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Consistent forcing scheme in the cascaded lattice Boltzmann method
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In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within
a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a
unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for
the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of
isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical
problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies
the relation between MRT LBM and CLBM under a general framework.
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I. INTRODUCTION

The lattice Boltzmann method (LBM), based on the
simplified kinetic models, has gained remarkable success for
numerical simulations of complex fluid flows and beyond,
with applications to (but not limited to) microflows, flows
in porous media, turbulence, multiphase flows, and reactive
flows [1–9]. The LBM solves a specific discrete Boltzmann
equation for distribution functions, designed to recover the
Navier-Stokes (N-S) equations in the macroscopic limit. The
mesoscale nature of LBM allows its natural incorporation
of micro and mesoscale physics, while the highly efficient
algorithm makes it affordable computationally [9].

In the standard “collision-streaming” LBM algorithm, the
simplest collision operator is the Bhatnagar-Gross-Krook
(BGK) or single-relaxation-time (SRT) operator, in which all
the distribution functions relax at an identical rate to their
local equilibrium counterparts and the relaxation rate is related
to the kinematic viscosity [10]. The multiple-relaxation-time
(MRT) operator is another extensively used operator [11], in
which the collision is executed in the raw moment space and
the relaxation rates for different moments can be different.
More recently, a central-moment-based or cascaded operator
was proposed by Geier et al. [12]. In the cascaded lattice
Boltzmann method (CLBM), the collision is carried out in the
space of central moment rather than that of raw moment as in
the MRT LBM. Compared with the BGK operator, the MRT
and cascaded operators can enhance the numerical stability
significantly [12–15]. Although the collision steps in these
LBMs are quite different, the streaming steps are carried out
in the same way by streaming the post-collision distributions
to their neighbors. It should be noted that other collision
operators, such as the two-relaxation-time (TRT) operator
[16,17] and the entropic operator [18,19], are also very popular
in the lattice Boltzmann community.

In many fluid systems, an external or internal force field
plays an important role in the flow behaviors. To incorporate
the forcing effect, different forcing treatments or forcing
schemes have been proposed in the previous literatures
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[4,20–24]. In 2002, Guo et al. analyzed the discrete lattice
effects on the forcing scheme and developed a representation
of the forcing term [25]. Guo et al. then extended the method
to the MRT LBM in 2008 [26]. For the CLBM, there is still no
commonly used forcing scheme, while one scheme by method
of central moments has been proposed by Premnath et al.
[27]. In Ref. [28], Lycett-Brown and Luo adopted the forcing
scheme for the BGK LBM in the CLBM directly. As analyzed
by De Rosis [29], the method proposed by Premnath et al.
may encounter cumbersome practical implementations. Based
on the central moments of a discrete equilibrium, a forcing
scheme has been developed in Ref. [29].

However, there is still no analysis about whether these
forcing schemes in the CLBM are consistent with the ex-
tensively used forcing schemes in the MRT LBM [26] and
BGK LBM [25]. In this paper, we propose an alternative
derivation for the CLBM by introducing a shift matrix. This
approach clarifies the relationship between the MRT LBM
and CLBM. Based on this framework, we present a consistent
forcing scheme in CLBM and show that the previous methods
in Refs. [27–29] are not consistent. The rest of the paper is
structured as follows. Section II gives the new derivation for the
CLBM and presents the consistent forcing scheme. Section III
presents theoretical analyses for the previous forcing schemes.
Numerical verifications are presented in Sec. IV. Finally,
conclusions are made in Sec. V.

II. CLBM AND CONSISTENT FORCING SCHEME

A. Cascaded LBM

Without losing generality, the D2Q9 lattice [10] is adopted
here. The lattice speed c = �x/�t = 1 and the lattice sound
speed cs = 1/

√
3 are adopted, where �x and �t are the lattice

space and time steps. The discrete velocities ei = [|eix〉,|eiy〉]
are defined as

|eix〉 = [0,1,0,−1,0,1,−1,−1,1]�,

|eiy〉 = [0,0,1,0,−1,1,1,−1,−1]�, (1)

where i = 0 . . . 8, |·〉 denotes a nine-dimensional column
vector, and the superscript � denotes the transposition.

