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Abstract

Parametric models derived from simplifying modelling assumptions give an ap-

proximated description of the physical system under study. The value of an

approximated model depends on the consciousness of its descriptive limits and

on the precise estimation of its parameters. In this manuscript, a framework for

identifying the model domain of validity for the simplifying model hypotheses

is presented. A model-based data mining method for parameter estimation is

proposed as central block to classify the observed experimental conditions as

compatible or incompatible with the approximated model. A nonlinear sup-

port vector classifier is then trained on the classified (observed) experimental

conditions to identify a decision function for quantifying the expected model re-

liability in unexplored regions of the experimental design space. The proposed

approach is employed for determining the domain of reliability for a simplified

kinetic model of methanol oxidation on silver catalyst.
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1. Introduction

The exhaustive description of most biochemical and physicochemical pro-

cesses requires the development of complex models involving systems of differ-

ential and algebraic equations. The identification of detailed model structures

is frequently hindered by limitations in the experimental setup (e.g. impos-

sibility of measuring some physical quantities or separating mechanisms with

overlapping effects), and/or prohibitive experimental cost. In these situations,

”lumped” models derived from simplifying hypotheses are normally proposed,

fitted to the experimental data and tested with statistically appropriate meth-

ods, e.g. a χ2-test. A failed χ2-test is interpreted as an incorrect or incomplete

set of modelling hypotheses and the modelling activity may proceed in two

different ways:

1. new formulations of the model, are proposed, tested and compared adopt-

ing techniques of model building available in the literature [1];

2. the incorrect model structure may be maintained accepting its limited

capabilities of describing the physical reality under analysis.

The present manuscript focuses on the second approach to phenomenological

modelling and on how to improve the predictive capabilities of approximated

model structures.

The identification of an approximated model, once a suitable model structure

is selected, requires:

• the precise estimation of the model parameters through the fitting of ex-

perimental data carrying valuable information;

• the identification of the range of experimental conditions for which the

model can provide reliable predictions, i.e., the domain of validity of the

model hypotheses.

Optimal experimental conditions for the estimation of the model parameters

can be identified employing model-based design of experiments (MBDoE) tech-

niques for parameter precision [1, 2]. MBDoE methods intrinsically assume that
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the model structure is reliable, i.e., the model is assumed to provide a good fit-

ting and good predictions all across the experimental design space. However,

this assumption may not be acceptable in the presence of an approximated

model structure. In these situations, the research of the optimal experimental

conditions should be bounded within the domain of validity of the simplifying

modelling assumptions.

In this work, a framework for the identification of approximated models is

proposed. The investigated experimental conditions are labelled as compatible

or incompatible with the modelling hypotheses at the stage of parameter estima-

tion by employing a model-based data mining tool derived from the maximum

likelihood method [3]. The labelling is then used to train a supervised machine

learning algorithm based on support vector theory [4, 5] to map unexplored ex-

perimental conditions in terms of satisfactory or unacceptable expected model

performance. The generated map can then be employed for preventing the use

of false optimal process points located in regions of low model reliability or for

supporting the design of new trials to enhance parameter precision.

2. Methodology

Assume that a model derived from simplifying hypotheses is proposed for

interpreting a certain physical system.

ŷ = f(x,u, t,θ) (1)

In Eq. (1) ŷ represents an Nm-dimensional array of measurable model outputs,

x is an Nx-dimensional vector of state variables, u ∈ U is an Nu-dimensional

vector of control variables and t is time. θ ∈ Θ represents an array of Nθ model

parameters that require estimation. Assume that a number of experiments Nexp

are performed at experimental conditions uj with j = 1, ..., Nexp obtaining

a preliminary set of data Ψ = {yij |i = 1, ..., Nm; j = 1, ..., Nexp} and that

measurements are characterised by uncorrelated Gaussian noise with known

standard deviations σij . A standard approach for estimating model parameters
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Figure 1: Proposed framework for model identification. Boldface blocks represent funda-

mental steps in the proposed methodology. The procedure starts from the availability of a

preliminary set of experimental data and an approximated model structure to describe the

phenomenon. Non-measurable model parameters are estimated fitting the available dataset

through Model-Based Data Mining (MBDM) methods for parameter estimation (1). MBDM

computes an instance for the model parameters and classifies the observed experimental con-

ditions as compatible or incompatible with the proposed model. The labelling computed by

MBDM is then processed by a supervised machine learning algorithm to extend the classifi-

cation to unexplored regions of the design space (2). The training of the learning machine

leads to the determination of a model’s domain of validity for the modelling assumptions. A

check on the statistical quality of the parameters computed by MBDM is then performed and,

in case of statistically unsatisfactory estimates, additional experiments are designed through

Model-Based Design of Experiment (MBDoE) methods for parameter precision (3). The re-

search of optimal experimental conditions to investigate is bounded to the model’s domain of

validity to prevent the collection of model-incompatible experimental data.
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from experimental data is the least square method. However, least squares

approaches do not account properly for measurement noise in the parameter

estimation. A more sophisticated method that demonstrated to provide good

estimates in a broad range of situations is the maximum likelihood estimator

[3]. The method derives from the assumption that it does exist a value of

the parameters, namely the maximum likelihood (ML) estimate θ̂ML, which

maximises the likelihood of observing the experimental data, given the model

parametrisation. The computation of the ML estimate is performed through the

maximisation of the likelihood function L or, indifferently, its natural logarithm

ΦML = lnL [3].

