Accepted Manuscript

Title: Treosulfan, Fludarabine Conditioning for HSCT in Children with Primary Immunodeficiency: UK Experience

Author: Mary A. Slatter, Kanchan Rao, Intan Juliana Abd Hamid, Zohreh Nademi, Robert Chiesa, Reem Elfeky, Mark S. Pearce, Persis Amrolia, Austen Worth, Terence Flood, Mario Abinun, Sophie Hambleton, Waseem Qasim, Hubert B. Gaspar, Andrew J. Cant, Andrew R. Gennery, Paul Veys

 PII:
 \$1083-8791(17)30825-X

 DOI:
 https://doi.org/10.1016/j.bbmt.2017.11.009

 Reference:
 YBBMT 54865

To appear in: Biology of Blood and Marrow Transplantation

Received date: 5-9-2017 Accepted date: 8-11-2017

Please cite this article as: Mary A. Slatter, Kanchan Rao, Intan Juliana Abd Hamid, Zohreh Nademi, Robert Chiesa, Reem Elfeky, Mark S. Pearce, Persis Amrolia, Austen Worth, Terence Flood, Mario Abinun, Sophie Hambleton, Waseem Qasim, Hubert B. Gaspar, Andrew J. Cant, Andrew R. Gennery, Paul Veys, Treosulfan, Fludarabine Conditioning for HSCT in Children with Primary Immunodeficiency: UK Experience, *Biology of Blood and Marrow Transplantation* (2017), https://doi.org/10.1016/j.bbmt.2017.11.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Treosulfan, fludarabine conditioning for HSCT in children with Primary Immunodeficiency:

2 UK experience

3 Authors

- 4 Mary A.Slatter MD¹, Kanchan Rao MD², Intan Juliana Abd Hamid PhD^{1,3}, Zohreh Nademi
- 5 PhD¹, Robert Chiesa MD², Reem Elfeky MD², Mark S. Pearce PhD⁴, Persis Amrolia PhD²,
- 6 Austen Worth PhD², Terence Flood MD¹, Mario Abinun MD¹, Sophie Hambleton DPhil¹,
- 7 Waseem Qasim PhD², Hubert B.Gaspar PhD², Andrew J. Cant MD¹, Andrew R. Gennery MD¹,
- 8 Paul Veys MD

9 Institutions

- 10 Department of Paediatric Immunology, Newcastle upon Tyne Hospital NHS Foundation
- 11 Trust, Newcastle upon Tyne, UK¹
- 12 Great Ormond Street Hospital NHS Trust, London, UK²
- 13 Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains
- 14 Malaysia, Bertam Malaysia³
- 15 Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK⁴

16 Corresponding author

- 17 Dr M.A. Slatter,
- 18 Paediatric Immunology, Infectious Diseases & Allergy Department
- 19 Clinical Resource Building, Block 2, Level 4
- 20 Royal Victoria Infirmary, Queen Victoria Road,
- 21 Newcastle upon Tyne, NE1 4LP, UK

- 22 e-mail: <u>mary.slatter@nuth.nhs.uk</u>
- 23 Phone: 0191 2823767 Fax: 0191 2820497
- 24 There was no specific funding for this study.
- 25 Conflict-of-interest disclosure: The authors declare no competing financial interests.
- 26
- 27

Accepted Manuacity

28 <u>Highlights</u>

29	• Excellent outcome in children post HSCT with treosulfan, fludarabine, for PID.
30	• Better myeloid chimerism with PBSC. No increased acute GVHD grade III/IV or
31	chronic GVHD.
32	• 11 with SCID diagnosed at birth alive with up to 8.7 years follow up.
33	There was no veno- occlusive disease.
34	
35	CC1
36	Abstract
37	We previously published results of 70 children who received treosulfan with
38	cyclophosphamide (30) or fludarabine (40) before haematopoietic stem cell transplantation
39	(HSCT) for Primary Immunodeficiency (PID). Toxicity was lower and T cell chimerism better in
40	those receiving fludarabine, but numbers were relatively small and follow-up short. We now
41	report outcome of 160 children who received homogeneous conditioning with treosulfan,
42	fludarabine mostly with alemtuzumab (n=124).
43	Median age at transplant was 1.36 years (0.09-18.25). Donors were: matched unrelated, 73;
44	1-3 antigen mismatched unrelated, 54; matched sibling, 12; other matched family, 17;
45	haploidentical, 4. Stem cell source was: peripheral blood stem cells (PBSCs), 70; Bone
46	marrow, 49; Cord Blood, 41. Median follow up was 4.3 years (0.8-9.4).
47	Overall survival was 83%. There was no veno- occlusive disease. Seventy-four (46%) had
48	acute GVHD, but only 14(9%) greater than grade II. Four patients were successfully

49	retransplanted for graft loss or poor immune reconstitution. One further patient who
50	rejected the graft, died.

- 51 There was no association between T cell chimerism > 95% and stem cell source, but a
- 52 significant association with myeloid chimerism > 95% and use of PBSC without an increased
- risk of significant GVHD compared to other sources. All 11 patients with severe combined
- 54 immunodeficiency diagnosed at birth are alive with up to 8.7 years follow up.
- 55 Long-term studies are required to determine late gonadotoxic effects and pharmacokinetic
- 56 studies are needed to identify whether specific targeting is advantageous. The combination
- 57 of treosulfan, fludarabine and alemtuzumab gives excellent results in HSCT for PID.
- 58

59 Key messages

- Excellent outcome in children undergoing HSCT following treosulfan, fludarabine
 and alemtuzumab for Primary Immunodeficiency.
- Better myeloid chimerism achieved using peripheral blood stem cells compared to
 bone marrow or cord blood without an increased risk of significant graft versus host
 disease.

65 Capsule summary

- 66 We report the largest series to date of children with PID undergoing HSCT following
- 67 homogeneous conditioning with treosulfan and fludarabine. Probability of 2 year survival
- 68 was 88.3%. Use of PBSC led to better myeloid chimerism.