Here we propose a new derivation for the CLBM, which is
different from and more intelligible than that given by Geier
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et al. [12]. We first define the raw and central velocity moments
of the discrete distribution functions (DFs) fi ,

kmn = 〈
fi

∣∣em
ixe

n
iy

〉
, k̃mn = 〈fi |(eix − ux)m(eiy − uy)n〉, (2)

where ux and uy are the horizontal and vertical velocity com-
ponents. The equilibrium counterparts keq

mn
and k̃

eq
mn are defined

analogously by replacing fi with the discrete equilibrium
distribution functions (EDFs) f

eq
i in Eq. (2). In the previous

CLBM, the recombined raw moments are adopted,

|Ti〉 = [k00,k10,k01,k20+k02,k20−k02,k11,k21,k12,k22]�, (3)

so do the recombined central moments T̃i . The transformation
from the discrete DFs to their raw moments can be performed
through a transformation matrix M, and the shift from the raw
moments to central moments can be performed though a shift
matrix N,

|Ti〉 = M|fi〉, |T̃i〉 = N|Ti〉. (4)

The formulations for M and N depend on the considered raw-
moment set in Eq. (3), which are not unique. In the present
study, the transformation matrix M is expressed as [28]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 1 1 1 2 2 2 2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

Asinari proposed a “shift matrix,” where the fo-
cus was on the relation between the cascaded oper-
ator and TRT operator [30]. Another raw-moment set
|Ti〉 = [k00,k10,k01,k20,k02,k11,k21,k12,k22]� was adopted in
Ref. [30], leading to a different formulation for the “shift
matrix” in Ref. [30]. In this paper, the formulation for N is

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0

u2
x + u2

y −2ux −2uy 1 0 0 0 0 0

u2
x − u2

y −2ux 2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0

−u2
xuy 2uxuy u2

x −uy/2 −uy/2 −2ux 1 0 0

−u2
yux uy

2 2uxuy −ux/2 ux/2 −2uy 0 1 0

u2
xu

2
y −2uxu

2
y −2uyu

2
x u2

x/2 + u2
y/2 u2

y/2 − u2
x/2 4uxuy −2uy −2ux 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

In the collision step for CLBM, the central moments T̃i are
relaxed to their equilibrium values T̃

eq
i . Thus, the post-collision

central moments are

|T̃ ∗
i 〉 = (I − S)|T̃i〉 + S

∣∣T̃ eq
i

〉
= (I − S)NM|fi〉 + SNM

∣∣f eq
i

〉
, (7)

where S = diag(s0,s1,s1,sb,s2,s2,s3,s3,s4) is a diagonal relax-
ation matrix. The kinematic and bulk viscosities are related to
the relaxation parameters s2 = 1/(3ν + 0.5) and sb = 1/(3ξ +
0.5), respectively. As recommended in Refs. [12,27,28], the
central moments of f

eq
i are set equal to the continuous

central moments of the Maxwell-Boltzmann distribution in
continuous velocity space. To be specific,∣∣T̃ eq

i

〉 = [
ρ,0,0,2ρc2

s ,0,0,0,0,ρc4
s

]�
, (8)

where ρ is the fluid density, thus the matrix manipulation is
not needed for f

eq
i . The corresponding discrete EDF is in fact

a generalized local equilibrium [27,30]. Due to the definitions
of the transformation and shift matrices, both of them are
invertible (explicit expressions for M−1 and N−1 are given in
the Appendix). The post-collision discrete DFs are given by

|f ∗
i 〉 = M−1N−1|T̃ ∗

i 〉. (9)