ΦML(θ|Ψ) =
1

2

Nexp∑
j=1

Nm∑
i=1

−ln(2πσ2
ij)−

( ŷij(θ)− yij
σij

)2

(2)

θ̂ML = arg max
θ∈Θ

ΦML(θ|Ψ) (3)

A discrepancy between the distribution of model residuals ŷij(θ̂ML) − yij and

the distribution of the measurement errors is interpreted as a consequence of

incorrect model specification, and it is normally detected through statistical

tests that assess the goodness of fit (e.g. a χ2-test).

Conventional estimators (e.g. least squares or ML) do not take into account

the structural uncertainty on the model equations. If the model structure is ap-

proximated, one shall not expect the model to give good predictions throughout

the whole experimental design space and for all its measurable output variables.

As a direct consequence, not all the collected data may be significant for the

estimation of the model parameters. In this work, a framework for the identifi-

cation of approximated models is proposed to address the multi-objective task

of both parameter estimation and the determination of the model domain of

reliability. The method follows from the assumption that any model structure

is capable of fitting accurately experimental data as long as the fitted domain

is not excessively vast (as an example, any continuous nonlinear function is lo-

cally well approximated by a linear model). The model identification framework,

represented in Figure 1, involves three fundamental steps:
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1. A Model-based data mining step for parameter estimation. At this stage,

the experimental data for which the candidate model is unable to realise

low residuals are identified and excluded from the parameter estimation

problem employing model-based data mining (MBDM) methodologies.

MBDM produces two outputs: i) it generates an instance of parameters

for the candidate model structure and ii) it labels the data as compatible

or incompatible with the modelling hypotheses.

2. A supervised machine learning training step. The labelling of the data gen-

erated at step 1 by MBDM is processed by a supervised machine learning

algorithm, e.g. a Support Vector Machine (SVM) [5, 6], in order to map

the experimental design space in terms of good and bad expected model

predictive capabilities.

3. A MBDoE step for parameter precision. If some parameter estimates are

found to be statistically unsatisfactory, new data have to be collected and

included in the parameter estimation problem. Model-based design of

experiments (MBDoE) methods for parameter precision can be employed

at this stage to identify highly informative experimental conditions within

the range of expected model reliability identified at step 2.

In the following sections, model-based data mining methods derived from the

maximum likelihood approach are presented to address task 1. The underlying

mathematics of SVM technology is then presented with the aim of addressing

task 2. It is not in the aims of this manuscript to present and detail MBDoE

methods for parameter precision, for which an extensive literature is available

[7–10].

2.1. Model-Based Data Mining for Parameter Estimation

The approach illustrated here is proposed with the aim of addressing the

problem of parameter estimation through the automated selection of model-

compatible experimental data. Model-compatible data represent a subset Ψ′ ⊆

Ψ of the whole available dataset such that the fitting of Ψ′ leads to a distri-

bution of model residuals that cannot be distinguished from a distribution of

6



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

measurement errors. The necessity of making an assumption on the distribu-

tion of the measurement noise justifies the employment of a ML approach as a

starting point for the following derivations.

It is assumed that measurements are characterised by Gaussian noise with

known standard deviations σij and that σij do not depend on θ. Thus, the

location of the ML estimate in Θ, which depends on the gradient of (2), is

not influenced by the magnitude of elements −ln(2πσ2
ij). Elements −ln(2πσ2

ij)

in Eq. (2) may be therefore substituted with arbitrary constants cij without

affecting the result of the parameter estimation problem (3). If cij = z2
α
2

(∀

i = 1, ..., Nm and j = 1, ..., Nexp), where zα
2

is the two-tailed z-value with

significance α derived from a normal standard distribution, the log-likelihood

function becomes:

Φ′ML(θ|Ψ) =
1

2

Nexp∑
j=1

Nm∑
i=1

z2
α
2
−
( ŷij(θ)− yij

σij

)2

(4)

In Eq. (4) the ij-th element brings a positive contribution to the function only

if:

|ŷij(θ)− yij | < zα
2
σij (5)

One may decide to exclude from the objective function the data that do not

satisfy condition (5). For this purpose, anNmxNexp matrix Λ of binary variables

λij ∈ {0, 1} is defined and the log-likelihood in Eq. (4) is modified as follows:

ΦDM(θ|Ψ) =
1

2

Nexp∑
j=1

Nm∑
i=1

λij

[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]
(6)

s.t. λij =

1 if z2
α
2
−
(
ŷij(θ)−yij

σij

)2

> 0

0 if z2
α
2
−
(
ŷij(θ)−yij

σij

)2

< 0
∀ i, j (7)

In Eq. (6), binary variables λij act like switchers excluding the data whose

contribution to ΦDM(θ|Ψ) is negative. It is important to notice that conditions

(7) state the dependence of the binary variables on the values of the parameters

θ. The parameter estimation problem is reformulated as:

θ̂DM = arg max
θ∈Θ

ΦDM(θ|Ψ) (8)
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Solution θ̂DM is the result of the fitting of a potentially reduced set of measure-

ments Ψ′ ⊆ Ψ, i.e. only the measurements for which the model can provide low

residuals that satisfy (5).

