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Abstract we present retrievals of the vertical temperature profile of Jupiter’s high latitudes from Infrared
Telescope Facility-Texas Echelon Cross Echelle Spectrograph measurements acquired on 10-11 December
2014 and 30 April to 1 May 2016. Over this time range, 1 mbar temperature in Jupiter’s northern and
southern auroral regions exhibited independent evolution. The northern auroral hot spot exhibited
negligible net change in temperature at 1 mbar and its longitudinal position remained fixed at 180°W
(System Ill), whereas the southern auroral hot spot exhibited a net increase in temperature of 11.1 + 5.2 K
at 0.98 mbar and its longitudinal orientation moved west by approximately 30°. This southern auroral
stratospheric temperature increase might be related to (1) near-contemporaneous brightening of the
southern auroral ultraviolet/near-infrared H; emission measured by the Juno spacecraft and (2) an increase
in the solar dynamical pressure in the preceding 3 days. We therefore suggest that 1 mbar temperature in
the southern auroral region might be modified by higher-energy charged particle precipitation.

1. Introduction

Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external
magnetosphere can be studied. Jupiter exhibits auroral emission over much of the electromagnetic spectrum
as a result of charged particle precipitation and energy deposition in the upper atmosphere [e.g., Gladstone
etal., 2002; Nichols et al., 2007; Ozak et al., 2010; Stallard et al., 2012; Giles et al., 2016]. Enhanced stratospheric
midinfrared emission of CH,, C,H,, C,H,, and C,H, [Caldwell et al., 1980; Kim et al., 1985; Drossart et al., 1986;
Kostiuk et al., 1993; Livengood et al., 1993; Drossart et al., 1993; Flasar et al., 2004a] is also observed in locations
coincident with Jupiter’s shorter-wavelength auroral emission (~70°N, 180°W (planetographic, System IIl) and
72°S,330-80°W). This auroral-related emission provides evidence that a significant amount of auroral energy
is also imparted as deep as Jupiter’s stratosphere (p > 1 pbar) leading to elevated temperatures.

The mechanism for this phenomenon is, however, not well understood. A recent retrieval analysis in Sinclair
et al. [2017] of infrared spectra measured by Voyager and Cassini indicated that stratospheric temperatures
in auroral regions are predominantly heated in two discrete pressure levels: the first at approximately 1 mbar
level and the second at 10 pbar level (and lower pressures where the midinfrared observations have no
sensitivity). Temperatures at 10 pbar level are considered to be a direct influence of the energetic particle
precipitation, varying on timescales as short as days [Kostiuk et al., 1993; Romani et al., 2008]. However, we
suggested several possible mechanisms for the source of 1 mbar heating including the presence of aurorally
produced haze particles [Gladstone et al., 2002; Wong et al., 2000; Friedson et al., 2002] which are heated by
UV/visible radiation or the precipitation of a higher-energy population of charged particles.

In July 2016, the Juno spacecraft [Bolton and Juno Science Team, 2006, 2016] performed its orbital insertion
around Jupiter and has since begun a 53.5 day cadence of measurements performed during close flybys
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or perijoves. Juno's science payload was designed to provide a powerful understanding of the interaction of
Jupiter’s external magnetosphere with its upper atmosphere. In addition, the science return of Juno will be
greatly enhanced by a supporting Earth-based observing campaign covering a large range in wavelengths. In
particular, Earth-based midinfrared (5-15 pm) observations form an important component of this supporting
campaign since Juno'’s science payload does not contain an instrument that operates in this spectral range.

In this work, we present temperature retrievals of IRTF-TEXES (Infrared Telescope Facility-Texas Echelon Cross
Echelle Spectrograph [Lacy et al., 2002] on NASA’s Infrared Telescope Facility) observations measured in
December 2014 and April 2016. These results will be compared to assess the evolution of stratospheric tem-
peratures in Jupiter’s auroral regions. The magnitude, altitude, and timescales over which temperatures vary
in the auroral regions will be used to test the aforementioned hypotheses of the mechanisms driving the
auroral-related stratospheric heating. In addition, these results will serve as a baseline context during the
approach of the Juno spacecraft, with which future TEXES measurements can be compared. Such future mea-
surements will allow the variability of Jupiter’s auroral-related stratospheric heating to be assessed on shorter
timescales and will extend the time series to periods contemporaneous with Juno measurements and the
extensive ground-based campaign. Near-simultaneous measurements of 1 mbar temperature in the auroral
regions, the shorter-wavelength auroral emission and the external magnetospheric conditions will serve as a
powerful tool in determining exactly how the lower stratosphere is coupled to the magnetosphere.

