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Abstract 

Model Predictive Control (MPC) is nowadays ubiquitous in the chemical industry 

and offers significant advantages over standard feedback controllers. Notwithstanding, 

projects of new plants are still being carried out without assessing how key design 

decisions, e.g., selection of production route, plant layout and equipment, will affect 

future MPC performance. The problem addressed in this Thesis is comparing the 

economic benefits available for different flowsheets through the use of MPC, and thus 

determining if certain design choices favour or hinder expected profitability. The 

Economic MPC Optimisation (EMOP) index is presented to measure how disturbances 

and restrictions affect the MPC’s ability to deliver better control and optimisation. 

To the author’s knowledge, the EMOP index is the first integrated design and control 

methodology to address the problem of zone constrained MPC with economic 

optimisation capabilities (today's standard in the chemical industry). This approach 

assumes the availability of a set of linear state-space models valid within the desired 

control zone, which is defined by the upper and lower bounds of each controlled and 

manipulated variable. Process economics provides the basis for the analysis. The index 

needs to be minimised in order to find the most profitable steady state within the zone 

constraints towards which the MPC is expected to direct the process. An analysis of the 

effects of disturbances on the index illustrates how they may reduce profitability by 

restricting the ability of an MPC to reach dynamic equilibrium near process constraints, 

which in turn increases product quality giveaway and costs. Hence the index monetises 

the required control effort. 

Since linear models were used to predict the dynamic behaviour of chemical 

processes, which often exhibit significant nonlinearity, this Thesis also includes a new 

multi-model prediction method. This new method, called Simultaneous Multi-Linear 

Prediction (SMLP), presents a more accurate output prediction than the use of single 

linear models, keeping at the same time much of their numerical advantages and their 

relative ease of obtainment. Comparing the SMLP to existing multi-model approaches, 

the main novelty is that it is built by defining and updating multiple states simultaneously, 

thus eliminating the need for partitioning the state-input space into regions and 
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associating with each region a different state update equation. Each state’s contribution 

to the overall output is obtained according to the relative distance between their 

identification point, i.e., the set of operating conditions at which an approximation of the 

nonlinear model is obtained, and the current operating point, in addition to a set of 

parameters obtained through regression analysis. 

Additionally, the SMLP is built upon data obtained from step response models that 

can be obtained by commercial, black-box dynamic simulators. These state-of-the-art 

simulators are the industry’s standard for designing large-scale plants, the focus of this 

Thesis. Building an SMLP system yields an approximation of the nonlinear model, whose 

full set of equations is not of the user’s knowledge. The resulting system can be used for 

predictive control schemes or integrated process design and control. Applying the SMLP 

to optimisation problems with linear restrictions results in convex problems that are easy 

to solve. The issue of model uncertainty was also addressed for the EMOP index and 

SMLP systems. Due to the impact of uncertainty, the index may be defined as a numeric 

interval instead of a single number, within which the true value lies. 

A case of study consisting of four alternative designs for a realistically sized crude 

oil atmospheric distillation plant is provided in order to demonstrate the joint use and 

applicability of both the EMOP index and the SMLP. In addition, a comparison between 

the EMOP index and a competing methodology is presented that is based on a case study 

consisting of the activated sludge process of a wastewater treatment plant. 

Keywords 

Integrated Process Design and Control, Simultaneous Process Design and Control, 

Model Predictive Control, MPC, Zone Constrained MPC, Zone Control, Controllability 

Analysis, Crude Oil Distillation, Linear Hybrid Systems, Multi-model MPC, Activated 

Sludge Wastewater Treatment. 
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Impact Statement 

This Thesis presents two main novel elements: a new integrated process design and 

control approach; and a new method for approximating nonlinear systems as a collection 

of linear state-space models.  

The first contribution, called EMOP index methodology, can be used as a decision-

making tool during the design phase of new chemical, petrochemical and oil refining 

units. It provides a performance ranking of candidate designs based on their expected 

operating expenses (OPEX) in a number of production scenarios. The main case study 

presented in this Thesis, which studied realistic designs for a crude oil distillation unit, 

demonstrated that the selection of a suboptimal flowsheet can increase OPEX from 2% 

to 55% relative to the optimal flowsheet. Even the lower range of this figure translates 

into expressive amounts of money being wasted, especially given the long life-cycles of 

the chemical industry’s projects. Design teams working for project companies or their 

clients should apply the EMOP index because it is the first Controllability Analysis 

method adequate for the special case of zone constrained model predictive control (MPC), 

the chemical industry’s de facto standard for advanced control systems. Also, like any 

method of Controllability Analysis, the EMOP index can be used to discover serious 

controllability issues in the early design phase, which has the potential of saving millions 

of dollars by avoiding delays in the project completion to implement corrections, or 

avoiding a lifetime of troubled operation, if corrections are not implemented. Unlike most 

methods, however, EMOP can provide an estimative for the losses such controllability 

issues can create. Inside academia, this work can have an impact by inspiring research on 

new methods for zone constrained MPC, as well as new efforts to monetise 

controllability. 

The second contribution is a linear state-space formulation capable of accurately 

representing inherently nonlinear processes without incurring in the mathematical 

disadvantages of using nonlinear models. Called Simultaneous Multi-Linear Prediction 

(SMLP), this formulation can be applied with MPC, yielding more precise control actions 

by reducing the prediction error. Nonetheless, the advantage of providing a better 

approximation of nonlinear models is even more relevant when the prediction is used for 

integrated process design and control. In this field, even small accuracy gains are 
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extremely important and may impact the layout choice for a new plant. A comparison 

between a PieceWise Affine system (a standard multi-model formulation) and the SMLP 

showed that the later provided an accuracy gain of 44.86%, using the nonlinear model as 

a reference. Another advantage is the economy of both computational time and 

engineering man-hours required as compared to developing a nonlinear, rigorous first-

principles or hybrid model for a complex industrial process. SMLP may inspire further 

developments in the Linear Hybrid Systems framework, and automation suppliers may 

embed SMLP in their MPC solutions. 
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Notation List 

Roman alphabet 

Symbol Definition Unit 

������  State-space disturbance matrix along the prediction horizon  

������  State-space input matrix along the control horizon  

���  Target for state change of the subsystem ϑ  

�	  Target for state change of the SMLP system  


�,�  Initial state of the subsystem ϑ  


�,
  Target state of the subsystem ϑ  

�����  
average value of the CV with quality threshold through the 

prediction horizon 
 

������  
Value of CV quality threshold value for which the price 

variation occurs 
 

���  State-space model system matrix of sub-model ϑ  

��  Settler area m�  

���  State-space model input matrix of sub-model ϑ  

���  State-space model output matrix of sub-model ϑ  

��  
Dissolved oxygen (DO) concentration at the output of the 

aeration tanks input flow 
mg/L 

��  Saturation oxygen (DO) concentration in the aeration tanks 
��
�   

 ��  State-space model disturbance matrix of sub-model ϑ  

 !  Space of possible disturbance values   

��  Measured vector of disturbance variables (DVs)  

"�#$     
Absolute value of prediction error of sub-model ϑ relative to 

step n 
 

&',(  Error relative to controlled variable i at each instant k  

&)'*$   Linearisation error for a single sub-model ϑ  

+(�  Aeration factor  
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+(,  
Yield coefficient between biomass endogenous and substrate 

contribution to the medium 
L.�  

/�  
Transfer function matrix describing the effects of disturbance 

variables 
 

0�	  Degradation function of sub-model ϑ  

23456	  Economic MPC Optimisation index  

23456.74	  
Lower bound (best-case uncertainty realisation) of the 

EMOP index 
 

23456.89  Uncertain interval of the Economic MPC Optimisation index  

23456.:4	  
Upper bound (worst-case uncertainty realisation) of the 

EMOP index 
 

;<=  
Contribution of control zone violations to the EMOP 

objective function 
 

;(	  Basic EMOP objective function value at time k  

;4=  
Contribution of MV economic optimisation to the EMOP 

objective function 
 

;>  Total opportunity cost due to quality thresholds  

;�?@  
Auxiliary component of the EMOP index use to drive CVs 

away from saturation 
 

AB�  
Yield coefficient between the cellular growth and the oxygen 

consumption rate 
 

AC  Kinetic coefficient of biomass decay by biological waste 
�
D  

A,  
Kinetic coefficient of biomass decay by endogenous 

metabolism 

�
D  

A)?  
Mass transfer coefficient in aeration process oxygen uptake 

rate 
h.�  

A�   Saturation constant 
��
�   

FG  Height of the second layer of the secondary clarifiers m 

F,  Height of the first layer of the secondary clarifiers m 

FH  Height of the third layer of the secondary clarifiers m 

I$JK@L  
Number of votes of partition ϑ of the PWA model 

implementation 
 

MN  Number of plants to be assessed  

O�  Number of steps used for model identification  
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MP	  Number of manipulated variables  

MQ	  Number of controlled variables  

RS  Neighbourhood of the nominal plant  

R����  Price of the most premium product variant  

RT�0  Regular price of a product with quality threshold  US$ 

U��  Observability matrix of the subsystem ϑ  

�V  Influent flow mW h⁄   

�Y  Purge flow mW h⁄   

�T	  Recycle flow  

�T  Recycle flow mW h⁄   

Z��  Reachability matrix of the subsystem ϑ  

Z��[\  Plant θ’s operational revenue at initial OP (time k)  

Z	  Reachability matrix of the SMLP system  

^�  
Substrate (COD) concentration at the output of the aeration 

tanks 

��
�   

^'  Substrate concentration at the influent 
��
�   

^'H  Bioreactor inlet substrate concentration 
��
�   

_`�	  Soft-Landing matrix for the first order derivatives  

_`
	  Soft-Landing matrix for the second order derivatives  

a<  Ethylene critical temperature  

bcR  
Error penalization matrix parameter vector for overshoot 

rejection prioritisation 
 

b�de�T	  Parameter matrix for error penalization (lower bound)  

b_`�	  
Parameter vectors for first order derivatives Soft-Landing 

matrix  
 

b_`
  
Parameter vectors for second-order derivatives Soft-Landing 

matrix 
 

b�YY�T	  Parameter matrix for error penalization (upper bound)  

f�  Feed volumetric flow rate  

f�	  Ethylene concentration in the feed   

g!	  Space of possible manipulated variable values  

���
  Vector of minimum values for manipulated variables  

��Vh  Vector of maximum values for manipulated variables  



Notation List 

14 

 

gi  Left singular vector matrix  

j�  Bioreactor volume mW  

j��
  
Vector of economic optimisation weights for MVs 

(maximisation) 
 

j�Vh  
Vector of economic optimisation weights for MVs 

(minimisation) 
 

�YTd�  Output volume of the product with quality thresholds  

�ik
lm  
Settling rate function of the activated sludge in the settler 

depending on xo 

�
�p ∙ h  

�ik
�m  
Settling rate function of the activated sludge in the settler 

depending on xr 

�
�p ∙ h  

s�de�T  Weight vector for the lower bound (minimum value) of y  

eY  Weight defining acceptable dynamic responses   

s�YY�T  Weight vector for the upper bound (maximum value) of y  

u�  Biomass concentration at the output of the aeration tanks 
��
�   

u�	  Dimensionless gas density  

u�  Ethylene concentration  

uW	  Ethylene oxide concentration    

uv	  Reactor temperature  

uG  Biomass concentration in the settler second layer 
��
�   

u,  Biomass concentration at the surface of the settler 
��
�   

u'  Biomass concentration at the influent 
��
�   

u'H  Bioreactor inlet biomass concentration 
��
�   

u(	  State vector at time k  

uH  Biomass concentration at the bottom of the settler 
��
�   

wNx  i’th output pole vector  

wC  
Yield coefficient between cellular growth and substrate 

elimination 
 

�\y   
Uncertain model prediction vector for controlled variables at 

time k 
 

�i�{. 		 Vector of controlled variables saturated at the lower bound 	
�i�{| 		 Vector of controlled variables saturated at the upper bound 	
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�\�	  
Updated initial CVs for the best-case model (step 3 of the 

uncertainty procedure) 
 

�\s	  
Updated initial CVs for the worst-case model (step 3 of the 

uncertainty procedure) 
 

���
	  Vector of maximum values for controlled variables   

���
∗   
Vector of maximum values for the sensor measuring 

controlled variables 
 

��Vh  Vector of minimum values for controlled variables   

��Vh∗   
Vector of minimum values for the sensor measuring 

controlled variables 
 

�h�  
Output of the nonlinear model (real plant or simulation 

package) 
 

�iY  Vector of reference signals (setpoints)  

��  Measured vector of controlled variables (CVs)  

�  State-space model system matrix  

�  Vector of parameters of the ethylene oxide process model  

~�  Settling rate experimental parameter 
�
��  

�  State-space model input matrix  

�  Vector of parameters of the ethylene oxide process model  

�  State-space model output matrix  

�  Bioreactor input flow mW h⁄   

   State-space model disturbance matrix  

�  Vector of disturbance variables (DVs)  

�  Vector of design variables  

c  Vector of error   

cR  Error penalization matrix   

f Vector of inequalities  

0  
Constraints that represent feasible operation (eg physical 

constraints, specifications) 
 

/  
Transfer function matrix describing the effects of 

manipulated variables 
 

/  Process gain matrix  

�  First principles model, ie, heat and material balances  

�	  Identity matrix  
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�  Current time discrete time  

K One-degree-of-freedom proportional controller  

�	  Number of time increments of the control horizon  

n Measurement noise  

M�  Settling rate experimental parameter  

���  Oxygen uptake rate 
��
� ∙ h  

�  prediction horizon  

P Plant  

P Positive definite solution of the Riccati equation  

�	  Bioreactor input flow  

U  LQR weight  

Z  Input suppression factor  

i  Laplace variable  

S Sensitivity Function  

t Time s or h 

T Complementary Sensitivity Function  

�  Absolute value of the vector of manipulated variables (MVs)  

V Right singular vector matrix  

V A locally positive function  

�  Yield of ethylene oxide  

�  Vector of controlled variables (CVs)  
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Greek Alphabet 

Symbol Definition Unit 

�	  Auxiliary variable that denoting time  

��,�. 	  Minimum negative relative model mismatch relative to DVs   

��,�| 	  Maximum positive relative model mismatch relative to DVs   

��,�. 	  Minimum negative relative model mismatch relative to MVs   

��,�| 	  Maximum positive relative model mismatch relative to MVs   

��.  DV negative uncertainty matrix  

��|  DV positive uncertainty matrix  

��.	  MV negative uncertainty matrix   

��|	  MV positive uncertainty matrix   

�  Vector of parameters of the ethylene oxide process model  

�Qx,�  Realisation of the uncertainty between y� and d�  

�QxP�  Realisation of the uncertainty between y� and u�  

���\	  
Matrix generated by the product between the DVs set its bounded 

uncertainty realisation 
 

���\	  
Matrix generated by the product between the MVs set its bounded 

uncertainty realisation 
 

�  State of the ASP model  

∆	  Sampling period  

∆�y  Interval of disturbance magnitude of the uncertain model  

∆�\	  DV vector at k   

∆�!	  Matrix of DV values along the prediction horizon as planned at k  

∆R����  
Added value, ie, product price difference between premium priced 

and regular product 
 

∆�  MV movement, control action  

∆�y  Interval of control action magnitude of the uncertain model  

∆�\	  MV vector at k  

∆�!	  Matrix of MV values along the control horizon as planned at k   

∆wQx,Px
?�N

   

Norm of the amplitude of the dynamic response of the multi-linear 

system to a step at the end of the prediction horizon, for a certain 

CV/MV couple 
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∆w�# 	  
steady-state response amplitude of plant data relative to the nth 

step 
 

∆��	y 	  
Prediction mismatch between the nominal model and the best-case 

model 
 

∆w',
y
  

Change in the steady-state output prediction caused by a bounded 

realisation of DV uncertainty 
 

∆w'P  Output change caused by an MV movement ∆u�  

∆w',
y
  

Change in the steady-state output prediction caused by a bounded 

realisation of DV uncertainty 
 

∆w'Py  
Change in the steady-state output prediction caused by a bounded 

realisation of MV uncertainty 
 

∆�Y�  Model mismatch value at the end of the prediction horizon  

∆������  
Difference between the key CV quality threshold value for which 

the price variation occurs, y�����, and the average value of the key 

CV through the prediction horizon, y���� 
 

∆�s	y 	  
Prediction mismatch between the nominal model and the worst-

case model 
 

�[|  

Expected deviations of uncertain parameters in the positive 

direction 
 

�[.  