In the streaming step, the post-collision discrete DFs in
space x stream to the neighbor nodes (x + ei�t) along the
discrete velocity direction as usual [25,26,31],

fi(x + ei�t,t + �t) = f ∗
i (x,t). (10)

Using the Chapman-Enskog analysis, the incompressible N-S
equations can be reproduced in the low-Mach number limit
[27,28]. The hydrodynamics variables are obtained as

ρ =
∑

i

fi, ρu =
∑

i

fiei . (11)

It can be readily shown that when the shift matrix N is a
unit matrix, the CLBM degrades into a nonorthogonal MRT
LBM as in Refs. [28,31]. Thus, within a general multiple-
relaxation-time framework, the present derivation clarifies the
relationship between the MRT LBM and CLBM.

B. Consistent forcing scheme

Inspired by the method proposed by He et al. [23,24], to
incorporate an external or internal force field F = [Fx,Fy]
into the CLBM with a high-order accuracy, a second-order
trapezoidal scheme is adopted. Thus, the evolution equation
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for central moments can be given as

|T̃i(x + ei�t,t + �t)〉 = (I − S)|T̃i(x,t)〉 + S|T̃ eq
i (x,t)

+�t/2|Ci(x,t) + Ci(x + ei�t,t + �t)〉, (12)

where Ci are central moments of the forcing terms Ri .
According to the assumption by He et al. [23,24], Ri can
be given by

Ri = F
ρ

(ei − u)

c2
s

f
eq
i . (13)

When using the generalized local equilibrium, Ci can be
obtained explicitly as

|Ci〉 = NM|Ri〉 = [
0,Fx,Fy,0,0,0,c2

s Fy,c
2
s Fx,0

]�
. (14)

In the practical implementation, the following transformation
method is adopted to remove the implicitness in Eq. (12),

f̄i = fi − 1/2Ri, T̄i = T̃i − 1/2Ci. (15)

By substituting Eq. (15) into Eq. (12), the collision step in
central moments is modified by

|T̄ ∗
i 〉 = (I − S)NM|f̄i〉 + SNM

∣∣f eq
i

〉 + (I − S/2)NM|Ri〉
= (I − S)|T̄i〉 + S

∣∣T̃ eq
i

〉 + (I − S/2)|Ci〉. (16)

By using |f̄ ∗
i 〉 = M−1N−1|T̄ ∗

i 〉, the streaming step can be
executed as usual,

f̄i(x + ei�t,t + �t) = f̄ ∗
i (x,t). (17)

Then the fluid velocity is redefined by

ρu =
∑

i

f̄iei + �tF/2. (18)

Remark 1. In Eq. (12), the forcing terms in the present
scheme are considered by means of central moments, which
is compatible with the basic ideology (collision in the central-
moment space) in the CLBM.

Remark 2. When the shift matrix N in Eq. (16) is a
unit matrix, the CLBM with the present forcing scheme will
degrade into the MRT LBM proposed by Liu et al. [31] with
some high-order terms. It is known that the method of Liu et al.
[31] is equivalent to the method of Guo et al. in Ref. [26].

Remark 3. In the original forcing scheme proposed by
Guo et al. [25], the forcing terms are defined as RGi =
wi[(ei − u)/c2

s + (ei · u)ei/c
4
s ]F. It is easy to find that the

forcing terms in Eq. (13) are equivalent to RGi plus some
high-order terms. The constraint conditions for the forcing
terms (see Eq. (7) in Ref. [25]) are also satisfied in the present
scheme. In particular, if all the parameters in the matrix
S are set equal to s2, the CLBM with the present forcing
scheme degrades into the BGK LBM with a generalized local
equilibrium and the forcing scheme by Guo et al.

Remark 4. It is also found (see Sec. IV) that the zero-slip
velocity boundary condition for the half-way bounce-back rule
[s3 = (16 − 8s2)/(8 − s2)] discussed in Refs. [26,32] is also
applicable to the present forcing scheme.