2. Observations and Analysis

2.1. IRTF-TEXES Observations

TEXES is a cryogenic grating spectrometer that measures spatially resolved spectra in the mid-to-far infrared
(5-25 pm) at high spectral resolving powers [Lacy et al., 2002]. Using TEXES on NASA’s Infrared Telescope
Facility (IRTF) on 10— 11 December 2014 and 30 April to 1 May 2016, high-resolution R = 60, 000-85,000 spec-
tra were obtained of Jupiter’s high latitudes. The absolute relative velocities of Earth and Jupiter during these
observations were approximately 23 km/s, which allowed telluric and Jovian CH, features to be disentangled.
The slit (9-19 arc sec in length and 1.4 or 2 arc sec in width, depending on the spectral setting) was orien-
tated parallel to Jupiter’s central meridian. Starting from dark sky west of high northern latitudes, the slit was
stepped east in increments of 0.7 arc sec perpendicular to the slit length until dark sky east of the planet, pro-
viding longitudinally resolved spectra poleward of 45°N and dark sky for subtraction and noise calculations.
Spectra were obtained in five discrete settings each with a range of 4-6 cm™' centered on wave numbers of
587, 730, 819, 950, and 1248 cm™', which, respectively, captured emission of H, S(1), C,H,, C,H,, C,H,, and
CH,. In December 2014, 587 cm™' spectra were measured at a resolution of 6 km/s (or 0.012 cm™="), while all
other settings were measured at 4 km/s (0.0097 to 0.017 cm~' depending on the setting). In April 2016, a
motor driver failure meant that all spectra were measured at a resolution of 4 km/s.

The slit was then moved to Jupiter’s southern hemisphere, and similar scans were obtained of high southern
latitudes. The wavelength-dependent noise in each spectral setting was calculated as the standard deviation
in all sky pixels. This resulted in higher noise values in regions of high telluric absorption, which ensured that
these spectral regions were weighted less in subsequent retrievals (section 2.2). These north-south scan pairs
in all five spectral settings were repeated over time such that Jupiter’s rotation allowed the longitudinal cov-
erage to be extended. In December 2014, we obtained longitudinal coverage from approximately to 0° to
270°W (System Ill) and in April 2016 from 60° to 360°W. In each spectral setting, individual spectra were coad-
ded into spatial bins. Spatial bins were 4° wide in planetographic latitude and stepped in increments of 2° and
20° in System lll longitude and stepped in 10° increments to obtain Nyquist sampling. The resulting noise of
the coadded spectra was calculated to be the larger of either (1) the noise on the individual spectra combined
in quadrature or (2) the standard deviation of the mean.

2.2. Temperature Retrievals

The vertical temperature profile was retrieved from the H, S(1) and CH, emission spectra. The vertical pro-
files of H, and CH, were assumed to be horizontally homogenous below their homopause [Moses et al.,
2005]: spatial variations in their emission were assumed to arise from temperature changes alone. The follow-
ing wave number ranges were adopted in the retrieval of temperature from TEXES observations in 2014 in
order to capture H, S(1) emission, a mixture of weak and strong CH, lines, while avoiding the following gaps
in spectral coverage: 587.0-587.1, 1245.18-1246.55, 1245.74-1246.0, 1246.45-1246.90, 1247.82-1249.0,
and 1249.6-1250.3 cm™'. For retrievals of 2016 TEXES observations, the following wave number ranges
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Figure 1. Retrieved temperature distributions at Jupiter’s high northern and southern latitudes (first and second columns) on 10-11 December 2014 and

(third and fourth columns) 30 April to 1 May 2016. Results are shown at 0.01 mbar (first row), 0.1 mbar (second row), 0.98 mbar (third row), and 4.7 mbar

(fourth row). The color-temperature conversion is indicated in the color bar at the bottom and white contour lines represent temperature increments of 5 K.
Pink dashed lines represent the mean position of the auroral ovals in February 2007 and June 2007, which is believed to capture the range in the position of the
ultraviolet oval in time [Bonfond et al., 2012].

were adopted: 587.0-587.1, 1245.0-1245.225, 1245.5-1245.76, 1246.2-1246.49, 1247.6—1247.75, and
1249.4-1249.67 cm™'. The differing spectral coverage of the TEXES observations in December 2014 and
April 2016 resulted from the contrasting relative velocities of Jupiter with respect to Earth (~ —23 km/s and
+23 km/s, respectively), which resulted in different portions of the CH, lines being observable with respect to
regions of high telluric absorption.

