This poses challenges on the practical implementation of model-based
inversion schemes for in vivo imaging. Previous studies [5,8] have relied on reducing the number
of unknown variables by segmenting the images into regions with piece-wise constant optical
properties to increase the robustness of the inversion scheme. In this study, we exploit instead the
statistical independence between certain chromophores to improve the accuracy and robustness
of model-based inversion.
Statistical independence has been utilised to spectrally decompose the chromophores via

independent component analysis (ICA) [9]. ICA is a fast and simple unmixing algorithm based
on the assumption that the photoacoustic images are linear mixtures of the independent source
components representing the chromophores. Glatz et al [10] showed that ICA can result in
more accurate unmixing than a linear spectroscopic inversion. ICA has subsequently been used
to unmix genetic reporters [11] and contrast agents targeted to apoptotic cells [12] or cells
expressing selectin [13]. However, ICA is unable to estimate the absolute concentrations of the
chromophores and it does not account for the nonlinear fluence distortion.

In this paper, we propose incorporating statistical independence as additional information in the
nonlinear model-based inversion method. This involves including a measure of the independence
in the error functional in addition to the least-squares data error. The aim is to reduce the
quantification errors caused by inaccurate forward modelling of the fluence. The effect of using
the statistical independence in the inversion is investigated using both numerical and experimental
tissue mimicking phantoms and the quantification results are compared to the model-based
inversion using only the data error.

2. Mutual information error functional

Detailed descriptions of statistical independence and its applications in imaging can be found in
Refs [14,16,17]. However, as the concept has not yet been widely used in photoacoustic imaging,
a brief summary of the essential aspects will be given here. The spatial distributions of certain
biomarkers or molecular probes are statistically independent from other tissue chromophores
in some cases of practical interest. Examples include fluorescent probes that can be targeted to
disease-specific receptors whose spatial distribution is unrelated to that of the blood and the
background tissue, and cells that have been genetically modified to express optical absorbers
which can be found at locations independent from other absorbers. The statistical independence
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of two chromophores is related to the histogram of the values of the individual chromophore
concentrations, and the joint histogram of the concentrations of both chromophores. The
mathematical definition of statistical independence states that two random variables, y1 and y2,
are statistically independent if their joint probability density function (PDF), ρy1,y2 (y1, y2), is the
product of their marginal PDFs, ρy1 (y1) and ρy2 (y2) [14], such that

ρy1,y2 (y1, y2) = ρy1 (y1)ρy2 (y2), (1)

where y1 and y2 denote possible values of y1 and y2. The degree of independence between
variables can be measured using the mutual information (MI). MI is an estimate of the amount
of information one variable provides on another variable. Variables with higher independence
have lower MI, which means that they contain less information about each other. In quantitative
photoacoustic tomography, two chromophores are considered independent if the knowledge of
the concentration of one chromophore at a location does not affect the estimate of the other
chromophore’s concentration at the same location. For example, if a contrast agent is independent
of the blood, then the estimation of the contrast agent concentration at a voxel does not in any
way predict the blood concentration there. As a counter example, oxy- and deoxyhaemoglobin
are not independent chromophores: if a voxel is found to contain a high concentration of
deoxyhaemoglobin, then the likelihood that a high concentration of oxyhaemoglobin will be
found at the same pixel increases, as the voxel is likely to represent a blood vessel. The MI, I,
between y1 and y2 is given by

I(y1, y2) = H(y1) +H(y2) − H(y1, y2), (2)

whereH(yk) andH(y1, y2) are the entropy and the joint entropy of y1 and y2 respectively. They
are defined by

H(yk) = −
∫
yk

ρyk (yk)logρyk (yk)dyk, (3)

where k = 1 or 2, and

H(y1, y2) = −
∫
y1

∫
y2

ρy1,y2 (y1, y2)logρy1,y2 (y1, y2)dy1dy2. (4)

Similarly, the MI between multiple random variables is defined by

I(y1, ..., yK ) =
K∑
k=1
H(yk) − H(y1, ..., yK ). (5)