From the above reasons, we proclaim the present forcing
scheme as a consistent scheme in the CLBM.

III. OTHER FORCING SCHEMES

In this section, several existing methods to incorporate
forcing terms into the CLBM in the literature are summarized.
To show the inconsistencies in these forcing schemes, they
are all written in the general multiple-relaxation-time frame
proposed in Sec. II.

A. Forcing scheme by Premnath et al.

In 2009, Premnath et al. [27] proposed a forcing scheme
to incorporate forcing terms into CLBM. Inspired by He
et al. [24], they proposed a change of continuous distribution
function f due to the presence of a force field,

�f = F
ρ

· (ei − u)

c2
s

f M, (19)

where f M is the Maxwell-Boltzmann distribution in continu-
ous velocity space. The central moments of �f , CPi , are then
incorporated into the collision stage by

|T̄ ∗
i 〉 = (I − S)|T̄i〉 + S

∣∣T̃ eq
i − CPi/2

〉
. (20)

The discrete counterparts for �f , �fi are also needed (see
Eq.(37) in Ref. [27]) to obtain the post-collision discrete DFs,

|f̄ ∗
i 〉 = M−1N−1|T̄ ∗

i 〉 + |�fi〉. (21)

The fluid velocity is defined as in Eq. (18).
It should be noted that the original derivation in Ref. [27]

is tedious, and CPi and �fi correspond to σ̂xmyn and Sa in
Ref. [27], respectively. Although the method is compatible
with the central-moment-based collision operator, the explicit
formulations of �fi and their raw moments are needed,
which makes the practical implementations cumbersome [29].
Moreover, in their definition for CPi , the high-order nonzero
terms are removed arbitrarily,

|CPi〉 = NM|�fi〉 = [0,Fx,Fy,0,0,0,0,0,0]�. (22)

Although they think that the high-order terms do not
affect consistency, we certainly see some inconsistencies. For
example, the key elements in �fi and RGi are apparently
inconsistent,

�f0 = −2Fxux − 2Fyuy + O(u3),

RG0 = −3Fxux − 3Fyuy, (23)

which will affect numerical performances (see in Sec. IV).

B. Forcing scheme by Lycett-Brown and Luo

Cascaded LBM was first used to simulated multiphase flows
by Lycett-Brown et al. [28]. In their method, three forcing
schemes, the Shan-Chen method [4], the EDM method [33],
and the Guo method [25], were adopted directly in the CLBM.

As discussed in the literature [34,35], both the Shan-Chen
method and EDM method will lead to some additional terms
in the recovered macroscopic equations. The additional terms
may have some positive effects on the numerical performance
of the Shan-Chen model [4], but it is not recommended to use
the Shan-Chen method and EDM method in the CLBM directly
for general flows. In the present work, we only consider the
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CLBM with the forcing scheme of Guo et al. Thus, the collision
stage in central moments can be written as

|T̄ ∗
i 〉 = (I − S)|T̄i〉 + S

∣∣T̃ eq
i

〉 + (1 − s2/2)NM|RGi〉, (24)

and the fluid velocity is also defined as in Eq. (18).

C. Forcing scheme by De Rosis

Recently, De Rosis proposed an alternative method to
incorporate forcing terms into the CLBM. The collision stage
in central moments is

|T̄ ∗
i 〉 = (I − S)|T̄i〉 + S

∣∣T̃ eq
i

〉 + 1
2 |ξi〉, (25)

where ξi are the central moments of the forcing terms, and the
fluid velocity is also defined as in Eq. (18).

Unfortunately, there is a typographical error in Eq. (16) of
the paper [29]. Particularly, the sign in front of ξi/2 is not
correct. In this method, the forcing terms are defined by the
truncated local equilibrium DF, which leads to a lot of velocity
terms in ξi (see Eq. (15) in Ref. [29]). Due to the definition
of central moments, it is not recommended to include velocity
terms in ξi . Thus, there are some spurious effects using this
method. It is also noted that the computational load for ξi is
much higher than that of Ci in Eq. (14). Comparing Eq. (25)
with Eq. (16), it is seen that the relaxation rate for each element
of ξi is 1.0 in this method, which is not consistent with the
multiple-ralaxation-time methodology in the CLBM.

