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Abstract

We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift
millimeter-selected dusty star-forming galaxy to date, SPT-S J031132−5823.4 (hereafter SPT0311−58), at
z 6.900 0.002=  . SPT0311−58 was discovered via its 1.4 mm thermal dust continuum emission in the South
Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large
Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6–5), CO(7–6), and C I[ ](2–1), and
subsequently was confirmed by detections of CO(3–2) with the Australia Telescope Compact Array and C II[ ] with
APEX. We constrain the properties of the ISM in SPT0311−58 with a radiative transfer analysis of the dust
continuum photometry and the CO and C I[ ] line emission. This allows us to determine the gas content without
ad hoc assumptions about gas mass scaling factors. SPT0311−58 is extremely massive, with an intrinsic gas mass
of M M3.3 1.9 10gas

11=  ´ . Its large mass and intense star formation is very rare for a source well into the
epoch of reionization.

Key words: early universe – galaxies: high-redshift – galaxies: star formation

1. Introduction

Searches for the most distant galaxies have now reached as far
back as the first billion years in the history of the universe and
are peeking into the epoch of reionization (EoR) at z6 11< <
(Planck Collaboration et al. 2016). Some of the most important
questions in observational cosmology concern the timescale over
which the reionization of the universe took place, the
identification of the objects providing the ionizing photons and
the enrichment of galaxies with metals. It is expected that star-
forming galaxies play a major role in the reionization, so to
understand the evolution of the universe from its neutral

beginning to its present ionized state we must study the galaxies
in the EoR (see reviews by Bouwens 2016; Stark 2016). How
galaxies formed and evolved in the EoR is unknown. Galaxies in
this era are currently being found from rest-frame ultraviolet
(UV) surveys (e.g., Ouchi et al. 2010). Most of these systems,
however, are low-mass star-forming galaxies for which the
enrichment of the cold ISM is difficult to study even in long
integrations with the Atacama Large Millimeter/submillimeter
Array (ALMA; Bouwens et al. 2016).
Massive dusty star-forming galaxies (DSFGs; Casey et al. 2014)

are not expected to be found into the EoR because it is difficult to
produce their large dust masses within a few hundred Myr of the
Big Bang (Ferrara 2010; Mattsson 2015). Recent wide-area
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Herschel and optical QSO surveys, however, have revealed dusty
galaxies out to z∼6–7 (e.g., Venemans et al. 2012; Riechers
et al. 2013). These systems offer the unique opportunity to study
extreme cases of metal/dust enrichment of the ISM within the
EoR in the most massive overdensities at these redshifts.

Here, we present the DSFG SPT-S J031132−5823.4 (here-
after SPT0311−58) discovered in the South Pole Telescope
(SPT)-SZ survey (Carlstrom et al. 2011; Vieira et al. 2013).
SPT0311−58 is the highest-redshift millimeter-selected DSFG
known to date, located well into the EoR at a redshift of
z 6.900 0.002=  . With this source, we take a step of almost
100Myr closer to the Big Bang than the previously most
distant DSFG at z=6.34 found by Riechers et al. (2013),
bringing us ∼760Myr away from Big Bang. Throughout the
paper, we assume a ΛCDM cosmology with H0=70 km s−1

Mpc−1, 0.7W =L , and 0.3MW = .

2. Observational Results

2.1. Determining the Redshift

The redshift search for SPT0311-58 was performed in
ALMA band 3 by combining five tunings covering
84.2–114.9 GHz (project ID: 2015.1.00504.S; see Weiß et al.
2013; Strandet et al. 2016 for further details on the observing
setup). The observations were carried out on 2015 December
28 and 2016 January 2 in the Cycle 3 compact array
configuration. The number of antennas varied from 34 to 41,
with baselines up to 300 m yielding a synthesized beam size of
2. 2 3. 0 – . Typical system temperatures for the observations

were T 50 80 Ksys = – (SSB). Flux calibration was done with
Uranus, bandpass calibration with J0334−4008, and phase
calibration with J0303−6211 and J0309−6058. The on-source
time varied between 60 and 91 s per tuning, accounting for a
total of 6 minutes and 10 s. The data were processed using the
Common Astronomy Software Application package (McMullin
et al. 2007).
We created a cleaned 3 mm continuum image combining all

five tunings. This yields a high signal-to-noise ratio (S/N)
detection of ∼35. We also generated a spectral cube using
natural weighting with a channel width of 19.5 MHz
(50–65 km s−1 for the highest and lowest observing frequency,
respectively), which gives a typical noise per channel of
0.9–1.7 mJy beam−1.
The ALMA 3mm spectrum of SPT0311−58 was extracted

at the centroid of the 3 mm continuum emission (α:
03h11m33 142 δ: −58°23′33 37 (J2000)) and is shown in
Figure 1. We detect emission in the CO J=6–5 and 7–6 lines
and the P PC I 3

