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Using a simulation study, the performance of complete case analysis, full information 
maximum likelihood, multivariate normal imputation, multiple imputation by chained 
equations and two-fold fully conditional specification to handle missing data were 
compared in longitudinal surveys with continuous and binary outcomes, missing covariates, 
and an interaction term. 
 
Keywords: Chained equations, longitudinal data, maximum likelihood, missing data, 

random intercepts, two-fold fully conditional specification 

 

Introduction 

Full information maximum likelihood (FIML) estimation and multiple imputation 

(MI) are considered “state of the art” missing data techniques (Schafer & Graham, 

2002, p. 147) and are highly recommended (Baraldi & Enders, 2010). They are 

superior to ad-hoc procedures, because they require less strict assumptions and 

yield unbiased estimates with missing completely at random (MCAR) and missing 

at random (MAR) missing data mechanisms. Recently, the use of FIML, 

multivariate normal imputation (MVNI), and imputation by chained equations 

(MICE) (also known as sequential regressions, regression switching, and fully 

conditional specification, FCS) has become increasingly popular. A number of 

comparisons using linear models, generalized models, and structural equation 

models were published (Collins, Schafer, & Kam, 2001; Newman, 2003; Acock, 

2005; Ibrahim, Chen, Lipsitz, & Herring, 2005; van Buuren, 2007; Buhi, Goodson, 

& Neilands, 2008; Marshall, Altman, Royston, & Holder, 2010; Peyre, Leplege, & 

Coste, 2011; Ferro, 2014). 

https://doi.org/10.22237/jmasm/1509495600
mailto:p.zaninotto@ucl.ac.uk
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The FIML approach has been widely used in structural equation modelling 

analysis; MICE and MVNI can be easily extended to repeated measures, and the 

two-fold fully conditional specification (two-fold FCS) was proposed as a special 

case of the fully conditional specification for repeated measures (Nevalainen, 

Kenward, & Virtanen, 2009). In the presence of many waves and many variables 

with missing data, MICE, as opposed to the two-fold FCS, can potentially cause 

numerical problems because of over-fitting and collinearity. The algorithm might 

not converge because of high correlations among variables with missing values. It 

might be required to reduce the categories of a discrete variable; furthermore, 

temporally-ordered data are not exploited. Two-fold FCS can handle imputation of 

missing data of both continuous and discrete variables in many waves. Each wave 

is imputed separately, using the past and/or future information for each of the 

variables to be imputed. 

The comparative performance of these techniques simultaneously in a 

longitudinal setting remains unclear. This comparison is needed because an 

increasing number of longitudinal datasets are now becoming available, which are 

subject to missing data due to item non-response and attrition. The collected 

longitudinal data are therefore often incomplete with a non-monotone pattern 

(Minini & Chavance, 2004). MAR mechanisms and non-monotone patterns are 

common in most realistic settings (Horton & Kleinman, 2007). Good imputation 

techniques for dealing with missing values in longitudinal data structured in a long 

format (1 record per observation-wave) are still missing. FIML and the MI 

techniques (MVNI, MICE, and two-fold FCS) can create valid multiple imputations 

under MAR (Enders, 2001a; van Buuren, 2007; Schafer & Graham, 2002; 

Nevalainen et al., 2009) and for monotone and non-monotone patterns, when data 

are structured in a wide format (i.e. unstacked data, one observation row per each 

subject with the measures for each occasion in separate columns). Data can then be 

converted into a long format file for analysis. 

The aim of this study it so investigate the usefulness of the ML and MI 

methods in the context of longitudinal analysis with a large number of missing data 

points. The realistic situation of missing data in more than one outcome is 

considered, as well as accommodation of an interaction term and data missing on 

more than one independent variable. Generally, analyses should exclude 

individuals with imputed data on the outcome (von Hippel, 2007). However, in 

settings where one outcome is also the exposure for the other outcome, excluding 

individuals with imputed data may result in selection bias (Young & Johnson, 2010). 

Therefore, it was suggested that including imputed data on the outcome is feasible 

when auxiliary variables (or as in our case outcome variables) are highly correlated 
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with the outcome (White, Royston, & Wood, 2011). Hence, the purpose of this 

study is to explore the performance of the missing data techniques in recovering 

the true parameters estimated from two random intercepts models, one with a 

continuous outcome and the other with a binary outcome. A simulation study is set 

up, where FIML is compared to three MI techniques: multivariate normal 

imputation (MVNI), multiple imputations by chained equations (MICE) and the 

recently proposed two-fold fully conditional specification (two-fold FCS). The 

missingness pattern is non-monotone and the missing data mechanism is missing 

at random (MAR). We show results of complete case analysis because it is an 

approach commonly used. 

Methodology 

Empirical Data 

The aim of the simulation study was to evaluate the four techniques for handling 

missing data (FIML, MVNI, MICE, and two-fold FCS) in a longitudinal survey of 

ageing to explore gender differences in trajectories of quality of life and depression 

among people with coronary heart disease (CHD), adjusting for covariates. For this 

purpose the first three waves (2002-03 to 2006-07) of the English Longitudinal 

Study of Ageing, described elsewhere (Steptoe, Breeze, Banks, & Nazroo, 2013) 

was used. ELSA was established in 2002-2003 (wave 1), is a biannual, ongoing, 

nationally representative, prospective cohort study of people aged 50 years and over 

living in private households in England. In the first wave 11,391 respondents were 

interviewed. 