Retrievals were performed using NEMESIS [Irwin et al., 2008], a forward model and retrieval tool. The a pri-
ori temperature profile detailed in Sinclair et al. [2017] was also adopted as the a priori profile in this work.
However, several alternative temperatures a priori were also tested to determine the robustness of retrieved
profiles with respect to initial assumptions. We will present retrievals of the vertical profiles of C,H,, C,H,, and
C,H¢ and their evolution from 2014 to 2016 in future work.

3. Thermal Structure in April 2016

Figure 1 shows the retrieved temperature distributions at high northern and high southern latitudes in
December 2014 and April 2016. We first discuss features of the thermal structure in April 2016, during the
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Figure 2. Test temperature retrievals using different a priori at 70°N, 120°W (top-left, a representative quiescent
location), 70°N, 180°W (bottom-left, the northern auroral hot spot), 72°S, 180°W (top-right, a representative quiescent
location in the south), and 72°S, 90°W (bottom-right, the position of the southern auroral hot spot). A priori profiles are
shown as solid lines, and the corresponding retrievals are shown as dashed lines of the same color. The y2/n values of
each retrieval are also shown to quantify how well the modelled spectra fit the observed spectra. The best fitting
spectra are shown in Figure 3.

approach of the Juno spacecraft and will discuss the inferred evolution in comparing December 2014 and
April 2016 results in section 4.

In both auroral regions, we find that there is no evidence of auroral-related heating at the 5 mbar level: we
believe that 1-5 mbar range marks the highest pressure at which auroral energy can modify the thermal
structure. This is also consistent with the findings of Composite Infrared Spectrometer (CIRS) measurements
[Flasar et al., 2004b; Sinclair et al., 2017]. Over 1 mbar to 10 pbar pressure range, there is evidence of elevated
temperatures in locations coincident with the ultraviolet auroral oval features [Bonfond et al., 2012]. However,
within this pressure range, we find that stratospheric temperatures are predominantly elevated at 1 mbar and
10 pbar pressure levels, with comparably less heating at the intermediate 0.1 mbar level. These results are
consistent with our analysis of Cassini-CIRS observations obtained of Jupiter in 2001 [Sinclair et al., 2017] as
well as a recent analysis by Kostiuk et al. [2016].

This bifurcation of the vertical temperature profile in the auroral hot spots is further demonstrated in
Figure 2. In both the northern and southern auroral regions, the temperature profile reaches a maximum
at ~1 mbar, subsequently decreases to a minimum at 0.1 mbar, and subsequently increases to 10 pbar
level. This result is consistent regardless of the chosen temperature a priori profile, even when a signif-
icantly cooler or warmer isothermal a priori profile was adopted. This bifurcated feature is absent from
similar tests of quiescent longitudes in the same latitude band, which demonstrates that it is indeed asso-
ciated with the auroral hot spots alone. There is no sensitivity of the H, S(1) and CH, emission spectra to
pressures lower than 10 pbar, and so retrieved profiles tend back to the a priori profile in this range and
therefore exhibit significant variation depending on the chosen a priori. We discuss the possible sources of
1 mbar heating in section 5 in the context of the observed variability of temperatures from December 2014
to April 2016.
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Figure 3. Comparisons of observed (points with error bars) and modelled (solid lines) spectra of the H, S(1) and CH,
emission features in a northern quiescent location (left column, first and second panels) and southern quiescent
location (right column, first and second panels) with blue indicating spectra in December 2014 and green indicating
spectra in April 2016. Similarly, observed and modelled spectra are compared for the northern auroral hot spot

(left column, third and fourth panels) and the southern auroral hot spot (right column, third and fourth panels). Readers
should note that H, S(1) spectra were obtained at a resolution of 0.0078 cm~" in April 2016 but at a resolution of