Ψ′ = {yij |λij(θ̂DM) = 1} (9)

If θ̂DM maximises Eq. (6) then it also identifies the global optimum of ΦML(θ|Ψ′),

i.e. the log-likelihood function involving the reduced set of measurements, in-

deed:

ΦML(θ|Ψ′) = ΦML(θ|Ψ′) + ΦDM(θ|Ψ)− ΦDM(θ|Ψ)

+
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ̂DM)z2
α
2
− 1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ̂DM)z2
α
2

(10)

ΦML(θ|Ψ′) =
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ)
[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]

+
1

2

Nexp∑
j=1

Nm∑
i=1

(
λij(θ̂DM)− λij(θ)

)[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]

+
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ̂DM)
[
− ln(2πσ2

ij)− z2
α
2

]
(11)

The first sum in Eq. (11) is ΦDM(θ|Ψ) and it reaches its global maximum in

θ̂DM. The second sum is always non-positive (because of conditions (7)) and

it is null for θ = θ̂DM. The third sum is constant and it does not depend on

parameters. Thus, it is concluded that ΦML(θ|Ψ′) ≤ ΦML(θ̂DM|Ψ′) ∀ θ 6= θ̂DM.

A more detailed demonstration of this conjecture is given in Appendix A.

The presented approach can be employed to prompt the exclusion of entire ex-

periments rather than single data. For this purpose and for reasons that will be-

come clear in the next section, binary variables βj ∈ {1,−1} with j = 1, ..., Nexp

are defined and (4) is modified as follows.

ΦDM,exp(θ|Ψ) =
1

2

Nexp∑
j=1

(1 + βj
2

) Nm∑
i=1

z2
α
2
−
( ŷij(θ)− yij

σij

)2

(12)
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s.t. βj =

+1 if
∑Nm
i=1 z

2
α
2
−
(
ŷij(θ)−yij

σij

)2

> 0

−1 if
∑Nm
i=1 z

2
α
2
−
(
ŷij(θ)−yij

σij

)2

< 0
∀ j (13)

θ̂DM,exp = arg max
θ∈Θ

ΦDM,exp(θ|Ψ) (14)

Analogously to (8), Eq. (12) can then be optimised with respect to the model

parameters. Given a reasonable choice for the significance α for the zα
2

-value,

the solution of (14) leads to the automated exclusion from the parameter esti-

mation problem of the experiments that are incompatible with the modelling

assumptions, i.e.: 1 ) experiments performed outside the domain of model re-

liability and 2 ) experiments in which measurements are affected by excessive

error. Notice that MBDM does not distinguish between these two categories.

In fact MBDM only classifies the experiments based on the associated fitting

realised by the candidate model. A possible practical way to provide a more

accurate classification of the data in the two aforementioned categories is to

repeat the experiments. If the incompatibility persists after the repetition, the

experiment shall be classified in the first category, i.e. the trial was performed

outside the domain of model reliability. If the repeated experiment is instead

found to be compatible, the incompatibility detected before the repetition shall

be interpreted as a consequence of an excessive measurement error.

2.2. Identification of a region of model reliability

The solution of the optimisation problem (14), leads to the construction of

a function ψ : {uj |j = 1, ..., Nexp} → β̂j ∈ {1,−1} (where β̂j = βj(θ̂DM,exp)),

which classifies the explored experimental conditions uj , with j = 1, ..., Nexp,

either as compatible or incompatible with the candidate model. It is now of in-

terest to identify a decision function I(u), based on the training set {(uj , β̂j)|j =

1, ..., Nexp}, whose sign can be used to classify the performance of the model in

unexplored experimental conditions. A decision function is required for quanti-

fying: i) the reliability on the model predictions across the model input space

9
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U ; ii) the expected model fitting across the experimental design space for sup-

porting the design of new trials to enhance parameter precision. The problem

may be recast in terms of identifying a hyperplane in the input space U that

classifies the training set with the minimum misclassification error. Let the

generic hyperplane in the input space U be:

wTu + b = 0 (15)

where w is an Nu-dimensional array of coefficients and the scalar quantity b

represents the offset of the hyperplane. From SVM theory, it is known that the

optimal hyperplane can be identified solving the following convex optimisation

problem [4]:

min
w,b,ξ

1

2
wTw + C

(Nexp∑
j=1

ξj

)2

s.t. β̂j(w
Tuj + b) > 1− ξj ,

ξj > 0, j = 1, ..., Nexp

(16)

where C is a regularisation constant and vector ξ = {ξj |j = 1, ..., Nexp} ac-

counts for misclassification errors. However, since both the physical system and

the candidate model equations may be highly nonlinear one shall not expect

a hyperplane in the input space to provide a good classification. In fact, in

general, the domain of model reliability may be non-convex, non-compact and

finite. In order to represent a potentially very complicated geometry in the in-

put space, the so called kernel trick [5] is employed. The basic idea is to map

the training set through a nonlinear transformation ϕ : U → Z into a feature

space where the separation through a hyperplane becomes more significant. It is

then possible to demonstrate that the decision function I(u) in the input space

has the form:

I(u) = wTϕ(u) + b =

Nexp∑
j=1

aj β̂jK(u,uj) + b (17)

where aj with j = 1, ..., Nexp are the Lagrange multipliers derived from the max-

imisation of the unconstrained Lagrange form of problem (16) and K(u,uj) =

10



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

ϕ(u)Tϕ(uj) represents a specific kernel function. Notice that in order to com-

pute I(u) it is not necessary to know the form of ϕ, but only its associated

kernel, which must be chosen a priori. A popular choice for K is the Gaussian

radial basis function:

K(u,uj) = e
−

(u−uj)
T (u−uj)

2γ2 (18)

where γ is a tuning parameter that can be interpreted as decay length of the

radial function and determines the degree of similarity between two different

sets of experimental conditions. Since SVM are sensitive to the scale of the

input space, it is recommended to normalise the experimental conditions before

the application of the learning machine. Notice that if a radial basis function is

selected as kernel, two degrees of freedom are present due to the presence of the

regularisation constant C (which trades off smoothness of the decision surface

and misclassification) and the tuning parameter γ. The hyperparameters C and

γ may be chosen a priori or, in the presence of sufficiently large data sets, an

optimal hyperparameter set may be identified through cross-validation [11].

2.3. Model-Based Design of Experiments for Parameter Precision

Conventional MBDoE methods for parameter precision do not take into ac-

count the expected accuracy on the model predictions, i.e., an unconstrained

MBDoE problem may lead to the design of sampling points outside the domain

of validity of the model. The reliability function (17) can be fruitfully employed

in a model-based experimental design framework to bound the research of op-

timal informative experimental conditions in regions of U where I(u) > 0 (i.e.

the regions of the design space where the model is expected to provide a good

fitting). As previously mentioned, the present manuscript is focused on the de-

scription and application of steps 1 and 2 of the proposed framework for model

identification (see Figure 1). A detailed description of MBDoE methods for

parameter precision can be found in the literature [7–10].
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3. Case study

The presented methodology is now employed to identify a domain of ex-

pected model reliability for an approximated kinetic model proposed to describe

methanol oxidation on silver catalyst in continuous flow microreactors [12, 13].

A short presentation of the experimental setup and the available data set is

followed by a description of the candidate model. Eventually, the assumptions

made for the application of MBDM and SVM are presented.

3.1. Experimental setup and data set

Microfluidic devices are promising means for gathering information on chem-

ical kinetics. Due to their small dimensions, reactions can be conducted in the

absence of heat and mass transfer resistances [14, 15]. A data set Ψ consisting of

13 steady-state kinetic experiments was collected on a silicon-glass microreactor.

A schematic diagram of the device is given in Figure 2. The reactor chip was

constructed from a silicon wafer through photolithography and deep reactive ion

etching. A thin layer of silver was sputtered on the bottom of the microchannel

obtaining a catalyst film 78.1 mm in length. Mass flow controllers were used

to inject the gaseous mixture consisting of methanol, oxygen, water and helium

(added as inert diluent). A detailed description of the setup is available in the

literature [16]. The explorable design space U in the setup consists of five inde-

pendent input variables: temperature T of the microreactor; flowrate F of the

gaseous mixture at the inlet; molar fractions of methanol, oxygen and water in

the inlet mixture, i.e., yINCH3OH, yINO2
and yINH2O respectively. The experiments

were conducted varying one factor at time to assess the effect on the outlet

composition. A summary of the investigated experimental conditions is given

in Table 1. The main products of the reaction in the investigated range of condi-

tions are: formaldehyde, carbon dioxide, hydrogen and water. The composition

of the mixture at the outlet was analysed through gas chromatography.
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Table 1: Experimental conditions investigated in the available experiments. The volumetric

flowrate F is referred to standard conditions. Helium, used as inert carrier, represents the

remaining molar fraction at the inlet.

No exp. T [K] F* [ml min−1] yINCH3OH yINO2
yINH2O

1-3 783 29.1-73.1 0.0996 0.0414 0.0754

4-7 733-826 50.9 0.1468 0.0975 0.2293

8-10 765-826 93.9 0.1469 0.0980 0.2296

11-13 800-900 54.5 0.2590 0.1064 0.2122

* at temperature T = 273.15 K; pressure P = 101325 Pa.

Figure 2: Schematic representation of the microreactor chip and setup. The grey-coloured

area in the microchannel represents the sputtered silver catalyst film.

3.2. Modelling assumptions

The section of the microchannel occupied by the silver catalyst film is mod-

elled as an ideal plug-flow reactor. Isothermal conditions are assumed to be

realised along the whole length of the channel (i.e. the energy balance is omit-
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ted), and diffusion phenomena are completely neglected. The generic form of

the mass balance is given in (19), where NC and NR represent the number of

components and the number of reactions respectively, Ci is the species concen-

tration expressed in molm−3, z represents the axial coordinate of the channel in

m, v is the flow velocity along z expressed in m s−1, νij is the stoichiometric co-

efficient of the i-th component in the j-th reaction and rj is the rate associated

to the j-th reaction, expressed in mol m−3 s−1.

Mass balances

v
dCi
dz

=

NR∑
j=1

νijrj ∀ i = 1, ..., NC
(19)

A simplified kinetic model derived from the one proposed by Andreasen et al.