The analytical sample of this study consisted of 4,496 participants in wave 1 

with CHD and healthy participants (without CHD and known longstanding 

conditions at baseline); 3,465 in wave 2 (2004-05); and 3,031 in wave 3 (2006-07). 

A total of 1,998 participants had complete data on all variables across the three 

waves. The data consisted of two completely observed exposures (CHD and sex) 

and their interaction (CHD*sex), and two incomplete dependent variables: Quality 

of life (QoL) score ranging from 0 to 57 (approximately normally distributed), with 

higher scores indicating better quality of life; and a binary variable measuring 

depression (“0” no; “1” yes). The correlation between quality of life and depression 

is -0.45. The following covariates were also included: age (completely observed, 

normally distributed); marital status (categorical, three categories); wealth 

(categorical, three categories); physical activity (categorical, three categories); 

smoking status (categorical, three categories); and alcohol consumption 
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(categorical, three categories). With the exception of sex, all variables are time-

varying. The ELSA dataset is publicly available via registration with the UK data 

service (https://www.ukdataservice.ac.uk/). 

 

Obtaining the True Parameters from the Empirical Data 

 

Random intercepts models (Goldstein, 2003) were used to explore gender 

differences in quality of life and depression among older people with coronary heart 

disease (CHD), adjusting for covariates. The 1,998 individuals with complete data 

were treated as if they were the underlying population, and the true parameters were 

obtained from the two random intercepts models estimated using the complete data. 

The first model is for the continuous outcome and was estimated as follows: 

 

 
3 8

0

1 1

ij p pj p pij j ij

p p

y x x u e  
 

        (1) 

 

where yij is the quality-of-life for individual j at time i, p denotes the number of 

time-varying and time invariant variables. xpj are the time-invariant factors (p = 3) 

gender, CHD (at wave 1), and the interaction term between CHD and gender; xpij 

are the time-varying factors (p = 8) age (a linear and quadratic term), cohabitation 

status, depression, wealth, smoking status, alcohol consumption and physical 

activity. uj denotes the random effect accounting for the individual level variation 

and eij is a combination of random variation and measurement error specific to each 

occasion i for an individual j. The random effects have variances equal to 2

u  and 

2

e  at the individual and occasion levels. The true parameters, obtained from (1) on 

the complete data, are: coefficient for CHD β1 = -1.64 (s.e. 0.47); coefficient for 

sex β2 = 0.84 (s.e. 0.28), coefficient for the interaction term between CHD and sex 

β3 = -0.19 (s.e. 0.71), 2 24.2u   (s.e. 1.10), 2 24.8e   (s.e. 0.57), adjusted for the 

covariates described above (true parameters for the covariates are presented in 

supplemental resources). 

A logit model was estimated for the binary outcome as follows: 
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where 

https://www.ukdataservice.ac.uk/
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is the log-odds that yij = 1 (i.e. the probability of having depression) at occasion i 

for individual j. All the other variables are the same as in model (1) with the 

exception of depressive symptoms and the quadratic term for age, which are not 

included as covariates; therefore p = 6 in the second part of the equation, uj denotes 

the random individual level effect with variance 2

u . The true parameters obtained 

from (2) on the complete data are: coefficient for CHD β1 = 0.65 (s.e. 0.25); 

coefficient for sex β2 = 0.74 (s.e. 0.16), coefficient for the interaction term between 

CHD and sex β3 = 0.03 (s.e. 0.36), 2 4.02u   (s.e. 0.44), adjusted for the covariates 

described above, (true parameters for the covariates are presented in online 

resources). 

Data Simulation 

We used a non-parametric simulation study based on the observed real data 

consisting of 1,998 ELSA participants with complete data at all three waves. 

Starting with the data of complete observations, missingness was imposed on the 

two dependent variables (quality of life and depression) and on five covariates 

(marital status, wealth, physical activity, smoking status and alcohol consumption). 

Generation of missing data was performed using the data in wide format, in which 

there is one observation row for each subject with each measurement represented 

as a different variable, therefore each time-varying variable was present three times 

for each subject. Random uniform numbers were used to reproduce the same 

probabilities of missingness as those occurring in the real data: if the rank of the 

random number was equal to or less than the probability observed, a missing value 

was generated for the variable of interest. Variables from the first wave only 

required generation of missing data due to item non-response, variables from waves 

2 and 3 required the generation of missing data due to attrition in addition to item 

non-response, which were performed separately according to the specific 

probabilities observed in the real data. In order to set a MAR scenario, within each 

wave, missingness probabilities were allowed to depend on observed variables in 

the dataset, independently of the missing values themselves. Deletion was repeated 

for each of the 1,000 data sets. The resulting amount of missingness ranged between 

54% and 57% (resulting in the sample size of each replicate ranging from 859 to 

919). 
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Missing Data Methods for the Simulated Data 

 

Missing data on the 1,000 data sets were treated using the following methods: FIML, 

MVNI, MICE, and two-fold FCS. For the latter three MI techniques, five data sets 

for each replicate were imputed. Most literature (Rubin, 1987; van Buuren et al., 

1999) suggests that good inferences can be made with the number of imputed data 

sets (m) as few as m = 5. Rubin (1987) showed the efficiency of an estimate based 

on m imputations, relative to one based on an infinite number, is (1 + λ/m)-1, where 