0.012 cm~" in December 2014. Only a subset of the CH, emission features that were measured and modelled are shown
for clarity. In the southern auroral hot spot, we compare 72°S, 60°W in December 2014 and 72°S, 90°W in April 2016,
which mark the locations of the warmest 1 mbar temperature associated with the southern auroral hot spot as we
believe that it rotated in longitude between 2014 and 2016. The modelled spectra shown correspond to the a priori
profile that yielded the best fit to the observations in Figure 2.
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Temperature (K) Temperatures in the northern auroral
Figure 4. Retrieved vertical temperature profiles (solid lines) at 70°N, hot spot at 1 mbar and 10 pbar exhibit
120°W (a representative quiescent location); 70°N, 180°W (the northern  negligible net change of 0.1 + 3.7 Kand
auroral hot spot); 72°S 180°W (a quiescent location in the south); and —2.5 + 4.4 K, respectively. In addition,

72°S, 60°W/99°W (the southern.auroral hot spoF). Results in December the longitudinal position of the warmest
2014 and April 2016 are shown in colors according to the legend . .

provided. The uncertainty on the retrieved profiles (dotted lines) was set temperatures associated with the north-
to be the largest of the 1o retrieval error or the variation in retrieved ern auroral hot spot appears fixed in
values due to the choice of a priori. position at 70°N, 180°W. However, there

is an obvious increase in stratospheric
temperatures at high southern latitudes. In comparing temperatures at 72°, 60°W in December 2014 and 72°S,
90°W in April 2016, which represent the longitudes with the highest retrieved temperatures, we derive a net
increase in temperature of 11.1 +5.2 Kat 1 mbar and 17.3 + 6.0 Kat 10 pbar. The lack of a similar temperature
increase at 180°W (a quiescent longitude) in the same latitude band indicates that this temperature change
cannot be a radiometric calibration inconsistency. While gaps in spatial coverage prevent a direct compari-
son of temperatures in December 2014 and April 2016 at some longitudes, the orientation of the southern
auroral stratospheric heating appears to have rotated approximately 30°in longitude, as has been observed
previously [Caldwell et al., 1988].

5. Discussion

Measurements in December 2014 and April 2016 indicate that stratospheric temperatures in the northern
and southern auroral regions exhibited different variability over the same timescale. The derived variabil-
ity of 1 mbar and 10 pbar temperatures on the order of 10 to 20 K has been observed previously on daily
timescales in measurements of Jupiter’s northern auroral C,Hg and C,H, emission [Livengood et al., 1993;
Romani et al., 2008]. Sinclair et al. [2017] suggested the following mechanisms as the source of 1 mbar heating
in auroral regions: (1) absorption of shortwave radiation by haze particles produced by the auroral chemistry
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Figure 5. (top) The observed monthly mean and standard deviation of
the sunspot number (points with error bars) from 2014 to 2016 (taken
from https://solarscience.msfc.nasa.gov/greenwch/SN_m_tot_V2.0.txt)
as a measure of the longer-term solar variability associated with its

11 year cycle. (middle and bottom) Solar wind propagation model
results of the solar wind dynamical pressures at Jupiter [Tao et al., 2005,
2016] within a month of the TEXES measurements in December 2014
and April 2016 (respectively shown as red and blue vertical

dashed lines).

haze particles are in radiative equilib-
rium, the increase in their effective tem-
perature as a result of the lower solar
zenith angle can only explain up to
approximately 2 K of the 11.1 + 5.2 K
1 mbar temperature change in the south-
ern auroral region. Thus, radiative forcing
of the auroral haze particles alone can-

not explain the observed temperature
change.

5.2. High-Energy Particle Precipitation

Independent variability of X-ray, ultraviolet, and near-infrared H; auroral emission, which highlight the pre-
cipitation of energetic particles into Jupiter’s atmosphere, have also been observed. Observations of auroral
X-ray emission measured in 2007 and May-July 2016 by Chandra and X-ray Multi Mirror Mission-Newton
reveal that the southern and northern auroral regions exhibit uncorrelated variability between observations
[Dunn etal., 2016]. Similarly, ultraviolet observations measured by Juno’s UVS instrument during orbital inser-
tion of the spacecraft in July 2016 indicated that the southern auroral region brightened independently of
the northern auroral region [Gladstone et al., 2016, 2017 (this issue)]. Near-infrared H;“ measurements made
by Juno’s JIRAM instrument during the first perijove in late August 2016 also highlighted that auroral emis-
sion from the southern auroral region was approximately 25% brighter compared to the north [Adriani et al.,
2016, 2017 (this issue)].