[12], is adopted to model the reaction. Andreasen’s model assumes the presence

of two limiting steps: 1) a step of oxidative dehydrogenation of methanol to

formaldehyde and 2) a step of complete oxidation of formaldehyde to carbon

dioxide.

Stoichiometry and Kinetics

Reaction 1:
CH3OH + 1

4O2 ↔ CH2O + 1
2H2 + 1

2H2O

r1 = A1e
−Ea1RT

CCH3OHC
0.25
O2

C0.5
H2O

Reaction 2:
CH2O + 1

2O2 ↔ H2 + CO2

r2 = A2e
−Ea2RT

CCH2OC
0.5
O2

C0.5
H2

Reaction 3:
H2 + 1

2O2 → H20

r3 = A3e
−Ea3RT CH2

C0.5
O2

(20)

A reaction of hydrogen oxidation is also included in the kinetic model. Hydro-

gen oxidation is known to occur only at higher temperature [17], and it was

chosen to include it in the model primarily for describing the low amounts of
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hydrogen detected at the outlet. A total of NC = 6 species are considered in

the approximated kinetics, i.e., methanol, oxygen, water, formaldehyde, hydro-

gen and carbon dioxide. The rates of the three reactions are given in (20),

where R is the ideal gas constant, Aj and Eaj (with j = 1, ..., 3) represent pre-

exponential factors and activation energies of the Arrhenius type rate constants.

An instance for the kinetic parameters was available from previous kinetic inves-

tigations, conducted on a different setup [18]. The values are reported in Table

2. Since the reactivity of the catalyst film is highly influenced by its fabrication

history, one shall not expect the parameter instance given in Table 2 to be rep-

resentative for the catalyst employed in this case study. The different kinetic

behaviour between different silver catalyst types is assumed to derive from a

different density of active sites on the film surface. Following this assumption,

only the pre-exponential factors of the catalytic reactions shall be tuned on the

available data set Ψ. The catalyst promotes the partial oxidation of methanol

and the oxidation of formaldehyde, i.e. Reaction 1 and Reaction 2. Evidence of

catalytic influence of silver on hydrogen oxidation, i.e. Reaction 3, is reported

in the literature [19]. However, for the purposes of this work, Reaction 3 is

assumed to be independent from the catalyst behaviour, i.e., a different den-

sity of active sites on the catalyst surface does not influence the kinetic rate of

hydrogen oxidation. Thus, in this case study, A3, Ea1, Ea2 and Ea3 are fixed

to the values given in Table 2 while A1 and A2 are treated as the parameters

requiring estimation, i.e. θ = [A1, A2].

3.3. Methods

Since the model presented in Section 3.2 was derived by a number of simplify-

ing hypotheses, its identification requires both the quantification of the unknown

parameters θ = [A1, A2] through data fitting, and the identification of a region

of reliability in the input space associated to the estimated parameters. The

task is fulfilled through the following steps:

1. The set of parameters θ is estimated employing MBDM (14) fitting the

molar fractions of methanol, oxygen, water, formaldehyde, hydrogen and
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Table 2: Instance for the kinetic parameters obtained from previous kinetic studies [18].

Parameter Unit Value

A1 [(mol m−3)0.25s−1] 5.33 · 1011

A2 [s−1] 1.03 · 107

A3 [(mol m−3)−0.5s−1] 1.07 · 104

Ea1 [J mol−1] 1.42 · 105

Ea2 [J mol−1] 9.02 · 104

Ea3 [J mol−1] 1.83 · 104

carbon dioxide detected at the outlet in the 13 experiments, i.e, Nm = 6

and Nexp = 13. The measured molar fractions are assumed to be affected

by Gaussian noise with σij = 3 · 10−3 ∀ i, j. The tuning constant is set at

zα
2

= 3 (which corresponds to a significance α = 0.997).

2. Binary variables β̂j (with j = 1, ..., Nexp) obtained by MBDM at step 1

are used to generate the training set. The explored range of experimental

conditions is normalised to the unit hypercube in the input space U for

the application of the SVM.

3. A SVM is employed to identify a reliability decision function I(u) in the

experimental design space. Two cases are considered:

• Case 1: the model is assumed to be weak at describing certain

ranges of temperature and inlet fraction of methanol while it is as-

sumed to be reliable on the other experimental conditions. The SVM

machine is therefore trained assuming a bi-dimensional input space

U = (T, yINCH3OH);

• Case 2: the model is considered weak in representing the system in

broad ranges of temperature and inlet fraction of water, but reliable

on other experimental conditions. The SVM machine is then trained

on the reduced input space U = (T, yINH2O).

Since in the present case study the training set involves only 13 points, it is
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chosen to set the hyperparameters of the learning machine a priori instead of

determining them through cross-validation. In both cases, a Gaussian kernel is

employed (18) with γ = 0.2; being the experimental conditions in the training

set normalised, this corresponds to having a characteristic decay length equal to

20% of the explorable range in any direction of U . The regularisation constant

C is set equal to 1.

MBDM is applied through the optimisation toolbox of gPROMS Model-

Builder 4.1 employing the solver CVP SS [20]. The decision functions are iden-

tified through the tool for support vector classification implemented in scikit-

learn, package for machine learning in Python [21].