69 Key words

70 Primary Immunodeficiency; Haematopoietic stem cell transplantation; Treosulfan;

71 Fludarabine; Chimerism

72 Abbreviations

73 HSCT Haematopoietic stem cell transplantation, PID Primary Immunodeficiency, aGVHD

74 Acute graft versus host disease, cGVHD Chronic graft versus host disease, HLA Human

75 leucocyte antigen, BM Bone marrow, PBSC Peripheral blood stem cells, CB Cord blood, MSD

76 Matched sibling donor, ATG Anti thymocyte globulin, PCR Polymerase chain reaction, EBV

77 Epstein-Barr virus, CMV Cytomegalovirus, SCID Severe Combined Immune deficiency, MUD

78 Matched unrelated donor, MMUD Mismatched unrelated donor, MFD Matched family

- 79 donor, MMFD Mismatched family donor, OS Overall survival, CGD Chronic granulomatous
- 80 disease, RAG Recombinant activating gene, ALL Acute lymphocytic leukaemia, ZAP 70 Zeta

81 associated protein, HLH Haemophagocytic lymphohistiocytosis, LAD Leukocyte adhesion

82 deficiency, WAS Wiskott Aldrich syndrome, PK Pharmacokinetic

PCCeQieu

84 Introduction

85	The use of treosulfan as part of conditioning for haematopoietic stem cell transplant (HSCT)
86	in paediatric practice is increasing for malignant ¹⁻⁴ and non-malignant disorders ⁵⁻¹⁵ .
87	Treosulfan (L-treitol-1,4-bis-methanesulfonate) is the pro-drug of L-epoxybutane, a water
88	soluble bi-functional alkylating agent with myeloablative and immunosuppressive
89	properties ¹⁶ but with less systemic toxicity compared to standard doses of busulfan ¹⁷ .
90	The use of reduced toxicity conditioning is preferred for patients with primary immune
91	deficiency (PID) as there is no malignant disease to eradicate, stable mixed chimerism
92	achieves cure for most patients and many enter HSCT with chronic infection and end-organ
93	co-morbidities. Additionally, many patients are infants at the time of transplant and may be
94	more susceptible to toxicity ¹⁸ . Less toxic regimens may reduce early and late adverse effects
95	particularly fertility ^{19, 20} . There are several reduced toxicity regimens that have been utilised
96	by investigators in PID ²¹⁻²³ . Initial results suggest that specific conditioning regimens may be
97	preferable in certain PID diseases with severe co-morbidities ²⁴ , or with donor type and stem
98	cell source, or appear to have enhanced toxicity in children under one year of age ²⁵ .
99	We previously published results of 70 children with PID who received treosulfan in
100	combination with either cyclophosphamide ($n=30$) or fludarabine ($n=40$) with an overall
101	survival of 81% (median follow up 19 months) equivalent in those aged less or greater than
102	one year at time of transplant. Toxicity was low but worse after cyclophosphamide, and T
103	cell chimerism was significantly better after fludarabine ⁹ . The numbers involved in this study
104	were relatively small and follow-up fairly short. We now report 160 consecutive patients
105	with prolonged follow-up who have received homogeneous conditioning with treosulfan
106	and fludarabine without additional agents such as thiotepa, for a wide variety of PID
107	diagnoses using different types of donor and stem cell source.

108

109 <u>Methods</u>

110 Patients

111	We performed a retrospective study of 160 consecutive patients with PID who underwent
112	HSCT at the two UK supra-regional referral centres for PID; Great North Children's Hospital,
113	Newcastle upon Tyne Hospitals NHS Foundation Trust ($n=90$) and Great Ormond Street
114	Hospital NHS Foundation Trust ($n=70$) between February 2006 and July 2013. Information
115	was collected regarding patient demographics, diagnosis, donor match and stem cell source,
116	conditioning regimen, transplant related complications, graft-versus-host-disease (GVHD),
117	chimerism, immune reconstitution, outcome and length of follow up. Patients were not
118	randomised to receive a specific conditioning regimen and the choice of conditioning was
119	made by the treating medical team. Informed consent was taken from all parents according
120	to the local centre and European Blood and Marrow Transplantation and the Declaration of
121	Helsinki guidelines.

HLA typing was performed by molecular typing for HLA class I and II loci. The unrelated
donors were all 7-10/10 HLA matched. Bone marrow (BM *n*= 49), peripheral blood stem cells
(PBSC *n*=70) and cord blood (CB *n*=41) were used as a stem cell source. Peripheral blood was
used for the 4 haploidentical transplants, using the Clinimacs (Miltenyi Biotech Ltd, Surrey,
UK) systems for CD3/CD19 depletion.

Treosulfan was given at a dose of $42g/m^2$ (n=102), $36g/m^2$ (n=54) or $30g/m^2$ (n=4) in divided doses on 3 consecutive days. The lower dose of $36g/m^2$ was given to infants less than 1 year of age and $30g/m^2$ to Severe combined immunodeficiency (SCID) patients diagnosed at birth and transplanted very early. Fludarabine $150mg/m^2$ was given to all in 5 divided doses on consecutive days. Alemtuzumab 0.3 - 1.0mg/kg total dose was given to all the patients except those who received a matched sibling donor (MSD) graft (n=6), 1 recipient of

133 haj	ploidentical CD3	3/CD19 depleted	PBSCs and 30) recipients of C	CB, 3 of whom	received ATG,
---------	------------------	-----------------	--------------	--------------------------	---------------	---------------

- but 27 no serotherapy. This reflects a different approach to the use of cord blood between
- the 2 centres ^{26, 27}. GVHD prophylaxis in the majority of patients consisted of cyclosporine
- 136 with mycophenolate mofetil which was weaned from day plus 28 in the absence of GVHD.
- 137 Patients had weekly polymerase chain reaction (PCR) testing of blood for adenovirus,
- 138 Epstein-Barr virus (EBV), and cytomegalovirus (CMV). Acute GVHD (aGVHD) was assessed
- using the modified Seattle Glucksberg criteria²⁸. Chronic GVHD (cGVHD) was scored
- 140 according to the National Institutes of Health criteria²⁹.

141 Chimerism

- 142 Donor chimerism was measured by labelling blood with anti-CD3, -CD19 or -CD15 micro
- 143 beads and cell lines were separated using an autoMACS® automated bench-top magnetic
- 144 cell sorter (Miltenyi Biotec Ltd, Surrey, UK). Separated cells were assayed using variable
- 145 number of tandem repeat (VNTR) or XY fluorescence in situ hybridization analysis for sex
- 146 mismatched donor-recipient transplants.

147 Statistics

- 148 Statistical analysis was perfomed using STATA version 15. Descriptive analyses were
- performed using frequency, median, mean and range. Data were analysed using Pearson chi
- 150 square and Kruskall Wallis tests. Survival outcome was evaluated with Kaplan-Meier
- 151 estimates and log-rank test. Censoring of patients was defined at time of death or last follow
- up or second procedure for event free survival. Multivariable logistic regression analysis was
- 153 performed for evaluation for factors influencing aGVHD and chimerism at last follow up.