As indicated in Eqs. (2–4), the MI depends on the probabilities of the variables. We consider the
concentrations of K independent chromophores c1, ..., cK as continuous random variables with
the PDFs ρc1, ..., ρcK . However, the underlying probabilities of the chromophore concentrations
are unknown and therefore ρck needs to be estimated based on the instantiations of the random
variable, which are the concentrations of the chromophore at different voxels [ck,1, ..., ck,M ].
The total number of voxels, which is equal to the total number of instantiations, is denoted
with M . Using these data points, the PDF can be approximated with a kernel density estimator.
Conceptually, the kernel density estimation method involves placing a smoothly varying spread
of values, or kernel, on the value of each data point. The probability is then approximated by the
sum of all kernels, such that

ρ̆ck (ξk) =
1
M

M∑
m=1

κ(ξk − ck,m) (6)
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and

ρ̆c1,...,cK (ξ1, ..., ξK ) =
1
M

M∑
m=1

K∏
k=1

κ(ξk − ck,m), (7)

where ξk are the values at which the PDF is evaluated and κ(x) is a kernel function that satisfies
κ(x) ≥ 0 and

∫ ∞
−∞ κ(x)dx = 1. The breve symbol (˘) is used to denote the estimation of a quantity.

The motivation for using the kernel density estimator instead of a simple histogram approximation
for the probabilities is that the former ensures continuity and differentiability of the estimated
PDFs, provided that a continuous and differentiable kernel function is used. To satisfy those
criteria, the Gaussian kernel is chosen for this study:

κ(x) = 1
h
√

2π
exp(−x2/2h2), (8)

where h is the kernel width, which determines the amount of smoothing in the estimations. It is
calculated using the expression for the optimal kernel width normally distributed data, given
by [15]

h =
(

4
3M

) 1
5

σ ≈ 1.06σM−
1
5 , (9)

where σ is the standard deviation of the data.
To estimate the entropies of the chromophore concentrations, the PDF is evaluated at a set

of equally spaced points denoted by [ξk,1, ..., ξk,Q], where Q is the total number of points. The
integral in the definition of the entropy and the joint entropy for continuous variables in Eq. (3)
and (4) can be approximated as a sum using the trapezium rule, such that

H̆(ck) = −
Q∑

qk=1
ρ̆ck

(
ξk,qk

)
log ρ̆ck

(
ξk,qk

)
∆ξk (10)

and

H̆(c1, ..., cK ) = −
Q∑

q1,...,qK=1
ρ̆c1,...,cK

(
ξ1,q1, ..., ξK,qK

)
log ρ̆c1,...,cK

(
ξ1,q1, ..., ξK,qK

) K∏
k=1
∆ξk

(11)
where the summation symbol denotes a multiple sum of q1, ..., qK and ∆ξk is the spacing between
the sampling points for the PDF. Using the approximated entropies, the MI can be estimated by

Ĭ(c1, ..., cK ) =
K∑
k=1
H̆(ck) − H̆(c1, ..., cK ). (12)

To find the most independent chromophores requires minimising the MI between the chro-
mophores, which can be done efficiently using a gradient-based optimisation approach. The
partial derivative of the MI with respect to the chromophore concentration at each voxel is given
by [18]

∂ Ĭ(c1, ..., cK )
∂ck,m

=
H̆(ck)
∂ck,m

− ∂H̆(c1, ..., cK )
∂ck,m

. (13)

The first term in the right hand side of Eq. (13) is

∂H̆(ck)
∂ck,m

=
∂H̆(ck)
∂ρ̆ck

∂ρ̆ck
∂ck,m

, (14)