The experimental design step, illustrated in the proposed methodology in

Section 2, will not be considered in the presented case. The design and devel-

opment of a complete procedure to extended case studies (both in silico and on

real setups) is going to be object of future research activities.

4. Results

4.1. MBDM for Parameter Estimation

The available data set was fitted applying both MBDM (14) and a conven-

tional ML estimator (3) for comparing the performance of the two methods.

The parameter estimates are given in Table 3 with the associated t-value statis-

tics and the sum of squared residuals, indicated as χ2. The t-value of reference

tref is also given in the table. This represents a t-value with 95% of significance,

obtained from a Student’s distribution with degree of freedom equal to the num-

ber of fitted measurements. A t-value higher than the tref is interpreted as an

index of satisfactory parameter precision. As one can see from the table, all the

computed parameters are statistically satisfactory, but the estimates obtained

in the two cases are significantly different. The reason is that in the MBDM

case, some of the binary variables β were switched to -1 to satisfy the condi-

tions (13), excluding some experiment from the parameter estimation problem.

In Table 4, the binary variables β̂ computed by MBDM are given for all the
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experiments together with the associated investigated conditions. The candi-

date model was unable to realise low residuals for experiments 4, 8, 12 and 13

(i.e. the experiments with β̂ = −1), which were therefore labelled by MBDM

as incompatible with the modelling assumptions. The parity plot in Figure 3a

shows the distribution of the residuals achieved by the candidate model if the

ML method is employed (i.e. if the whole data set is fitted). In Figure 3b, the

residuals associated to the fitted data in the MBDM case (i.e. only the residu-

als associated to experiments 1-3, 5-7 and 9-11) are reported. The distributions

of the normalised residuals associated to the ML method and to the MBDM

method are plotted in Figure 4a and Figure 4b respectively. From a comparison

of the plots in Figure 3 and the bar charts in Figure 4 one can see that the

application of MBDM led to the identification of a model with enhanced fitting

capabilities through the automated identification of the experiments causing the

bad fitting. The exclusion of experiments 4, 8, 12 and 13 results in a significant

reduction of the χ2, which decreases from 1247.2 in the ML case to 180.3 in the

MBDM case.

Table 3: Parameter estimates and related statistics: t-value and sum of squared residuals χ2;

with conventional ML estimator and MBDM estimator.

Method [A1, A2] t-value* tref χ2

ML [5.66 · 1012, 7.33 · 107] [19.51, 15.39] 1.66 1247.2

MBDM [3.98 · 1012, 6.16 · 107] [14.63, 11.26] 1.67 180.3

*a t-value higher than tref indicates satisfactory parameter precision.

4.2. Domain of expected model reliability

The classification of the experiments as compatible or incompatible with the

modelling hypotheses through the binary variable β̂ is now used to train a SVM

algorithm. This leads to the identification of a decision function I(u) in the form

of Eq. (17) whose sign provides a classification of the unexplored experimental

conditions in terms of good or bad expected model performance. The decision
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Table 4: Experimental conditions investigated in the catalytic microreactor and binary vari-

ables β̂j computed by MBDM.

No exp. T [K] F* [ml min−1] yINCH3OH yINO2
yINH2O β̂

1 783 73.1 0.0996 0.0414 0.0754 +1

2 783 41.7 0.0996 0.0414 0.0754 +1

3 783 29.1 0.0996 0.0414 0.0754 +1

4 733 50.9 0.1468 0.0975 0.2293 -1

5 765 50.9 0.1468 0.0975 0.2293 +1

6 796 50.9 0.1468 0.0975 0.2293 +1

7 826 50.9 0.1468 0.0975 0.2293 +1

8 765 93.9 0.1469 0.0980 0.2296 -1

9 796 93.9 0.1469 0.0980 0.2296 +1

10 826 93.9 0.1469 0.0980 0.2296 +1

11 800 54.5 0.2590 0.1064 0.2122 +1

12 850 54.5 0.2590 0.1064 0.2122 -1

13 900 54.5 0.2590 0.1064 0.2122 -1

* at temperature T = 273.15 K; pressure P = 101325 Pa.

function obtained for Case 1 is represented in Figure 5a in the input subspace

defined by temperature and inlet fraction of methanol. Regions of the input

space at I(u) > 0 (bright regions in the plot) identify conditions at which

the model is expected to provide a good representation of the reacting system.

Conversely, conditions at I(u) < 0 (dark regions in the plot) are considered too

close to trials that were previously labelled as incompatible. Given a rational

choice for the significance α for the zα
2

values in (12), in regions at I(u) > 0,

the discrepancy between measurements and model predictions is expected to

be indistinguishable from measurement noise. The same considerations hold

for the decision function identified in Case 2, plotted in Figure 5b in the input

subspace defined by temperature and inlet fraction of water. Other maps of

reliability may be easily computed selecting different sets of training variables,
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ML method

(a)

MBDM method

(b)

Figure 3: Parity plot comparing measurements against model predictions: (a) if a conventional

ML estimator is employed; (b) if MBDM is adopted. In (b) only experimental data with

β̂ = +1 are reported.