2
3

1-[ ] line (in the following 2–1) and their
noise-weighted line frequencies yield a redshift of
z 6.900 0.002=  . We also see hints of H2O(211–202) and
CH+(1–0), but these are not formally detected in this short
integration.
The line and continuum properties are given in Table 1. For

the fit to the CO(7–6) and C I[ ](2–1) lines we fix the line width
to the mean value derived from the unblended lines. Their
uncertainties include the variations of the line intensities for a
fit where the line width is a free parameter.

Figure 1. The lower part of the figure shows the ALMA 3 mm spectrum of SPT0311−58 spanning 84.2–114.9 GHz. The spectrum has been binned to best show the
lines. Transitions labeled in black are detected, and gray labels indicate where other transitions should be. The red line indicates the zeroth-order baseline. The sub-
panels above the spectrum show, from left to right, the continuum-subtracted spectra of ATCA CO(3–2), ALMA CO(6–5), ALMA CO(7–6) and C I(2–1), and APEX
C II[ ] with ALMA C II[ ] overlaid as a solid black histogram. Gaussian fits to the spectra are shown in red.
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2.2. Observations of CO(3–2) and [CII]

We used the 7 mm receivers of the Australia Telescope
Compact Array (ATCA) to observe the CO(3–2) line (project
ID: CX352). Observations were carried out with the hybrid
H214 array, which yields a beam size of 5″–6″ at the observing
frequency of 43.77 GHz. The line is detected with an S/N of
5.0 at a frequency and line width consistent with the ALMA
derived redshift and line profiles.

In addition, we used the Atacama Pathfinder Experiment
(APEX) to observe C II[ ] at 240.57 GHz. The observations were
carried out in 2016 April–May in good weather conditions with
a precipitable water vapor content <1.5 mm (project IDs:
E-296.A-5041B-2016 and M-097.F-0019-2016). The observa-
tions were performed and the data processed as described by
Gullberg et al. (2015). The C II[ ] line is detected with an S/N of
4.3. From ALMA high spatial resolution observations of the
C II[ ] line (D. P. Marrone et al. 2017, in preparation; project ID:
2016.1.01293.S), we extract a C II[ ] spectrum and flux, which
are in good agreement with the APEX data. We adopt the
ALMA C II[ ] flux hereafter.

The line parameters derived from Gaussian fits to the data
are given for both transitions in Table 1; the spectra are shown
in Figure 1.

2.3. FIR Dust Continuum

Table 1 (right) summarizes the dust continuum observations
of SPT0311−58. With seven broadband continuum detections
between 3 mm to 250 μm, the far-infrared spectral energy
distribution (SED) of SPT0311−58 is thoroughly covered.

The SPT 1.4 and 2.0 mm flux densities were extracted and
deboosted as described by Mocanu et al. (2013). We obtained a
870 μm map with APEX/LABOCA (project ID: M-091.F-
0031-2013). The data were obtained and reduced, and the flux
was extracted following Greve et al. (2012). Using Herschel/
SPIRE, we obtained maps at 250, 350, and 500 μm (project ID:
DDT_mstrande_1). The data were obtained and reduced as
described by Strandet et al. (2016).

From our photometry, we derive an apparent far-infrared
(FIR) luminosity (integrated between 40 and 120 μm rest) of
L 4.1 0.7 10FIR

13=  ´ Le (see Figure 2).

3. Characterizing the ISM in SPT0311−58

3.1. Source Properties from High-resolution Imaging

ALMA high spatial resolution imaging (angular resolution of
0.3×0 5) of the C II[ ] line in SPT0311−58 shows that the
system consists of two galaxies in close proximity (D. P.
Marrone et al. 2017, in preparation). Only the western source is
significantly gravitationally magnified, and this source dom-
inates the apparent continuum luminosity ( 90> % of the rest-
frame 160 μm continuum flux density is emitted by the western
source). In the following, we assume that the contribution from
the eastern source is negligible and models the system as a
single object, using the system magnification of 1.9m = (D. P.
Marrone et al. 2017, in preparation).