λ is the rate of missing information. In this setting, with approximately 56% missing 

information, m = 5 imputations is 90% efficient. Complete case analysis (average 

sample size across the simulated data 887) was also conducted. All analyses were 

carried out in Stata version 12 

 

Full Information Maximum Likelihood (FIML) 

 

The FIML technique does not impute, or fill in missing values, but directly 

estimates model parameters and standard errors using all available raw data (Enders, 

2001a). The FIML estimator maximizes a likelihood function that is the sum of n 

casewise likelihood functions (where n is the number of respondents). As noted by 

Enders (2001a), assuming multivariate normality, the following function is 

maximized: 

 

    
T 11 1

log log
2 2

i i i i i i i iL K     Σ x μ Σ x μ   (3) 

 

such that xi is the vector of complete data for case i, µi is the vector of mean 

estimates for those variables that are observed for case i, and Ki is a constant that 

depends on the number of complete points for case i. The determinant and inverse 

of the covariance matrix Σi are based only on those variables that are observed for 

case i. This likelihood function measures the discrepancy between the observed 

data and current parameter estimates using all available data for a given case. 

Summing over the n casewise functions yields the discrepancy function for 

the entire sample: 

 

  
1

log , log
n

i

i

L L


μ Σ   (4) 
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To illustrate how FIML works, consider a model with four observed variables: X1, 

X2, X3, and X4. The parameters of interest are 

 

  

11 12 13 14

21 22 23 24

1 2 3 4

31 32 33 34

41 42 43 44

, , , and
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   
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 
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 
 
 
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The likelihood value for a subject with missing X1 would be a function of the values 

on the observations for the other three variables, X2, X3, and X4, as well as the 

parameter estimates that involved these three variables. The relevant parameters are 

shown in the following: 

 

   22 23 24

2 3 4

32 33 34
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. . . .

.
., , , and

.

.
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  

 
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 
 
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By contrast, the likelihood value for a subject with missing X2 and X4 would be a 

function of the two other observations (X1 and X3) as well as the parameter estimates 

that involved X1 and X3. The relevant parameters are shown in the following: 

 

  

11 13

1 3

31 33
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 
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Then the value of the overall discrepancy function is obtained by summing the 

likelihood functions for each individual.  

Enders (2001a) explained that, at a more conceptual level, it is assumed that 

missing values on a variable X are conditionally dependent on other variables in the 

data (missing at random, MAR), and incorporating vectors of partially complete 

data in the individual level likelihood functions (3) implies probable values for the 

missing data during the parameter estimation process. Conceptually this is 

analogous to generating predicted scores for the missing data by regressing X on 
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other variables used in the analysis. Although the method assumes multivariate 

normality, it has been shown that it can also be extended to situations in which 

multivariate normality does not hold (Enders, 2001b). 

 

Multivariate Normal Imputation (MVNI) 

 

In a multivariate normal imputation model, missing data are imputed using 

simultaneous linear regression models in which each variable potentially depends 

on all other variables (Schafer & Olsen, 1998). MVNI assumes a joint multivariate 

normal distribution for all variables. When dealing with an arbitrary missing data 

pattern it is possible to use data augmentation (DA) to generate imputed values 

assuming an underlying multivariate normal distribution. DA is an iterative Markov 

Chain Monte Carlo (MCMC) procedure which is suitable for arbitrary missing data 

patterns. Suppose Y = (Yobs, Ymis) are multivariate data decomposed into an 

observed part Yobs and a missing part Ymis from a normal distribution 

P(Y | θ) = N(β, Σ), where θ is a vector of unknown parameters. In many 

incomplete-data problems, the observed-data posterior P(θ | Yobs) is intractable and 

cannot be simulated easily. When Yobs is augmented by an assumed latent value of 

the Ymis, the resulting conditional posterior distribution P(θ | Yobs, Ymis) becomes 

much easier to handle. DA for missing data consists of two steps, the Imputation 

step (I-step) and the Posterior step (P-step). In the I-step, given a current θ(t), a value 

for the missing data-point is first drawn from the conditional predictive distribution 

of 
    1

mis mis obs~ P | ,
t t

Y Y Y θ  given the observed data θ(t). In the P-step, a new value 

of θ(t+1) is drawn from its conditional posterior 
  1

obs misP | ,
t

θ Y Y  given 
 1

mis

t
Y . These 

new estimates are used in the next I-step. Without prior information about the 

parameters a non-informative prior distribution is used. Iterating these two steps 

creates a Markov chain of length 
     mis , : 1,2,
t t

t t Y θ  which converges to 

P(θ, Ymis | Yobs). The two steps are iterated long enough for the results to be reliable 

for a multiply imputed data set. 

Here, the posterior mode, the highest observed-data posterior density with a 

non-informative prior, is computed from the Expectation Maximization (EM) 

algorithm, and is used as the starting value for the chain. The MI procedure takes 

200 burn-in iterations before the first imputation and 100 iterations between 

imputations. In a Markov chain, the information in the current iteration has 

influence on the state of the next iteration. The burn-in iterations are iterations at 

the beginning of each chain that are used to eliminate the dependence on the starting 
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value of the chain and to achieve a stationary distribution. Although the regression 

and MCMC methods assume multivariate normality, inferences based on multiple 

imputation can be robust to departures from the multivariate normality assumption 

if the amount of missing information is not large. It makes sense to use a normal 

model to create multiple imputations even when the observed data are somewhat 

non-normal, as supported by simulation studies described in Schafer (1997) and the 

original references therein. The imputation model included the same variables as 

the substantive models including the interaction term between CHD and gender and 

the linear and quadratic effects of age (which were completely observed). 

