UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells

Pillozzi, S; D'Amico, M; Bartoli, G; Gasparoli, L; Petroni, G; Crociani, O; Marzo, T; ... Arcangeli, A; + view all (2018) The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells. British Journal of Cancer , 118 pp. 200-212. 10.1038/bjc.2017.392. Green open access

[thumbnail of bjc2017392.pdf]
Preview
Text
bjc2017392.pdf - Published Version

Download (1MB) | Preview

Abstract

BACKGROUND: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome Cisplatin resistance, we tested Cisplatin in combination with K+ channel modulators on colorectal cancer (CRC) cells. METHODS: The functional expression of Ca2+-activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also known as KCNH2 or hERG1) K+ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and electrophysiological techniques. Cisplatin and several K+ channel modulators were tested in vitro for their action on K+ currents, cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a mouse model mimicking Cisplatin resistance. RESULTS: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo. CONCLUSIONS: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.

Type: Article
Title: The combined activation of KCa3.1 and inhibition of Kv11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/bjc.2017.392
Publisher version: http://dx.doi.org/10.1038/bjc.2017.392
Language: English
Additional information: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.
Keywords: Oncology, Targeted therapies
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept
URI: https://discovery.ucl.ac.uk/id/eprint/10040484
Downloads since deposit
89Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item