154

156 <u>Results</u>

- 157 There were 39 patients with SCID, 11 of whom were diagnosed at birth due to previous
- 158 family history, and 121 patients with other forms of combined immunodeficiency,
- 159 phagocytic disorders, innate defects and disorders of immune regulation as detailed in table
- 160 I. The median age at transplant was 1.36 years (range 0.09-18.25). Seventy-six patients were
- 161 transplanted at 12 months of age or less. There was no significant difference in their survival
- 162 compared with children transplanted over the age of 12 months (p=0.30).
- 163 Patients received HSCT from a 10/10 HLA matched unrelated donor (MUD) (n = 73), HLA
- 164 MUD (1 to 3 mismatched unrelated donor MMUD) (n = 54), MSD (n=12), other matched
- family donor (MFD) (n=17) or haploidentical mismatched family donor (MMFD) (n=4) using
- 166 treosulfan in combination with fludarabine 150mg/m².
- 167 Survival
- Median follow up was 4.3 years (0.8-9.4). Overall survival (OS) is shown in figure I. Twentyseven children died giving an OS of 83%. Only 10 died in the first 100 days (100 day survival
 of 94%), probability of 2 year survival was 88.3% (95% CI 82.1-92.5%).
- Most deaths were associated with infection and/or GVHD and are detailed in table II. One
 patient with CGD died on day +1 from multiorgan failure. He had previous Aspergillus and
 mycobacterial infection with severe multisystem inflammation and capillary leak despite
 high dose steroids and tumour necrosis factor alpha inhibitor (infliximab) prior to
- 175 transplant.
- 176 Event free survival is shown in figure II. An event was defined as death or additional
- 177 procedure. Four patients were successfully re-transplanted for graft loss or poor immune
- 178 reconstitution. In addition, 1 patient with Autoimmune lymphoproliferative syndrome

- 179 rejected a haploidentical graft associated with CMV reactivation and died before re-
- 180 transplantation. An additional 5 patients received a **boost** without conditioning from the
- 181 original donor. A further 3 patients received donor lymphocyte infusions. Details are shown
- in table IV.
- 183 Donor and stem cell source
- 184 Survival according to type of donor and stem cell source is shown in table III.
- 185 There was no significant difference in survival according to type of donor (p=0.5) or stem cell
- 186 source (p=0.23).
- 187 There has been an increase in the use of PBSC compared to BM (44% and 30.5%
- respectively) compared to our previous published series (17% and 57% respectively)⁹. The
- use of CB has remained the same at 26%.
- 190 There was a significant difference in median CD34+ stem cell dose according to stem cell
- 191 source (p<0.0001): Median dose in CB was 0.4 x 10⁶/kg (0.05-6.3), BM 5.8 x 10⁶/kg (1.1-19.5)
- 192 and PBSC 13.7 x 10^6 /kg (2.0-63.8).
- 193 Toxicity
- 194 Formal grading using the National Cancer Institute toxicity criteria was not carried out as it
- 195 was not standard practice at the time in our centres. Mild skin toxicity was common
- 196 including perianal ulceration, pigment changes and occasional peeling. Practice now includes
- 197 frequent bathing and the avoidance of barrier creams to the skin on the days that treosulfan
- 198 is given. Mucositis was mild. Three children had seizures after completing their 3 doses of
- treosulfan: all were already on cyclosporine at the time of seizures and all were under 4
- 200 months of age. No veno-occlusive disease (VOD) occurred.

201 GVHD

202	Seventy-four (46%) patients had aGVHD, but only 14(9%) had grade III/IV aGVHD. There
203	were 6 deaths associated with GVHD and its therapy. Twenty-four patients had cGVHD.
204	GVHD according to stem cell source is shown in Figure S1. There was no significant
205	association between acute or chronic GVHD and stem cell source (p=0.37). Twenty-seven of
206	41 who received CB stem cells did not receive serotherapy and experienced a particularly
207	high rate of both aGVHD (22 = 82%, although only 2 (7)% with Grade III/IV) and cGVHD (9 of
208	27, 33%). There was a significantly higher incidence of cGVHD in MMUD compared to MUD
209	(p= 0.04) but no significant difference in aGVHD either grade I/II or III/IV between MMUD
210	and MUD.

211 Viral reactivation

- 212 Fifty-six patients had evidence of 1 or more of CMV,EBV and adenovirus replication (35%)
- 213 detected by PCR in blood post transplant. CMV was detected in 30 patients (27 of whom
- 214 received treatment with foscarnet, ganciclovir or cidofovir), EBV in 21 (6 received treatment
- with rituximab, 1 of atumumab, 1 EBV CTLs), and adenovirus in 24 children (19 of whom
- 216 received treatment with cidofovir). In 4 cases these viral infections contributed to the death
- of the child.

218 Chimerism

- 219 There was no association between latest T chimerism being > 95% and stem cell source
- 220 (p=0.20). However there was a significant overall association with myeloid chimerism
- 221 (p=0.005): the odds of having myeloid chimerism > 95% being highest in the PBSC recipients,
- followed by cord then bone marrow. (Figure III)

223 There was no significant difference between unrelated donor and matched family don						
225 There was no significant unreferred between unrelated up to and matched family up to	າາວ	Thoro was no significant (difforanca hatwaan	uprolated donor ar	d matched family	1 donor
	223	THEFE Was no significant of	unierence between	unielateu uullui al	iu matcheu iamin	/ 001101

- 224 recipients in donor T (OR 0.9, 95% CI 0.26, 3.21, p=0.90) or myeloid cell chimerism)OR 1.52,
- 225 95% CI 0.52, 4.46, p=0.43).
- 226 There was no significant difference between those who received 36g/m² and 42g/m²
- treosulfan in terms of achieving T or myeloid chimerism > 95% (p=0.34 and 0.22
- 228 repsectively).
- 229 Immune reconstitution
- 230 Data on lymphocyte reconstitution are shown in supplementary Tables EI to EIII.
- 231 There was no association between stem cell source or serotherapy dose and the kinetics of T
- lymphocyte reconstitution (at 3 months, 6 months and 12 months post-HSCT).
- 233 There were significantly more patients with low age-related B cell numbers at 3 months post
- HSCT in the group that received PBSC, but this ceased to be significant by 6 months. Receipt
- of high dose Alemtuzumab (1mg/kg) was also associated with delayed B cell reconstitution,
- which ceased to be significant by 6 months post-HSCT.
- 237 Seven survivors remain on immunoglobulin replacement due to ongoing
- immunosuppression in 5, recipient myeloid chimerism with absent B cells in 1 Omenn's
- 239 syndrome patient and poor immune reconstitution despite 100% donor chimerism in a SCID
- 240 patient.
- 241 Newborn SCIDs
- 242 Eleven patients with SCID diagnosed at birth due to positive family history were transplanted
- using treosulfan 36g/m² (n=8) or 30g/m² (n=3) at less than 5 months of age. All are alive with
- 244 15-104 months follow up (median 55 months). All patients are off immunoglobulin

245	prophylaxis except 1 who was given rituximab for autoimmune haemolytic anaemia and has
246	not recovered B cell function. Of 10 patients 6 have 100% and the other 4 have between
247	74% and 97% donor B cell chimerism.