3.2. Radiative Transfer Models

We use the FIR photometry and the line luminosities from
Table 1 to simultaneously model the dust continuum, CO
spectral line energy distribution (SLED), and the C I[ ](2–1) line
following the radiative transfer calculation presented in Weiß
et al. (2007). In this model, the background radiation field is set
to the cosmic microwave background (CMB) for the dust and
to the CMB plus the dust radiation field for the lines. The line
and dust continuum emission are further linked via the gas
column density in each component that introduces the
turbulence line width as a free parameter in the calculation
(see Equation (7) in Weiß et al. 2007). The gas column density
calculated from the line emission together with the gas-to-dust-
mass ratio (GDMR) then determines the optical depth of
the dust.
The calculations treat the dust and the kinetic temperature as

independent parameters, but with the prior that the kinetic gas
temperature has to be equal to or higher than the dust
temperature. Physically, this allows for additional sources of
mechanical energy (e.g., shocks) in the ISM in addition to
photo-electric heating.
The chemical parameters in our model are the CO and C I[ ]

abundances relative to H2 and the GDMR. We use a fixed CO
abundance of 8 10 5´ - relative to H2 (Frerking et al. 1982),
but keep the C I[ ] abundance and the GDMR as free
parameters. For the frequency dependence of the dust
absorption coefficient we adopt 0.04 250 GHzdk n n= b( ) ( )
[m2 kg−1] (Krügel & Siebenmorgen 1994), which is in good

Table 1
Observed Properties of SPT0311-58

Line Properties Continuum Properties

Transition SdVò dVa
L¢ L Wavelength Sn

(Jy km s−1) (km s−1) ×1011 (K km s−1 pc−2) ×108 (Le) (μm) (mJy)

CO(3–2) 0.96±0.15 790±150 1.52±0.24 2.01±0.32 3000 1.30±0.05
CO(6–5) 2.10±0.33 720±140 0.83±0.13 8.8±1.4 2000 7.5±1.3
CO(7–6) 2.78±0.80 750b 0.81±0.11 13.6±1.8 1400 19.0±4.2
C I[ ](2–1) 1.29±0.80 750b 0.37±0.10 6.4±1.8 870 32.0±5.0
C II[ ]APEX 22.1±5.1 890±260 1.16±0.27 254±59 500 52.0±8.0
C II[ ]ALMA 25.88±0.65 1.36±0.03 298.1±7.5 350 38.0±6.0

250 29.0±8.0

Notes.
a FWHM.
b Fixed from CO(3–2) and CO(6–5).
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agreement with 0.077870 mk =m m2 kg−1 used in other work
(see Spilker et al. 2015 and references therein), for our best-
fitting β.

Model solutions are calculated employing a Monte Carlo
Bees (Pham & Castellani 2009) algorithm that randomly
samples the parameter space and gives finer sampling for good
solutions (as evaluated from a 2c analysis for each model).
In total, we sample 107~ models. Parameter values and
uncertainties were calculated using the probability-weighted
mean of all solutions and the standard deviations.

3.3. Model Results

Figure 2 shows the CO-SLED, the continuum SED, and C I[ ]
flux density. From the figure, it is apparent that the dust
continuum SED cannot be modeled with a single-temperature
modified blackbody, so we instead fit two components. Since
we have no information on the high-J CO transition, we use the
shape of the CO-SLED of Arp220 (Rosenberg et al. 2015) and
HFLS3 (Riechers et al. 2013) as priors. With this choice, we
compare the moderately excited CO-SLED of Arp220 (see
Rosenberg et al. (2015) for a comparison of Arp220 to other

Figure 2. Results of simultaneous fitting of the CO-SLED (left), SED (middle), and C I[ ] (right) line flux. The CO line intensities are plotted as filled circles, the
continuum fluxes as open circles and the C I[ ] flux as an asterisk. The blue dashed line and squares show the cold component, the red dotted line and triangles show the
warm component, the black solid line and circles (in the right panel) show the combination of the two components. In gray is shown similar data for HFLS3 (dots and
dotted line) and Arp220 (crosses and solid line), normalized to the CO(6–5) flux of SPT0311-58 for the CO-SLED and to the peak of the continuum SED of SPT0311-
58 for the SED. The line fluxes and continuum properties fitted are listed in Table 2. Left: two-component CO-SLED. Middle: two-component SED fitting based.
Right: the contribution of each of the two components to the C I[ ](2–1) line and predictions for the C I[ ](1–0) line.