                                                                              Vol. 8, No. 11 | 1 Nov 2017 | BIOMEDICAL OPTICS EXPRESS 5301 



where
∂H̆(ck)
∂ρ̆ck

= −
Q∑

qk=1

[
1 + log ρ̆ck

(
ξk,qk

) ]
∆ξk (15)

by the product rule, and
∂ρ̆ck
∂ck,m

= κ′(ξk,qk − ck,m), (16)

where κ′ denotes the derivative of κ, given by

κ′(ξk,qk − ck,m) =
ξk,qk − ck,m

h2 κ(ξk,qk − ck,m) (17)

for the Gaussian kernel. Similarly, the second term in Eq. (13) is

∂H̆(c1, ..., cK )
∂ck,m

=
∂H̆(c1, ..., cK )
∂ρ̆c1,...,cK

∂ρ̆c1,...,cK
∂ck,m

, (18)

where
∂H̆(c1, ..., cK )
∂ρ̆c1,...,cK

= −
Q∑

q1,...,qK=1

[
1 + logρ̆c1,...,cK

(
ξ1,q1, ..., ξK,qK

) ] K∏
i=1
∆ξi (19)

and
∂ρ̆c1,...,cK
∂ck,m

= κ′(ξk − ck,m)
K∏

i=1,i,k
κ(ξi − ci,m). (20)

3. Model-based inversion with statistical independence

The first step in the model-based inversion scheme used in this study is to make an initial guess for
the unknown chromophore concentrations. This initial guess and the known specific absorption
spectra α are used to calculate the absorption coefficient, µa =

∑
k αkck . The fluence, Φ, is then

modelled using the diffusion approximation to the radiative transfer equation for the distribution
of the absorption coefficient and the scattering coefficient. The scattering coefficient is assumed to
be known in this study. Using the modelled fluence, the absorption coefficient and the Grüneisen
parameter Γ, the modelled initial pressure pmodel

m,λn
at voxel m and wavelength λn is calculated

based on
pmodel
m,λn

= SΓmΦm,λn µa_m,λn, (21)

where S is the system calibration factor that depends on the acoustic response of the sensors,
which can be assumed to be spatially homogeneous and independent of the optical wavelength.
The data error, εd, is defined as the sum of squared differences between the modelled and the
measured initial pressure, pmeas

m,λn
, and hence the minimisation problem is given by

argmin
c1,...,cKt

εd(c1, ..., cKt ) =
N∑
n=1

M∑
m=1

[
pmodel
m,λn

(c1, ..., cKt ) − pmeas
m,λn

]2
, (22)

where the total number of chromophores, wavelengths and voxels are denoted by Kt , N , and
M respectively, and ci denotes the ith chromophore. By iteratively updating the values of the
chromophore concentrations until εd is minimised, accurate quantification can be achieved in
an idealised scenario. However, in practical applications, model-mismatch arises due to the
approximations in the model and uncertainty in the model parameters (which are typically
determined experimentally). This leads to the minimum of the data error occurring at erroneous
chromophore concentrations, and results in inaccurate quantification. Unlike the data error, the
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statistical independence is a property of the distribution of the chromophores alone, rather than a
function of the forward modelling. Therefore, the errors in the fluence model do not affect the
MI between the chromophore concentrations, which will always have a minimum at the true
solution, provided that the chromophores are statistically independent. Hence, by including a
term representing the MI between the independent chromophores in the error functional, the
quantification errors can be reduced. The new minimisation problem with both the data error and
the MI is given by

argmin
c1,...,cKt

εd+MI (c1, ..., cKt ) =
N∑
n=1

M∑
m=1

[
pmodel
m,λn

(c1, ..., cKt ) − pmeas
m,λn

]2
+ γ Ĭ(c1, ..., cK ), (23)

where γ is the weight parameter for the MI, and total number of chromophores may be larger
than or equal to the number of independent chromophores, Kt ≥ K .

4. Generating multiwavelength photoacoustic images of tissue mimicking
phantoms

The accuracy of the quantification using εd+MI compared to εd was investigated using experimen-
tal and numerical tissue mimicking phantoms containing aqueous solutions of copper(II) chloride
dihydrate, nickel(II) chloride hexahydrate and black India ink (Winsor & Newton, London, UK),
which represent different absorbers in the tissue, and Intralipid, which provides scattering in the
medium. The copper(II) chloride dihydrate and nickel(II) chloride hexahydrate will be referred
to as CuCl2 and NiCl2. For both the numerical and the experimental phantom, the distributions
of CuCl2 and NiCl2 are arranged such that they are statistically independent of each other.