- 248 A further 13 patients who were not diagnosed at birth but presented early were also
- transplanted at the age of 4 months or less. Their diagnoses were: SCID (n=6), Omenn's
- syndrome (n=2), ZAP 70 (n=2), HLH (n=1), LAD (n=1), severe immune dysregulation (n=1),
- Eight are alive and well with a median follow up of 76 months (40 107). The 5 deaths are
- 252 detailed in table II.
- 253 Wiskott Aldrich Syndrome (WAS)
- Twenty patients have been transplanted for WAS all with unrelated donors: 14 MUD and 6

255 MMUD, 10 PBSC, 7 BM and 3 cords. All are alive and well with a median follow up of 52

256 months (20 - 102). Eighteen have 100% donor T chimerism, 1 has 82% and another 92%.

257 Thirteen have > 95% donor myeloid chimerism - the other 7 patients have between 12 and

258 92% donor myeloid chimerism. All have normal platelet counts, the patient with 12%

259 myeloid chimerism having had a splenectomy post HSCT.

260 Chronic Granulomatous Disease

261 Seventeen patients have been transplanted for CGD: 1 MSD, 12 MUD, 4 MMUD, 13 PBSC

and 4 BM. Six had fungal disease prior to transplant, 9 had colitis and 4 were second

transplants. Two patients died: one on day + 1 post transplant with multiorgan failure and

- the other from grade III GVHD 23 months post transplant. Fifteen are alive and well with a
- 265 median follow up of 53 months (24 66). Ten have >95% donor myeloid and T cell
- chimerism, 4 have > 40% T cell and > 70% myeloid cell chimerism and the remaining patient
- lost the graft and was successfully re-transplanted.

Haemophagocytic Lymphohistiocytosis (HLH)

- Sixteen patients have been transplanted for HLH with only 7 survivors (OS 44%). Six received
- CB with no serotherapy, 5 of whom died. An additional MSD BM recipient who did not
- receive serotherapy also died. Numbers are small but 6 of 9 who did receive serotherapy are
- alive (69%), 1 died D-1 from uncontrolled HLH, 1 had secondary graft failure and died of
- Aspergillus pneumonia and 1 had cGVHD and ongoing HLH.
- Survival curves for SCID, WAS, CGD and HLH are shown in figure IV. Survival at 2 years post-
- HSCT for SCID was 94.6% (80.2 - 98.6%), WAS 100%, CGD 93.7% (63.2 - 99.1%) and HLH
- 62.5% (34.8 – 81.0%)(Log rank test, p = 0.0001).

288 Discussion

HSCT following conditioning with treosulfan and fludarabine achieved a probability of 2 year 289 290 survival of 87.1% in 160 children with PID with a high level of complete or stable mixed 291 chimerism in the diseased lineage, sufficient to cure disease. As in our previous published 292 series there was a high survival rate in children transplanted under 1 year of age in whom 293 toxicity can be a problem with conventional and other reduced intensity conditioning regimens^{24, 25}. A 100 day survival of 94% demonstrates the low toxicity of this regimen 294 making it suitable for patients with PID who often have infection and organ damage prior to 295 296 HSCT. In particular in this series we have demonstrated a higher level of myeloid chimerism in recipients of PBSC compared to CB and BM, without an increased risk of grade III/IV acute 297 298 or chronic GVHD. There was no significant difference in survival according to type of donor or stem cell source although it would be interesting to evaluate this on a larger number of 299 300 patients.

With the advent of newborn screening for SCID and knowing that the outcome of HSCT is 301 better for those transplanted before the acquisition of infection and organ damage³⁰, it is 302 important to delineate the best treatment options for such infants³¹. Good long-term 303 304 immune reconstitution requires at least some donor myeloid chimerism, which is much more reliably achieved when pre-HSCT conditioning is given.^{32, 33} This report provides 305 306 evidence of the safety of using treosulfan in very young infants. Eleven SCID patients 307 diagnosed at birth due to previous family history and transplanted aged 4 months or under 308 are alive, 10 with good immune reconstitution.

The outcome for patients with HLH was poor in contrast to Lehmberg's report of 19 patients with HLH following HSCT with treosulfan, fludarabine, alemtuzumab, with or without thiotepa, who achieved 100% survival. Of note in Lehmberg's report all patients including

MSD recipients were given alemtuzumab which is likely important due to the hyperinflammatory nature of the disease⁸. In particular in our series the combination of cord blood without serotherapy had a poor outcome and we strongly recommend the inclusion of serotherapy in future for all patients with HLH. Patients with HLH are unusual in terms of those with PID in that they receive etoposide to attain remission before HSCT, and survival is dictated not only by co-morbidities leading to transplant related mortality, but also by failure to attain complete remission at time of HSCT.

Whilst good results in terms of survival have been achieved using reduced intensity 319 320 regimens such as the combination of fludarabine and melphalan, secure engraftment can be an issue particularly in PID disorders where high levels of donor myeloid chimerism are 321 required to achieve cure^{22, 24, 34}. In this study we show that the use of PBSCs is associated 322 with significantly higher myeloid chimerism without any increase in severe GVHD. The 323 324 relatively high incidence of grade I/II GVHD may reflect the low threshold for making a 325 clinical diagnosis of skin GVHD without biopsy, which in other centres may have been 326 labelled as an engraftment rash. Further work is required to determine optimal timing and dosing of serotherapy to minimise the risks of GvHD and viral reactivation³⁵. Whilst there 327 was no significant difference in the incidence of acute GVHD between MUD and MMUD 328 329 donors there was a significantly greater risk of chronic GVHD with MMUD. Newer techniques 330 of T cell depletion such as CD3+TCR alpha/beta together with CD19+ depletion are enabling 331 a wider spectrum of non SCID PID patients to receive successful haploidentical grafts and will 332 lead to fewer MMUD being used³⁶⁻³⁹.