ML method

(a)

MBDM method

(b)

Figure 4: Distribution of the normalised residuals: (a) if a conventional ML estimator is

employed; (b) if MBDM is adopted. In (b) only residuals associated to the experimental data

with β̂ = +1 are reported.

possibly involving more than two inputs. Maps of reliability such as those given

in Figure 5 may be employed for multiple purposes, e.g.:

• if the approximated model is employed to identify the location of an op-

timal process point in the input space and the optimum is achieved for
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(a) (b)

Figure 5: Score of decision functions identified training the SVM with two different sets of

experimental conditions: (a) temperature and methanol fraction at the inlet; (b) temperature

and water fraction at the inlet. Solid black lines represent contours at I(u) = 0.

conditions at I < 0, one shall proceed carefully and question the reliability

of the computed solution;

• if one is willing to enhance the precision on the model parameters col-

lecting new data, the research of optimal experimental conditions through

MBDoE methods shall be bounded to regions of the input space at I > 0,

where the model is expected to provide a good fitting.

Notice that the inclusion of new performed experiments in the data set does not

necessarily lead to the computation of different parameter estimates (indeed the

new data may be excluded from the parameter estimation by MBDM). However,

the inclusion of new experiments in the training set always results in an update

of the decision function I and the associated reliability map. In fact, since the

decision function in Eq. (17) is influenced by all the experiments available, its

score will increase or decrease in the neighbourhood of the experimental condi-

tions associated to the new experiments depending on the labelling computed

by MBDM.

The mapping of the design space provided by SVM is purely data driven and

depends on the choice of the kernel function as well as the values of the associated
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hyperparameters (see Section 2.2). Furthermore, an accurate SVM classification

requires the availability of a relatively abundant and distributed training set.

Especially at the beginning of the experimental activity, the number of training

points may be limited and the classification may be poor. However, notice that

in the presented approach for model identification (see Figure 1), an inaccurate

classification would only impact the efficiency of the method (i.e. the number

of experiments required to identify the model) and not the eventual outcome.

An initially inaccurate reliability map may lead to the design of incompatible

experiments in regions of the design space that are classified as reliable. How-

ever, the accuracy of the SVM classifier increases as the experimental activity

proceeds and does not prevent the ultimate identification of an accurate model.

The identified domain of model reliability may be characterised by a very

complicated geometry due to the RBF adopted as kernel for the SVM, but also

nonlinearity in both the system and the approximated model. The nonconvexity

of the region of reliability may result in the achievement of unreliable solutions

when employed to bound model-based optimisation problems. In such context,

the employment of visualisation techniques may be beneficial for supporting the

identification of Pareto optimal solutions [22]. The hybridisation of the proposed

model identification approach together with high dimensional data analysis and

space visualisation will be object of future studies.

5. Conclusion

The identification of a model with incorrect structure requires both the pre-

cise estimation of its parameters and the recognition of the range of experimental

conditions where the model can provide satisfactory predictions, namely the do-

main of model reliability. In this manuscript, a framework for addressing the

aforementioned tasks is presented. Fundamental step in the procedure is the

fitting of the experimental data through a tailored Model-Based Data Mining

(MBDM) method for parameter estimation. MBDM generates two outputs: 1)

it computes an instance of the model parameters excluding the data causing the
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bad fitting from the parameter estimation problem; 2) it labels the explored ex-

perimental conditions in terms of good or bad model performance. The labelled

data set generated by MBDM is then used to train a support vector classifier

for identifying a decision function to map the space of the experimental condi-

tions in terms of high or low expected model reliability. The identified map of

reliability can be employed for raising a flag when optimal process points are

identified in the region of low model reliability or to to bound the research of

new experimental conditions to investigate for improving the precision of the

model parameters. If an optimal process point is identified in a region of low

model reliability, the computed solution and the model predictions in its neigh-

bourhood shall not be trusted. At the current stage of the study, the proposed

approach does not provide guidance on how to modify the model structure to

extend the boundaries of the model reliability domain. It will be object of future

work to promote further the integration of machine learning technologies and

advanced tools for model building for supporting the development of intelligent

algorithms for the quick construction, refinement and statistical validation of

phenomenological models.
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List of symbols

Latin symbols

ai Lagrange multiplier associated to the i-th experiment

Ai Pre-exponential factor of i-th reaction

b Hyperplane offset

C Regularisation constant of the support vector machine

Ci Concentration of species i

cij Arbitrary constant associated to the ij-th element of the log-likelihood

Eai Activation energy of the i-th reaction

F Volumetric flowrate

I Decision function identified by a supervised learning machine

K Generic kernel function

L Likelihood function

NC Number of chemical species included in the kinetic model

Nexp Number of experiments included in a data set

Nm Number of dependent output variables in a given model

NR Number of reactions involved in the kinetic model

Nu Number of independent inputs in a given model

Nx Number of state variables in a given model

Nθ Number of non-measurable parameters in a given model

P Pressure

R Ideal gas constant

ri Reaction rate of the i-th reaction

T Temperature

tref t-value of reference computed from a Student’s distribution

U Vector space of model inputs

v Flow velocity along the axial coordinate of microchannel

yij i-th measured variable in the j-th experiment

ŷij Model prediction of yij

yINi Molar fraction of species i at the inlet
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Z Feature vector space

z Axial coordinate of microchannel

zα
2

Two-tailed z-value derived from a standard normal distribution

Matrices and vectors

f Column array of functions [Nm]

u Column array of independent control variables (model inputs) [Nu]

ui Experimental conditions tested in the i-th experiment [Nu]

x Column array of state variables [Nx]