Expected deviations of uncertain parameters in the negative 

direction 
 

 $  Weight of sub-model ϑ in the main prediction  

[  Uncertain parameters  

[`  Lower bound on uncertain parameters  

[¡  Nominal value of the uncertain parameters  

[g  Upper bound uncertain parameters  

�	  Auxiliary binary variable   

¢  Vector of eigenvalues  

£  Relative gain array  

¤	  Auxiliary binary variable   

¤��
  Maximum growth rate of the microorganisms h.�  

�YTd�  Volume produced of product with quality threshold  

¥  Set of possible plants  

¦�  Singular value  
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¦  Vector of singular values  

§  Diagonal matrix of singular values  

¨	  Time   

©�  Distance coefficient of model ϑ  

ª  Range of uncertain parameters  

«h�     
Relative prediction error of sub-model ϑ relative to the nth step

 
 

«�V,���
  

Model mismatch between the simultaneous multi-linear prediction 

system and sub-model ϑ concerning d� and y¬ 
 

«�V,�V�
  

Model mismatch between the simultaneous multi-linear prediction 

system and sub-model ϑ concerning u� and y¬ 
 

­  Flexibility function  

®  Feasibility function  

¯  Frequency  
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Acronyms List 

Acronym Definition 

BIBO Bounded-Input Bounded-Output 

BWA Analytical Bounds Worst-case Approach 

CLF Control Lyapunov Function 

CV Controlled variable 

DAE Differential Equations 

DC Disturbance Cost 

DCN Disturbance Condition Number 

DIC Decentralized Integral Controllable 

DMC Dynamic Matrix Control 

DOI Dynamic Operability Index 

EMOP Economic MPC Optimisation index 

EMPC Economic MPC 

GDP Generalised Disjunctive Programming 

GPC Generalized Predictive Control 

HEN Heat Exchanger Network 

HWA Hybrid Worst-Case Approach 

IC Integral Controllable 

ICI Controllable with Integrity 

ICPS Integrated control and process synthesis 

IHMPC Infinite Horizon Model predictive control 

IMC Internal Model Control 

IPDCF Integrated process design and control framework 

ISE Integrated Squared Error 

KKT Karush-Kuhn-Tucker 

LCA Life Cycle Assessment 

LDMC Linear Dynamic Matrix Control 

LQR Linear–Quadratic Regulator 

MAC Model Algorithmic Control 

MIC Morari Indexes of Integral Controllability 

MIDO Mixed-Integer Dynamic Optimisation 
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MIMO Multiple Inputs Multiple Outputs 

MINLP Mixed-Integer Nonlinear Problem 

MIOCP Mixed-Integer Optimal Control Problem 

MPC  Model predictive control 

MV Manipulated variables 

NLP Nonlinear Optimisation Problem 

NMPC Nonlinear Model Predictive Control 

OCI Output Controllability Index 

OP Operating point 

OPEX Operating expenses 

PID Proportional–integral–derivative 

PWA PieceWise Affine 

PWARX PieceWise Autoregressive Exogenous 

QDMC Quadratic Dynamic Matrix Control 

QP Quadratic program 

RHPT Right Half-Plane Transmission 

RTO Real-Time Optimisation 

SARX Switched Autoregressive Exogenous 

SISO Single-Input Single-Output 

SMLP Simultaneous Multi-Linear Prediction 

SP Setpoint 

SQP Sequential Quadratic Programming 

SVA Structured Singular Value Analysis 
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1 Introduction and Motivation 

1.1 The Integrated Process Design and Control Framework 

Optimisation methodologies are applied to several areas of chemical engineering 

to solve a wide range of problems. Among these, two of the most relevant are process 

control and optimal process design. Both require careful consideration at the design phase 

of chemical engineering projects.  

The design of a new chemical plant, or process synthesis, involves projecting 

process equipment and assembling them in the correct layout to meet production goals 

(carry out a chemical reaction, separation process, etc.). During the design phase, the 

project engineer should optimise the correlation between return on capital and invested 

capital. Sometimes achieving higher efficiency and smaller operational costs may offset 

a larger initial investment, and such trade-offs are fundamental to the process synthesis 

problem. 

On the other hand, the design of a control system involves analysing the dynamic 

behaviour of a certain plant and selecting a convenient control structure and a set of tuning 

parameters to achieve the desired performance. The control system must be able to reject 

disturbances successfully, and to keep stable the key variables. The unstable operation 

could lead to safety and environmental constraint violations and reduced profits. Different 

control structures need to be tested for any given process flowsheet, and their performance 

must be evaluated and benchmarked to provide input to the decision process. 

The traditional approach has been solving these problems separately, in a 

sequential approach. In industrial projects, they are often carried out by different groups 

of professionals with different expertise. Usually, the first step is the creation of a 

flowsheet by the process design team to meet production requirements, in which the 

process route, equipment layout, products and raw materials are defined based on an 

optimal set of steady-state conditions. Next, the control design team evaluates process 

dynamics in order to assess whether or not the desired set of operating conditions can be 

achieved and maintained. The strictly necessary modifications to this end are then 

proposed, i.e., at this phase changes are normally kept at the bare minimum with a view 
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to avoiding delays and friction between the teams. This situation is far from ideal because 

even if control and optimal process design may often be regarded as separated areas in 

chemical engineering practice, in reality, they are deeply related. Process design decisions 

have a very significant impact on control system performance, which in turn is extremely 

important to guarantee stable and profitable operation. 

In the chemical industry, the goal of any chemical plant is to produce products 

that fulfil all specifications while obtaining maximum revenue with minimum cost. To 

reach such a goal it is necessary to provide the plant with a correctly engineered control 

system, which must possess a convenient set of controlled and manipulated variables, 

clearly defined control objectives and convenient tuning parameters. The operation must 

be stable and optimised, and the plants must be operated as flexibly as possible to adapt 

satisfactorily to changes in the process such as varying product demand and 

specifications, and oscillation in feed composition, flowrate, pressure and temperature. In 

such a context, the application of appropriate process control strategies allows for the 

successful operation of the plants improving profitability by increasing product 

throughput and yield of higher valued products and by decreasing energy consumption 

and pollution. They also help process automation, which reduces operational costs. 

Many recent works published in control theory have focused on the development 

of new algorithms, but we believe this field has matured, and larger gains may be achieved 

by switching the focus back to the process itself, and especially its design phase. 

Assuming that the control system is well engineered, the limitations on its ability to 

control and optimise chemical plants are mostly related to the plant’s characteristics. 

Ultimately, the degree to which controlled variables can keep at their desired values in 

the face of disturbances and saturation of control elements is defined by process 

dynamics, which, in turn, is reflected in the plant’s model. 

For example, plant equipment can be undersized from a control performance 

perspective leading to intrinsically poor control performance. Or an exceedingly small 

feed drum may imply in the impossibility of properly controlling the feed flow rate. To 

avoid uncontrollable plants, a common solution has been enlarging equipment to ensure 

a stable dynamic behaviour. Adding these overdesign factors certainly improves control 

response, but if these are exaggerated, they may also lead to the specification of 

unnecessarily expensive designs. In brief, a trade-off normally exists between capital cost 

savings and the robustness of the plant design. 
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How can the correct equipment size be known? How to select the best plant 

layout? The integrated process design and control framework (IPDCF) has been 

suggested as an attractive alternative to overcome the issues associated with the sequential 

approach traditionally used in the design of industrial process units (Sharifzadeh, 2013). 

It consists of solving, iteratively or simultaneously, both the control and flowsheet design 

optimisation problems while adding stability concerns as restrictions. In this way, a 

systematic analysis of plant dynamics is incorporated into the process design procedure 

to obtain a compromise solution between profitability and smooth and stable operation. 

Significant progress has been made in the IPDCF, but untapped opportunities for 

contributions remain. The present work is an addition to the IPDCF aiming at providing 

a new analytical tool to assess plant design. The goal of this project is to address the 

limitations possessed by currently available methodologies in some situations that will be 

discussed in the next Sections. 

1.2 A Classification for Integrated Process Design and Control Methods 

The IPDCF is based on the fact that the achievable dynamic performance is a 

property of the plant and inherent to process design. The performance will depend on 

aspects of the plant units and their configuration, creating both unit and system holdups 

and sensitivities, and on the type of control exercised (Morari, 1983a,b; Edgar, 2004). 

The integrated design philosophy contemplates the important trade-off between 

profitability and controllability, incorporating the assessment of dynamic behaviour in 

the initial steps of process design. Predicting whether dynamic behaviour requirements 

are met as early as possible in the design phase is greatly advantageous since this 

information unlocks economic benefits and improved plant operation. Consequently, 

there has been a growing recognition of the need to consider the controllability and 

resiliency of a chemical process during design stage (Pistikopoulos and Van Schijndel, 

1999). 

According to Lewin (1999), IPDCF methods can be classified into two main 

classes: (i) methods which enable screening alternative designs for controllability, 

henceforth referred as Controllability Analysis; and (ii) methods which integrate the 

design of the process and the control system, henceforth referred as Integrated Control 

and Process Synthesis (ICPS). The fundamentals of both classes are now going to be 

provided, but further details can be found in the Literature Review, Chapter 2. 
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The first class focuses on plant controllability. Roughly, the concept of 

controllability denotes the ability to control the main variables of a process unit around 

their desirable values using only certain admissible manipulations. The exact definition 

varies within the framework or the type of models applied. Controllability is a concept 

that arises from the analysis of the fundamental limitations to the performance of control 

systems, which were first studied in a systematic way in Morari (1983a,b) making use of 

the perfect control concept. These studies gave birth to a series of indicators for the 

evaluation of open and closed-loop controllability, allowing comparison and 

classification of flowsheets regarding operational characteristics. Some measures using 

this concept include resiliency indices (Morari, 1983b), disturbance condition numbers 

(Skogestad and Morari, 1987) and the relative disturbance array (Stanley, Marino-

Galarraga and McAvoy, 1985).  

While this class of methods has the advantage of being easily integrated into 

traditional design procedures, the indices are often calculated based on either steady state 

or linear dynamic models, introducing significant approximations and reducing the rigour 

of the analysis. Also, the relation between the indices and the closed-loop performance 

may be unclear, which becomes evident by the large number of papers where the authors 

verify their findings through closed-loop dynamic simulations (Lewin, 1999). 

Controllability Analysis received a large number of contributions in the decades of 1980s 

and 1990s, but fewer in recent years.  Formal definitions of the measures and methods of 

Controllability Analysis are given in Sections 2.1.1 and 2.1.2. 

The second class, ICPS, consists of solving mass and energy balances for the 

flowsheet, sizing equipment and evaluating control performance at the same time for a 

certain flowsheet. The simultaneous optimisation of both the process and the control 

scheme is parameterised by means of a so-called superstructure in which dynamic 

performance requirements are included as constraints to optimal design. The aim is 

replacing the methods for early process synthesis traditionally used to obtain flowsheets, 

which rely on heuristic methods and simulation, by a single layer optimisation problem 

with embedded control structures. Alternative designs can be compared based on, for 

example, the Integrated Squared Error (ISE) for specific disturbance scenarios 

(Schweiger and Floudas, 1999), evaluating the system's dynamic feasibility and stability.  

Methods of this class can be numerically intensive, limiting their applicability to 

small or medium scale case studies and requiring specific assumptions on the control 
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system to be used. However, aided by the ever-increasing availability of computing 

power, the ICPS has received several contributions in recent years, and there is already a 

sizable body of work continuously expanding its practical applicability. In most of these 

works, a correlation between key sizing/layout parameters and control performance is 

established resulting in a cost function for which an optimisation solver will attempt to 

find the global solution. Structural changes in the process design and the control structure 

can be incorporated by adding integer decisions in the analysis by solving an intensive 

MINLP (Mixed Integer Nonlinear Programming) formulation. However, the addition of 

integer variables increases the problem's dimensionality, turning it even more expensive 

regarding required computing power and time. A downside to ICPS is that, if the 

optimisation is too radical, flowsheets thus designed may depend on the good functioning 

of the control system to be stable. Problems with sensors and control elements such as 

valves are bigger issues for these precisely designed plants which, by design, have little 

room available for control system malfunctioning. ICPS is discussed in further detail in 

Chapter 2 for classic feedback control, and in Section 2.3 for Model Predictive Control. 

1.3 Model Predictive Control and the Monetisation of Control 

Performance 

One way of monetising control performance is to evaluate the profitability or 

OPEX (Operating expenses) of the industrial unit with the control system activated, then 

deactivate the system and evaluate it again, and then subtract the latter figure from the 

former. The difference observed, i.e, the increase in profit (or reduction of expenses), can 

be explained by the reduced variability of the operating conditions that arise from the 

actions of the control system when the system successfully controlled. 

But how does reduced variability leads to higher revenue? It allows the operating 

team to drive the process closer to restrictions, enabling the reduction of the product 

quality giveaway. The giveaway gap is the difference between the quality of the product 

and the quality specification. It means that the manufacturer produces products of better 

quality than needed, which has an effect on the cost (lower yield, more energy, higher 

temperature, more reflux, etc.). Restrictions related to safety also restrict profitability, 

e.g., the maximum temperature and pressure admissible by a chemical reactor nay restrict 

conversion. Hence a well-engineered control system is able to maximise operating 

revenue of the plant through the expansion of the range of feasible and stable operating 

points (OP), which can be sustained without producing off-spec products or 

compromising safety. 
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Any configuration of the control system is able defines the sustainable OP range 

up to a certain degree, but some types of controllers yield broader ranges than others and 

for the same control system configuration, the tuning parameters being used also affect 

the OP range. Most of the methodologies developed for the IPDCF of chemical processes 

have feedback controllers such as PID (proportional–integral–derivative) embedded in 

the analysis. PIDs are SISO (Single-Input Single-Output) feedback controllers, which 

normally operate with a single setpoint (SP), and are standard in the chemical industry as 

well as numerous other applications. Ideally, SPs are set at each variable’s economic 

optimal OP, as defined by the project team. 

In practice, for multivariable problems, this approach introduces a well-known 

conflict between control goals. The issue arises as each PID tries to keep its controlled 

variable (CV) at the required SP without regard to disturbing other variables. Since most 

systems do not possess enough degrees of freedom, either due to the lack of manipulated 

variables (MV) or saturation of control elements, meeting all control goals simultaneously 

is frequently impossible (González and Odloak, 2009). Advanced “decoupling” 

techniques can help lessen the problem, but nevertheless, interactions between controllers 

inevitably impose limits to feasible OPs. In short, one should look at the bigger picture 

and consider the problem of interactions between SISO controllers to define optimal SPs. 

Model Predictive Control (MPC) is a more powerful kind of control structure that 

has matured for almost four decades of development in which it has been widely 

implemented and recognised. MPC control schemes are popular solutions to meet the 

control requirements of complex chemical processes due to their capacity for handling 

multivariable systems with the inverse response, as well as time delayed and highly 

nonlinear systems. MPC is a far more suitable for use with MIMO (Multiple Inputs 

Multiple Outputs) systems with strong interactions since it controls simultaneously all 

variables and minimises the global error according to control goal prioritisation (Morari 

and Lee, 1999). More information concerning MPC is provided in Section 2.2. 

The MPC packages may replace PID controllers entirely in some processes, but 

they are more commonly encountered operating in conjunction with them. In this 

arrangement, MPCs normally occupy a higher position in the control hierarchy and 

provide SPs to PIDs (Scattolini, 2009). Moreover, by introducing economic goals in their 

objective functions or integrating with a Real-Time Optimisation (RTO) layer, some 

MPC schemes are designed to drive the plant as close as possible to the economically 

optimal operating point (Limon et al., 2013). Fig. 1 presents the standard hierarchy of 
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control systems found in many industrial operations (Zanin et al., 2002), which includes 

process instrumentation (sensor and valves), the regulatory control system, i.e., basic 

control loops (PIDs), and the advanced control systems such as MPC and RTO. 

  

Fig. 1 – The typical hierarchy of control systems. 

In IPDCF methodology presented in this work, the structure of control systems 

presented in Fig. 1 is assumed to be present in the future industrial unit, which means that 

the control system being engineered should be able to drive the plant to the optimal OP. 

To this end, it is especially important in this scheme the presence of the MPC layer, which 

may have by itself economic optimisation capabilities or work in conjunction with an 

RTO system - it does not matter the exact layout. Fig. 2 presents a simplified scheme to 

illustrate the economic benefits adding such an MPC to the usual regulatory control. With 

only the regulatory control system activated, the operating team must set the operating 

conditions at a safe distance from key restrictions, according to the observed process 

variability. When the MPC is activated in conjunction with the regulatory control, 

variability is further reduced and thus it becomes safe to drive the process closer to 

restrictions. 
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Fig. 2 – MPC can be used to minimise the quality giveaway. 

Hence MPC increases control performance monetisation by increasing plant 

revenue. Because of such interesting characteristics, incorporating MPC in the IPDCF is 

a desirable development which has sought after by a number of researchers, whose results 

are discussed in Section 2.3. Some of these works share with this Thesis the goal of 

optimising flowsheets jointly for both MPC and feedback controllers. This motivation is 

explored further in Section 1.4.  

1.4 Project Motivation 

For the foreseeable future, some limitations will exist to the complexity of 

problems that can be solved through Integrated Control and Process Synthesis (ICPS). To 

avoid these limitations, which are mainly the complexity of the optimisation problem and 

the long computational time to solve it, and the significant engineering effort required for 

process modelling (see the discussion in Chapter 2), this Thesis makes a contribution to 

the Controllability Analysis framework, albeit in an innovative way. Our goal is to 

provide tools to be used alongside the usual heuristic methods for early process synthesis, 

addressing some questions still unanswered by currently available Controllability 

Analysis methods. 

Normalised stability indexes such as controllability and resiliency are not directly 

linked to revenue and profitability, which is a point for improvement. Stability is of course 

required but by itself, considered in from process economics, it might be a poor guide for 

selecting the flowsheet. Analysis of dynamic behaviour can be used to assess what 

operational point results in the optimal operational return while meeting the minimum 

stability requirements. Generally speaking, control systems must enable secure and stable 

Restriction upper limit 
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      PID control only                         Operation with both PID and MPC       
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Human operator 
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process operation, environmental compliance, on spec product quality and economic 

optimality. Since these goals are deeply related to plant revenue and can often be 

translated into monetary values, monetising control performance is possible and arguably 

should be one of the objectives of Controllability Analysis. For this reason, it would be 

desirable to have an approach relating explicitly the process dynamics and the amount of 

the control effort to operational revenue. 