Previously, excellent results have been achieved using a low dose targeted busulfan regimen in combination with fludarabine⁴⁰. Prospective studies are needed to compare this to treosulfan and fludarabine. Data on the longterm effects of treosulfan on fertility are lacking and need to be compared to other agents¹⁹. In addition, further pharmacokinetic studies on

treosulfan are needed to identify whether specific PK targeting is advantageous, as for busulfan⁴¹⁻⁴³. Many centres are using additional thiotepa in combination with treosulfan and fludarabine, but in a recent multicentre study of patients with CGD this did not give superior results in terms of overall survival, graft survival or higher myeloid chimerism⁵, and may result in additional toxicities. However numbers were small and further studies are warranted.

This study shows that the combination of treosulfan and fludarabine is suitable for conditioning a diverse range of PID diseases, regardless of age, and with all types of donor and stem cell source, providing a uniformly applicable conditioning strategy in PID. One caveat to this may be children with DNA repair disorders where there are few data^{44, 45}.

347 Acknowledgments

Supported by NIHR Great Ormond Street Hospital Biomedical Research Centre. The views
expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the
Department of Health.

351 We would like to thank Patricia Tierney and Zoe Allwood for their contribution to data 352 management.

353 Authorship

- 354 Contribution: M.A.S., K.R., A.R.G., and P.V. designed the study and wrote the paper; I.J.A.H.,
- 355 M.S.P., and M.A.S. analyzed data; and Z.N., R.E., R.C., P.A., A.W., T.F., M.A., S.H., W.Q.,
- 356 H.B.G.and A.C. contributed to writing the paper.

357

359 References

360	1.	Boztug H, Sykora KW, Slatter M, Zecca M, Veys P, Lankester A, et al. European
361		Society for Blood and Marrow Transplantation Analysis of Treosulfan Conditioning
362		Before Hematopoietic Stem Cell Transplantation in Children and Adolescents With
363		Hematological Malignancies. Pediatr Blood Cancer 2016; 63:139-48.
364	2.	Boztug H, Zecca M, Sykora KW, Veys P, Lankester A, Slatter M, et al. Treosulfan-
365		based conditioning regimens for allogeneic HSCT in children with acute
366		lymphoblastic leukaemia. Ann Hematol 2015; 94:297-306.
367	3.	Wachowiak J, Sykora KW, Cornish J, Chybicka A, Kowalczyk JR, Gorczynska E, et al.
368		Treosulfan-based preparative regimens for allo-HSCT in childhood hematological
369		malignancies: a retrospective study on behalf of the EBMT pediatric diseases
370		working party. Bone Marrow Transplant 2011; 46:1510-8.
371	4.	Beier R, Schulz A, Honig M, Eyrich M, Schlegel PG, Holter W, et al. Long-term follow-
372		up of children conditioned with Treosulfan: German and Austrian experience. Bone
373		Marrow Transplant 2013; 48:491-501.
374	5.	Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, et al.
375		Treosulfan based conditioning for allogeneic HSCT in children with chronic
376		granulomatous disease: a multicentre experience. Blood 2016; 128(3):440-448
377	6.	Slatter MA, Boztug H, Potschger U, Sykora KW, Lankester A, Yaniv I, et al. Treosulfan-
378		based conditioning regimens for allogeneic haematopoietic stem cell transplantation
379		in children with non-malignant diseases. Bone Marrow Transplant 2015; 50:1536-41.
380	7.	Burroughs LM, Nemecek ER, Torgerson TR, Storer BE, Talano JA, Domm J, et al.
381		Treosulfan-based conditioning and hematopoietic cell transplantation for
382		nonmalignant diseases: a prospective multicenter trial. Biol Blood Marrow
383		Transplant 2014; 20:1996-2003.

384	8.	Lehmberg K, Albert MH, Beier R, Beutel K, Gruhn B, Kroger N, et al. Treosulfan-based
385		conditioning regimen for children and adolescents with hemophagocytic
386		lymphohistiocytosis. Haematologica 2014; 99:180-4.
387	9.	Slatter MA, Rao K, Amrolia P, Flood T, Abinun M, Hambleton S, et al. Treosulfan-
388		based conditioning regimens for hematopoietic stem cell transplantation in children
389		with primary immunodeficiency: United Kingdom experience. Blood 2011; 117:4367-
390		75.
391	10.	Mathews V, George B, Viswabandya A, Abraham A, Ahmed R, Ganapule A, et al.
392		Improved clinical outcomes of high risk beta thalassemia major patients undergoing
393		a HLA matched related allogeneic stem cell transplant with a treosulfan based
394		conditioning regimen and peripheral blood stem cell grafts. PLoS One 2013;
395		8:e61637.
396	11.	Bernardo ME, Piras E, Vacca A, Giorgiani G, Zecca M, Bertaina A, et al. Allogeneic
397		hematopoietic stem cell transplantation in thalassemia major: results of a reduced-
398		toxicity conditioning regimen based on the use of treosulfan. Blood 2012; 120:473-6.
399	12.	Greystoke B, Bonanomi S, Carr TF, Gharib M, Khalid T, Coussons M, et al. Treosulfan-
400		containing regimens achieve high rates of engraftment associated with low
401		transplant morbidity and mortality in children with non-malignant disease and
402		significant co-morbidities. Br J Haematol 2008; 142:257-62.
403	13.	Choudhary D, Sharma SK, Gupta N, Kharya G, Pavecha P, Handoo A, et al. Treosulfan-
404		thiotepa-fludarabine-based conditioning regimen for allogeneic transplantation in
405		patients with thalassemia major: a single-center experience from north India. Biol
406		Blood Marrow Transplant 2013: 19:492-5.