 

Multiple Imputation by Chained Equations (MICE) 

 

MICE does not start with the construction of a well-defined joint distribution for 

the variables to be imputed. Instead, it starts with a collection of univariate 

conditional distributions for variables with missing data in terms of all other 

variables. The main idea is that a sequence of univariate conditional models is 

constructed for each potentially missing variable (dependent and/or explanatory) 

with fully conditional specifications of prediction equations. The other variables 

(potentially missing or complete) are used as explanatory variables in each 

univariate imputation model. The standard procedure for creating multiple 

imputations of each potential missing variable Y1, Y2,…, Yp using complete 

predictors X as independent variables for the tth iteration of the method is described 

as follows: 
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

X

X

X

  (5) 

 

Imputed values are drawn from (5) for iterations t = 0, 1,…, T until 

convergence is reached at t = T. The θ1,…, θp are the model parameters with a 

uniform prior, the univariate imputation models f1,…, fp are chosen to be 

appropriate for imputing Y1,…, Yp. This means that logistic regression can be used 

for binary variables, linear regression for continuous, ordinal logistic regression for 

categorical variables and so forth (van Buuren, 2007). Univariate posterior draws 

are made one variable at a time by cycling through all p models given current values 
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of the other variables (Molenberghs & Kenward, 2007). After sufficient cycles (10-

20), the imputations are taken from one final cycle through the univariate model. 

The ordering of univariate imputations is not relevant. 

MICE differs from the MVNI in that it does not start with the construction of 

a well-defined joint distribution for the variables to be imputed. 

The imputation model included the same variables as the substantive models 

including the interaction term between CHD and gender and the linear and 

quadratic effects of age (which are completely observed). For the variable quality 

of life we used predictive mean matching (Royston & White, 2011), thus 

constraining imputed values to the set of observed values. We number of cycles 

used in the imputation was 100. 

 

Two-fold Fully Conditional Specification (FCS) 

 

Two-fold FCS (Nevalainen et al., 2009) is a special case of MICE described above. 

MICE for Yl (l = 1,…, p) is extended to q repeated waves, as follows: 

 

  mis

1 1 1f | , , , , , 1, ,u u u u upY Y X Z u q 

  Y   

 

At time i, Yu is imputed conditional on the same variable observed at time u – 1 and 

u + 1, and the other p variables Z at time u. Similarly, at time u, Zu with missing 

data is imputed conditional on the same variable observed at time u – 1 and u + 1, 

the other p variables Z, and the Y. One iteration runs over the variables l = 1,…, p, 

called within-time iteration. The past and future observations (Yu–1 and Yu+1) are not 

imputed at this stage, they serve only in the role of predictors in the imputation 

model. There is also a second imputation iteration over waves (u = 1,…, q), called 

among-time iteration. The method is fully described in Nevalainen et al. 

Two-fold FCS differs from MICE in that each time point is imputed 

separately. The method uses information recorded before and after the time point 

to impute missing data. The past and future values might have missing data which 

are imputed by default, but are only used as predictors at that given time. 

The application of two-fold FCS to the simulation data was performed as 

follows and described graphically in Figure 1: 

 

1) Variables with missing data at wave 1 were imputed using as 

predictors all other variables in the same wave, plus the future 

observation (at wave 2) of the same variable. For example, to impute 
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missing values for the continuous outcome (QoL) at wave 1, the 

following linear regression model is used: 

 

 

 wave 1 wave 1 wave 1 wave 1

2

wave 1 wave 1 wave 1

wave 1 wave 1 wave 1

wave 1 wave 1 wave 2

QoL Sex CHD Sex*CHD

Age Age Marital

+Wealth +Smoking Physicalact

Alcohol Depression QoL

  

  



  

  

 

In this example the variable QoL at wave 2 is used as a predictor to 

impute missing data for QoL at wave 1. Because QoL at wave 2 has 

missing data as well, MICE by default imputes missing data for that 

variable too. However, the imputed values of QoL at wave 2 are then 

dropped from the imputed data set as, in the imputation of wave 1, it 

serves only the role of a predictor and it will be imputed in the next 

stage. 

2) Variables with missing data at wave 2 are imputed using as predictors 

all other variables in the same wave, plus the past (wave 1 including 

values imputed in the previous step) and future (wave 3) observations 

of the same variable. The imputed values of these variables from wave 

3 are then dropped after the imputation as at this stage they serve only 

the role of predictors in the imputation model. 

3) Variables with missing data at wave 3 are imputed using as predictors 

all other variables in the same wave, plus the past observations (wave 

2 imputed in the previous step) of each variable to be imputed. 

 

Figure 1 gives a graphical explanation of steps 1), 2), and 3). 

Steps 1) to 3) form one among-times iteration. It must be decided how many 

among-times iterations are needed. Nevalainen et al. (2009) showed that increasing 

the number of iterations from one to five improved the performance of the 

estimators although the gain due to the increase was relatively small. We used three 

among-times iterations and compared the means of the imputed variables at each 

wave with the means of the complete case data. It was decided that three among-

times iterations were enough because the estimates from the five imputed data sets 

were very close to those of the underlying population. 