The speed with which a controller can return the process to the original operating 

region is less important than the ability to operate close to the restrictions on the controlled 

variables since it is a well-known fact that economically optimum OPs usually lie on 

constraint intersections (Narraway and Perkins, 1993). Nowadays it is not such a strong 

assumption that, if sensors and control elements work properly, every one of the available 

world-class MPC packages will be able to drive the process to this optimal OP (Angeli, 

2012) since they possess economic optimisation capabilities. But if we can assume this 

as a fact, how should the design of chemical processes be affected? This Thesis provides 

a new methodology with embedded MPC that can be used to select the best among a 

number of candidate process designs for any given continuous or semi-continuous 

process. The following questions need to be addressed to accomplish this goal: 

• Within the range of all possible operating points or conditions available 

for a given plant, what is the most profitable?  

• Is the path from an arbitrary initial operating point to this desired point 

feasible? Does it violate operational constraints? To what extent? Are 

these violations acceptable?  

• Can the optimal operating point be sustained by the said plant? 

• Given a number of different plant designs, how does each plant’s optimal 

operating point compares based on revenue? 

• Given a set of controlled and manipulated variables and their bounds, what 

effect has a certain plant layout modification on monetised MPC 

performance?  

• How changes in product specifications affect plant revenue? Should they 

lead to further changes in the layout? 

Hence, the problem being addressed is finding the optimal feasible operating point 

that exists within the range of possible conditions for a certain flowsheet while assuming 

MPC. To this end, we must also consider control goal definitions of the embedded MPC 
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structure, which affect this problem. While the optimal operating point analysis will be 

similar to that of PIDs if the embedded MPC has fixed SPs, MPC can also operate with 

flexible control goals known as “control zones”. The use of control zones changes how 

the optimal feasible operating point of a flowsheet is defined in comparison to a fixed SP 

approach. In this case, a variable can move inside its control zone without penalisation 

(see the description of this MPC formulation in Section 2.2.2). Fig. 3 presents a diagram 

showing that the interaction of control and process design can affect not only the optimum 

operating point but also the desired trajectory to reach it from an initial state. 

 

Fig. 3 – Searching for the best path to the optimal operating point for a control 
zone system with two controlled variables. 

Zone constrained MPC has become the advanced control method of choice in the 

chemical industries such petroleum refining and petrochemical processes. Being a very 

useful variant of MPC, it is time for a methodology addressing it to be included in the 

IPDCF. Hence, a method to assess dynamic behaviour valid for any zone constrained 

MPC is presented in this Thesis. It consists of evaluating in a number of scenarios the 

Economic MPC Optimisation (EMOP) index of each alternative plant design. The EMOP 

index is an assessment tool based on a monetised measure of the required control effort, 

enabling flowsheet benchmark. 

1.5 Thesis Organisation 

This Thesis is organised into eight Chapters. This introduction was the first 

Chapter. Chapter 2 is the Literature Review, which contains a comprehensive review of 

the IPDCF (Integrated Process Design and Control Framework), a short review of MPC 

and a review of existing IPDCF strategies that embed MPC structures. Chapter 3 details 

the EMOP index methodology, a new IPDCF method; Chapter 4 contains the 
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Simultaneous Multi-Linear Prediction (SMLP), a multiple state-space model approach 

developed to improve the accuracy of the EMOP index by reducing nonlinearity-related 

error. In Chapter 5, an extension is presented to address the issue of model uncertainty. 

Chapter 6 features a case of study concerning the assessment of four possible layouts for 

a crude oil distillation unit for which the full methodology is applied. The results obtained 

for this case study are discussed and interpreted. Chapter 7 compares the EMOP index 

methodology to another integrated process design and control method by applying them 

to the same case study, the active sludge of a wastewater treatment plant. In Section 7.2, 

the same model is used to benchmark the SMLP in comparison to other multi-model 

approaches. Final conclusions are presented in Chapter 8.
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2 Literature Review 

This Literature Review Chapter of this PhD Thesis presents a comprehensive 

survey of the Integrated Process and Control Design Framework.  

2.1 Review of Integrated Process and Control Design Methodologies 

The main contribution of this Thesis can be classified as part of the Integrated 

Process and Control Design Framework, and for this reason, a general view of it is 

presented in this Chapter. Relevant concepts are presented in this Chapter intending to 

provide a theoretical background for the EMOP index methodology. This Literature 

Review is organised in following items: 

1. Concepts and Measures of Controllability; 

2. Process-Oriented Methods for Controllability Analysis; 

3. Integrated Process Design and Control Framework - Methods of Integrated 

Control and Process Synthesis; 

4. Review of Model Predictive Control; 

5. Review of Integrated Process Design and Model Predictive Control 

Methodologies; 

6. The Linear Hybrid Systems framework; 

7. Conclusions from the Literature Review. 

Key controllability concepts and measures are discussed in the first item, as well 

as the fundamental limitations to control performance. The second item focuses on 

Controllability Analysis methods that deal with complications such as systems with 

recycles, systems with steady-state multiplicity and methods that integrate rigorous 

modelling and passivity theory. The third item presents methods with embedded 

Controllability Analysis which also present integrated design optimisation problems. 

Such integrated problems have design variables to affecting feedback control structures, 

plant layout and sizing parameters. These first three items make up the bulk of the IPDCF. 

Being numerous and sharing fewer similarities to the EMOP methodology, these works 

are only briefly discussed, with a view to the completeness of this review, through Section 

2.1.  
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The fifth item is discussed in Section 2.3 and consists of integrated design and 

control papers with embedded MPC. Since there are few papers in this category and these 

are more closely related to this PhD project, an elaborate discussion is provided for each 

one of them. Item four consists of a quick introduction to MPC, which is presented in 

Section 2.2. 

2.1.1 Concepts and Measures of Controllability 

This Section introduces a series of efforts made over the years towards measuring 

controllability. A plant is controllable if there exists a controller (connecting plant 

measurements and plant inputs) that yields acceptable performance for all expected plant 

variations (Skogestad and Postlethwaite, 1996). According to this view, controllability is 

independent of the controller, being a property of the plant (or process) alone. Thus, it 

can only be modified by changing the plant itself, that is, by (plant) design changes. Such 

changes may include: 

• Changing the apparatus itself, e.g. type, size, layout, etc.; 

• Relocating sensors and actuators; 

• Adding new equipment to dampen disturbances; 

• Adding extra sensors; 

• Signal Processing, e.g., signal filter; 

• Adding extra actuators; 

• Changing the control objectives. 

A plethora of methods were proposed over the years with the purpose of 

evaluating a plant’s sensitivity to disturbances, which can be controller-independent 

(open loop analysis) or not (closed loop analysis). ‘Controllability Analysis’ currently 

covers to the assessment of flowsheet properties such as State Controllability, resiliency, 

flexibility, operability, switchability and stability, among others, all of which will be 

reviewed in the next subsections. These measures are often summarised in the form of 

indexes that show the effects of perturbations on controlled variables and operational 

constraints and their propagation through the process. 

Let us start this discussion on methods of Controllability Analysis defining the 

“Input-Output” controllability. The evaluation of controllability was first introduced by 

Ziegler and Nichols (1943). Skogestad and Postlethwaite (1996) provided the following 

definition for Input-Output controllability: 
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Definition 2.1.1.1 Input-output controllability is the ability to achieve 

acceptable control performance; that is, to keep the outputs (�) within 

specified bounds or displacements from their references (�iY), in spite of 

unknown but bounded variations, such as disturbances (�) and plant 

changes (including uncertainty), using available inputs (�) and available 

measurements (�� or ��). 

 This seminal idea implies that the process performance depends on the 

availability of both measured and manipulated variables. Input-Output Controllability can 

also be described as the ability of an external input (the vector of controlled variables) to 

move the output from any initial condition to any final condition in a finite time 

interval. Note that being controllable, in this narrow definition of controllability, does not 

mean that once a state is reached, that state can be maintained. It merely means that said 

state can be reached within a reasonable timeframe. Later methodologies for investigating 

the open-loop, input-output controllability of a process include Biss and Perkins (1993).  

The concept of “input-output” controllability, insufficient as it is to guarantee 

proper closed-loop dynamic behaviour, paved the way to a broader theoretical 

background and more restricted definitions. For instance, Integral controllability is 

another, more rigorous, criterium. According to Campo and Morari (1994), a plant with 

a given control configuration is Integral Controllable (IC) if it is stable with all controllers 

operating and suitably tuned and remains stable when the gains of all controllers are 

detuned simultaneously by the same factor   ∈ µ0,1·. If multiloop SISO controllers are 

used, integral controllability is an important criterion in the variable pairing. Yu and 

Luyben (1986) eliminated pairings with negative Morari Indexes of Integral 

Controllability (MIC) to ensure integral controllability. The MICs are the eigenvalues of 

the G|k0m matrix (the plant steady-state gain matrix with the signs adjusted so that all 

diagonal elements have positive signs). If all of the individual loops are integrally 

controllable, a negative value of any of the eigenvalues of G|k0m means that the variable 

pairing will produce an unstable closed-loop system if each loop is detuned at an arbitrary 

rate. It should be noticed that for 3 x 3 or higher order systems, there are instances for 

which no variable pairing will give MICs that are all positive. 

Campo and Morari (1994) also defined systems which are Controllable with 

Integrity (ICI), i.e., a system that is IC, and remains IC, if any number and combination 

of controllers are taken out of service (set on manual mode).  
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Even if more restrictive, ICI is not yet the ideal degree of controllability. Usually, 

it is desired to design systems that reach the classification of Decentralized Integral 

Controllable (DIC). The system is DIC if it is ICI and remains stable when any number 

of controllers are detuned by individual factors  ' ∈ µ0,1·, ¹ = 1,… , MC, where MC is the 

number of active controllers. Besides being the most demanding property, DIC is also the 

one most difficult to ascertain because of the complexity of the problem (Skogestad and 

Morari, 1988).  

Also, Wolff et al. (1992), Wolff et al. (1994) and Wolff (1994) propose procedures 

to evaluate the inherent control properties of chemical plants using analytic tools. Wolff 

et al. (1992) present a method to assess linear controllability, combining different 

controllability measures (RGA, Section 2.1.1.7, DCN, 2.1.1.6, among others) that 

complement each other for an enhanced understanding of the process behaviour. In Wolff 

et al. (1994) a systematic study of the operability and decentralised control system design 

of the total plant is presented. It involves the optimised selection of manipulated and 

controlled variables, and flexibility and Controllability Analysis using linear 

controllability indices. 

The Controllability Analysis based on dynamic models may be carried out by 

computing some indicator of the evolution of model outputs throughout a predefined time 

horizon. A typical technique is to obtain the integral of the square control error (ISE) 

using the dynamic nonlinear model. Some examples of the use of this index can be found 

in Schweiger and Floudas (1997), Bansal et al. (1998), Asteasuain et al. (2006, 2007) and 

Revollar et al. (2010a). Also in Flores-Tlacuahuac and Biegler (2007), where aside from 

the ISE, they use additionally the time to steady state. In Exler et al. (2008) a set of 

performance indexes, including the ISE and other open loop measures, is evaluated for 

the activated sludge process, as well as pumping energy and the aeration energy in the 

system (the same process used as case study in Chapter 7). 

2.1.1.1 State Controllability 

Over the years the rise of the state-space framework enabled further controllability 

definitions. The state of a deterministic system is the set of values of all the system's state 

variables (those variables characterised by dynamic equations), that completely describes 

the system at any given time. In particular, if the states at present and all current and future 

values of the control actions are known, no additional information on the system is needed 

to predict future conditions. 
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The term ‘State Controllability’, is a concept first introduced by Kalman (1960) 

that describes the ability of an external input to move the internal state of a system from 

an initial state to any other final state in a finite time interval. A system is state-

controllable if there exists an input which can achieve the desired state in a given time 

(Ogata, 1997). Skogestad and Postlethwaite (1996) provided a formal definition for State 

Controllability: 

Definition 2.1.1.1.1 State Controllability. The dynamical system 
¼ 	=
	�
	 + 	��, or equivalently the pair k�,�m, is said to be state controllable if, 

for any initial state 
k¾m 	= 	
¾, any time ¿� 	> 	0 and any final state 
�, there 

exists an input �k{m such that 
k{�m = 	
�. Otherwise the system is said to be 

state uncontrollable. 

Rosenbrock (1970) gives a thorough discussion of the issues of State 

Controllability and also defines the term ‘functional controllability’, defined as the 

capability of a dynamical system of having its output changed to reproduce certain 

trajectories belonging to given a class output sub-spaces. This concept turns out to be 

related to the property of ‘invertibility’ of the process model, as investigated in Morari 

(1983a,b). Additionally, some particular concepts of controllability and observability for 

nonlinear systems in state-space are developed in Hermann and Krener (1977). A system 

is State Observable if we can obtain the value of all individual states by measuring the 

output wk¿m over some time period. According to Skogestad and Postlethwaite (1996), 

State Observability can be defined as follows: 

Definition 2.1.1.1.2 State Observability. The dynamical system 
¼ 	=
	�
	 + 	��, �	 = �
 (or the pair k�, �m) is said to be State Observable if, 

for any time ¿� 	> 	0, the initial state 
k¾m 	= 	
¾ can be determined from 

the time history of the input �k{m and the output	�k{m in the interval µ0;	¿�·. 
Otherwise the system, or k�, �m, is said to be state unobservable. Let Â' be 

the i’th eigenvalue of �, ¿' be the corresponding eigenvector, �¿' = �Â', 
and wNx 	= 	�¿' the i’th output pole vector. Then the system k�, �m is State 

Observable if and only if wNx ≠ 0, ∀¹. 

In words, a system is State Observable if and only if all its output pole vectors are 

nonzero. Some works are found in the literature where the methodology to integrate 

design and control focuses in analysing the State Controllability of nonlinear systems. 

The works by Ochoa (2005) and Ochoa and Alvarez (2005), are interesting contributions 
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where the integrated design is carried out to ensure the local controllability of input affine, 

nonlinear systems, by means of some metrics for practical controllability based on state-

space theory. They concern different aspects of the process, such as the available degrees 

of freedom for control, the rank of the local controllability matrix, the system invertibility, 

and the range of available control actions and the existence of a linear reachability 

trajectory. These indices are examined to address problems such as misleading 

interactions between inputs and states, wrong selection of manipulated variables or final 

control elements and physical restrictions of the states, which preclude the assurance of 

practical controllability. The procedure uses the phenomenological model of the process 

and selects the manipulated variables and the best structure (pairing) for control. It also 

includes the determination of the available operation range for the input variables and the 

selection of perturbations tolerances under different scenarios. The method addresses the 

plant optimisation as a function of the investment and operation costs while including the 

evaluation of the controllability metrics and considering the restrictions imposed by them. 

At last, the control system is designed to suit the optimal plant, knowing that its 

controllability is assured at the desired operating point. Authors present an ammonium-

water separation process with a reactor-flash-exchanger plant, as a design example. 

An extension of this work to undertake the integrated design of coupled systems 

is found in Munoz et al. (2008), where a methodology is proposed to verify the 

controllability of coupled systems based on the computation of the accessibility 

distribution and the controllable/non-controllable states decomposition. In Alvarez 

(2008) the Hankel Matrix is proposed as controllability measure. In Lamanna et al. (2009) 

the state-space practical Controllability Analysis is used to impose restrictions in the 

integrated design of a sulfidation tower by integrated-optimisation methods. Calderón et 

al. (2012a) propose the redesign for a wastewater treatment plant based on the results of 

the nonlinear State Controllability Analysis of the system. The set theory is used to check 

the controllability limits of the system including disturbances limits and constraints on 

control inputs. In Calderón et al. (2012b) a comparison between differential geometric 

and set-theoretical (randomised algorithms) methods to consider the nonlinear State 

Controllability is presented. A detailed description of the methodology to assess nonlinear 

State Controllability in the integrated design framework can be found in Alvarez (2012). 

2.1.1.2 Dynamic Resiliency - Perfect Control and its Limitations 

Morari (1983a, 1983b) suggested making the problem of controllability 

assessment independent of the controller selection problem. This is done by finding a 
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plant's best achievable closed-loop control performance for all possible constant 

parameter linear controllers. This target, the upper bound on the achievable closed-loop 

performance, is defined as the plant's dynamic resilience. Thus, "dynamic resilience" is 

an expression of the plant's inherent limitation on the closed-loop system's dynamic 

response which is not biased by specific choices of controllers. Furthermore, dynamic 

Resiliency is concerned with fast and smooth changeover and recovery from process 

disturbance, with the ultimate goal of determining the inherent dynamic characteristic of 

a plant independently of the selection of a particular controller or another. 