4.1. Experimentally acquired images

A schematic of the experimental set-up is shown in Fig. 1. The tissue mimicking phantom consists
of four polythene tubes with 0.58mm inner diameter and 0.19mm wall thickness (Scientific
Laboratory Supplies Ltd, Nottingham, UK) submerged in a background solution of highly diluted
India ink and 1% (w/v) Intralipid, which give rise to an absorption and scattering amplitude
comparable to that of typical biological tissue [19]. The tubes are arranged in a line at depths
of approximately 3.6, 6.1, 8.1 and 9.8mm from the top surface of the phantom, which are all
within the diffusive regime. The first and third tube from the top contain 399gL−1 NiCl2 and the
second and the fourth tube contain 36gL−1 CuCl2. The absorption spectra of the chromophores
and scattering spectrum of Intralipid are shown in Fig. 2. The CuCl2 and NiCl2 are statistically
independent of each other in this phantom, which is clear from the fact that they are contained in
distinct regions that are spatially separated. (However, the spatial separation is not a necessary
criterion for statistical independence. For example, CuCl2 and NiCl2 are both also statistically
independent from water, even though they can be found at the same locations.)

The phantom is imaged in a V-shaped photoacoustic imaging system [24,25] consisting of two
orthogonal Fabry-Perot interferometer sensors [26]. This sensor geometry increases the detection
aperture of the photoacoustic signals compared to a single planar detector array and hence reduces
the limited-view artefacts [25]. The fibre tip was positioned vertically above the phantom to
deliver the pulsed excitation light from a Nd:YAG-pumped optical parametric oscillator (GWU,
Spectra-Physics, Santa Clara, USA) with 10Hz repetition rate and a pulse energy of 15-19mJ
depending on wavelength. The phantom was imaged at 8 wavelengths with equal spacing between
750nm and 890nm by recording the photoacoustic time series at a 13x13mm2 area with 100µm
step size for both sensors. A small fraction of the light was directed to an integrating sphere to
measure the pulse energy, which was used to normalise the measured signals. The beam position
and the spatial distribution of the beam intensity at the surface of the phantom was found by
acquiring an additional photoacoustic image at 780nm of a transparent sheet with a printed grid
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of highly absorbing dots (with 1mm grid spacing) which was resting on the surface. Based on the
reconstruction of this image, the illumination source was approximated as a Gaussian beam with
a 1/e diameter of 6.6mm.

Fig. 1. Experimental set-up and phantom structure. The four tubes containing CuCl2 or
NiCl2 are fixed in a vertical column and submerged in the India ink and Intralipid solution.
Two orthogonal Fabry-Perot interferometer sensors are used for increased detection aperture.
The fibre tip at the top of the phantom delivers the pulsed excitation beam.
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Fig. 2. (a) The absorption coefficients of 36gL−1 CuCl2 (squares) and 399gL−1 NiCl2
(circles). (b) The absorption coefficient of the background solution (crosses), which is a
sum of the absorption of water [20] (dotted) and the India ink (dashed). (c) The scattering
amplitude of 1% Intralipid as a function of wavelength [21]. A spectrophotometer (Lambda
750S, Perkin Elmer) was used to measure the transmittance of CuCl2, NiCl2 and India ink
in order to determine their absorption spectra. Reprinted from [22].

The iterative time reversal method [27, 28] was used to reconstruct 3D images from the
photoacoustic time series. A 2D cross-sectional 12x12mm2 region of interest centred at the tubes
was used for the optical inversion, and the dimension was reduced to 72x72 pixels to reduce the
computational time and memory requirements. The 2D slices are shown for three wavelengths in
Fig. 3.