To summarize, steps 1) to 3) were repeated 3 times (three among-times 

iterations) to generate 1 imputed dataset, the procedure was then repeated four more 

times to obtain five imputed datasets each for the 1000 data sets. The imputation 
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model included the same variables as the substantive models including the 

interaction term between CHD and gender and the linear and quadratic effects of 

age (which are completely observed). 
 
 

 
 
Figure 1. Two-fold fully conditional specification; * indicates the variable with missing 

data at the specific wave that is to be imputed 
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Data Analysis of Simulated Data 

After the imputation stage had been completed on the 1,000 data sets for each MI 

technique (MVNI, MICE, and two-fold FCS), analyses based on the imputed data 

sets were carried out in Stata version 12. Linear random intercepts models were 

estimated for the continuous outcome (QoL) and random intercepts logit models 

were estimated for the binary outcome (depression), described earlier. The 

estimates from the analysis were stored. From the stored estimates, some summary 

measures (Burton, Altman, Royston, & Holder, 2006) were calculated to assess 

each missing data strategy as follows: 

The (average) estimate of interest: 

 

 1

ˆ
ˆ

r

kk

n


 


  

 

where r is the number of data sets (1,000), and ˆ
k  is the estimate of interest within 

each of the k = 1,…, r data sets. When MI is performed, each ˆ
k  is the overall 

estimate obtained according to Rubin’s formula (Rubin, 1987), which is just the 

average of the 5 combined estimates within each of the k = 1,…, r data sets. 

The (average) standard error of the estimate of interest: 

 

  
 1

ˆSE
ˆSE

r
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where  ˆSE k  is the standard error of the estimate of interest within each of the 

k = 1,…, r replications. When MI is performed, each  ˆSE k  is the overall 

standard error of the estimate of interest obtained from the five combined estimates 

according to Rubin’s formula (Rubin, 1987), within each of the k = 1,…, r data sets. 

Evaluation Criterion 

In order to evaluate the performance of each procedure employed to deal with 

missing data, we used assessments of accuracy and precision. Accuracy indicates 

the degree of closeness of the estimated value to the true parameter; precision refers 

to the repeatability or reproducibility of the measurement. 
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For the assessment of accuracy the following were used: 

 

Bias:  ̂   which is the difference between the average estimate and 

the true parameter (Schafer & Graham, 2002; Sinharay, Stern, & Russell, 

2001). 

The Mean Square Error (MSE):     
2 2

ˆ ˆSD     is the average 

squared difference between the estimate and its true parameter plus its 

variance; therefore it can be seen as a summary of both bias and 

variability. A value of the MSE close to zero indicates that the average 

estimator predicts the true parameter with good accuracy. 

 

For the assessment of precision the following was used: 

 

Standardized bias percent: 

 

 
 

 

ˆ

100
ˆSE

 




   

 

which is the bias as a percentage of the standard error. A standardized bias is 

considered to have a large impact on the precision if its absolute value exceeds 40 

per cent (Collins et al., 2001). 

Results 

The results of the comparison of the missing data techniques for the analysis of the 

continuous outcome (quality of life) are shown in Table 1. The bias of the 

coefficients for CHD and sex are small and close to zero for the three MI techniques, 

which seem to give estimates of the parameter for sex closer to the true parameter 

compared to FIML. The largest bias in the coefficient for the CHD by sex 

interaction term was obtained under FIML and least bias was obtained under MVNI 

and MICE, although the values of the MSE were similar for all techniques. The 

MSE is the sum of the squared bias and the variance, therefore it can be evinced 

that the variability across replicates is lower for each of the three parameters 

estimated under FIML than under the three MI methods. 
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The three MI techniques produced a more precise estimate of the coefficient 

for the interaction term than FIML, as shown by the smaller values of the 

Standardized bias percent. This is probably due to the fact that imputation using 

MICE, two-fold FCS, and MVNI models included the interaction term and in that 

sense they reflected the substantive model. Estimates of the between (i.e. 

individual) variance obtained from MVNI and MICE were closer to the true 

parameter compared to the estimates obtained from the other methods. The 

estimates of the within (i.e. wave specific) variance were close to the true parameter 

for all methods, except for the estimates produced by the two-fold FCS. Estimates 

obtained from complete case analysis (average sample size across simulated data 

887) showed good precision but did not achieve good levels of accuracy. Results 

comparing the true parameters with each method for missing data for the time-

varying variables are presented in supplemental Tables S1 to S5. All methods 

performed equally well in producing estimates close to the true parameters for most 

of the time-varying covariates. MVNI and Two-fold FCS produced estimates 

slightly less precise the true parameters of cohabiting status and wealth. MICE 

outperformed the other methods in producing estimates that were close to the true 

parameter of depression. 

Reported in Table 2 are the results of the comparison of the missing data 

techniques for the analysis of the binary outcome (depression). The large values of 

the biases and of the standardized bias percent suggest that FIML did not produce 

estimates that were close to the true parameters for sex, CHD, the interaction term 

between sex, and CHD and the between variance. Whereas the estimates produces 

by MICE were very close to the true coefficients for sex and CHD, and overall 

showed good levels of precision and accuracy as demonstrated by the MSE and 

standardized bias percent. Estimates of the interaction term between sex and CHD 

obtained from MICE and MVNI were slightly less close to the true parameter 

compared to the estimated obtained from two-fold FCS. Estimates of the 

coefficients for sex and CHD obtained from MVNI were not as close to the true 

parameters as those obtained from MICE and two-fold FCS. The estimate of the 

between variance obtained from MICE showed good accuracy and precision. 