D. Discussions

Remark 5. In the CLBM, the first three central moments are
conserved moments, corresponding to conservations of mass
and momentum. Thus, the first two parameters (s0 and s1) in
the relaxation matrix S can be chosen freely. This property is
retained in the present forcing scheme and the forcing scheme
by Premnath et al. [27], because the relaxation matrix acts on
the forcing terms in these two methods [see Eqs. (16) and (20)].
However, s1 needs to be set equal to s2 in the forcing scheme
by Lycett-Brown and Luo [28] and to be 1.0 in the forcing
scheme by De Rosis [29], to guarantee the conservation of
momentum.

Remark 6. If s3 is set to be 2.0, the forcing effect on the third-
order central moments in Eq. (16) is removed. Thus, the present
scheme degrades into the forcing scheme by Premnath et al.
[27] only when s3 = 2.0. Similarly, only when s3 = 1.0, the
difference between the forcing scheme by De Rosis [29] and
the present scheme can be removed. Finally, only in the BGK
limitation when all the parameters are equal to s2, the present
scheme degrades into the scheme by Lycett-Brown and Luo
[28]. In general, the deviations between the above three forcing
schemes and the present consistent forcing scheme should
be approximately proportional to (s3 − 2)/2, (s3 − s2)/2 and
(s3 − 1)/2, respectively.

Remark 7. In 2015, an improved forcing scheme for the
pseudopotential model [4] in multiphase flow was proposed
by Lycett Brown and Luo [36]. The improved forcing scheme
was then incorporated into the CLBM for multiphase flow
with large-density-ratio at high Reynolds and Weber numbers
[14]. The basic philosophy of the improved forcing scheme is
introducing artificial terms in the pressure tensor to counteract

the lack of thermodynamical consistency in the original
pseudopotential model. Thus, it is not suitable for general flows
with a force field. Besides, another simple forcing method was
used in the CLBM to simulate turbulent channel flow in 2011
[37]. However, as analyzed by Guo et al. [25], the method
used in Ref. [37] cannot recover the accurate macroscopic
equations with a spatial and/or temporal variational force field
in the BGK LBM, not to mention in the CLBM.

IV. NUMERICAL SIMULATIONS

In this section, we conduct several benchmark cases to
verify the consistent forcing scheme. The other three methods
mentioned in Sec. III are also used to validate our arguments.
The three methods [27–29] and the present method are denoted
by M1, M2, M3, and Mp, respectively. In the simulation, s1 is
set to be s2 in M2, but to be 1.0 in other methods.

A. Steady Poiseuille flow

The first problem considered is a steady Poiseuille flow
driven by a constant body force F. The flow direction is set to
be the positive direction of the x axial, thus F = [Fx,0]. The
analytical solution for a channel of width 2L is

ua =
[
Fx

2ν
(L2 − y2),0

]
. (26)

The periodic boundary conditions are used in the flow
direction, while the standard half-way bounce-back boundary
scheme is used for nonslip boundary conditions at the walls.
Due to the simple flow configuration, the length of the channel
is set to be 3�x to save the computational load.