With temperature distributions retrieved on only two dates separated by 17 months, it cannot be concluded
whether the variability in 1 mbar temperature in the southern auroral region is a result of a rapid variability
(on daily timescales) or a slowly evolving change. Nevertheless, the increase in stratospheric temperatures
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in the southern auroral region at times when the ultraviolet and near-infrared southern auroral emission was
observed to brighten independently of the north is suggestive of a correlation. The ultraviolet brightening of
the southern auroral region during orbital insertion was sometimes found to be correlated to increases in the
solar wind dynamical pressure at Jupiter [Gladstone et al., 2016]. In order to assess the potential correlation of
the southern auroral ultraviolet and near-infrared brightening with 1 mbar temperature increase, we inves-
tigated the longer-term solar variability and the variability of the local solar wind conditions at Jupiter over
December 2014 to April 2016 time range (Figure 5).

Over this time range, the monthly mean sunspot number decreased by over a factor of 2. Using a long-term
record of measurements from 1979 to 2016, Kostiuk et al. [2016] concluded that the strongest C,Hy emis-
sion (as a probe of temperature) in the northern auroral region occurred during periods of higher solar
activity. Although not significant with respect to uncertainty, our results do indicate a cooling near the north-
ern auroral region during a period of decreasing solar activity, which is consistent with the conclusions of
Kostiuk et al. [2016]. In contrast, we have ruled out such a relationship of 1 mbar temperature in the south-
ern auroral region with this longer-term solar activity since we derived a temperature increase of greater
than 10 K when the monthly mean sunspot number decreased by a factor of 2. In order to explain the
southern auroral 1 mbar temperature increase, we look instead to the short-term variability of the local solar
wind conditions at Jupiter. As shown in Figure 5, downstream solar wind conditions at Jupiter were quies-
cent in ~8 days preceding the TEXES measurements in December 2014. However, TEXES measurements in
April 2016 were acquired within 3 days of a solar wind compression event where the dynamical pressure
increased by approximately a factor of 3. This might imply that the southern auroral 1 mbar temperature
increase was driven by an increase in the flux of charged particles impinging on the atmosphere of Jupiter.
This would require precipitation of charged particles with energies significantly higher than 300 keV [Kim,
1988], which have been observed in the Jovian radiation belt [Bolton et al., 2002]. The fact that the vertical
temperature profile is bifurcated at 1 mbar and 10 pbar levels might represent the precipitation of two dis-
crete energy populations of charged particles. This hypothesis will be tested in future work using auroral
precipitation models.

The shift in longitudinal orientation of warm stratospheric temperatures associated with the southern auroral
region between December 2014 and April 2016 has been observed previously [e.g., Caldwell et al., 1988]. The
cause of this still remains uncertain. Again, we cannot say whether this change in position is a slowly evolving
change over this time range or a snapshot of much more rapid variability. However, the position of the south-
ern auroral oval in X-ray, ultraviolet, and near-infrared H;r emission was observed to be persistent in longitude
in 2016 [Dunn et al., 2016; Nichols et al., 2016]. Further observations, obtained at a higher temporal cadence,
are required to establish how and why the orientation of southern auroral heating moves in longitude and to
test the hypotheses that 1 mbar stratospheric temperatures in the southern auroral region vary according to
the solar wind dynamical pressure.

6. Conclusions

Retrievals of temperature from IRTF-TEXES spectra measured in December 2014 and April 2016 reveal that
the thermal structures in Jupiter’s northern (70°N, 180°W) and southern auroral regions (72°S, 50-80°W)
have evolved differently. At 1 mbar, temperatures in the northern auroral region remained constant within
uncertainty while temperatures in the southern auroral region exhibited a net increase of ~11.1 + 5.2 K.
This temperature increase occurs over a period of decreasing monthly mean sunspot number and so does
not appear to be related to the ~11 year solar cycle. We instead suggest this stratospheric warming of
the southern auroral region to be linked to a brightening of the near-infrared and ultraviolet southern
auroral emission resulting from short-term increases in the solar wind dynamic pressure at Jupiter. From
the results of a solar wind propagation model, TEXES measurements in April 2016 were acquired within
3 days of a solar wind compression event whereas TEXES measurements in December 2014 were acquired
after 8 days of quiescent solar wind conditions. The variability of stratospheric temperatures in the auroral
region on these short timescales and its apparent time proximity with the solar wind dynamical pressure
would favor the precipitation of a high-energy population of charged particles as an explanation of 1 mbar
auroral-related heating. Further observations acquired with shorter time separations are required to confirm
this hypothesis.
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