Estimates obtained under complete case analysis (average sample size across 

simulated data 887) showed good accuracy as evinced from the small bias and good 

precision according to the values of the standardized bias percent. Results 

comparing the true estimates for the time-varying variables and each method for 

missing data are presented in supplemental Tables S6 to S10. Estimates obtained 

from all methods were close to the true parameters and showed good accuracy and 

precision. 
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Table 1. Summary of validity criteria for true parameters compared to the methods for 

missing data applied to the model of the continuous outcome quality of life 
 

  β     
True parameters CHD -1.64     

 Sex 0.84     
 CHD*Sex -0.19     
 Between variance 24.21     

 Within variance 24.79     

       

  β̂   ˆSE β  Bias Stand. Bias % MSE 

Complete Case CHD -1.60 0.70 0.70 6.7 0.321 
 Sex 0.87 0.42 0.42 6.4 0.104 
 CHD*Sex -0.26 1.06 1.06 -6.9 0.600 
 Between variance 24.80 1.03 1.03 0.8 1.053 
 Within variance 24.01 1.07 1.07 -18.0 1.724 
       

FIML CHD -1.54 0.48 0.10 20.8 0.041 
 Sex 1.14 0.29 0.30 104.3 0.015 
 CHD*Sex -0.54 0.72 -0.35 -48.5 0.093 
 Between variance 23.09 1.22 -1.11 91.2 1.861 
 Within variance 25.05 0.72 0.25 -34.9 0.538 
       

MVNI CHD -1.59 0.51 0.05 10.1 0.046 
 Sex 0.79 0.31 -0.05 -14.8 0.019 
 CHD*Sex -0.24 0.77 -0.05 -6.7 0.104 
 Between variance 23.59 1.06 -0.61 -57.9 1.492 
 Within variance 24.85 1.03 0.05 5.1 1.169 
       

MICE CHD -1.64 0.52 0.00 0.7 0.049 
 Sex 0.86 0.31 0.02 6.1 0.019 
 CHD*Sex -0.22 0.79 -0.03 -4.4 0.115 
 Between variance 24.33 1.06 0.13 12.1 0.818 
 Within variance 25.01 1.03 0.21 20.7 0.556 
       

Two-fold FCS CHD -1.63 0.51 0.01 1.7 0.066 
 Sex 0.87 0.31 0.03 10.7 0.023 
 CHD*Sex -0.24 0.77 -0.06 -7.2 0.123 
 Between variance 22.79 1.06 -1.41 -133.4 2.787 

  Within variance 25.85 1.03 1.05 101.9 1.628 
 

Note: Estimates adjusted for age, age squared, marital status, wealth, physical activity, smoking, alcohol 
consumption, depression, for which missing values have been imputed. CHD=Coronary heart disease. 

FIML=Full information maximum likelihood. MVNI= Multivariate normal imputation. MICE=Multiple imputation by 
chained equation. FCS=Fully conditional specification. SE=Standard error. MSE=Mean square error.  
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Table 2. Summary of validity criteria for true parameters compared to the methods for 

missing data applied to the model of the binary outcome depression 
 

  β     
True parameters CHD 0.65     

 Sex 0.74     
 CHD*Sex 0.03     
 Between variance 4.02     

       

  β̂   ˆSE β  Bias Stand. Bias % MSE 

Complete Case CHD 0.64 0.38 -0.01 -3.0 0.079 
 Sex 0.75 0.24 0.01 3.7 0.030 
 CHD*Sex 0.03 0.55 0.00 0.6 0.160 
 Between variance 3.98 1.18 -0.04 -3.8 0.227 
       

FIML CHD 0.44 0.24 -0.21 -90.1 0.061 
 Sex 0.50 0.14 -0.24 -176.3 0.067 
 CHD*Sex 0.20 0.34 0.18 51.7 0.048 
 Between variance 2.94 0.16 -1.08 -675.0 1.526 
       

MVNI CHD 0.58 0.26 -0.07 -25.7 0.015 
 Sex 0.65 0.16 -0.09 -53.6 0.012 
 CHD*Sex 0.04 0.37 0.01 3.7 0.018 
 Between variance 3.47 1.14 -0.55 -48.4 0.381 
       

MICE CHD 0.66 0.28 0.01 2.3 0.013 
 Sex 0.74 0.17 0.00 -1.4 0.005 
 CHD*Sex 0.01 0.39 -0.02 -6.2 0.018 
 Between variance 3.86 1.14 -0.16 -14.1 0.099 
       

Two-fold FCS CHD 0.62 0.26 -0.03 -12.5 0.013 
 Sex 0.70 0.16 -0.04 -22.4 0.007 
 CHD*Sex 0.03 0.37 0.00 -0.4 0.024 

  Between variance 3.40 1.14 -0.62 -54.7 0.465 
 

Note: Estimates adjusted for age, marital status, wealth, physical activity, smoking, alcohol consumption, for 
which missing values have been imputed. CHD=Coronary heart disease. FIML=Full information maximum 

likelihood. MVNI= Multivariate normal imputation. MICE=Multiple imputation by chained equation. FCS=Fully 
conditional specification. SE=Standard error. MSE=Mean square error 

Conclusion 

This simulation study was based on a large, national longitudinal survey to assess 

the problem of handling a non-monotone pattern of missing data. The aim of this 

study was to obtain valid and efficient estimates of regression coefficients from 

random intercepts models fitted to longitudinal data (three waves). The data set for 
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this study had incomplete time-dependent outcomes (one continuous and one 

binary) and time-dependent and time-independent covariates (of different types), 

therefore it was necessary to accommodate missingness within each wave, as well 

as unit non-response at all follow-up waves. In order to investigate which technique 

could be suitable with this structure of the data, FIML was compared with three MI 

techniques: MVNI, MICE and the recently proposed two-fold FCS. The 

performance of each of the methods appeared to vary according to the type of 

outcome. 