As analyzed by previous researchers [26,32], when the
relaxation rate for the energy flux is chosen to be s3 =
(16 − 8s2)/(8 − s2), no numerical slip occurs in the Poiseuille
flow for the MRT LBM. To check its applicability in the CLBM
with the present forcing scheme, we first choose kinematic
viscosity ν = 0.5, Fx = 0.01, and only three nodes are used
to cover the channel width (2L = 3�x). We change s3 from
0.2 to 1.8 with a 0.05 interval, and the other parameters are
set equal to s2. The residual error ER < 1×10−9 is used as the
convergence criterion, and the relative error E2 is calculated
for the following analysis:

ER =
√∑

(u(t+1000δt) − ut )2∑
u2

(t+1000δt)

, E2 =
√∑

(u − ua)2∑
ua

2
, (27)

where the summation operator
∑

is over all grid nodes. For
this case, the needed value of s3 for the nonslip rule is 1.6. As
shown in Fig. 1, the relative error for each method changes
with different values of s3. But only in the present method, the
minimum value of E2 is achieved when s3 = 1.6. And when
the nonslip condition is satisfied, the relative error reaches an
extremely small value even in a very coarse mesh.

To further confirm the consistent nonslip boundary condi-
tion in the present method, we conduct several other cases.
Now the channel width is set to be 50�x, and different body
forces Fx = [1×10−6,3×10−6,5×10−6,7×10−6] are consid-
ered. The configurations are the same as those in Ref. [27], s3

is chosen according to the nonslip rule, while other relaxation
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FIG. 1. Comparison of relative errors of different forcing schemes
E2, as defined in Eq. (27), as a function of s3, in steady Poiseuille
flow.

parameters are 1.754. As shown in Table I, the relative errors
for M1 are O(10−4), which are consistent with the results in
Ref. [27]. The small differences among the relative errors here
and in Ref. [27] are related to the different choices for s3

(the nonslip rule was not considered in Ref. [27]). Compared
with these three methods, the relative errors for the present
method are 5–6 orders of magnitude smaller, which confirms
the conformation of the nonslip rule in the present method.
From the discussion in Sec. III D, it is easy to observe that
the error terms in the three methods M1, M2, and M3 are in a
descending order.

B. Steady Taylor-Green flow

For the two-dimensional steady incompressible flow in a
periodic box N×N , if the force field is given by

F(x,y) = 2νu0φ
2[cos(φx) cos(φy), sin(φx) sin(φy)], (28)

the flow has the following analytical solution:

ua(x,y) = u0[sin(φx) sin(φy), cos(φx) cos(φy)],pa(x,y)

= p0 + 0.25u2
0[cos(2φx) − cos(2φy)], (29)

where φ = 2π/N , p0 = ρ0c
2
s , and ρ0 = 1. The flow is known

as steady Taylor-Green flow or four-rolls mill [38], and is
characterized by the Reynolds number, Re = u0π/ν. In the
simulation, the computational domain is covered by a series
of grid nodes, N/�x = [10,20,40,80], with three different
conditions of Re = [50,100,150]. To weaken the artificial
compressibility, u0 = 0.05 is used in all the cases, sb is given

TABLE I. Relative errors (×104) of different forcing schemes in
steady Poiseuille flow. A series of body forces are considered, and s3

is chosen according to the nonslip rule.

Fx M1 M2 M3 Mp

1×10−6 2.739 2.339 1.113 1.044×10−6

3×10−6 2.739 2.339 1.113 3.173×10−6

5×10−6 2.739 2.339 1.113 5.527×10−6

7×10−6 2.739 2.339 1.113 7.296×10−6

Δ
-2 -1.5 -1

-3

-2

-1

FIG. 2. The second-order accuracy of the new consistent forcing
scheme, as measured by the relative errors E2, defined in Eq. (27), as
a function of grid sizes in steady Taylor-Green flow at Re = 50, 100,
and 150.

equal to s2, while the remaining relaxation parameters are set
to unity. The relative error E2 is computed from Eq. (27).

The relationship between grid sizes and measured relative
errors, E2, for the present forcing scheme at different Reynolds
numbers is presented in Fig. 2. The slopes at Re = 50, 100,
and 150 are 2.0133, 2.0076, and 2.0068, respectively. This
demonstrates that the scheme proposed has second-order
accuracy in space. The relative errors for different methods
are shown in Table II. It is found that the present scheme
achieves the smallest relative error for every grid resolution
at every Reynolds number. Due to the discrete equilibrium
central moments used in M3 (see Eq. (10) in Ref. [39]), some
additional errors are introduced into the CLBM, and this effect
becomes evident when the mesh size is small. It may be the
reason why this method manifests an outlier for the finest grid
resolution. Generally, each method presents a second-order
convergence rate.