407	14.	Strocchio L, Zecca M, Comoli P, Mina T, Giorgiani G, Giraldi E, et al. Treosulfan-based
408		conditioning regimen for allogeneic haematopoietic stem cell transplantation in
409		children with sickle cell disease. Br J Haematol 2015; 169:726-36.
410	15.	Dinur-Schejter Y, Krauss AC, Erlich O, Gorelik N, Yahel A, Porat I, et al. Bone marrow
411		transplantation for non-malignant diseases using treosulfan-based conditioning.
412		Pediatr Blood Cancer 2014.
413	16.	Sjoo F, Hassan Z, Abedi-Valugerdi M, Griskevicius L, Nilsson C, Remberger M, et al.
414		Myeloablative and immunosuppressive properties of treosulfan in mice. Exp
415		Hematol 2006; 34:115-21.
416	17.	Glowka FK, Romanski M, Wachowiak J. High-dose treosulfan in conditioning prior to
417		hematopoietic stem cell transplantation. Expert Opin Investig Drugs 2010; 19:1275-
418		95.
419	18.	Malar R, Sjoo F, Rentsch K, Hassan M, Gungor T. Therapeutic drug monitoring is
420		essential for intravenous busulfan therapy in pediatric hematopoietic stem cell
421		recipients. Pediatr Transplant 2011; 15:580-8.
422	19.	Panasiuk A, Nussey S, Veys P, Amrolia P, Rao K, Krawczuk-Rybak M, et al. Gonadal
423		function and fertility after stem cell transplantation in childhood: comparison of a
424		reduced intensity conditioning regimen containing melphalan with a myeloablative
425		regimen containing busulfan. Br J Haematol 2015.
426	20.	Lawitschka A, Faraci M, Yaniv I, Veys P, Bader P, Wachowiak J, et al. Paediatric
427		reduced intensity conditioning: analysis of centre strategies on regimens and
428		definitions by the EBMT Paediatric Diseases and Complications and Quality of Life
429		WP. Bone Marrow Transplant 2015; 50:592-7.
430	21.	Chiesa R, Veys P. Reduced-intensity conditioning for allogeneic stem cell transplant
431		in primary immune deficiencies. Expert Rev Clin Immunol 2012; 8:255-66; quiz 67.

432	22.	Rao K, Amrolia PJ, Jones A, Cale CM, Naik P, King D, et al. Improved survival after
433		unrelated donor bone marrow transplantation in children with primary
434		immunodeficiency using a reduced-intensity conditioning regimen. Blood 2005;
435		105:879-85.
436	23.	Burroughs LM, Storb R, Leisenring WM, Pulsipher MA, Loken MR, Torgerson TR, et
437		al. Intensive postgrafting immune suppression combined with nonmyeloablative
438		conditioning for transplantation of HLA-identical hematopoietic cell grafts: results of
439		a pilot study for treatment of primary immunodeficiency disorders. Bone Marrow
440		Transplant 2007; 40:633-42.
441	24.	Straathof KC, Rao K, Eyrich M, Hale G, Bird P, Berrie E, et al. Haemopoietic stem-cell
442		transplantation with antibody-based minimal-intensity conditioning: a phase 1/2
443		study. Lancet 2009; 374:912-20.
444	25.	Ritchie DS, Seymour JF, Roberts AW, Szer J, Grigg AP. Acute left ventricular failure
445		following melphalan and fludarabine conditioning. Bone Marrow Transplant 2001;
446		28:101-3.
447	26.	Chiesa R, Gilmour K, Qasim W, Adams S, Worth AJ, Zhan H, et al. Omission of in vivo
448		T-cell depletion promotes rapid expansion of naive CD4+ cord blood lymphocytes
449		and restores adaptive immunity within 2 months after unrelated cord blood
450		transplant. Br J Haematol 2012; 156:656-66.
451	27.	Lane JP, Evans PT, Nademi Z, Barge D, Jackson A, Hambleton S, et al. Low-dose
452		serotherapy improves early immune reconstitution after cord blood transplantation
453		for primary immunodeficiencies. Biol Blood Marrow Transplant 2014; 20:243-9.
454	28.	Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994
455		Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995;
456		15:825-8.

457	29.	Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National
458		Institutes of Health Consensus Development Project on Criteria for Clinical Trials in
459		Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group
460		report. Biol Blood Marrow Transplant 2015; 21:389-401 e1.
461	30.	Brown L, Xu-Bayford J, Allwood Z, Slatter M, Cant A, Davies EG, et al. Neonatal
462		diagnosis of severe combined immunodeficiency leads to significantly improved
463		survival outcome: the case for newborn screening. Blood 2011; 117:3243-6.
464	31.	Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having
465		severe combined immunodeficiency by means of newborn screening. J Allergy Clin
466		Immunol 2017; 139:733-42.
467	32.	Borghans JA, Bredius RG, Hazenberg MD, Roelofs H, Jol-van der Zijde EC, Heidt J, et
468		al. Early determinants of long-term T-cell reconstitution after hematopoietic stem
469		cell transplantation for severe combined immunodeficiency. Blood 2006; 108:763-9.
470	33.	Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D, et al. Long-term
471		outcome after hematopoietic stem cell transplantation of a single-center cohort of
472		90 patients with severe combined immunodeficiency. Blood 2009; 113:4114-24.
473	34.	Klaudel-Dreszler MA, Kalwak K, Kurenko-Deptuch M, Wolska-Kusnierz B,
474		Heropolitanska-Pliszka E, Pietrucha B, et al. Treosulfan-based conditioning regimen
475		in a second matched unrelated peripheral blood stem cell transplantation for a
476		pediatric patient with CGD and invasive aspergillosis, who experienced initial graft
477		failure after RIC. Int J Hematol 2009; 90:571-5.
478	35.	Marsh RA, Lane A, Mehta PA, Neumeier L, Jodele S, Davies SM, et al. Alemtuzumab
479		levels impact acute GVHD, mixed chimerism, and lymphocyte recovery following
480		alemtuzumab, fludarabine, and melphalan RIC HCT. Blood 2016; 127:503-12.

481	36.	Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-
482		haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in
483		children with nonmalignant disorders. Blood 2014; 124:822-6.
484	37.	Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L, et
485		al. Single-Center Experience of Unrelated and Haploidentical Stem Cell
486		Transplantation with TCRalphabeta and CD19 Depletion in Children with Primary
487		Immunodeficiency Syndromes. Biol Blood Marrow Transplant 2015; 21:1955-62.
488	38.	Bertaina A, Pitisci A, Sinibaldi M, Algeri M. T Cell-Depleted and T Cell-Replete HLA-
489		Haploidentical Stem Cell Transplantation for Non-malignant Disorders. Curr Hematol
490		Malig Rep 2017; 12:68-78.
491	39.	Shah RM, Elfeky R, Nademi Z, Qasim W, Amrolia P, Chiesa R, et al. TCRalphabeta+
492		and CD19+ cell depleted Haploidentical and Mismatched Hematopoietic Stem Cell
493		Transplantation in Primary Immune Deficiency. J Allergy Clin Immunol 2017. In press
494	40.	Gungor T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-
495		intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in
496		patients with chronic granulomatous disease: a prospective multicentre study.
497		Lancet 2014; 383:436-48.
498	41.	Ten Brink MH, Ackaert O, Zwaveling J, Bredius RG, Smiers FJ, den Hartigh J, et al.
499		Pharmacokinetics of treosulfan in pediatric patients undergoing hematopoietic stem
500		cell transplantation. Ther Drug Monit 2014; 36:465-72.
501	42.	Ten Brink MH, Zwaveling J, Swen JJ, Bredius RG, Lankester AC, Guchelaar HJ.
502		Personalized busulfan and treosulfan conditioning for pediatric stem cell
503		transplantation: the role of pharmacogenetics and pharmacokinetics. Drug Discov
504		Today 2014; 19:1572-86.