The higher the Dynamic Resilience of a plant the closer it is to be a perfectly 

controllable plant, i.e., a plant for which perfect control is achievable. Perfect control can 

be defined as a series of control actions such that all the outputs are held at their nominal 

values in the steady state, i.e., no offset occurs. Hence, a perfect controller ensures total 

disturbance rejection. Let us consider a linear transfer function model of the form given 

by Eq. 1: 

�kim = /kim�kim + /�kim�kim   Eq. 1 

where � is the vector of manipulated variables (MVs), � is the vector of 

disturbance variables (DVs), � is the vector of controlled variables (CVs) and / and /� 

are transfer function matrices describing respectively the effects of MVs and DVs. All 

these parameters of Eq. 1 are Laplace transforms in the s-domain, where s is a complex 

number frequency parameter. The objective is to minimise the error, c = � − �iY, where 

�iY is the vector of reference signals (setpoints). Perfect control is theoretically possible 

when we have at least as MVs inputs as CVs. Mathematically, the set of perfect control 

actions is defined as the solution to the following problem: 

g�Vh = ��
� �Vh
�
‖�‖ 	i. {.		/� + /�� = ¾  Eq. 2 

Where omitted the Laplace transfer function notation. For square plants (same 

number of inputs and outputs) the perfect control problem of Eq. 2 has a unique solution 

given by Eq. 3: 

� = −/.�/��  Eq. 3 

Eq. 3 represents a perfect feedforward controller, assuming d is measurable. An 

important fact is that perfect control requires the controller to somehow generate an 

inverse of G. According to Morari (1983a), perfect control cannot be achieved if: 
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• / contains Right-Half-Plane-Transmission zeros (since then /.� is 

unstable and has an inverse response, see Section 2.1.1.4); 

• / contain time delays (since then /.� contains a prediction); 

• / has more poles than zeros (since then /.� is unrealisable); 

• / is uncertain (since then the exact /.� cannot be obtained); 

• Input vector �kim reaches saturation. 

Since one or more of those restrictions are always present for industrial plants, 

perfect control is not physically realisable (Skogestad and Wolff, 1992). Controllability 

Analysis involves using qualitative and quantitative methods to assess how controllable 

is a plant, i.e., how close its achievable control performance is to perfect control.  

Let us address the issue of model uncertainty. / may be uncertain due to a series 

of factors. For instance, frequently the exact values of parameters that are inputted to the 

model are unknown and cannot be exactly inferred. Another kind of uncertainty is the 

parametric variability, that comes from the variability of input variables of the model. 

Structural uncertainty may also be presented, which is also known as model inadequacy, 

model bias, or model discrepancy. It depends on how accurately a mathematical model 

describes the true system for a real-life situation, because models are almost always only 

approximations to reality. Algorithmic uncertainty, also known as numerical uncertainty 

or discrete uncertainty, arises from numerical errors and numerical approximations per 

implementation of the computer model, whose implementation is necessary when models 

are too complicated to solve exactly (a frequent situation in chemical engineering). 

Experimental uncertainty, also known as observation error, this comes from the 

variability of measurements, which is inevitable and can be noticed by repeating a 

measurement for many times using the same settings for all inputs/variables.  Details 

concerning the plethora of uncertainty definitions can be found in Iman and Helton 

(1988). An adequate definition of model uncertainty for the purpose of process control 

was provided in Skogestad and Morari (1986): 

Definition 2.1.1.2.1 Model uncertainty. Assuming that the plant R is linear 

and time invariant, but that its exact mathematical description is unknown. 

However, it is known to be in a specified “neighbourhood” of the “nominal” 

system, whose mathematical “model” RS is available. This neighborhood 

will be denoted the uncertainty “set”; it defines the set of possible plants ¥. 

In some cases the uncertainty set ¥ may include a finite number of plants. 
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However, in most cases we will define ¥ in terms of norm-bounded 

perturbations on R, and the set ¥ becomes infinite. 

Skogestad and Morari (1986) studied the effects of model uncertainty on 

achievable control performance, namely the Dynamic Resilience of the plant. They define 

“Performance” as the quality of the closed-loop response, which is typically related to the 

error signal for a standard feedback controller such as the one in Fig. 4.  

 

 

 

 

Fig. 4 – Feedback system with controller /°, disturbance /� and plant /. 

The error signal kcm should be small for the expected disturbances (�) and 

reference signals (�iY). For a one-degree-of-freedom proportional controller given by 

/° = !kim, whose input is �iY − �� = �iY − � − h, where �� is the measured output 

and n is the measurement noise, the input to the plant becomes: 

� = !kimk�iY − � − hm  Eq. 4 

Replacing Eq. 4 in Eq. 1 and omitting the Laplace transfer function notation the 

feedback control system becomes: 

� = /!k�iY − � − hm + /��  Eq. 5 

Eq. 4 can be rearranged to yield: 

k� + /!m� = /!�iY + /�� − /!h  Eq. 6 

Hence the closed-loop response is: 

� = k� + /!m.�/!ÇÈÈÈÈÉÈÈÈÈÊ
b

�iY + k� + /!m.�ÇÈÈÉÈÈÊ
_

/�� − k� + /!m.�/!ÇÈÈÈÈÉÈÈÈÈÊ
b

h  Eq. 7 

Where S is the Sensitivity Function and T is the Complementary Sensitivity 

Function. 
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The control error is  

c = � − �iY = −_�iY + _/�� − bh  Eq. 8 

In Eq. 8 we have used the fact that b − � = −_. The corresponding plant signal is 

provided by  

� = !_�iY −!_/�� − !_h  Eq. 9 

When the measurement noise can be neglected the Sensitivity Function (_) 

describes the relationship between �iY, d and E. The term Sensitivity Function is natural 

because S gives the sensitivity reduction afforded by feedback. 

c = � − �iY = _k/�� − �iYm		 Eq.	10	

To have "good" performance, _ has to be ''small". The magnitude of S may be 

measured using the singular value ¦�. At a given frequency Ó, ¦�Ô_kÕÓmÖ represents the 

"worst" amplification k‖c‖� ‖/�� − �iY‖�⁄ m of k/�� − �iYm. By "worst" we mean that 

k/�� − �iYm is in the direction giving rise to the largest amplification. A typical 

performance specification is provided by Eq. 11: 

c¦�k_m ≤ ØeYØ
.�

   Eq. 11 

where eYkim is a weight which is used to define what dynamic responses are 

acceptable. Therefore, the Sensitivity Function is a measure of the Dynamic Resilience 

of a plant.  

Weitz and Lewin (1996) proposed a procedure for Dynamic Resilience analysis 

that relies on a modelling strategy which makes use of linear approximations, which are 

obtained from the simulation of the steady-state flowsheet. Karafyllis and Kokossis 

(2002) introduced Disturbance Resiliency Index (DRI) as a measure for the integration 

of design and control. The measure reflects on the ability of the process to reject 

disturbances and prevent saturation in the manipulated variables. The measure is defined 

mathematically, and a set of properties and theorems are proved to enable its use. For a 

large number of systems and networks, the application of the theory yields analytical 

expressions one can study and analyse. In other cases, it yields bounding expressions that 

one can embed in optimisation formulations and mathematical models. The measure 

quantifies the disturbance resiliency properties of a process. Compared to the works of 

Halemane and Grossmann (1983) and Grossmann, Halemane and Swaney (1983), it has 

the advantage of a clear extension to the dynamical properties of the system.  
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2.1.1.3 Feasibility and Flexibility Analysis 

Flexibility is the ability to obtain feasible steady-state operation at a number of 

given operating points, i.e. over a range of uncertain conditions. These uncertain 

conditions can be defined from expected variations in raw material and process 

performance. 

The flexibility analysis involves two important problems: the feasibility test and 

the quantification of the inherent flexibility of a process (Grossmann and Morari, 1984). 

The feasibility test problem determines the existence of at least one set of manipulated 

variables that can be selected during plant operation, such that, for every possible 

realisation of the uncertain parameters all the process constraints are satisfied (Halemane 

and Grossmann, 1983).  

Let us see how these problems we can be systematically addressed through 

mathematical formulations developed by Grossmann and co-workers (Grossmann et al., 

1983; Grossmann and Straub, 1991). We will consider simple vertex solution methods as 

well as an active set method, which does not necessarily have to examine all the vertex 

points or even assume that critical points correspond to vertices. The basic model assumed 

for the flexibility analysis involves the following vectors of variables and parameters: �, 

the vector of design variables corresponding to the structure and equipment sizes of the 

plant; 
 the state variables that define the system (e.g. flows, temperatures); � the control 

variables that can be adjusted during operation (e.g. flows, utility loads), [ the uncertain 

parameters (e.g. inlet conditions, reaction rate constants). Eq. 12 represents a first 

principles model, i.e., heat and material balances: 

�k�, 
, �, [m = 0   Eq. 12 

where by definition dimÚ�Û = dimÚ
Û. The constraints that represent feasible 

operation (e.g. physical constraints, specifications) are given by Eq. 13: 

0k�, 
, �, [m ≤ 0   Eq. 13 

Although in principle flexibility can be analysed directly in terms of Eq. 12 and 

Eq. 13, for simplicity in this discussion the state variables from Eq. 12 are eliminated. In 

this way, the state variables become an implicit function of �, � and [. That is, 
 =

k�, �, [m. Eq. 13 thus becomes: 
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0k�, 
k�, �, [m, �, [m = Ük�, �, [m ≤ 0   Eq. 14 

Hence, the feasibility of operation of a design d operating at a given value of the 

uncertain [ parameters is determined by establishing whether by proper adjustment of the 

control variables � each inequality +Ýk�, �, [m, j ∈ ß is less or equal to zero. 

Now the mathematical formulations for both the flexibility test problem 

(Halemane and Grossmann, 1983) is presented. Assume we are given a nominal value of 

the uncertain parameters [¡, as well as expected deviations �[|, �[., in the positive 

and negative directions. This then implies that the uncertain parameters θ have the upper 

bound as defined in Eq. 15 and lower bound as in Eq. 16: 

[g = [¡ + �[|  Eq. 15 

[` = [¡ − �[.  Eq. 16 

The flexibility test problem (Halemane and Grossmann, 1983) for a given design 

d consists in determining whether by proper adjustment of the controls u the inequalities 

+Ýk�, �, [m, à ∈ á hold for all [ ∈ ª = Ú[:	[` ≤ [ ≤ [gÛ. To answer this question, we 

first consider whether for fixed value of [ the controls � can be adjusted to meet the 

constraints +Ýk�, ã, [m. This can be accomplished if we select the controls u to minimize 

the largest +Ý that is: 

®k�, [m = �¹M
ã
�~u
Ý∈á

ä+Ýk�, �, [må  Eq. 17 

Where ®k�, [m is defined as the feasibility function. If ®k�, [m ≤ 0, we can have 

feasible operation; k�, [m > 0, there is infeasible operation even if we do our best in 

trying to adjust the control variables �. If ®k�, [m = 0 it also means that we are on the 

boundary of the region of operation. The problem is given by Eq. 17 can be stated as a 

standard optimization problem (LP or NLP) by defining a scalar variable æ, such that: 

®k�, [m = �¹M
�,ã

							�  

 																				^. ¿.								+Ýk�, �, [m ≤ æ									∀	à ∈ ;   
Eq. 18 

In order to determine whether we can attain operation in the parameter range of 

interest, ç ∈ è = Úç:	çé ≤ ç ≤ ç8Û, we need to establish whether êkë, çm ≤ 0 for all 

ç ∈ è. This is also equivalent to stating whether the maximum value of is less or equal 

than zero in the range of θ. Hence, the flexibility test problem can be formulated as shown 

in Eq. 19: 
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ìk�m = �~u
[∈ª

äÜÕk�, [må  Eq. 19 

Where ­k�m corresponds to the flexibility function of design � over the range ª. 

If ­k�m ≤ 0, it then means that feasible operation can be attained over the parameter 

range Τ, and shown in the item a, Fig. 5.  However, if ­k�m > 0 it means that at least for 

part of the range of  ª, feasible operation cannot be achieved (see item b, Fig. 5). Also, 

the value of [	that is determined in Eq. 19 can be regarded as critical for the parameter 

range ª since it is the one where the feasibility of operation is the smallest (­k�m ≤ 0) or 

where maximum constraint violation occurs (­k�m > 0).  

 

Fig. 5  –  Regions of feasible operation for feasible and infeasible design (flexibility test 
problem). 

Finally, by substituting Eq. 17 in Eq. 19, the general mathematical formulation of 

the flexibility test problem yields Eq. 20: 

­k�m = �~u
[∈ª

�¹M
ã
�~u	
Õ∈á

	+Ýk�, �, [m  Eq. 20 

Works based on these principles include the iterative methodology which has been 

proposed in Bandoni et al. (1994) and Bahri et al. (1996) in order to analyse the steady-

state flexibility of a chemical plant. In this method, to ensure the feasible operation of the 

plant, the optimum point is moved to somewhere inside the feasible region (called back-

off point). Therefore, having disturbances in the system will not cause any constraint 

violation. The amount of back-off can be used as a measure of the flexibility of the plant. 

Bahri, Bandoni and Romagnoli (1997) propose an integrated flexibility and 

Controllability Analysis based on dynamic mixed-integer nonlinear programming that 
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consists of a two-stage problem for each iteration of the algorithm. These two stages are 

called outer and inner loops, and each loop has been formulated as a semi-infinite 

optimisation problem. Outer loops give the optimal operating conditions for a given set 

of disturbances. In the inner loops, the feasibility of the operating conditions proposed in 

the last outer loop is tested. In this stage, the disturbance realisations that produce most 

constraint violations are found (if any) and passed to the next outer loop. In this way, the 

authors claim, the effect of disturbances on the process design and operation, as well as 

its ideal performance, under a variety of control schemes can be estimated. The method 

is illustrated using a mini-integrated plant as a case study. 

Bansal et al. (2000b) propose a parametric programming framework for feasibility 

test, flexibility index, design optimization, and stochastic flexibility of linear systems, 

providing an explicit information about the dependence of the system flexibility on the 

values of the design variables. A case study of a double-effect distillation system (where 

the overhead vapour from one column is used to supply the reboiler heat for another 

column operating at a lower pressure), for which a dual approach is described: in the first, 

the steady-state process design and the control system were optimised sequentially; 

potential operability bottlenecks are identified. In the second approach, the process design 

and the control system are optimised simultaneously leading to increased economic 

benefit. Bansal et al. (2002a) generalise and unify this approach for the flexibility analysis 

and design of nonlinear systems. Recent works dealing with flexibility evaluation are 

Lima et al. (2010a,b), Chang et al. (2009) and Adi and Chang (2011). 

2.1.1.4 Operability and Switchability Analysis 

Operability is the ability of the plant to provide acceptable static and dynamic 

operational performance. Operability includes flexibility, switchability, controllability 

and several other issues. Switchability is the ability to switch between operating points. 

For service plants, fast switching may be desirable to minimise loss of product and energy 

consumption. Although controllability and flexibility are strongly related concepts 

(Grossmann and Morari, 1984), controllability deals with the dynamic operation, and it 

is a measure of the achievable dynamic performance, while flexibility is focused on the 

steady-state operation and it is the capability to handle alternate operating conditions. 

Dynamic feasibility is a commonly used term that encompasses both a static 

aspect, which is incorporated into flexibility and a dynamic aspect, which is part of 
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switchability. The feasibility analysis problem is to determine if a given design can 

feasibly operate over the considered range of uncertainty. 

In Mohideen et al. (1996a) dynamic feasibility analysis is included in the 

integrated design problem, verifying the operation and control constraints all over the 

uncertainty range of the parameters in the established time horizon. 

 Bahri et al. (1996a, 1997) propose the dynamic operability analysis within the 

process synthesis and control structure selection problem. This analysis includes aspects 

as stability, controllability and flexibility; its objective is to optimise the process economy 

subject to feasible regulatory dynamics. Stands out the use of the backwards margin based 

on the dynamic nonlinear model. It relates the economic aspects with the operability, by 

fixing the distance between the optimal steady-state operating point and the dynamic 

operating point of the plant. They also consider the dynamic feasibility and indexes as the 

ISE and the steady-state time. In Ekawati and Bahri (2003) this analysis is completed by 

introducing the Output Controllability Index, OCI (Vinson and Georgakis, 2000). 

In Novak Pintaric and Kravanja (2004) flexibility and static operability analysis 

are introduced in the problem formulation by determining in a first stage, the optimal 

flexible structure and optimal oversizing of the process units that guarantee feasibility of 

the design for a fixed degree of flexibility. In a second stage, the structural alternatives 

and additional manipulative variables are included in the mathematical model to 

introduce additional degrees of freedom for efficient control. Malcolm et al. (2007) 

contemplates the process and control design over a set of uncertain parameters by solving 

the steady-state flexibility test and the dynamic flexibility test. 

Vinson and Georgakis (2000, 2002) define the Output Controllability Index (OCI) 

or Operability Index (OI) which is a steady state and nonlinear measure of the ability of 

a design to reach all points of the desired output space and to reject the expected 

disturbances using input actions not exceeding the available input space. It has been 

proven to be effective for both linear and nonlinear processes. Its extension to a dynamic 

analysis called Dynamic Operability Index (DOI) is presented in Uzturk and Georgakis 

(2002). These operability analysis tools are exploited in Subramanian et al. (2001) for 

examining the inherent steady state operability of continuous processes, using as an 

example a CSTR system. They propose an approach that further extends the original OI 

formulation to include nonsquare systems, distinguishing different categories for process 

outputs: (1) set-point controlled, with outputs to be controlled at a desired value, and (2) 
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set-interval controlled, with outputs to be controlled within the desired range. In 

Georgakis et al. (2003) a similar methodology is presented. An extension of the 

operability analysis for plantwide systems is applied to the Tennessee Eastman process 

in Subramanian and Georgakis (2005). 