Table 2
ISM Parameters of SPT0311-58 from the Radiative Transfer Calculation

Parameter Unit Overall Cold Component Warm Component

Equivalent radiusa pc (4000 ± 1700) 1 2m - (3700 ± 1300) 1 2m - (1500 ± 1200) 1 2m -

Tdust K 36±7 115±54
Tkin K 58±23 180±51
log(n(H2)) cm−3 3.7±0.4 5.1±1.9
dvturb km s−1 130±17 100±4

virk b 1.9±1.9 3.1±2.5
GDMR

110±15d

β

1.91±0.05d

C I[ ]/[H2] (6.0 ± 1.4) 10 5´ - (1.7 ± 2.3) 10 5´ -

Mdust Me (5.7 ± 0.8) 109´ 1m - (5.2 ± 0.7) 109´ 1m - (4.8 ± 0.7) 108´ 1m -

Mgas Me (6.3 ± 3.7) 1011´ 1m - (5.7 ± 3.8) 1011´ 1m - (5.3 ± 3.8) 1010´ 1m -

COa Me/K km s−1 pc2 4.8±2.9 5.5±4.0 3.1±2.5
LFIR Le (4.1 ± 0.7) 1013´ 1m - 1.2 1.1 1013 ´( ) 1m - 2.9 0.7 1013 ´( ) 1m -

SFRc M yr−1 4100 700( ) 1m -

tdep Myr 150±90

Notes. The values here are apparent values. Intrinsic values can be calculated using 1.9m = .
a r D s0 A p= W .
b dv/dr= n e3.1 H 1 4 ;vir 2k ´ ( ) we calculate the velocity gradient for virialized clouds ( 1virk = ; Goldsmith 2001) but also consider nonvirial, unbound motions
( 1virk > ; Greve et al. 2009).
c Using SFR= L10 10

FIR´- based on a Chabrier initial mass function (Kennicutt 1998; Chabrier 2003).
d Fitted in the radiative transfer calculation but set to be the same for both components.

4

The Astrophysical Journal Letters, 842:L15 (6pp), 2017 June 20 Strandet et al.



local ULIRGs) to the more extreme case of HFLS3 where the
CO-SLED stays high up to the J 9up = level (see Figure 2).
The use of the priors mainly affects the parameters of the warm
gas and therefore only has a small effect on our derived gas
mass (see below). Table 2 lists the parameters obtained from
the radiative transfer calculations for the Arp220 prior, not
corrected for magnification.

For both priors, the warm dust component dominates the
peak of the CO-SLED and the short-wavelength part of the dust
spectrum and therefore the FIR luminosity. Its size is small
compared to the cold gas with an area ratio of ∼6
(r 1.7 1.4 kpc0 =  where r0 is the equivalent radius defined
as r D s0 A p= W ; Weiß et al. 2007; for HFLS3 and slightly
smaller for Arp220), which implies that the region of intense
FIR continuum emission is significantly smaller than the
overall gas distribution. Due to a lack of observations of CO
transitions beyond (7–6), its properties are mainly driven by the
assumed shape of the CO-SLED for the high-J transitions.
However, the models for both priors indicated consistently that
the warm gas has a substantial density (of the order of
105 cm−3), a dust temperature of ∼100 K, and a kinetic
temperature in excess (but consistent within the errors) of the
dust temperature (Tkin=180±50 K when using Arp220
priors).

The cold dust component is required to fit the CO(3–2) and
C I[ ] line emission and the long-wavelength part of the dust
SED. Due to its large extent and relatively high density
(r0=3.7±1.3 kpc, log(n(H2)=3.7±0.4)), it carries ≈90%
of the gas mass. The abundance of neutral carbon in this gas
phase is C H 6.0 1.4 10I 2

5=  ´ -[ ] [ ] , in agreement with
other estimates at high redshift and in nearby galaxies (e.g.,
Weiß et al. 2005 and references therein). For both priors, the
cold gas dominates the CO(1–0) line luminosity. As for the
warm gas, we find that the kinetic temperature is above the dust
temperature (Tdust=36±7 K, Tkin=58±23 K), which
may suggest that the ISM in SPT0311-58 experiences
additional mechanical energy input, e.g., via feedback from
stellar winds or AGN driven outflows. This is also supported
by the large turbulent line width of order 100 km s−1 and super-
virial velocity gradients ( 1virk > ; see footnote b in Table 2)
that we find for both components and priors.

We use the kinematic parameters (dvturb and virk ) together
with the source size and the H2 density for each component
(see Equation (8) in Weiß et al. 2007) to derive a total apparent
gas mass of Mgas=(6.3±3.7)× 1011Me (including a 36%
correction to account for the cosmic He abundance). For the
HFLS3 prior, the gas mass is ∼30% higher.