505	43.	Ansari M, Theoret Y, Rezgui MA, Peters C, Mezziani S, Desjean C, et al. Association
506		between busulfan exposure and outcome in children receiving intravenous busulfan
507		before hematopoietic stem cell transplantation. Ther Drug Monit 2014; 36:93-9.
508	44.	Cowan MJ, Gennery AR. Radiation-sensitive severe combined immunodeficiency:
509		The arguments for and against conditioning before hematopoietic cell
510		transplantationwhat to do? J Allergy Clin Immunol 2015; 136:1178-85.
511	45.	Slack J, Albert MH, Balashov D, Belohradsky BH, Bertaina A, Bleesing J, et al.
512		Outcome of hematopoietic cell transplantation for DNA double-strand break repair
513		disorders. J Allergy Clin Immunol 2017.In press
514		S
515		
516		
517		
518		× O
519		
520		
521		
522		
522		
523		
524		
525		

- 527
- 528 Figure I Overall survival
- 529
- 530 **Figure II** Event free survival.
- 531 An event was death or additional procedure
- 532 Figure III
- 533 T and myeloid cell chimerism according to stem cell source. All patients who survived more
- than 1 year post HSCT were included. Four patients were excluded for whom there was no
- 535 split cell lineage chimerism available.
- 536 **Figure IV** Overall survival by diagnosis
- 537 Survival at 2 years post-HSCT: SCID = 94.6% (80.2 98.6%), WAS = 100%, CGD = 93.7% (63.2
- 538 99.1%) and HLH = 62.5% (34.8 81.0%)(Log rank test, p = 0.0001).
- 539
- 540 Tables
- 541 Table I. Patient diagnoses

Diagnosis	Ø	Number
SCID	6	39
WAS	N	20
CGD		17
HLH		18
МНС ІІ		7
Omenn's		5
СНН		4
IPEX		3
CD40L		3

DOCK8	3
Colitis	3
LAD	3
NKT	2
ZAP70	2
РІЗК	2
Severe immune dysregulation	9
Combined Immunodeficiency	8
ΧΙΑΡ	1
XLP-like	1
ALPS	1
CTLA4	1
IRF8	1
FADD	1
ІТК	1
NEMO	
Undefined neutrophil disorder	1
Hyper IgE	1
CTP synthase1	1
AIL	1

542 Abbreviations: SCID Severe Combined Immunodeficiency, WAS Wiskott Aldrich syndrome, 543 CGD Chronic granulomatous disease, HLH Haemophagocytic lymphohistiocytosis, SID Severe 544 Immune dysregulation, CID Combined immunodeficiency, MHC II Major Histocompatibility 545 Class II deficiency, LAD Leukocyte adhesion deficiency, CHH Cartilage hair hypoplasia, IPEX 546 Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, CD40L 547 CD40Ligand deficienc, DOCK 8 Dedicator of cytokinesis 8 deficiency, NKT Natural Killer T cell 548 deficiency, ZAP 70 Zeta-chain-associated protein kinase 70 deficiency, PI3K 549 Phosphatidylinositide 3-kinase deficiency, XLP-like X Lymphoproliferative-like syndrome, 550 XIAP X-linked inhibitor of apoptosis deficiency, ALPS Autoimmune lymphoproliferative 551 syndrome, CTLA 4 Cytotoxic T lymphocyte antigen 4 deficiency, IRF 8 Interferon regulatory factor 8 deficiency, FADD Fas-associated death domain protein deficiency, ITK IL-2-inducible 552

560

561 Table II. Deaths

Table II. Deaths		×		
Diagnosis	Donor	Time post HSCT	Cause	
HLH	MUD BM	Day-2	HLH, toxicity	
CGD	MSD BM	Day+1	Severe inflammation, toxicity	
HLH	MMUD cord	Day+7	Infection (Parainfluenza 3)	
Autoimmune enteropathy	MMUD cord	Day+23	Pulmonary haemorrhage	
SCID. Intestinal atresias	MMUD cord	1 month	Infection (Pseudomonas)	
нін	MUD cord	Day+34	Pulmonary haemorrhage	
ны	MMUD cord	1.4 months	Infection (Parainfluenza 3)	
HLH	MMUD cord	2 months	Infection	
CID	MMUD cord	2 months	Multiorgan failure	
Omenn's	MUD cord	2.5 months	GVHD grade IV	
CID	MUD PBSC	5 months	GVHD grade IV	
Severe Immune dysregulation	MUD PBSC	5 months	Infection (adenovirus)	
HLH	MUD PBSC	5 months	Infection (Aspergillus)	

			Secondary graft failure.
ALPS	MMFD PBSC	6 months	Infection (CMV)
			Graft failure
CID	MMUD BM	6 months	CD20 Neg PTLD, EBV
нін	MFD BM	8 months	GVHD
Autoimmune	MSD BM	10 months	Infection (adenovirus)
enteropathy			Respiratory failure
HLH	MMUD cord	10 months	GVHD
		C	Infection (RSV)
IPEX	MMUD PBSC	11 months	Respiratory failure
Omenn's	MUD BM	11 months	GVHD
		10	Cerebral infarcts
CGD	MUD PBSC	23 months	Infection (influenza)
	0		GVHD
XIAP	MUD PBSC	24 months	Infection (JC virus Leukoencephalopathy)
CγC SCID Thymectomy due to cardiac surgery	MFD BM	24 months	Respiratory failure post DLI
5			
Omenn's RAG 1	MSD BM	25 months	Pneumonitis, Chronic lung disease
RAG SCID	MSD BM	33 months	Infection whilst being treated for Ph+ pre B cell ALL (absent donor myeloid and B cell chimerism)
HLH	MSD BM	36 months	MDS/AML