Psarris and Floudas (1991) claim that the location of Right-Half-Plane-

Transmission (RHPT) zeros is essential for the assessment of dynamic operability since 

if RHPT zeros are close to the origin of the complex plane severe limitations are imposed 

to the closed-loop performance of multivariable systems. The authors claim that in 

multivariable systems with time delays, infinite transmission zeros may be present which 

makes their numerical determination and therefore the assessment of dynamic operability 

is very difficult. The methodology presented in Psarris and Floudas (1991) provides a tool 

for assessment of dynamic operability of MIMO delay systems through the 

characterisation of the transmission zeros by using the theory of the distribution of roots 

of quasi-polynomials to identify systems with infinite RHPT zeros. 

Other studies which develop strategies to incorporate controllability and 

operability insights into the practice of process design include Grossmann and Morari 

(1984), Grossmann and Floudas (1987), Grossmann and Straub (1991) and Dimitriadis 

and Pistikopoulos (1995). 

2.1.1.5 Disturbance Cost Index 

Lewin (1996) presented the Disturbance Cost index, DC, a frequency-dependent 

resiliency index defined as the control effort required in rejecting the worst-case 

disturbance, intended to provide guidance as part of a modern process design 

methodology. As most indexes, the DC represents a measure of the control effort (which 

can be roughly defined as how much the controller needs to move manipulated variables 

compared to their ranges) required to reject the worst-case disturbance, normalised to 

enable comparison between different plants. The authors justified the introduction of this 

index by discussing the incapability of the previously mentioned measures for quantifying 

the disturbance resiliency properties of a linear process.  

Let us assuming perfect disturbance rejection by the control system and a linear 

dynamic model for the process. The norm of the actuator response computed,	‖u‖, is a 

function of the disturbance direction. The relative cost of rejecting a particular disturbance 

d can be computed as a function of its direction, .i.e., a quantitative measure of the control 

effort to reject a given disturbance vector is the Euclidean norm. Hence, this norm,	‖u‖, 
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is defined as the Disturbance Cost. The DC index was extended by Solovyev and Lewin 

(2002) to address nonlinear, state-space models. 

Lewin and Bogle (1996) applied the DC index to perform the selection of the 

optimal operating point for a continuous industrial polymerization reactor. For each 

operating point, the DC contours were plotted as functions of disturbance frequency and 

direction, yielding a graphical representation of the space of disturbance realisations the 

control loop is able to reject. 

A measure similar to the DC has been proposed in Narraway et al. (1991), which 

presents a method to evaluate the impact of disturbances on plant economic performance 

in alternative process structures or alternative control schemes for a given process. The 

best operating point in the absence of disturbances is obtained by nonlinear steady-state 

optimisation, and frequency response analysis of a linearized plant dynamic model is used 

to estimate the effects of disturbances on this ideal performance under a variety of control 

strategies. A modification of this method is presented in Narraway and Perkins (1993). In 

this work, they provide a measure of the best achievable economic performance as the 

amount that the operating point must be backed off from constraints active at the optimal 

operating point to accommodate the effects of disturbances. The back-off idea is also used 

to measure the effect of dynamical performance on economics because the required back 

off represent the necessary extra cost to ensure that none of the operating constraints 

which affect controllability is violated. Perfect control is assumed and integer 

programming techniques are used for screening the potential control structures which are 

then all subjected to controllability analyses or are used as control structures for nonlinear 

dynamic economic analysis.  

2.1.1.6 Disturbance Condition Number 

 

The effectiveness of disturbance suppression in a multivariable control system can 

depend strongly on the direction of the disturbance. Among the indexes proposed to 

assess the resilience of chemical plants subject to disturbances, there is the method for 

quantifying the effect of disturbance direction on closed-loop performance presented in 

Skogestad and Morari (1987). There is a bound on the magnitude was obtained for the 

worst-case relative gain by studying the direction of a disturbance, resulting in the 

introduction of the Disturbance Condition Number (DCN). For a particular plant, the 

DCN indicates the magnitude of the MV input magnitude necessary in order to 

compensate for the effect of a disturbance of unitary magnitude in comparison to a 
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disturbance whose direction is the best possible. The “best” disturbance direction is the 

one requiring the least action by the MVs. The Disturbance Condition Number is only a 

good indication of which set-point vector will be difficult to track (Lewin, 1996). 

2.1.1.7 Additional Controllability measures – the Relative Gain Array and Singular-

Value Decomposition 
 

The singular values of a matrix are a measure of how close the matrix is to be 

“singular”, i.e., to have a determinant that is zero. The N singular values of a real NxN 

matrix A are defined as the square root of the eigenvalues of the matrix formed by 

multiplying the original matrix by its transpose: 

ð'µñ· = òÂ'µñóñ·,				¹ = 1,… ,O  Eq. 21 

 The minimum singular value was introduced as a controllability index by 

Skogestad and Morari (1987), who suggested that a smaller minimum singular value 

implies that large input magnitudes may be needed, and such plants are undesirable. The 

SVD on G and Gr is useful for examining which manipulated input combinations have 

the largest effect and which disturbances give the largest output variations. It can also be 

used to predict directional sensitivity of a process. The process gain matrix is decomposed 

into three matrices, as shown in Eq. 22: 

/ = gi§jb  Eq. 22 

where Uõ is the left singular vector matrix, Σ the diagonal matrix of singular 

values, ordered, and V the right singular vector matrix. The left and right singular vector 

matrices are both orthonormal matrices, i.e., each column of the matrix is orthogonal to 

all other columns, and the columns each are unit length. The diagonal singular value 

matrix is ordered so that the largest singular value is in the (1, 1) position. Note that the 

standard notation for SVD is to use U to represent the left singular vector matrix. When 

performing singular value analysis, it is important to scale the inputs and outputs to cover 

the same range. 

“Condition number” is another important controllability index based on singular 

value analysis. It is defined as the ratio between the largest singular value and the smallest 

nonzero singular value. Plants with large condition number are called ill-conditioned and 

require widely different input magnitudes depending on the direction of the desired output 
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(i.e. the plant is sensitive to unstructured input uncertain) (McAvoy and Braatz, 2003). 

Note that the condition number is scaling dependent.  

SVD can be used to assess just how well an algebraic process control problem is 

posed and whether any sensitivity problems can be expected when it is solved. Early 

application of SVD to process control systems was carried out by researchers at the 

University of Tennessee (Downs and Moore, 1981; Moore, 1986). Lau et al. (1985) used 

SVD to design multivariable control systems. Grosdidier et al. (1985) established a 

quantitative relationship between the condition number of a process gain matrix and its 

relative gain. Skogestad and Morari (1987) derived conditions for robust stability that 

involved the condition number. A number of useful results on applying SVD to process 

control problems are collected by Skogestad and Postlethwaite (1996). This includes the 

result that saturation of the manipulated variable is a potential problem if the minimum 

singular value of the process gain matrix is less than 1. They also show that the 

multivariable effects of input uncertainties are small for processes with small condition 

numbers. McAvoy and Braatz (2003) used SVD to analyse a process gain matrix, 

focusing on the case where the process gain matrix has a large maximum singular value, 

with its minimum singular value being either large or small. It is shown that the closed-

loop control of such processes can result in poor transient performance as a result of valve 

accuracy considerations, even if the condition number is small and the minimum singular 

value is large, which would indicate no performance limitations according to existing 

controllability criteria. 

Another widely used controllability measure is the RGA which was introduced by 

Bristol, 1966. For instance, consider a plant defined by a square MIMO model /kim, as 

shown in Eq. 6: 

�kim = /kim�kim  Eq. 23 

The relative gain array is defined as the ratio of process gain as seen by a given 

controller with all other loops open to the process gain as seen by a given controller with 

all other loops closed and can be computed by Eq. 7: 

£kim = /kim⨂÷/.�kimø
b
  Eq. 24 

where the ⨂  symbol indicates element-by-element multiplication (Schur 

product). An important property of the RGA is that it is scaling independently. The 

elements in the RGA can be numbers that vary from very large negative values to very 
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large positive values. The larger the values of the elements of RGA, the more sensitive 

the transfer function will be in relation to errors. The closer the number is to 1, the less 

difference closing the other loop makes on the loop being considered. For interactive 

plants which do not have large RGA elements, a decoupler may be useful. In particular, 

this applies to the case where the RGA-elements vary in magnitude with frequency, and 

it may be difficult to find a good pairing for decentralised control (Skogestad and Hovd, 

1990). The problem with pairing in order of avoiding interaction is that the interaction is 

not necessarily always the undesirable thing. Therefore, the use of the RGA to decide 

how to pair variables is not an effective tool for Controllability Analysis. In Barton et al. 

(1992), the controllability of plant designs previously obtained by economic optimisation 

of stationary models is evaluated, the steady-state Relative Gain Array is used to 

determine the best input-output pairings, and the limitations to the functional 

controllability are analysed. Then, the designs are modified in order to improve their 

deficiencies. 

The RGA and the determinant of the gain matrix provide useful information about 

integral controllability and integrity (e.g., failure tolerance), which are important issues 

in decentralised control. The RGA also gives information about robustness with respect 

to modelling errors and input uncertainty. Based on these interesting properties, 

Häggblom (2008) used the RGA to consider model uncertainty explicitly and thus 

investigate the integral controllability and integrity of uncertain systems. 

2.1.2 Process-Oriented Methods for Controllability Analysis 

Several approaches where systematic actions are taken to improve some 

controllability measures of plant performance and economic indicators have appeared in 

the literature. They screen preliminary alternatives either by constraining some 

controllability indicators or by optimising them, allowing the process or control design to 

be carried out accordingly. Since the stated optimisation problems allow for the 

consideration of process and control specifications as well as constraints, these methods 

are used for accommodating decision variables within a unique integrated-optimisation 

framework to solve both process design and the control-systems design (Perkins and 

Walsh, 1996). 

Among the opening contributors for controllability assessment and its 

incorporation into process synthesis and the selection of the control structure, Morari and 

Stephanopoulos (1980) discuss the structural design of alternative regulatory control 

schemes to satisfy a posed objective. They use structural models to describe the 
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interactions among the units of a plant and the physicochemical phenomena occurring in 

the various units. They discuss the relevance of controllability and observability in the 

synthesis of control structures and use modified versions to develop all the alternative 

feasible regulatory structures in an algorithmic fashion. Various examples are presented 

to illustrate the developed concepts and strategies, including the application of the overall 

synthesis method to an integrated chemical plant. 

Marselle et al. (1982) present a heat exchanger network synthesis technique that 

takes into account aspects of flexibility and resiliency, leading to networks flexible to 

changes in the plant operating conditions. The method involves the structural and 

parametric design of the network and the synthesis of the regulatory control structure. 

The objective is to find the structure able to operate feasibly in a specific range of 

uncertain parameters while achieving the maximum energy recovery. Saboo and Morari 

(1984) develop a rigorous synthesis technique based on the fundamental properties for 

maximum energy recovery in heat exchanger systems which leads to networks that can 

handle specific inlet temperature variations and also guarantee maximum energy 

recovery. In Morari et al. (1985) these techniques are extended to the synthesis of the heat 

exchanger network and the control structure for a sequence of two exothermic open-loop 

unstable continuous stirred tank reactors.  

Modern chemical plants are highly integrated and interconnected which invariably 

introduce a dynamic coupling between the process units. Material and energy recycle 

affects process performance leading to complex dynamic behaviours, such as inverse 

response, open loop instability and unexpected behaviour. Among the several authors 

who proposed strategies to quantify the impact of such effects on controllability, we may 

highlight Denn and Lavie (1982), Morud and Skogestad (1994), McAvoy and Miller 

(1999), Jacobsen (1997), Dimian et al. (1997), Semino and Giuliani (1997), Bildea and 

Dimian (2003), Lakshminarayanan (2004) and Bildea et al. (2004). 

Zheng and Mahajanam (1999) have pointed out that there are very few indices 

available which establish a direct relationship between cost and controllability. They 

propose an index to quantify the cost associated with dynamic controllability of a process 

with a given control structure, focusing on the additional surge volume (or overdesign) 

required to achieve the control objectives. Such cost/controllability index is used to 

quantify the cost associated with dynamic controllability. Establishing a relationship 

between capital costs and controllability as a way to monetise control performance is an 
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interesting idea, and closely related to the motivation of this PhD project. However, here 

we place focus instead on operating costs and plant revenue.   

Along similar lines, Zheng et al. (1999) propose a hierarchical procedure where 

alternative plantwide control systems are synthesised and compared regarding economics. 

They describe the design procedure for an existing plant (a simple reactor-separator-

recycle system) and also show how the interesting problem of determining the optimum 

surge capacities of a process can be addressed through simple modifications. 

We may also highlight works such as Stephanopoulos et al. (1979), Morari et al. 

(1980), Morari et al. (1987) and the series “Design of Resilient Processing Plants” 

(Lenhoff and Morari, 1982; Marselle et al., 1982; Morari, 1983; Saboo and Morari, 1984; 

Holt and Morari, 1985a,b; Morari et al., 1985; Saboo et al., 1985; Skogestad and Morari, 

1987). 

2.1.2.1 Controllability Analysis of Systems with Recycles 

Luyben and co-workers present a series of papers devoted to the study of 

dynamics and control of recycling systems in chemical processes (Luyben, 1993a, 1993b, 

1993c, 1994, 1999; Tyreus and Luyben, 1993). The special dynamic behaviour of 

recycling systems, identified in the works just mentioned, are important in the 

development of process design methodologies, in the subsequent works of the authors. 

Particularly, Elliott and Luyben (1995) present a capacity-based economic approach 

which allows comparing and screening quantitatively conceptual plant designs assessing 

both, steady-state economics and dynamic controllability of the process. 

The alternative plant designs are evaluated considering their ability to maximise 

annual profit in the presence of their associated peak disturbances. The method deals 

explicitly with the impact of product quality variability on plant profits, considering the 

losses generated in the fraction of the time that the product is outside the limits of desired 

specifications. A reactor/stripper recycle system is considered as a case study. The 

methodology is applied in the design of a complex recycle system consisting of one 

reactor and two distillation columns in Elliott and Luyben (1996). In this case study, the 

approach is used to design parameter alternatives, conceptual design flowsheet 

alternatives, and control structure alternatives for the system. 

Luyben and Luyben (1996) deal with the plantwide design and control of a 

complex process containing two reaction steps, three distillation columns, two recycle 

flows and six chemical components. A heuristic design procedure and a nonlinear 
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optimisation are used to determine an approximate economically optimal steady-state 

design; the sensitivity to design parameters and specifications is evaluated and control 

strategies are developed using guidelines from previous plantwide control studies. In 

Luyben (2000), the trade-off between the reactor size, recycle flow rate and reactor inlet 

temperature of a gas-phase reactor/recycle plant in the steady-state design is studied, as 

well as the economic impact of inert components in the feed stream. In a second step, 

alternative control structures are evaluated and basic control strategies are applied in the 

presence of large disturbances. Reyes and Luyben (2000) present a similar study for an 

irreversible reaction system with a reactor feed preheating system (feed-effluent heat 

exchanger and furnace) where the steady-state economics and the dynamic controllability 

of this dual-recycled system are compared with those of single-recycle processes. Both 

Reyes and Luyben (2001a) and Reyes and Luyben (2001b) focused on processes with 

realistic separation systems (a distillation column) for gas-phase tubular reactors with a 

liquid recycle and with a dual recycle system. 

Other contributions are found in the works of Cheng and Yu (2003) and Kiss et 

al. (2005). The former explores the dynamics of simple recycle plants under different 

process designs using different control structures. The recycle dynamics is evaluated 

using transfer-function-based linear analysis and also validated using rigorous nonlinear 

simulation; finally, implications to control structure design are specified for different 

levels of reactor conversions. Kiss et al. (2005) address the design of recycling systems 

involving multiple reactions. They use the mass balance model of the plant to capture the 

interaction between units and to predict the main pattern of behaviour. After choosing the 

method of controlling the plantwide material balance, the nonlinear analysis reveals 

regions of infeasibility, high sensitivity, state multiplicity, and instability. 

2.1.2.2 Controllability Analysis Based on Steady-State Multiplicity Analysis 

Input multiplicities occur when more than one set of manipulated variables (MVs) 

can produce the desired steady-state output (CVs). Multiplicities are related to the 

stability and desirability of any intended loop pairing of MVs and CVs. The danger under 

the existence of input multiplicities is the undetected transition from one steady-state to 

another. It is thus a good policy to examine the steady-state behaviour to detect 

multiplicities since the possibility of an undetected transition to an unanticipated, and 

perhaps economically undesirable, the steady-state operating condition is best eliminated 

at the system design stage (Koppel, 1982). 
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Some interesting works are focused on integrating operability criteria into 

chemical reactors design based on the steady state multiplicity analysis. Several 

preliminary results by Russo and Bequette (1995, 1996, 1997, 1998) use the bifurcation 

based approach to study the behaviour of CSTRs showing that the infeasible operation 

regions that affect open loop and closed loop performance can be avoided with some 

parameter modifications in the design stage. More recently, Altimari and Bildea (2009) 

tackle the integrated design and control of plantwide systems. Their methodology 

evaluates the steady-state multiplicity and allows selecting possible flowsheets and 

admissible control structures regarding feasibility. Guidelines are derived which enable 

the selection of reactor parameters in a way that guarantees wide margins of plant 

operating conditions from infeasibility boundaries. While thorough analysis is provided 

on the interaction between reactor design and plant operability, no connection to process 

economics is discussed. In the current project, we wish to link the idea of steady-state 

multiplicity to operating cost and revenue. 