The continuous outcome variable was the variable with the largest proportion 

of missing data, and yet all four missing data techniques performed well, although 

the MI techniques showed better accuracy and precision than FIML. Complete case 

analysis did not achieve good levels of accuracy. Additionally, the three MI 

techniques produced estimates the interaction term that showed better precision and 

smaller bias values compared to the estimate obtained from FIML. This is an 

advantage of multiple imputation techniques: the interaction term can and should 

be accommodated in the imputation model thus reflecting the substantive model. 

MICE and MVNI produced estimates of the within (wave) variance close to the 

true estimates, although all methods except two-fold FCS produced good estimates 

of the between (individual) variance. 

A different picture was given by the results involving the binary outcome 

(depression). Estimates obtained under complete case analysis achieved good levels 

of precision and accuracy, according to the values of the bias. Not surprisingly the 

methods that assume a joint normal distribution for the non-normally distributed 

outcome FIML and MVNI did not produce estimates that had the same level of bias 

and precision as those obtained with more flexible chained equations methods. 

Levels of accuracy and precision were less good for the estimates obtained under 

FIML. Also, estimates of the MVNI showed less precision compared to other MI 

methods. However, estimates obtained from MICE and two-fold FCS, compared to 

both FIML and MVNI, showed better accuracy and precision. The flexibility of 

MICE and two-fold FCS becomes obvious in the presence of a non-normal outcome 

for which an appropriate conditional distribution (logistic) was specified in the 

imputation stage. The estimates of the between variance of the binary outcome 

obtained from MICE were slightly closer to the true parameters and showed better 

precision than those obtained from two-fold FCS. 

FIML is relatively easy to implement and it performed almost as well as MI 

techniques with the continuous outcome. However, the estimate of the interaction 

term was less precise and not as close to the true parameters as those obtained from 

the MI techniques. 
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In general, good estimates in terms of accuracy and precision were obtained 

from MVNI for the continuous outcome. However, less precise and accurate 

estimates were obtained from MVNI in the case of the binary outcome. This is not 

surprising, given that the amount of missing data was relatively large (between 54% 

and 57%). It has been suggested that inferences based on multiple imputation can 

be robust to departures from the multivariate normality assumption if the amount 

of missing information is below 50% (Schafer, 1997). 

The advantage of MICE and two-fold FCS is that each type of variable 

(continuous, binary, unordered, and ordered categorical) is modelled separately 

(Molenberghs & Kenward, 2007). For both outcomes, MICE showed slightly better 

precision and accuracy than two-fold FCS and the other two techniques. 

The MICE procedure used all the longitudinal data to estimate missingness 

whereas two-fold FCS imputed each time point separately and used only 

information on the same variable recorded prior to and post a given time point. 

Therefore it was anticipated that estimating missingness using MICE would result 

in a slightly better performance. 

In the simulation study consisting of three waves, estimates obtained from 

MICE were in general more accurate and precise; however, when the longitudinal 

data to be imputed have many time points (waves) per observation, using MICE 

may not be computationally feasible, especially for discrete variables. Researchers 

may opt for two-fold FCS which uses a doubly-iterative procedure: each wave is 

imputed separately using only the relevant past and future observations, therefore 

the intensiveness of the computation is reduced but the benefit of using past and 

future observation is retained. 

Another approach to impute longitudinal data with many waves per 

observation is to structure the data in a long format and perform imputation in 

MICE ignoring the dependence of data across waves. Although this method is 

conceptually wrong, it is appealing to many researchers. We anticipate that data 

structured in long format and imputed with MICE would perform more poorly than 

two-fold FCS. The main reason is that ignoring the dependence between 

observations might result in inefficient estimates of the parameters of interest. Two-

fold FCS on the other hand accounts for the correlation between individual’s 

responses over time and therefore should (and in our simulation did) recover the 

parameters of interest well. Further studies are needed to test the performance of 

two-fold FCS, especially in the presence of many follow-up points, when the 

implementation of MICE is not feasible. 

A major strength of this study is the use of a real data set to provide a suitable 

structure for simulating the 1,000 data sets, which simplifies the data generation 
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procedures and avoids arbitrary choices. Also, by replicating the patterns of 

missingness seen in the original incomplete data set, a realistic framework was 

provided for simulating the missing data (Marshall et al., 2010). Another major 

strength is that the recently proposed two-fold FCS was applied to longitudinal data 

from a national survey and compared with FIML and MVNI. Previously, only 

FIML with MVNI and FCS was compared with cross-sectional data. Also, the data 

time-invariant variables were completely observed. Nevertheless, the MI methods 

used are suitable for the imputation of missing data in time-invariant variables too. 

Time-invariant variables only appear once for each individual because the data are 

structured in a wide format. Therefore, strength of imputing longitudinal data in 

wide format is that imputed values of time invariant variables cannot end out time 

varying. 