	SCID	MMUD cord	48 months	Infection
562				
562 563 564 565 566 567 568 569 570 571 572 573 573	Abbreviations: lymphohistiocy Immunodeficie lymphoprolifer enteropathy, X Common gamn Peripheral bloc MMUD Mismat host disease, C lymphopolifera lymphocyte inf Myelodysplasia	HSCT Haematopoietic stem tosis, CGD Chronic granulor ncy, CID Combined immunc ative syndrome, IPEX Immu -linked syndrome, XIAP X-lir na chain, RAG Recombinatir od stem cells, MUD Matcheo tched unrelated donor, MM MV Cytomegalovirus, EBV E tive disease, RSV Respirator usion, Ph Philadelphia, ALL	cell transplantation, natous disease, SCID odeficiency, ALPS Aut ne dysregulation, pol ked inhibitor of apop activating gene, BM I unrelated donor, M FD Mismatched fami pstein Barr virus, PTL ry syncytial virus, JC J Acute lymphocytic le emia.	HLH Haemophagocytic Severe Combined oimmune lyendocrinopathy, otosis deficiency, CγC Bone marrow, PBSC SD Matched sibling donor, ly donor, GVHD Graft versus D Post transplant ohn Cunningham, DLI Donor ukaemia, MDS
575			C	G
576			5	
577				
578			0	
579			6.	
580				
581		×0		
582		0		
583				
584		G		
585				
586				
587				
588				
589				
590				
591				
592				
593				

594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	
605	Table III. Survival according to donor type and stem cell source

There was no significant difference in survival according to type of donor (p=0.50) or stemcell source (p=0.23).

608 4 mismatched family donor recipients were excluded due to the small number.

Stem cell source/	PBSC	BM	Cord	Total	Survival
Donor		X)		
MUD	44	15	14	73	64 (88.6%)
MMUD	13	14	27	54	44 (83.6%)
MFD	9	20	0	29	22 (75 9%)
	(2	(10			(73.376)
	MSD)	MSD)			
Total	66	49	41	156	130 (83.3%)
Survival	60	39	31	130	
	(90.9%)	(79.6%)	(75.6%)	(83.3%)	

- Abbreviations: PBSC Peripheral blood stem cells, BM Bone marrow, MUD Matched unrelated
- donor, MSD Matched sibling donor, MMUD Mismatched unrelated donor, MFD Matched
- family donor, MMFD Mismatched family donor

Table IV Second procedures

Table IV Seco	ond proced	lures	anus	
Diagnosis	1 st HSCT	Indication	Time to/type 2 nd procedure	Outcome
Undefined neutrophil disorder	MSD BM	25% myeloid chimerism. Abnormal neutrophils	10m MUD PBSC Bu/flu/alem	Alive and well
CGD	MUD PBSC	Dropped to 0% myeloid chimerism	DLI for slipping chimerism - no effect, then 19m MUD PBSC Bu/flu/alem	Alive and well
ADA	MUD cord	Poor immune reconstitution	12m MUD PBSC Flu/mel/alem	Alive and well
СНН	MMUD cord	Poor immune reconstitution	16m MMUD PBSC Flu/mel/alem	Alive and well
HLH	MUD PBSC	Secondary graft failure	Unconditioned unmanipulated	Died infection (Aspergillus) 5m post 1st

			boost 4m	HSCT
FADD	MFD PBSC	Low level mixed chimerism	Unconditioned unmanipulated boost 10m	Stable low level mixed chimerism Alive
СНН	MMUD BM	Aplasia despite 100% donor chimerism	Unconditioned unmanipulated boost 7m	100% donor Alive and well
CGD	MUD PBSC	GVHD Hypocellular	Unconditioned unmanipulated boost 22m	Died infection (influenza) GVHD 23m post 1 st HSCT
XIAP	MUD PBSC	Hypocellular	DLI then unconditioned unmanipulated boost 17m	Died Infection (JC leukoencephalopathy) 2 years post 1 st HSCT
SCID Thymectomy	MFD BM	Poor immune reconstitution	DLI 1 year post	Died respiratory failure 2yrs post HSCT
Autoimmune enteropathy	MSD BM	Poor immune reconstitution Adenovirus	DLI 5m post	Died infection (adenovirus) Respiratory failure 10m post HSCT
SCID	MUD BM	Poor immune reconstitution despite 100% donor chimerism	DLI 33m post	Liver acute GVHD grade III post DLI, resolved. Alive and well but ongoing poor immune reconstitution

624

Abbreviations: CGD Chronic granulomatous disease, ADA Adenosine deaminase, CHH
Cartilage hair hypoplasia, HLH Haemophagocytic lymphohistiocytosis, FADD Fas-associated
death domain protein deficiency, XIAP X-linked inhibitor of apoptosis deficiency, PBSC
Peripheral blood stem cells, BM Bone marrow, MUD Matched unrelated donor, MSD
Matched sibling donor, MMUD Mismatched unrelated donor, MFD Matched family donor,
DLI Donor lymphocyte infusion, m months, GVHD Graft versus host disease, Bu Busulfan, flu
fludarabine, mel melphalan, alem alemtuzumab,

632

633

634 Supplementary tables

- 635 **Table EI** Immune reconstitution T cells according to stem cell source
- 636 There was no association between the kinetics of T cell reconstitution and different stem cell
- 637 sources at 3 months, 6 months and 12 months post-HSCT.
- 638 **Table E2** Immune reconstitution B cells according to stem cell source
- 639 There were significantly more patients with low B cells at 3 months post HSCT in the group
- 640 that received PBSC. This ceased to be significant by 6 months.
- 641 **Table E3** Immune reconstitution T cells according to serotherapy
- 642 There was no association between the kinetics of T cell reconstitution and different
- 643 serotherapy doses at 3 months, 6 months and 12 months post-HSCT.
- 644 **Table E4** Immune reconstitution B cells according to serotherapy

Cex

- 645 There were significantly more patients with low B cells at 3 months post HSCT in the group
- 646 that received Alemtuzumab 1mg/kg. This ceased to be significant by 6 months.
- 647 Supplementary Figure S1
- 648 Graft versus host disease according to stem cell source
- 649 There was no significant association between acute or chronic GVHD and stem cell source
- 650 (p=0.37).
- 651
- 652
- 653
- 654
- 655
- 656
-
- 657
- 658
- 659

660 Figures

661 Figure I

662

663	At 2 years post-HSCT = 88.3% (9	95% CI 82.1 – 92.5%)
-----	---------------------------------	----------------------

664 At 5 years post-HSCT = 77.5% (95% Cl 77.2 – 89.3%)

ACCOR

666

- 668 Figure II
- 669 An event was death or additional procedure

703

704 Figure 3.jpg

ig