The influence of input/output multiplicity on stability and non-minimum phase 

behaviour of chemical reaction systems is studied in Yuan et al. (2009), Yuan et al. 

(2011), Wang et al. (2011) and Wang et al. (2013). With a focus on inherently safer 

designs, their study reveals how the essential properties of a process change with 

variations in its operating conditions. A systematic framework that includes multiplicity 

and phase behaviour together with open loop stability analysis over the entire feasible 

operation region of plantwide processes is presented in Yuan et al. (2012b). 

Yuan et al. (2009), address a strategy for classifying the process operating region 

into distinct zones at the early stage of process design, based on stability/instability and 

minimum/non-minimum phase behaviour analysis. Ma et al. (2010) presented an 

approach using continuation and optimisation methods for modifying a process design to 

avoid the issues caused by input multiplicity. Wang et al. (2011) conclude that stability 

and phase behaviour should be analysed considering the overall system rather than 

individual units because those properties may differ from the global system. Yuan et al. 

(2011) present a methodology that explores the open and closed-loop controllability of 

the liquid-phase catalytic oxidation of toluene. They evaluate set-point tracking and 

disturbances rejection in various sub-regions with different controllability characteristics. 
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2.1.2.3 Controllability Analysis Based on Phenomenological Models and the Passivity 

Theory 

Put together in this section are the procedures where the phenomenological 

knowledge of the process is used to distinguish the designs with best dynamic 

performance, using sensibility analysis of thermodynamic properties or, specifically, the 

passivity theory.  

In fact, several works can be found in the literature that takes advantage of 

mathematical models and thermodynamic properties of a process to improve process 

synthesis, integrating sensitivity to perturbations and other control aspects. In Gani et al. 

(1997), different process flowsheets and equipment design parameters are generated 

through simulations using simple or rigorous models of the process, analysing at every 

step different process features, and including environmental aspects and controllability. 

In Russel et al. (2002), more emphasis is given to the analysis of the process model as a 

preliminary solution step for integration of design and control problems. In Li et al. 

(2003), a systematic sensitivity analysis of the process model is developed to select the 

best control structure. In Ramirez Jimenez and Gani (2007a,b), a model based analysis 

methodology for the integrated design and control is presented, using first-principles 

phenomenological models of different complexities to identify the interactions between 

the process and design variables. Parametric sensitivity analysis is performed to 

determine the control structure. 

In Hamid et al. (2010) the simultaneous process and control system design of a 

process is addressed by the reverse design algorithm approach. The formulation of the 

integrated optimisation process design and process control problem is decomposed in four 

subproblems easier to solve. The search space is reduced by considering thermodynamic 

and feasibility aspects, the concepts of the attainable region (AR) and driving force (DF) 

are used to locate the optimal process-controller design in terms of the optimal condition 

of operation from design and control viewpoints. The AR concept is used to find the 

optimal (design target) values of the process variables for any reaction system. The DF 

concept is used in this methodology to find the optimal (design target) values of the 

process variables for separation systems. The final selection and verification are 

performed according to the value of the objective function. Alvarado-Morales et al. 

(2010) extend this methodology, proposing a framework that combines the simultaneous 

process design and controller design methodology and the process-group contribution 

(PGC) methodology. A process flowsheet can be described by means of a set of process-
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groups bonded together to represent the structure. The PGC methodology has been used 

to generate and test feasible design candidates based on the principles of the group-

contribution approach used in chemical property estimation. It is applied to the bioethanol 

production process; however, this is a general framework that can be applied to different 

processes. 

A category of process control algorithms based on thermodynamic-models was 

proposed in Ydstie and Viswanath (1994) and incorporated in the Integrated Process and 

Control Design Framework by Meeuse et al. (2000, 2001), Meeuse (2002) and Meeuse 

and Grievink (2002). These works embed Controllability Analysis within the process 

synthesis, assessing sensitivity to perturbations by means of the passivity theory. 

A passive component may be either a component that consumes (but does not produce) 

energy (thermodynamic passivity) or a component that is incapable of power 

gain (incremental passivity). Passivity is then a property that can be used to demonstrate 

that passive passivity systems will be stable under specific criteria. The passivity systems 

are a class of processes that dissipate certain types of physical or virtual energy, defined 

by Lyapunov-like functions. The authors use the passivity framework, linked to process 

thermodynamics, in process input-output Controllability Analysis. This approach allows 

for studying the stability of distributed systems and the selection of the manipulated and 

measured variables pairing alternatives that ensure stability and efficient plant operation 

by relating the entropy production sensibility of the plant with its sensibility to 

perturbations. Specifically, in Meeuse (2002) and Meeuse and Grievink (2004), 

controllability conditions are incorporated in the process synthesis by considering 

thermodynamic aspects of the process, to derive some design guidelines. 

2.1.3 Integrated Process Design and Control Framework - Methods of Integrated 

Control and Process Synthesis 

This section will focus on the available methods of Integrated Control and Process 

Synthesis, the second class of methods defined in Lewin (1999). Works that fall into this 

classification are used to generate process flowsheets, embedding Controllability 

Analysis in the process synthesis. Different operability and sensitivity qualities are and 

explored to determine plantwide process structure, and also to provide insight into control 

system design. 

The dynamic performance measures are introduced in the process design, 

originating a single optimisation scenario which may additionally contain the tuning of 
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the controllers and even the selection of the control structure. The formulation of the 

optimisation problem contains decision variables, objective functions and constraints 

related to economics as well as operating and control performance aspects. Thus, this 

approach provides the possibility of carrying out at once the process and the control 

system design by solving the optimisation problem, providing the plant design that best 

satisfies the compromise between economic and control aspects and all the criterion 

considered in the problem formulation. 

Pioneering works that introduced the idea of integrating the process design and 

the controllability issues in a comprehensive optimisation problem were those by Lenhoff 

and Morari (1982), Palazoglu and Arkun (1986) and Georgiou and Floudas (1990), 

among others. In Lenhoff and Morari (1982) an optimisation based design approach 

considering economic and dynamic aspects simultaneously is proposed, taking into 

account process structural decisions, parametric changes and the control structure 

selection which leads to a multiobjective optimisation problem. Georgiou and Floudas 

(1990) developed a systematic framework for control system synthesis. They used the 

generic rank of a process structural matrix as an index of structural controllability to select 

the best process configuration, computed by solving an integer-linear optimisation 

problem. 

Perkins and Walsh (1996) pointed out the notable trend towards the use of 

optimisation as a tool for the integration of process design and process control, which was 

enabled by advances in computational hardware and optimisation methods and driven by 

the need to place control design decisions on the same basis as process design decisions. 

2.1.3.1 The Integrated Control and Process Synthesis Problem 

A complete formulation of the integrated design of a process includes in addition 

to the determination of the plant dimensions and operating conditions, the selection of the 

plant topology (process synthesis) and the selection of the control structure (input-output 

pairing and control scheme). When the process synthesis is considered, the optimisation 

problem is posed based on a superstructure containing all the possible alternatives of the 

process (algorithmic synthesis or automatic synthesis), aimed to find the optimal 

flowsheet in the economic and controllable sense. The selection of the control system 

configuration can also be embedded in a superstructure. This formulation involves 

continuous variables, representing the dimensions and operating conditions, and discrete 

variables, related to the process/controller structure. 
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 As both discrete and continuous variables are embedded into this problem, it can 

be formulated naturally as a mixed-integer dynamic optimisation (MIDO) problem. The 

integer variables take care of discrete decisions (i.e. flowsheet structure, the number of 

control loops, the number of distillation columns, etc.), while the continuous variables are 

normally related to design variables (i.e. flows, temperatures, composition, etc.). As many 

chemical processes feature nonlinear behaviour around optimal design regions, it is likely 

that the MIDO problem gives rise to a nonlinear optimisation formulation. 

Walsh and Perkins (1996) and Narraway and Perkins (1993) were among the first 

to consider general mathematical programming techniques for the simultaneous synthesis 

and control problem using dynamic process models, proposing methods that possess an 

explicit economic component was presented for optimal plant design involving a classical 

feedback control structure. In practice, similar approaches involve attributing a cost to a 

control performance measure such as the integral error, e.g., ISE or IAE, performing a 

worst-case design optimisation for tuning one or more PID controllers for optimal system 

response and then varying a number of equipment design parameters, then repeating the 

process until the global solution is found. This avoids equipment oversizing and thus 

decreases costs.  Dimitriadis and Pistikopoulos (1995) applied the ideas reported in 

Halemane and Grossmann (1983) to systems described by sets of differential and 

algebraic equations.  

Different formulations of the integrated design including the process synthesis and 

the selection of the control structure are found in the literature. Luyben and Floudas 

(1994a) present a general formulation of the problem considering a superstructure for the 

process synthesis that includes all possible design alternatives of interest and open-loop 

steady-State Controllability measures. Mohideen et al. (1996a) propose a unified process 

synthesis optimisation framework for obtaining process designs together with the control 

structure and controller design under uncertainty. The objective is to design the process 

and the required control scheme at a minimum total annualised cost which comprises 

investment and operating costs including controller costs. It results in an optimum set of 

design variables, the best selection/pairing of controlled-manipulated variables and the 

optimal values of the controller parameters. Similar formulations and solution procedures 

were reported in Bahri, Bandoni and Romagnoli (1997) and Schweiger and Floudas 

(1999). The main drawback of these methodologies stems from the fact that the combined 

design and control problem, a mixed-integer dynamic optimisation (MIDO) problem, is 

solved as a mixed integer nonlinear programming (MINLP) problem by transforming the 
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system of differential and algebraic equations into algebraic equations by using either full 

discretisation or integration. In the former case, the size of the resulting MINLP is 

explosive, and in the latter case, extensive dual information is needed to formulate a 

(mixed integer linear) master problem that is ever increasing in size. 

The Mixed-Integer Dynamic Optimisation algorithms reported in the literature are 

based on complete discretisation (Mohideen et al., 1996a), on an adjoint-based approach 

(Sakizlis et al., 2001), and on an outer approximation (Bansal et al., 2003). None of these 

methods are guaranteed to find the exact global optimum of the underlying optimisation 

problem. Therefore, the need for new global mixed-integer dynamic optimisation 

algorithms becomes extremely important in preventing the generation of economically 

unfavourable designs. 

Some other works addressing the complete integrated design problem involving 

closed-loop behaviour analysis into the optimisation are Mohideen et al. (1996b), Bahri 

et al. (1996a), Bansal et al. (2000a), Kookos and Perkins (2001), Ekawati (2003), Flores-

Tlacuahuac and Biegler (2007) and Revollar et al. (2012). Angira (2005), Angira and 

Alladwar (2007), Babu and Angira (2006), Angira and Babu (2006) used evolutionary 

solution methods for solving the nonlinear, mixed integer nonlinear and dynamic 

optimisation problems encountered in chemical engineering. But these techniques are not 

applied and tested on Mixed-Integer Dynamic Optimisation problems that arise from the 

simultaneous process design and control. Sánchez-Sánchez and Ricardez-Sandoval 

(2013a), Trainor et al. (2013) and Sharifzadeh and Thornhill (2013) also develop fully 

integrated process synthesis and control formulations. 

A number of works carry out the integrated design considering only the process 

synthesis and the determination of the optimal plant dimensions, operating conditions and 

even the controller parameters: Schweiger and Floudas (1997), Bahri et al. (1997), 

Gutierrez (2000), Sakizlis et al. (2003, 2004), Malcolm et al. (2007), Revollar et al. (2008) 

and the recent contributions of Revollar et al. (2010a), Revollar (2011) and Sánchez-

Sánchez and Ricardez-Sandoval (2013b). Some other works focus on process 

dimensioning and determination of optimal operating conditions including the selection 

of the control structure and controller tuning: Narraway and Perkins (1994), Asteasuain 

et al. (2005, 2006, 2007), Patel et al. (2007) and Flores-Tlacuahuac and Biegler (2008). 

Other works considering fixed structures are Lenhoff and Morari (1982), 

Palazoglu and Arkun (1986), Luyben and Floudas (1994b), Gutiérrez and Vega (2000), 

Blanco and Bandoni (2003), Chawankul et al. (2007), Miranda et al. (2008), Grosch et al. 
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(2008), Kim and Linninger (2010), Francisco et al. (2011) and Ricardez-Sandoval (2012). 

Large scale systems are addressed in recent works as Exler et al. (2008), Moon et al. 

(2011), Ricardez-Sandoval et al. (2009c, 2010, 2011) and Munoz et al. (2012). 

2.1.3.2 Integrated Control and Process Synthesis with Guaranteed Robust Performance  

A fundamental question about control algorithms is its robustness to model 

uncertainty and noise. When we say that a control system is robust we mean that stability 

is maintained and that the performance specifications are met for a specified range of 

model variations and a class of noise signals (uncertainty range). To be meaningful, any 

statement about “robustness” of a particular control algorithm must make reference to a 

specific uncertainty range as well as specific stability and performance criteria.  

The robust control framework makes use of a terminal cost that is also a Control 

Lyapunov Function for the system. Control Lyapunov Functions (CLFs) are an extension 

of standard Lyapunov functions and were originally introduced by Sontag (1983). CLF is 

a Lyapunov function Vkxm for a system with control inputs. They allow the constructive 

design of controllers and the Lyapunov function that proves their stability. The ordinary 

Lyapunov function is used to test whether a dynamical system is stable (more 

restrictively, asymptotically stable). That is, whether the system starting in a state x ≠ 0 

in some domain D will remain in D, or for asymptotic stability will eventually return to 

x = 0. A CLF, however, is used to test whether a system is feedback stabilizable, that is 

whether for any state x there exists a control ukx, tm such that the system can be brought 

to the zero state by applying a control action u. Consider a nonlinear control system x¼ =
	fkx, um, where x ∈ ℝýþ and u ∈ ℝý� . The following definition is valid. 

Definition 2.1.3.2.1 Control Lyapunov Function. A locally positive 

function j ∶ 	ℝMu 	→ 	ℝ+ is called a Control Lyapunov Function (CLF) for a 

control system if Eq. 25 is valid. 

∀
 ≠ 0,∃�				 ¹M+ ��j�� +k
, �m� < 0  Eq. 25 

Eq. 25 is a key condition; it says that for each state 
 we can find a control � that 

will reduce the magnitude of j. Intuitively, if in each state we can always find a way to 

reduce the j, we should eventually be able to bring the j to zero, that is to bring the 

system to a stop. This is made rigorous by the following result: 
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Artstein's theorem. The dynamical system has a differentiable control-

Lyapunov function if and only if there exists a regular stabilizing 

feedback �k
m. 

A complete treatment is given in Krstic (1995). In general, it is difficult to find a 

CLF for a given system. However, for many classes of systems, there are specialized 

methods that can be used. One of the simplest is to use the Jacobian linearization of the 

system around the desired equilibrium point and generate a CLF by solving a Linear–

Quadratic Regulator (LQR) problem. The problem of minimizing a quadratic 

performance index, Eq. 26, subject to 
¼ 	= 	�
	 + 	�� and 
k¾m = 	
¾, results in finding 

the positive definite solution of the Riccati equation, P, Eq. 27: 

; = 
 ÷
bk¿mU
k¿m +	�bZ�k¿møë¿�
B   Eq. 26 

�bR + R� − R�Z.��bR + U = 0  Eq. 27 

where Z is the factor of input suppression and U is the LQR weight. The optimal 

control action is given by Eq. 28: 

�	 = 	−Z.��bR	
  Eq. 28 

 where j	 = 	
bR
 is a CLF for the system. In the case of the nonlinear system 


¼ = 	+k
, �m, � and � are taken as: 

� = �
k
,�m�
 �
kB,Bm

  Eq. 29 

� = �
k
,�m�� �
kB,Bm

  Eq. 30 

The CLF jkum = 	
bR
 is valid in a region around the equilibrium k0,0m. More 

complicated methods for finding control Lyapunov functions are often required and many 

techniques have been developed. An overview of some of these methods can be found in 

Jadbabaie (2001).  

In the recent years, robust approaches using CLFs have been introduced in the 

integrated process design and control formulations. They consider the uncertainties 

existing in real processes to provide robustness properties to the obtained plants and the 

worst-case variability. In these approaches, the process nonlinear dynamic model is 
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represented as uncertain models that can be used to calculate bounds on the variables that 

are involved in the objective function and the constraints of the problem under 

consideration (Ricardez-Sandoval et al., 2010). 

In many works, the effects of uncertainties and perturbations are ignored or else 

very simple perturbations profiles are considered (Narraway and Perkins, 1994; 

Schweiger and Floudas, 1997; Bahri, 1996; Kookos and Perkins, 2001). Nevertheless, in 

Bandoni et al. (1994) an algorithm for the worst-case is presented, to compute the 

maximum variation of the uncertain parameters that can take place without impairing the 

feasibility of the process. Another group of publications can be found, focused on 

studying the effects of different settings of perturbations and parameter uncertainties on 

the process economics and dynamic performance (Mohideen et al., 1996a, 1996b; Bahri 

et al., 1996b, 1997; Bansal et al., 2000a; Asteasuain et al., 2007). 

In Chawankul et al. (2007) robust integrated design has been developed, 

particularly quantifying the uncertainties as a family of linear models around the nominal 

model. These uncertain models have been typically used in robust control, and they have 

also been used for integrated design in Francisco et al. (2011). However, most of the 

robust integrated design methods consider parametric uncertainty. In Moon et al. (2011) 

some uncertain scenarios are considered varying process parameters. In Munoz et al. 