4.2. Numerically simulated images

The numerical phantom has an element spacing of 100µm and represents a 5x5mm2 area with
six insertions arranged in two columns, as illustrated in Fig. 4. The left column of insertions
represents solutions of CuCl2 with concentrations 12, 24 and 36gL−1 in increasing order, where
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Fig. 3. The 2D cross-sectional slices of the 3D reconstructed photoacoustic images which
are used for the optical inversion at wavelengths 750, 830 and 890nm. The size of this region
of interest is 12x12mm2 and the element spacing is 166µm. As expected, the intensity of the
tubes decreases with depth for all wavelengths due to the decay of the fluence.

the top insertion has the lowest concentration. The right column of insertions contain solutions
of NiCl2 with concentrations 133, 266 and 399gL−1, also in increasing order from the top
insertion. The phantom is designed with increasing concentrations at the insertions with depth to
improve the signal to noise ratio at the deeper insertions. The absorption of CuCl2 and NiCl2 are
based on the measured spectra shown in Fig. 2(a) and assumed to follow linear dependence on
concentration. The concentrations are chosen such that the average absorption of both columns is
0.52mm−1 over the wavelength range between 750nm to 890nm, which is similar to the absorption
of blood over the same range of wavelengths. Water is present in the whole phantom and the
background region outside the insertions represents a solution of India ink and Intralipid, which
gives rise to the same absorption and scattering amplitude as shown in Fig. 2(b-c).

Fig. 4. Diagram of the 2D numerical phantom. The phantom contains regions with different
concentrations of CuCl2 and NiCl2. The background region contains India ink and Intralipid.

The top surface of the domain was illuminated with a radially-symmetric light source with a
Gaussian intensity profile with a 1/e width of 3mm. The light fluence distributions for the same 8
wavelengths as the experimental measurement in Sec. 4.1 were simulated using the diffusion
approximation with the MATLAB software Toast++ [23]. The system calibration factor and the
Grüneisen parameter are assumed to be known and equal to one, and the acoustic reconstruction
is assumed to be perfect, such that the simulated photoacoustic images were equal to the product
of the fluence and the absorption coefficient. Gaussian noise with an amplitude equal to 10% of
the mean of the data, which was comparable to the magnitude of the noise in the experimental
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images (Sec. 4.1), was added to the simulated images.

5. Inverting for the chromophore concentrations

To investigate the effect of incorporating the MI term, the model-based inversion scheme was
applied to the simulated and the experimentally acquired multiwavelength 2D photoacoustic
images using both εd and εd+MI error functionals. The error functionals were minimised
with the limited-memory BFGS [29] algorithm which searches for the optimal chromophore
concentrations using the functional gradients of the data error term [3] and the MI term [18].
The unknown parameters in the inversion are the concentrations of CuCl2, NiCl2, India ink and
water, and the known model parameters are the absorption spectra, the scattering distribution,
the system calibration factor, the Grüneisen parameter and the light source position and width.
The unknown chromophore concentrations were initialised with a spatially homogeneous value
equal to the true concentration at the background. The iterative update was run for 300 iterations
for the inversion of both the simulated and the experimental images using εd or εd+MI . For
all inversions using εd+MI , the MI was calculated between CuCl2 and NiCl2 and the weight
parameter γ of the MI term was set to zero for the first 200 iterations to avoid the algorithm being
trapped in the local minima of the MI term. The difference in computation time for εd+MI and
εd was negligible. The computationally efficient calculation of the MI term and its gradient was
achieved using fast Fourier transforms [30], which takes advantage of the fact that Eqs. (6) and
(7) have convolution structures.

5.1. Effect of model-mismatch

Two case studies were conducted using the simulated images to investigate the effect of the
uncertainty in different model parameters on the quantification accuracy. In the first case, the
beam diameter was set to be up to 75% smaller or larger than the true value in the inversion. In
the second case, an error of up to ±75% was included in the scattering amplitude. The average
errors of the estimated concentrations of CuCl2 and NiCl2 at the insertions (ROI) using the
erroneous beam diameter are shown in Fig. 5(a), where the circles and asterisks correspond to the
inversions using εd or εd+MI respectively. The results show that the increase in the percentage
error in the beam diameter leads to larger quantification errors, as expected. The quantification
errors for the simulated images are relatively small because only one model parameter contains
error at the time. In an experimental setting, there is likely to be a combination of modelling
errors, resulting in larger quantification errors. Including the MI term results in a reduction in
error compared to using only the standard data error for all data points.