C. Single static droplet

To validate the present forcing scheme for a complex force
field, we consider the simulations of a static droplet using
the Shan-Chen multiphase model [4], which is also known
as the pseudopotential approach in the multiphase flow. The
interaction force is calculated from an interaction potential
ψ(x) [4],

F = −Gψ(x)
∑

i

wiψ(x + ei�t)ei , (30)

where G is used to control the interaction strength and wi

are the weights. When only the nearest-neighbor interactions
are considered on the D2Q9 lattice, wi = 1/3 for |ei |2 = 1
and wi = 1/12 for |ei |2 = 2. The exponential form of the
pseudopotential is used, i.e., ψ(ρ) = ψ0 exp(−ρ0/ρ). Let us
denote ρV and ρL as the vapor and liquid coexistence densities,
respectively. In this study, ψ0 = 1, ρ0 = 1, and G = 10/3 are
used, which leads to ρV = 0.3675 and ρL = 2.783 [40,41].
The simulations are conducted in a periodic box N×N =
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TABLE II. Relative errors (×102) and convergence rates (CR) achieved by different forcing schemes at different Reynolds numbers in
steady Taylor-Green flow.

Re = 50 Re = 100 Re = 150

N/�x MP M1 M2 M3 MP M1 M2 M3 MP M1 M2 M3

10 6.3752 6.5748 6.5522 6.3959 6.5448 6.6456 6.6398 6.5660 6.6482 6.7162 6.7135 6.6698
20 1.5275 1.6263 1.6051 1.5538 1.5788 1.6283 1.6227 1.6063 1.5974 1.6305 1.6279 1.6261
40 0.3587 0.3969 0.3782 0.3843 0.3719 0.3961 0.3909 0.4074 0.3796 0.3957 0.3933 0.4145
80 0.0986 0.1141 0.1037 0.1498 0.1025 0.1109 0.1076 0.1543 0.1040 0.1098 0.1082 0.1560
CR 2.0133 1.9579 2.0031 1.8264 2.0076 1.9753 1.9896 1.8213 2.0068 1.9848 1.9917 1.8222

250×250. A round droplet of radius R = 50 is initialized by
setting ρ = ρL in the circle and ρ = ρV outside the circle. The
relaxation parameters are chosen as sb = s2 = 1.4.

The steady-state density contours for varied s3 obtained
by different forcing schemes are compared in Fig. 3. The

inserted dashed circle represents the theoretical location of
the droplet. From the first column of Fig. 3 (obtained by
the forcing scheme of Premnath et al. [27]), it can be seen
that the shape of the droplet is s3-dependent and it changes
from a noncircular shape to a round one with the increase

s3 = 1.0

s3 = 1.4

s3 = 1.8

FIG. 3. Steady-state density contours of single static droplet for varied s3, achieved by different forcing schemes (from left to right):
Premnath et al. [27] (first column), Lycett-Brown and Luo [28] (second column), De Rosis [29] (third column) and the new forcing scheme
(fourth column). The additional dashed circle is the theoretical location of the droplet.
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0.8 1 1.2 1.4 1.6 1.80.9

1.0

1.1

1.2

FIG. 4. Isotropy defined by I = |Rπ/4/R0|, as a function of s3 for
different forcing schemes for single static droplet simulation.

of s3. As discussed in Sec. III A, the removal of high-order
terms for the central moments of �f in Ref. [27] introduces
inconsistencies with the scheme proposed by Guo et al. [25].
Only when s3 is set to be 2.0, the inconsistency can be
eliminated. Although we cannot give the result with s3 = 2.0
(divergent for this simulation), the tendency confirms our
argument. Analogously, as discussed in Secs. III B and III C,
the inconsistencies in M2 and M3 can only be eliminated under
the conditions of s3 = s2 and s3 = 1.0, respectively, which is
also confirmed in the figure. For the present forcing scheme,
the droplet is always in round shape independent of the value
of s3, as can be seen in the last column of Fig. 3.