(2012), an extension of the normal vector method is developed to consider simultaneously 

disturbances and uncertain model and process parameters. Ricardez-Sandoval et al. 

(2009a) consider model parametric uncertainty that is translated to an uncertain state-

space model. In this study, uncertain dynamic models of the process, obtained from the 

nonlinear dynamic closed-loop process model, were used to estimate analytical bounds 

on the worst-case variability and the process feasibility constraints. The bounds were 

computed using a formulation introduced by the authors based on a Structured Singular 

Value analysis named ‘Analytical Bounds Worst-case Approach’ (BWA). Later this 

approach was extended to a robust Finite Impulse Response model with uncertain 

parameters (Ricardez-Sandoval et al., 2009b, 2009c, 2010). In Ricardez-Sandoval et al. 

(2011), the uncertainty of process physical parameters was addressed. Sánchez-Sánchez 

and Ricardez-Sandoval (2013a,b) include process synthesis and control structure 

decisions, but using again the uncertain Finite Impulse Response model. 

As for the treatment of disturbances, Chawankul et al. (2007) only consider 

sinusoidal time-varying disturbances, and Gerhard et al. (2005) and Monnigmann and 

Marquardt (2005) are also limited to particular disturbances. Other works consider a 
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general form of the disturbances, by means of their maximal magnitude. Particularly, 

Ricardez-Sandoval et al. (2008, 2009a, 2009b, 2009c, 2010, 2011) assume general 

disturbances of bounded magnitude, carefully calculating the worst-case disturbance. 

Francisco et al. (2011) also consider the maximal magnitude of the disturbances based on 

the actual weather profiles. 

In Monnigmann and Marquardt (2005) a method is proposed that establishes 

robust measures based on a minimal distance between the uncertain parameter space 

region and the critical boundaries. Later, in Grosch et al. (2008), constraints are imposed 

simultaneously on time-domain performance indicators and the asymptotic dynamic 

process behaviour while optimising the steady-state profit of the plant, accounting for the 

effect of uncertainty in both, design and model parameters. This approach is difficult to 

apply in the presence of more than one disturbance, then, to overcome its disadvantages. 

Munoz et al. (2012) use an extension of the normal vector approach proposed in 

Monnigmann and Marquardt (2002) to consider the simultaneously robust asymptotic 

stability of steady states despite parametric uncertainty and robust feasibility of the 

transient behaviour despite disturbances. 

In particular, several articles by Ricardez-Sandoval and co-workers present a 

robust approach based methodology that performs the simultaneous design and control 

under disturbances and process model parameters uncertainties. In Chawankul et al. 

(2007) a measure of the closed loop output performance is introduced based on the output 

widest variability caused by model uncertainties and constraints related to the robust 

stability of the plant imposed. Furthermore, this performance index is added to the 

objective function as a cost associated with the variability. In Ricardez-Sandoval et al. 

(2008, 2009a, 2009b) a new technique is presented to assess the flexibility, stability and 

controllability of a process. In this method, the infinite time horizon bounds are estimated 

for the worst-case scenarios, enforcing process feasibility constraints by using the 

Structured Singular Value Analysis (SVA), avoiding expensive dynamic optimisations. 

This methodology is improved in Ricardez-Sandoval et al. (2009c) to reduce the 

computational requirements of the method towards its application to large-scale 

processes; the methodology is referred as the Analytical Bounds Worst-case Approach 

(BWA). However, a disadvantage of this approach is the conservatism resulting from the 

use of analytical bounds. In Ricardez-Sandoval et al. (2010) a method named Hybrid 

Worst-Case Approach (HWA) is proposed. It combines the analytical calculation of the 

worst-case disturbance and dynamic simulations using the mechanistic closed-loop 
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process model to calculate variability. It is expected to reduce the conservatism in the 

final design at the expense of additional computational time in the calculations. Ricardez-

Sandoval et al. (2011) have expanded hybrid worst-case approach considering time-

varying disturbances and parametric model uncertainties, making it suitable for 

application to large-scale systems. 

In Sánchez-Sánchez and Ricardez-Sandoval (2013a) is presented a method for 

optimal process synthesis and control structure selection that simultaneously evaluates 

dynamic flexibility and dynamic feasibility in the presence of the worst-case (critical) 

time-trajectories in the disturbances. Furthermore, a robust stability test based on 

Quadratic Lyapunov theory is included in this methodology to ensure that the optimal 

design is asymptotically stable for any of the magnitude-bounded perturbations 

considered in the analysis. The disturbances are treated as stochastic time-discrete 

unmeasured inputs. The work of Trainor et al. (2013) adopts this methodology for the 

design of a ternary distillation system treating disturbances as random time-dependent 

bounded perturbations. It presents a methodology for the optimal process and control 

design of dynamic systems under uncertainty that incorporates robust feasibility and 

stability analyses formulated as convex mathematical problems. This approach is 

computationally attractive since it does not require the solution of a MINLP. A norm-

bounded metric based on Structured Singular Value (SSV) analysis is employed to 

estimate the worst-case deviation in the process constraints in the presence of critical 

realisations in the disturbances. 

In Gutierrez et al. (2013) an integrated design methodology focused on the 

selection of an optimal control structure is addressed by adding a communication cost 

function within the overall cost function. Different control structures composed of 

centralised and fully decentralised predictive controllers are considered in the analysis. A 

cost function related to the worst-case closed-loop variability is calculated using 

analytical bounds derived from tests used for robust control design. 

In Matallana et al. (2011) a design methodology based on the optimisation of the 

domain of attraction is proposed. The idea is to simultaneously ensure asymptotic stability 

and an optimum domain of attraction of the resulting operating point in a certain sense. 

The approach consists of maximising the radius of a ball in the state's space within which 

negative definiteness of the time derivative of a quadratic type Lyapunov function can be 

ensured. 
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In Francisco et al. (2011) and Francisco (2011) norm based indexes for 

controllability are considered. They allow for including robust performance conditions 

within the integrated design procedure by using a polyhedral uncertainty region, limited 

by multiple linearized models. The multiobjective problem stated include investment, 

operating costs, and dynamical indexes based on the weighted sum of some norms of 

different closed-loop transfer functions of the system. 

2.1.3.3 Probabilistic Based Integrated Control and Process Synthesis Methods 

Some of the recent works presented in the literature for optimal design considers 

a stochastic or probabilistic-based approach. Most of the design procedures ensure the 

appropriate process performance in the presence of uncertainties and disturbances 

focusing on the worst-case scenario given by the critical realisations in the disturbances 

and the uncertain system’s parameters that produce the largest deviations in the controlled 

variables, demanding major control efforts to maintain the desired operating conditions. 

This is called the worst-case process variability (Bahakim and Ricardez-Sandoval, 2014). 

The overestimation of the uncertainties, typical in process design methodologies, leads to 

conservative design decisions resulting in an unnecessary deterioration of the objective 

function, In such sense, probabilistic programming is a promising solution for solving 

optimisation problems under uncertainty in the process industry (Li et al., 2008) allowing 

to take into account the probability of occurrence of the worst-case variability in the 

process variables. 

Few works have introduced such considerations in the integrated design 

formulation. Ricardez-Sandoval (2012) introduces a distribution analysis on the worst-

case variability in the integrated design framework. The worst-case variability is 

approximated by normal distribution functions to estimate the largest variability expected 

for the process variables at a user-defined probability limit. Thus, the user can rank the 

goals of the design according to its particular criterion. The worst-case variability 

estimates are used to evaluate the process constraints, the system’s dynamic performance 

and the system’s cost function enabling the assessment of the optimal process design by 

assigning different probability levels to the process variables used to evaluate the process 

constraints and the process economics. In Bahakim and Ricardez-Sandoval (2014) an 

optimisation framework for achieving a feasible and stable optimal process design in the 

presence of stochastic disturbances while using advanced model-based control scheme is 

proposed. 
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2.1.3.4 Examining the Control Structures used in Integrated Control and Process 

Synthesis 

In several formulations of the integrated optimisation of process design and 

control the controller parameters are introduced as decision variables in the optimisation, 

while in others they are tuned empirically. Some formulations focus in the analysis of the 

open loop system to obtain an optimal and controllable design for any possible controller, 

as in Luyben and Floudas (1994a), Grosch et al. (2008), Matallana et al. (2011) and 

Guerra et al. (2012). In some works, the notion of perfect control is assumed in the 

optimisation formulation avoiding the complexity associated with the controllers’ 

evaluation. Sharifzadeh and Thornhill (2012) propose a simplified optimisation 

framework with a multiobjective function taking advantage of the perfect control concept, 

which is the best performance that a given control structure can achieve. Later this 

approach is introduced in the integrated design formulation in Sharifzadeh and Thornhill 

(2013). Perfect control is also supposed in Narraway and Perkins (1993, 1994) and Blanco 

and Bandoni (2003). 

The usual type of controller included in most of the integrated optimisation based 

formulations independently of the scope of the problem is the feedback decentralized PI 

or PID (Narraway et al., 1991; Walsh and Perkins, 1994; Bahri, 1996; Schweiger and 

Floudas, 1997; Bansal et al., 2002b; Exler et al., 2008; Grosch et al., 2008; Ricardez-

Sandoval et al., 2011; Sánchez-Sánchez and Ricardez-Sandoval, 2013a,b; Gutierrez et al., 

2013; Trainor et al., 2013; Ricardez-Sandoval, 2012). An early step towards the 

application of advanced control schemes is observed in Kookos and Perkins (2001) where 

a multivariable PI is implemented. Asteasuain et al. (2006) combines a scheme of 

feedback PI and feedforward multivariable control, while Asteasuain et al. (2007) use a 

PI multivariable controller and a relation control scheme is used. The parameters of the 

PI controller are considered decision variables in the optimisation problem. Nevertheless, 

in Bahri (1996) and Bahri et al. (1997) pre-designed PI controllers that are more fine-

tuned after the procedure, in Dominguez et al. (2009) the PID IMC tuning method 

(Skogestad, 2003) is used to include the controller design within the integrated design 

framework. 

In Patel et al. (2007) and Miranda et al. (2008), optimal controllers are considered. 

Malcolm et al. (2007) and Moon et al. (2011) use Linear Quadratic Regulators (LQR). 

Finally, Lu et al. (2010) consider a fuzzy-model-based controller which estimate the 

process behaviour and derive fuzzy rules to guarantee stability, robustness and feasibility. 
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Focusing on the synthesis of a control system structure, Lin et al. (1991) establish 

the concept of Output Structural Controllability (OSC) and derive a condition to ensure 

Output Structural Controllability of a process explaining how to use it for the selection of 

the control schemes in chemical plants. Later, Hopkins et al. (1998) make use of this 

index (OSC) for integrating process design and control in the process and control structure 

synthesis. Also, Lee et al. (2001) study the structural controllability concept about the 

propagation paths of the perturbations. They use only the structural digraph of the plant 

and their relative order matrices, without knowledge of other process details, to select the 

best flowsheets and discard non-controllable alternatives. 

2.1.3.5 Multi-Objective Control and Process Synthesis Problems 

The mathematical formulation of the optimisation depends on the scope of the 

problem, the techniques used for introducing the quantification of controllability and 

other properties related to dynamic performance, the control scheme and the treatment of 

disturbances and uncertainties. The multi-objective nature of the integrated process and 

control design can be addressed using an optimisation problem with different cost 

functions, or problems with just one objective function based on economic aspects and 

constraints related to dynamic performance indices. 

Palazoglu and Arkun (1986) formulate a multi-objective optimisation using 

robustness indices as constraints to quantify the dynamic operability which is illustrated 

by solving design and operability problems of a CSTRs system. In Luyben and Floudas 

(1994a) a Mixed-Integer Nonlinear Problem (MINLP), multi-objective programming 

problem is posed, where economic objectives and some linear controllability indexes are 

optimised. In Schweiger and Floudas (1997) the Mixed-Integer Optimal Control Problem 

(MIOCP) is simplified into a Mixed-Integer Nonlinear Problem with Differential 

Equations (MINLP/DAE). Imposing different limits to the constraints, Pareto curves can 

be developed to reveal compromise solutions. 

Blanco and Bandoni (2003) introduce controllability measures in this type of 

formulation using the eigenvalues optimisation theory. Matallana et al. (2011) maximise 

the region of asymptotic stability of the equilibrium point, which results in a bi-level 

optimisation problem with non-differentiable inner subproblems, which is solved using a 

stochastic (derivative free) algorithm in the outer level. Sharifzadeh and Thornhill (2012) 

propose a simplified optimisation framework with a multiobjective function taking 

advantage of the perfect control concept which is extended in Sharifzadeh and Thornhill 
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(2013) introducing the inversely controlled process model which results in a dynamic 

optimisation formulation that is solved by sequential integration and by full discretisation. 

Alhammadi and Romagnoli (2004) proposed an integrated framework for 

plantwide control and dynamic modelling that incorporated not only the usual metrics 

such as controllability and economic performance but also environmental performance 

and energy integration, resulting in a multi-objective optimisation problem. The impact 

of energy integration is evaluated by embedding thermal pinch analysis to examine the 

trade-off over a number of Heat Exchanger Network (HEN) designs. In addition, an 

environmental performance measure is added to the optimisation problem by adding the 

Life Cycle Assessment (LCA) index to the cost function. The solution is obtained by a 

sequential approach that consists of four steps: economic and environmental optimisation; 

HEN design optimisation; Controllability Analysis; and plant-wide control and dynamics 

modelling. The method was applied to a large scale Vinyl Chloride Monomer plant. 

In Asteasuain et al. (2006), the optimisation based simultaneous design and 

control of a polymerisation reactor translates into a multi-objective, Mixed-Integer 

Dynamic Optimisation Problem (MIDO). The two objectives are an economic function 

with the investment and operation costs, and a dynamic index similar to the ISE-related 

to the product quality. The problem is solved by the application of a decomposition 

algorithm where there is a master mixed-integer, the MINLP and an associated dynamic 

optimisation problem. 

Miranda et al. (2008) formulate the problem focusing on the application of optimal 

control theory, relying on Pontryagin’s minimum principle. The Euler–Lagrange 

equations are derived from the underlying optimisation problem which is then solved by 

using a discretisation technique. 

Malcolm et al. (2007) and Moon et al. (2011) propose a new mathematical 

methodology to reduce the combinatorial complexity of multi-objective integrated design 

and control by embedding control for specific process designs. The optimal design 

problem is solved using the Nelder–Mead simplex method. Other alternative optimisation 

formulations and methods have been applied successfully to solve the complex integrated 

design problem, for instance, multi-objective formulations are successfully solved with 

stochastic optimisation methods based on genetic algorithms in Revollar et al. (2010b, 

2010c). 
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2.1.3.6 Formulations with an economic objective function and controllability constraints 

In these works, different formulations of the optimisation problem are considered, 

introducing the controllability issues or dynamic performance indices as constraints. 

Although it is not equivalent to multi-objective formulations, it may simplify the 

optimisation problems, once the particular bounds have been carefully selected. 

In Bahri (1996) the economics of the process is optimised and feasible regulatory 

dynamics is ensured by means of constraints on the dynamic operability conditions. The 

problem is solved with the application of a two-level iterative algorithm. On the first level 

the structure, dimensions and operating conditions are obtained through an MINLP. On 

the second level, the feasibility of the solution is examined using the resolution of the 

associated NLP problems. This methodology is also applied in Bahri et al. (1996a) and 

Bahri et al. (1997), while in Ekawati and Bahri (2003) it is enlarged by adding a new 

controllability index to perform the dynamic operability analysis. 

Mohideen et al. (1996a) propose a general formulation containing the total annual 

cost as the minimizing function, subject to the constraints associated with (a) the 

differential and algebraic equations of the process model, (b) the feasibility of the 

operation, (c) the trajectory and (d) the variability of the process due to perturbations and 

uncertainties. This formulation results into a MIDO. The proposed algorithm for its 

resolution requires the decomposition in two subproblems and the application of an 

iterative procedure, starting with the determination of the optimal process design and 

control structure to end with the evaluation of the feasibility of the process operation 

throughout the possible range of perturbations and uncertainties. This framework is also 

adopted in the works of Bansal et al. (2002b), Sakizlis et al. (2003) and Sakizlis et al. 

(2004). 

 Kookos and Perkins (2001) propose a decomposition algorithm, based on upper 

and lower bounds on the economic performance of the flowsheet. The lower bounds are 

generated by solving the optimisation problem involving flowsheet layout and control 

structure, while a restricted dynamic optimisation problem with fixed layout yields the 

upper bounds and time-invariant design parameters. The bounds generated get 

progressively tighter as the method iterates, eventually providing the optimal design. 

In Flores-Tlacuahuac and Biegler (2007) an algorithm based on the transformation 

of a MIDO problem into a MINLP program is proposed. Three MINLP formulations are 

developed and evaluated: a nonconvex formulation, the conventional Big-M formulation 

and Generalised Disjunctive Programming (GDP). 
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In Chawankul et al. (2007) the variability of the controlled output is included in 

the objective function, imposing constraints on the manipulated variables to improve 

disturbance rejection and to ensure robust stability. In this work, the nonlinear plant is 

represented by a family of linear models. 

Asteasuain et al. (2007) is an extension of Asteasuain et al. (2006) adding 

uncertainties and perturbations while using only one objective function related to the 

product quality. A two-level optimisation algorithm is applied to solve the problem. An 

initial set of uncertain parameters is considered and then extended up to the complete 

dominion of uncertainty to find the maximum violation of the operation constraints. 