The inaccuracies in the scattering amplitude used in the inversion resulted in similar trends for
the quantification error, as shown in Fig. 5(b). The errors are generally larger in Fig. 5(b) than
5(a), which suggests that the changes in scattering amplitude have a larger impact on the fluence
distribution than changes in the beam diameter for this numerical phantom. Nonetheless, using
εd+MI is shown to provide more accurate estimations compared to using εd also for this case.
The relative improvement in accuracy varied between 37% and 8% with an average of 22% over
all data points for both cases.

5.2. Experimental results

The multiwavelength experimental images were divided by the calibration factor and the spatially
varying Grüneisen parameter before the inversion. The calibration factor was determined using a
forward simulation with the true concentrations. The Grüneisen parameter of aqueous solutions
of CuCl2 and NiCl2 are both known to increase with concentration and are given by

Γi = ΓH2O(1 + βici), i = CuCl2 or NiCl2 (24)
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Fig. 5. The average errors of the estimated concentrations of CuCl2 and NiCl2 at the
insertions as a function of errors in (a) the beam diameter or (b) the scattering amplitude in
the inversion. As expected, the quantification errors increase for larger errors in the beam
diameter or scattering amplitude. However, the inversions using εd+MI (asterisks) result in
smaller errors compared to using εd (circles) for all data points. The individual errors for
CuCl2 and NiCl2 show similar general trends as the average of the two. The average errors
outside the ROI are <2% for inversions using both εd and εd+MI . Reprinted from [22].

where ΓH2O is the Grüneisen parameter for water, and βi are 5.80×10−3Lg−1 and 2.25×10−3Lg−1

for CuCl2 or NiCl2 respectively [31]. In practical applications, where the true concentrations
are unknown, the calibration factor can be obtained by measuring the acoustic sensitivity of the
sensors [32], and the Grüneisen parameter can be included in the model as a parameter that is
linearly dependent on the estimated chromophore concentrations [5, 32].
The results from the model-based inversion of the experimental data are presented in Fig. 6.

The estimated concentrations of CuCl2 (top row) and NiCl2 (bottom row) using εd and εd+MI

are shown in the left and centre columns respectively in Fig. 6(a), while the true concentrations
are shown in the right column. The colour scale indicates the concentrations in units of gL−1.
Figure 6(b) compares the estimated with the true concentrations along a line profile across the
tubes. The average estimated and expected concentrations for each tube are presented in Table 1.
The inversions using εd resulted in high overestimation of CuCl2 in the second tube and NiCl2 in
the first tube, where the estimated concentrations are 94% and 149% larger than the true values
respectively. There are also large cross-talk errors in the estimation of both contrast agents. This
is most clearly seen for the estimated CuCl2 concentration, where the third tube shows a high
false-positive concentration with comparable magnitude to the concentration in the fourth tube.
The accuracy of the quantification is significantly improved when the MI term is included in the
error functional. The cross-talk errors for both CuCl2 and NiCl2 are almost completely removed
when εd+MI is used. The absolute concentrations of the CuCl2 is estimated accurately with an
error of 3gL−1 on average for the four tubes. The overestimation of the NiCl2 concentration in
the top tube remains present with εd+MI . However, this overestimation error is reduced when
εd+MI is used compared to εd .