ŷ Column array of predicted output variables [Nm]

θ Column vector of variables representing model parameters [Nθ]

θ̂ML Maximum likelihood estimate obtained maximising ΦML [Nθ]

θ̂DM Maximum likelihood estimate obtained maximising ΦDM [Nθ]

θ̂DM,exp Maximum likelihood estimate obtained maximising ΦDM,exp [Nθ]

Λ Matrix of binary variables [NexpxNm]

ξ Array of misclassification errors [Nexp]

ϕ Vector transformation ϕ : U → Z [dim(Z)]

Greek symbols

α Statistical significance

βi Binary variable associated to the i-th experiment in ΦDM,exp

γ Decay length of Gaussian radial basis function

Θ Vector space of model parameters

λij Binary variable associated to the ij-th element of ΦDM

νij Stoichiometric coefficient of the i-th species in the j-th reaction

ξi Misclassification error associated to the i-th experiment

σij Standard deviation of measurement error associated to yij

ΦML Log-likelihood function

Φ′ML Modified Log-likelihood function

ΦDM Objective function for model-based data mining of single data
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ΦDM,exp Objective function for model-based data mining of experiments

χ2 Sum of squared residuals

Ψ Data set available for parameter estimation

Ψ′ Reduced data set fitted by a generic data mining method

ψ Discrete function {ui, i = 1, ..., Nexp} → {−1,+1}
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Appendix A. Conjecture proof

In the present Appendix, a proof is given to demonstrate that optimising the

function ΦDM(θ|Ψ), i.e. Eq. (A.1), subject to (A.2), is equivalent to optimising

the likelihood function ΦML(θ|Ψ′), Eq. (A.3), built adopting the reduced data

set Ψ′ = {yij |λij(θ̂DM) = 1 ∀ i = 1, ..., Nm ∧ j = 1, ..., Nexp}.

ΦDM(θ|Ψ) =
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ)
[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]
(A.1)

s.t. λij(θ) =

1 if z2
α
2
−
(
ŷij(θ)−yij

σij

)2

> 0

0 if z2
α
2
−
(
ŷij(θ)−yij

σij

)2

< 0
∀ i, j (A.2)

ΦML(θ|Ψ) =
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ̂DM)
[
− ln(2πσ2

ij)−
( ŷij(θ)− yij

σij

)2]
(A.3)

The likelihood function ΦML(θ|Ψ′) can be rewritten as follows:

ΦML(θ|Ψ′) =
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ)
[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]

+
1

2

Nexp∑
j=1

Nm∑
i=1

(
λij(θ̂DM)− λij(θ)

)[
z2
α
2
−
( ŷij(θ)− yij

σij

)2]

+
1

2

Nexp∑
j=1

Nm∑
i=1

λij(θ̂DM)
[
− ln(2πσ2

ij)− z2
α
2

]
(A.4)

The first sum in (A.4) represents ΦDM(θ|Ψ) and it attains its maximum in θ̂DM.

For the second sum, referring for simplicity only to the ij-th element, four cases

can be distinguished:

1. the term
[
z2
α
2
−
(
ŷij−yij
σij

)2]
is non-negative in θ̂DM and non-negative in

θ. Because of conditions (A.2), λij(θ̂DM) = 1 and λij(θ) = 1, thus(
λij(θ̂DM)− λij(θ)

)[
z2
α
2
−
(
ŷij(θ)−yij

σij

)2]
= 0;

2. the term
[
z2
α
2
−
(
ŷij−yij
σij

)2]
is non-negative in θ̂DM and negative in θ.

From conditions (A.2), λij(θ̂DM) = 1 and λij(θ) = 0, and
(
λij(θ̂DM) −

λij(θ)
)[
z2
α
2
−
(
ŷij(θ)−yij

σij

)2]
< 0;
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3. the term
[
z2
α
2
−
(
ŷij−yij
σij

)2]
is negative in θ̂DM and non-negative in θ.

From conditions (A.2), λij(θ̂DM) = 0 and λij(θ) = 1, and
(
λij(θ̂DM) −

λij(θ)
)[
z2
α
2
−
(
ŷij(θ)−yij

σij

)2]
≤ 0;

4. the term
[
z2
α
2
−
(
ŷij−yij
σij

)2]
is negative in θ̂DM and negative in θ. From

conditions (A.2), λij(θ̂DM) = 0 and λij(θ) = 0, and
(
λij(θ̂DM)−λij(θ)

)[
z2
α
2
−(

ŷij(θ)−yij
σij

)2]
= 0;

Hence, the second sum in (A.4) is always non-positive. The last sum in (A.4)

is a constant term and does not depend on θ. It is then concluded that if θ̂DM

maximises ΦDM(θ|Ψ), it also maximises ΦML(θ|Ψ′).
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A model-based data mining approach for determining the domain of validity of 
approximated models 

 

HIGHLIGHTS 

• A framework for the identification of approximated model structures is proposed. 
• Machine learning is employed to quantify the model reliability in the input space. 
• Reliability maps are given to prevent the use of unreliable optimal process points. 
• Reliability maps support optimal design of trials to improve parameter precision. 