To quantify the inconsistency, we define an isotropy
parameter as I = |Rπ/4/R0|, where the subscript denotes the
angle between the x axis and the line along which the radius
is measured. From Fig. 4, we can see two clear trends: I in
the present forcing scheme is almost independent of s3 (the
maximal relative variation is less than 1 %), while I depends
on s3 apparently in the other methods and the anisotropies can
only be eliminated under certain conditions as discussed in
Sec. III D.

V. CONCLUSIONS

In this study, we present an alternative derivation of the
cascaded lattice Boltzmann method. A shift matrix N is
introduced in the derivation, by which the raw moments of
the discrete distribution function are shifted to their central
moments. This approach puts the MRT LBM and CLBM
into a unified general framework and clarifies the relationship
between them. Based on this, a new method to incorporate
forcing terms into the CLBM is proposed.

The forcing terms are incorporated by means of central
moments, which is compatible with the basic ideology of
CLBM. According to the definition of the shift matrix N,
CLBM degrades into an MRT LBM when N is a unit
matrix. The present forcing scheme retains the property of and
degrades into the Guo forcing scheme in the MRT LBM when
N is a unit matrix. Specifically, the present forcing scheme
degrades to the original forcing scheme proposed by Guo
et al. when all the relaxation parameters are set to be the
same. Numerical simulations for several benchmark problems
confirm the consistency of the nonslip rule, the second-order
accuracy in space, and the property of isotropy for the present
forcing scheme. In the meantime, some inconsistences in the
previous forcing schemes are also revealed.

The derivation and the method developed are quite intel-
ligible, and no cumbersome operations are involved in the
practical implementation. For other discrete velocity models
(for example, D3Q15, D3Q19, and D3Q27), the corresponding
methods can be developed directly by finding corresponding
raw moments sets and obtaining the expressions of M, N, and
Ci . Further work will demonstrate that the present method can
be extended to three dimensions (3D) readily.
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APPENDIX

The raw moments can be transformed to the discrete DFs through M−1, and the central moments can be shifted to raw
moments through N−1,

|fi〉 = M−1|Ti〉, |Ti〉 = N−1|T̃i〉. (A1)

The explicit expressions for M−1 and N−1 are

M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0 0 0 1
0 1/2 0 1/4 1/4 0 0 −1/2 −1/2
0 0 1/2 1/4 −1/4 0 −1/2 0 −1/2
0 −1/2 0 1/4 1/4 0 0 1/2 −1/2
0 0 −1/2 1/4 −1/4 0 1/2 0 −1/2
0 0 0 0 0 1/4 1/4 1/4 1/4
0 0 0 0 0 −1/4 1/4 −1/4 1/4
0 0 0 0 0 1/4 −1/4 −1/4 1/4
0 0 0 0 0 −1/4 −1/4 1/4 1/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)
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and

N−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
ux 1 0 0 0 0 0 0 0
uy 0 1 0 0 0 0 0 0

u2
x + u2

y 2ux 2uy 1 0 0 0 0 0

u2
x − u2

y 2ux −2uy 0 1 0 0 0 0

uxuy uy ux 0 0 1 0 0 0

u2
xuy 2uxuy u2

x uy/2 uy/2 2ux 1 0 0

u2
yux uy

2 2uxuy ux/2 −ux/2 2uy 0 1 0

u2
xu

2
y 2uxu

2
y 2uyu

2
x u2

x/2 + u2
y/2 u2

y/2 − u2
x/2 4uxuy 2uy 2ux 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)
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