6. Discussion

Minimising the MI as well as the data error led to improved quantification accuracy for both
simulated and experimental multiwavelength photoacoustic images, compared to using the data
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Fig. 6. (a) The estimated concentrations of CuCl2 (top row) and NiCl2 (bottom row) in
units of gL−1. The results from the inversions using εd (left column) show overestimation of
the the upper tubes and large cross-talk errors, while using εd+MI results in more accurate
quantification without cross-talk errors. The true concentrations are shown in the column
to the right for comparison. (b) The estimated concentration of the CuCl2 (top) and NiCl2
(bottom) using εd (crosses) and εd+MI (circles) along a line across the tubes. The solid
curves represent the true concentrations.

error alone. In the numerical study, despite the significant fractional decrease of the quantification
errors using εd+MI , in absolute terms, the error was decreased only by a few per cent. This
was mainly due to the fact that only one model parameter was erroneous in each inversion,
while all other assumptions in the model were accurate, which resulted in relatively small
quantification errors, even when only εd was used. In the experimental study, on the other
hand, a combination of different types of modelling errors was likely to have been present
simultaneously, leading to poorer quantification results in the absence of the MI term. The main
causes of model-mismatch may be due to the limited size of the modelled domain, which does not
account for the backscattered light from outside of the domain, and the 2D modelling of the light
fluence, which assumes that the light source is constant in the direction along the tubes, while
in the experiment, the beam was of circular cross-section. Other possible errors may include
uncertainty in the scattering spectra and amplitude, as different values have been reported in the
literature [21,33]. These errors in the model affect the calculation of pmodel

m,λn
, which consequently
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Table 1. The average estimated and true concentrations of CuCl2 (left) and NiCl2 (right) in
gL−1 for each tube. The largest improvements using εd+MI are mostly seen for the tubes
that are not expected to contain the relevant chromophore, as they suffer from significant
cross-talk errors when εd is used. The average expected concentrations are lower than the
true concentrations in the solutions due to the interpolation from the original images.

CuCl2 εd εd+MI Expected NiCl2 εd εd+MI Expected
Tube 1 -3 -1 0 Tube 1 860 698 345
Tube 2 60 35 31 Tube 2 185 -5 0
Tube 3 26 0 0 Tube 3 367 258 352
Tube 4 27 25 31 Tube 4 167 14 0

also affect εd . The MI is not affected by the fluence modelling errors, because MI is calculated
based on only the distribution of the estimated chromophore concentrations in each iteration, and
does not require the forward modelling of pmodel

m,λn
. Therefore, the quantification errors were greatly

reduced when εd+MI was used in the experimental study. These results suggest that incorporating
the statistical independence can improve the robustness of model-based inversion schemes for
independent chromophores and thus potentially enhance their applicability to pre-clinical or
clinical imaging studies.
In order to obtain accurate results with the inversion using εd+MI , it is necessary to use an

appropriate weight parameter γ for the MI term. The weight was determined through manual trial
and error. The solution was continuously dependent on the weight parameter, in the sense that
small changes in the weight parameter resulted in small changes in the solution. The same weight
was used for all inversions of the simulated and the experimental data, despite the differences
in the data and/or the model parameters. This suggests that the concentration estimates were
not highly sensitive to small variations of the weighting of the MI term around this value and,
although non-trivial [34, 35], it may be possible to develop a general method for finding the
optimal weight parameter for different types of applications.

The 2D fluence model based on the diffuse approximation assumes that the features are constant
in the third dimension and located at depths within the diffusive regime. These assumptions are
appropriate for the phantom geometry used in this study. However, full 3D fluence modelling
will be required for applications of the model-based inversion in biological tissue with complex
structures. More accurate modelling of the fluence for the superficial layer can be achieved by
incorporating the delta-Eddington approximation [5] or using the radiative transfer equation [36].
The calculation of the MI can be straightforwardly extended to 3D without causing significant
increase in computation time. Furthermore, using the MI term in the error functional is also
compatible with other regularisation methods such as the total-variation regulariser [37–39].

7. Conclusion

We proposed exploiting the statistical independence between certain chromophores in the model-
based inversion method by minimising the MI between the independent chromophores in addition
to the data error. The improvement in the accuracy of the estimated chromophore concentrations
was demonstrated using both numerical simulations and an experimental phantom. The results
suggest that the sensitivity of the model-based inversion to model-mismatch can be reduced
by incorporating the additional information of statistical independence. Thus, the robustness
and hence usefulness of the inversion scheme can potentially be improved for in vivo imaging
experiments.
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