4. Discussion

4.1. Gas Mass Conversion Factor

With the independent gas mass estimate from the radiative
transfer models in hand we can also derive the GDMR and the
CO-to-H2 conversion factor ( COa ) for SPT0311−58. Since the
CO(1–0) transition has not been observed, we use the flux
density from the radiative transfer model that predicts
ICO 1 0-( )=0.10±0.03 Jy km s−1. In our models, we assume
that each gas component has the same GDMR, and we find
GDMR=110±15. Due to the different physical conditions
in each gas component, there is a specific COa value for
each component. For the cold dust component, we find

5.5 4.0COa =  Me(K km s−1 pc2)−1, and for the warm dust

component, 3.1 2.5COa =  Me(K km s−1 pc2)−1. Combin-
ing both gas components we find for SPT0311−58 COa =
4.8 2.9 Me(K km s−1 pc2)−1.

When calculating gas masses for ULIRGs, a factor of
0.8COa = Me(Kkm s−1 pc2)−1 is typically assumed (Downes

& Solomon 1998), significantly below our estimate. The difference
can easily be explained by the much higher densities we find in
both components compared to the models from Downes &
Solomon (1998), in which most of the CO(1–0) luminosity arises
from a diffuse inter-cloud medium. Since the bulk of the gas mass
of this source is in the dense component, it is vital to include the
higher-J CO transitions in the calculation of COa .
A similar two-component analysis was done for the broad

absorption line quasar APM08279+5255 at z=3.9 (Weiß
et al. 2007), where the dense component was found to dominate
the CO(1–0) line by 70%. They find a high conversion factor of

6COa ~ Me(K km s−1 pc2)−1, similar to what we find in the
dense gas component. A similar reasoning for higher CO
conversion factors owing to the presence of dense gas was put
forward by Papadopoulos et al. (2012) based on the CO-SLED
in local (U)LIRGs.

4.2. [CII]

From our C II[ ] detection, we derive a L C II[ ]/LFIR ratio of
(7.3±0.1) 10 4´ - . Figure 3 shows that this puts SPT0311−58
into the lower region of the L C II[ ]/LFIR ratio observed in a
larger sample of SPT-DSFGs (Gullberg et al. 2015). Similarly,
low L C II[ ]/LFIR ratios are found for the z=6.3 star-forming
galaxy HFLS3 (Riechers et al. 2013) and for the z=7.1 QSO
host galaxy J1120+0641 (Venemans et al. 2012).
The L C II[ ]/LCO 1 0( – ) ratio in SPT0311−58 is similar to what

is observed in the SPT sample (4300±1300 compared to
5200±1800; Gullberg et al. 2015) and HFLS3 (∼3000;
Riechers et al. 2013). This is consistent with the picture in
which the C II[ ] emission stems from the surface of dense
clouds exposed to the strong UV field from the intense starburst

Figure 3. L C II[ ]/LFIR vs. L C II[ ]/LCO 1 0-( ) with PDR models and samples
adapted from Gullberg et al. (2015). The red star shows how SPT0311-58 falls
within the larger SPT DSFG sample. The typical error bar for the low-redshift
sample is presented by the black cross.
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in SPT0311−58 (Stacey et al. 2010; Gullberg et al. 2015;
Spilker et al. 2016).

The larger C II[ ] deficit together with the decreasing
L C II[ ]/LCO 1 0( – ) ratio of SPT0311−58 and other high-redshift
sources compared to local galaxies may be understood as a
consequence of an increasing gas surface density (Narayanan &
Krumholz 2017): the higher molecular gas surface density
pushes the HI + H2 mass budget toward higher H2 fractions.
Since C II[ ] mainly arises from the PDR zone associated with
HI and the outer H2 layer, this effect reduces the size of the
C II[ ] emitting region and therefore the C II[ ] line intensity. At
the same time, the ratio of L C II[ ]/LCO 1 0( – ) will decrease due to
an increase in the fraction of carbon locked in CO compared
to C II[ ].

4.3. Concluding Remarks

Both our radiative transfer model and fine structure line
results indicate that SPT0311-58 resembles typical DSFGs, just
at z 7~ . This is also supported by its extreme SFR surface
density of 600SFRS ~ M yr−1 kpc−2 (derived using the size
of the warm gas component that dominates the FIR
luminosity), which approaches the modeled values for radiation
pressure limited starbursts (103Me yr−1kpc−2; Thompson
et al. 2005) and is comparable to what is found in other
starbursts like Arp220, HFLS3, and other SPT-DSFGs
(Scoville 2003; Riechers et al. 2013; Spilker et al. 2016).
Future observations of this source will explore its spatial
structure, physical conditions, formation history, and chemical
evolution in great detail as it is one of very few massive
galaxies known at z 7~ .
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