One of the possible limitations of this simulation study is that missing data 

were generated under MAR. The plausibility of the MAR assumption could have 

been affected by the fact that auxiliary variables were by design not included in the 

imputation model. In analysis not shown here, auxiliary variables found to be 

associated with the values of variables with missing data (such as housing tenure, 

number of people in the household, and Government Office Region) were used to 

impute missing data using the three MI techniques. The ability to recover the true 

parameters by MVNI, MICE, and two-fold FCS techniques did not depend upon 

the addition of these variables; rather they helped reinforce the MAR assumption. 

However, it was necessary to exclude auxiliary variables in order to make the four 

techniques comparable. It may be appropriate to strengthen the MAR assumptions 

and reduce the chance obtaining multiple imputations with similar bias and 

precision to a complete case analysis may decide to opt for one of the MI techniques 

presented here rather than FIML which does not allow the inclusion of auxiliary 

variables. 

Auxiliary variables will also reduce bias compared to complete case analysis. 

Although it is generally argued that analyses should exclude individuals with 

imputed data on the outcome (von Hippel, 2007), this approach is unlikely to 

produce bias, because we used one imputation model for imputing our dependent 

variables, depression and quality of life; furthermore, the dependent variables were 

highly correlated and were auxiliary variables for each other. 

Another possible limitation is the use of five imputed datasets. Although five 

imputed datasets have been suggested to be sufficient it is now believed that using 

a larger number of imputation increases the precision of the results (Sterne et al., 

2009). Another possible limitation of our study is that Stata does not allow random 

effects to be introduced in the imputation stage, which could be the reason for the 
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poor performance in estimating the between variance. Longitudinal data can be 

thought of as clustered or two-level data (Goldstein, 2003). It was suggested if a 

data set to be imputed is multilevel, then the imputation model should be multilevel 

too (Carpenter & Goldstein, 2004). There is no definitive recommendation in the 

literature on the best way to impute clustered data, but one of the strategies that has 

been suggested in Stata and that we have implemented is to impute all clusters 

simultaneously. The multiple imputations methods used in this work were 

performed using data in wide format, i.e. unstacked data with one observation row 

per subject, thus implicitly allowing an unrestricted covariance structure. 

Alternatives include the use of MICE package in R software (van Buuren & 

Groothuis-Oudshoorn, 2011), which allows for random effects in the imputation 

model. More recently, REALCOM-IMPUTE software, which performs multilevel 

multiple imputation, has been improved in order to allow missing values in 

covariates, including models where there are interactions, ordered and unordered 

categorical variables, or other functions of covariates such as polynomials 

(Goldstein, Carpenter, & Browne, 2014). Future work should consider comparisons 

of performance with this method. 

It is possible that the approach adopted for the simulation study might have 

excluded variability from repeated sampling of the data values. To evaluate whether 

this would compromise the relative performance of the approaches used for missing 

data we have run a sensitivity analysis using a simulated data, which randomly 

sampled (with replacement) 1998 rows from our complete cases data set to create 

a new complete-cases sample. We have then applied our missing-value mechanism 

as before and stored the results. This process was repeated 100 times and the 

estimates were stored and summarized (results available on request). As expected, 

the ranking of each missing data approach did not change. 

Although MICE and two-fold FCS procedures are useful when the 

specification of a joint multivariate distribution of all the variables with missing 

values is difficult, from a theoretical standpoint these techniques can be problematic 

because the sequence of regression models might not be consistent with a true joint 

distribution (Shafer & Graham, 2002). This means that the iterative algorithm might 

never converge because the joint distribution to which they might converge does 

not exist. Despite the lack of a satisfactory theory, MICE seems to work quite well 

in many applications. A number of simulation studies provide evidence that MICE 

and two-fold FCS generally yield estimates that are unbiased and that possess 

appropriate coverage, at least in the variety of cases investigated (Brand, van 

Buuren, Groothuis-Oudshoorn, & Gelsema, 2003; Raghunathan, Lepkowski, van 
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Hoewyk, & Solenberger, 2001; van Buuren, 2007; Nevalainen et al., 2009; Welch, 

Bartlett, & Petersen, 2014). 

An anonymous reviewer suggested an extension to this study which employs 

a simulation study with a longer follow-up, and in which the following methods for 

dealing with missing data are included in the comparisons: multilevel imputation, 

imputation using long format, longitudinal weighting combined with complete case 

analysis, and longitudinal weights combined with multiple imputation. A further 

suggestion was an extension to this study which compares several missing at 

random mechanisms plausible in longitudinal studies and in cross-sectional studies, 

since the causes leading to attrition are different from those leading to item non-

response. Future studies on multiple imputation in the context of panel data might 

usefully consider incorporating these suggestions. 

It was shown when dealing with non-monotone missing data in longitudinal 

studies where a continuous outcome is involved, FIML and MI techniques all 

perform well. MI techniques compared to FIML might be more suitable for 

accommodating interaction terms. It was also shown MICE and two-fold FCS 

produced estimates that were more accurate and precise than those obtained from 

FIML and MVNI techniques, especially when dealing with non-continuous 

variables and interaction terms. The results of this study showed that MICE in 

general showed slightly better precision and accuracy better than two-fold FCS. 

More studies are needed to test the performance of two-fold FCS especially in the 

presence of many waves. 
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