It is important to note that, it is quite difficult to disconnect the formulation of the 

integrated optimisation problems from the solution approaches. Note that some common 

approaches result in Nonlinear Optimisation Problems (NLP), MINLP and MIDO. 

Nevertheless, some algorithms have been developed to solve the MIDO problem and can 

be classified depending on the reformulation of the original MIDO problem into an 

MINLP problem or a bi-level optimisation problem (Sakizlis et al., 2004; Hamid, 2011). 

Moreover, another classification can be made taking into account the optimisation 

methods applied for the resolution of the integrated design problem. Thus, the 

optimisation strategies basically can be deterministic methods or alternative methods such 

as stochastic and hybrid algorithms (Egea et al., 2007). For instance, in Exler et al. (2008), 

Lamanna et al. (2009), Francisco et al. (2009), Revollar et al. (2010a) and Revollar et al. 

(2012), stochastic methods as tabu search, simulated annealing and genetic algorithms 

are applied to solving different problems. 

2.1.4 Conclusions from the Review of Integrated Process Design and Control 

Framework 

This section provided a review of Integrated Process Design and Control methods. 

The main definitions and methods were presented with a view to enabling a holistic 

approach when making important design choices such as plant layout and equipment 

sizing. The reader should now understand that process design and control design are 

strongly correlated, and an integrated optimisation problem has advantages such as 

increased robustness and better design from an economic standpoint.  

 Also, the reader is now familiar with the numerous integrated methodologies, 

which may be roughly classified as either part of the sequential or the simultaneous 

frameworks. In the sequential framework, often called Controllability Analysis, the 
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process design is fixed, and its properties are evaluated to assess whether or not a good 

control performance can be obtained. In the simultaneous framework, here called 

Integrated Control and Process Synthesis, the process design is not fixed. Key parameters 

and decision variables are varied by optimisation algorithms, whose objective functions 

have embedded some measure of controllability. When the simultaneous framework is 

applied, the optimal layout can be obtained which reaches a compromise between 

profitability and stability. Arguably, Integrated Control and Process Synthesis is the ideal 

approach for designing new plants; but if for any reason a situation presents itself where 

its use is infeasible, then Controllability Analysis must be carried out to avoid 

uncontrollable plants to be designed. 

A key weakness of the IPDCF is that no single method is adequate to all processes 

since none can address all possible future control issues. Several classes are available, 

each encompassing dozens of methods. Only expert knowledge of the process and 

extensive simulation of its dynamic behaviour can help determine which method provides 

the optimal flowsheet and control system. At least a couple distinct IPDCF methods 

should be tested and benchmarked during the design phase so that the engineering team 

can be confident in the choices made. Another weakness is the possibility of an overly 

ambitious reduction of oversizing coefficients of key equipment. Plants thus designed 

may become unstable in actual operation due to unpredictable factors. 

2.2 Review of Model Predictive Control 

According to Skogestad and Postlethwaite (1996), while controllability is a 

property of the flowsheet and thus independent of the controller, it is dependent on the 

definition of control objectives. Indeed, in this report, we make the case that using Model 

Predictive Control (MPC), and especially Zone Constrained MPC, fundamentally 

changes the way control objectives are defined and thus controllability should be 

measured accordingly. Since the use of MPC structures is assumed and it is key for the 

hypothesis developed here, a short review of this class of control algorithms will now be 

presented. 

MPC algorithms (also referred to as Receding Horizon Control and Moving 

Horizon Optimal Control) make use of explicit process models to predict the future 

response of a plant. It is widely regarded by both industry and academia as an effective 

means to deal with multivariable constrained control problems. The MPC algorithm 

attempts to optimise future plant behaviour at each control interval by defining an 
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optimised sequence of future manipulated variable adjustments. It controls a subset of 

future points in time for each output and compares them with the chosen reference 

trajectory. After the optimal sequence of moves for each input is found by an optimisation 

solver, the first input is then sent to the process, and at the next control interval, the 

calculation is repeated. One of MPC’s strength lies in its use of step response data, which 

are physically intuitive, and in the fact that it can handle hard constraints explicitly 

through on-line optimisation. At the dynamic optimisation level, an MPC controller must 

compute a set of input adjustments that will drive the process to the desired steady-state 

operating point without violating constraints. The constraints to the MPC control problem 

can be hard or soft, ranked in order of priority, and the models may be both 

phenomenological or result of the impulse response of plant. 

MPC was first developed to meet the control needs of power plants and petroleum 

refineries, but nowadays it can now be found in a wide variety of application areas 

including several chemical processes, food processing, automotive, and aerospace 

industry. 

Although the appearing of receding horizon control ideas which later lead to MPC 

can be traced back to the work of Kalman (1960) in the early 1960s, the real breakthrough 

in MPC theory and also the first industrial application were made by Charles R. Cutler, 

at the time an employee of Shell Oil Company in Houston, Texas. He proposed the 

Dynamic Matrix Control (DMC) algorithm (Cutler and Ramaker, 1979). The original 

DMC was later expanded to multivariable control with constraints (Cutler, 1983), and to 

use Linear programming techniques based solvers (LDMC) (Morshedi et al. 1985), and 

finally to make use of quadratic programming (QDMC) solvers in order to quickly find 

the optimal solution for linear systems (Garcia, Morshedi, 1986). This last paper was 

given some detail now because the authors showed how the DMC objective function 

could be re-written in the form of a standard QP, which was an important breakthrough. 

The original DMC algorithm provided excellent control of unconstrained 

multivariable processes. Constraint handling, however, was still somewhat ad hoc. This 

weakness was addressed by posing the DMC algorithm as a quadratic program (QP) in 

which input and output constraints appear explicitly, and a quadratic performance 

objective is evaluated over a finite prediction horizon. Future plant output behaviour 

specified by trying to follow the SP as closely as possible subject to a move suppression 

term. The optimal inputs were the solution to the quadratic program. QP itself is one of 
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the simplest possible optimisation problems since the Hessian of the QP is positive 

definite for linear plants, and thus the resulting optimisation problem is convex.  

The technical success meant that essentially all vendors had adopted a DMC-like 

approach in their commercial MPC packages and this fact had a significant impact on 

process control industry. There is probably not a single major oil company in the world, 

where DMC or a similar product is not employed. Cutler later left Shell to start his 

company which was later purchased by Aspen Technology, that no offers the DMC+ 

package. 

But other early implementations of MPC were proposed, including Model 

Algorithmic Control (MAC) (Rouhani, Mehra, 1982), and Internal Model Control (IMC) 

(Garcia and Morari, 1982), and the first comprehensive exposition of Generalized 

Predictive Control (GPC) (Clarke et al. 1987), all of which also have demonstrated their 

effectiveness in industrial applications. 

Let us now make a quick comparison between DMC and GPC. At first sight, their 

concepts are similar, but the goals behind the development of DMC and GPC are not the 

same. DMC was conceived to use a time-domain model (finite impulse or step response 

model) in order to handle constrained, multivariable control problems which are typical 

for the oil and some chemical industries. Before MPC became popular this problem was 

handled by feedback controllers improved by selectors, overrides, decouplers, time-delay 

compensators, etc. 

GPC was intended to offer a new adaptive control alternative, and stochastic 

aspects played a key role in GPC, while the original DMC formulation was completely 

deterministic. The GPC approach is awkward for multivariable constrained systems 

which are much more commonly encountered in the oil and chemical industries than 

situations where adaptive control is needed (Rashid, Moses 2000). 

IMC was probably as technically capable as DMC, and its implementation was 

very similar, but it never enjoyed the same kind of popularity. However, some of its ideas, 

such as the robustness filter recommended by IMC theory were later used in the 

development of robust MPC (Morari and Zafiriou, 1989). This was another breakthrough 

that opened the way to numerous works that propose guaranteed stability up to this day. 

Robust MPC is a subfield of robust control, whose main motivation for researchers has 

been the development of robust control theories that can guarantee closed-loop stability 

in the presence of modelling errors. Using models with polytopic uncertainty, this set of 
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techniques is based on the use of Lyapunov functions. Stability is guaranteed by means 

of enforcing that the MPC cost function is a strictly decreasing Lyapunov function for the 

closed-loop. The receding horizon state feedback control law robustly asymptotically 

stabilises the closed-loop system (see Section 2.1.3.2). 

2.2.1 Robust Model Predictive Control and Techniques to Enforce Stability 

Below we briefly review some of the popular techniques used in the literature to 

“enforce” closed loop stability. A robust control system can account for bounded 

disturbances while still ensuring that state constraints are met.  

Morari and co-workers were responsible for the early efforts into adapting the 

robust control framework to include MPC schemes. Works such as Campo and Morari 

(1987), Kothare, Balakrishnan and Morari (1996) and Bemporad and Morari (1999) 

provided the basis for robust model predictive control by formulating the cost functions 

as Lyapunov equations, resulting in the nominal stability of the closed control loop. Lee, 

Morari and Garcia (1994) is also a very relevant paper which helped establish state-space 

models as the standard for modern MPC formulations. Finally, MPC surveys such as 

Garcia, Prett and Morari (1989) and Morari and Lee (1999) provided interesting and 

useful overviews on robust MPC theory for beginners as well as experienced researchers.  

The seminal idea that prompted the establishment of the robust MPC framework 

is the set of “Terminal Constraint” techniques, an approach firstly proposed in Kwon and 

Pearson (1977). According to Bemporad and Morari (1999), this set of techniques can be 

divided into two main classes. In the first class, the objective function is defined in such 

a way that it corresponds to a Lyapunov function. The second explicitly requires that the 

difference between current state and reference shrinks in some norm through the 

prediction horizon. 

The main drawback of using terminal constraints is that the control effort required 

to steer the state to the reference can be large, especially if a short control horizon is used, 

and therefore feasibility is a critical issue. Feasibility is limited to the “domain of 

attraction” of the closed-loop (MPC+plant) is defined as the set of initial states that can 

be steered to the reference values. This is a problem because the range of operating points 

where a plant is expected to operate may be considerably larger than the set of initial 

states which steerable to the reference in an arbitrary number of steps. Also, the speed of 

control actions can be negatively affected because of the artificial terminal constraint. A 

variation of the terminal constraint idea has been proposed where only the unstable modes 
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are forced to zero at the end of the horizon (Rawlings and Muske, 1993). This mitigates 

some of the mentioned problems. 

Let us briefly discuss other important contributions to the robust MPC field. 

Nominally stable MPC algorithms that use terminal constraints include: Infinite Output 

Prediction Horizon (Keerthi and Gilbert, 1988; Rawlings and Muske, 1993; Zheng and 

Morari 1995); the terminal Weighting Matrix (Kwon et al. 1983; Kwon and Byun 1989); 

Invariant Terminal Set (Scokaert and Rawlings 1996); Contraction Constraint (Polak and 

Yang 1993a,b; Zheng 1995). 

Mhaskar, El-Farra and Christofides (2005) presented a Lyapunov-based model 

predictive control framework for switched nonlinear systems (models that switch at 

prescribed times). Mhaskar, El-Farra and Christofides (2006) consider the problem of the 

stabilisation of nonlinear systems subject to state and control constraints. An auxiliary 

Lyapunov-based analytical bounded control design is proposed to characterise a “stability 

region” of the MPC and also provide a feasible initial guess to the optimisation problem. 

It is also worth citing Heidarinejad, Liu and Christofides (2012) which proposes an 

Economic MPC (EMPC) of nonlinear process systems using Lyapunov techniques, and 

Liu, de la Peña and Christofides (2009) and Christofides et al. (2013) which introduce the 

concept of Distributed MPC, a robust MPC scheme which establishes communication 

between several different MPC controllers in order to achieve better closed-loop control 

performance. Specifically, each of the distributed algorithms comprehends both a local 

controller, who optimises a local (non-cooperative) cost function and also a global 

controller which handles a global (cooperative) cost function that refers to other 

distributed algorithms.  

Allgöwer and co-workers contributed to several widely cited works on robust 

MPC theory. Among them we could highlight Chen and Allgower (1998), Allgöwer et 

al. (1999) and Findeisen and Allgöwer (2002), all of which helped establish the field of 

Nonlinear Model Predictive Control (NMPC) taking advantage of better nonlinear 

optimisation algorithms and increased computational power available in the late 1990’s 

and early 2000’s. NMPC is making use of nonlinear state-space models do better predict 

the process outputs and provide more efficient control actions, but it also results in a 

control problem for which is much harder to find the globally optimal solution.  

Odloak and co-workers contributed to several works on Infinite horizon MPC 

(IHMPC), including González, Perez and Odloak (2009) and Rodrigues and Odloak 
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(2003a), which expanded IHMPC to integrating processes, and González and Odloak 

(2009), which introduced a Zone Constrained IHMPC (see Section 2.2.2). We may define 

IHMPC as an inherently robust MPC framework for constrained linear systems, which 

makes use of an infinite prediction horizon by replacing the infinite horizon objective by 

a finite one after defining a penalty weight matrix (terminal cost) at the end of the input 

horizon. The terminal weight is obtained from the solution of a discrete-time Lyapunov 

equation. Stability is guaranteed as long as the related optimisation problem is feasible. 

Also, features were added that enabled the IHMPC to handle common industrial problems 

such as zone constrained MPC and integrating processes, as well adapting IHMPC for 

use with models with polytopic uncertainty (Rodrigues and Odloak, 2003b), and 

providing robust integration with real-time optimisation packages (Alvarez et al., 2009). 

Although terminal constraint techniques are very popular and effective for 

guaranteeing closed-loop MPC stability, some alternative robust MPC schemes were 

proposed. Some of them are outlined in Table 1. 

Table 1 – Alternative robust MPC schemes. 

Min-Max MPC  

(Scokaert and Mayne, 1998) 

In this formulation, the optimisation is performed on all possible 

evolutions of the disturbance. This is the optimal solution to linear 

robust control problems; however, it carries a high computational 

cost. 

Constraint Tightening MPC  

(Richards and How, 2006) 

Here the state constraints are enlarged by a given margin so that a 

trajectory can be guaranteed to be found in any evolution of 

disturbance. 

Tube MPC 

(Langson et al. 2004) 

This uses an independent nominal model of the system and uses a 

feedback controller to ensure the actual state converges to the 

nominal state. The amount of separation required from the state 

constraints is determined by the robust positively invariant (RPI) set, 

which is the set of all possible state deviations that may be 

introduced by a disturbance with the feedback controller. 

Multi-Stage MPC 

(Lucia et al. 2013) 

This uses a scenario-tree formulation by approximating the 

uncertainty space with a set of samples, and the approach is non-

conservative because it takes into account that the measurement 

information is available at every time stages in the prediction and 

the decisions at every stage can be different and can act as recourse 

to counteract the effects of uncertainties. The drawback of the 

approach, however, is that the size of the problem grows 

exponentially with the number of uncertainties and the prediction 

horizon. 
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2.2.2 Zone Constrained Model Predictive Control 

Zone constrained MPC was briefly cited in the introductory Section and, being a 

key element of this project, it shall now be described in further detail. Zone constrained 

MPC is not a unique class of MPC algorithms, but rather an alternative way of defining 

the control objectives which can be applied to any MPC scheme. 

 In the ‘perfect’ model predictive control framework the goal is the complete 

rejection of the disturbances, and thus it is required that the output variables return to and 

remain in the original state before the end of the prediction horizon. But it does not matter 

how advanced or robust a controller may be if the processes do not possess an equal or 

superior number of unsaturated manipulated variables compared to the number controlled 

variables, a solution for the perfect control problem does not exist.  

So in most control applications, these restrictions apply and thus perfect control is 

not attainable, but even so, all controlled variables need to be kept within certain limits. 

This is the reason why most commercial MPC controllers in the chemical industry operate 

with a variation of partial control often denominated “zone control” or “zone constraints”, 

in which every controlled variable has maximum and minimum desired values, so that 

the control problem is not to keep each one at a fixed set-point but instead to keep them 

all inside the zones bounded by their maximum and minimum values. 

However, the zone constrained MPC will not be able to keep all controlled 

variables within their desired control zones all of the time due to the lack of degrees of 

freedom, and then some restrictions are eventually violated. This may happen because 

there may be disturbances acting in the process, or the zones that were defined are too 

narrow, or perhaps the inputs to the process are already saturated. The zone control 

restrictions to the MPC problem are sometimes called “soft constraints” since they can be 

eventually violated. Likewise, every manipulated variable also has its required maximum 

and minimum values. The MPC controller cannot violate these restrictions; hence they 

are called a set of “hard constraints”. These manipulated variable restrictions are 

associated with physical constraints. For example, a control valve cannot have percentage 

opening outside the 0-100% range, or the operating temperature of a reactor must obey 

its metallurgical limit, and a plant feed flow cannot be negative and so on. On the other 

hand, the soft constraints are usually related to product or process specifications and are 

defined by process dynamics and thus cannot be set to a specific value forthwith. Please 

note that classical set-point MPC is just a special case of zone control MPC, in which 
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output maximum and minimum limits are equal. Zone control MPC also may encompass 

any kind economic or robust MPC, being, in reality, the most generic MPC definition.  

In fact, virtually all MPC packages commercialised globally are a combination of 

zone constrained MPC and economic MPC, and some of them also claim to have robust 

performance. Among these packages, we can mention Honeywell™ MPC, Shell-

Yokogawa Exa-SMOC™, Emerson DeltaV™ Predict and AspenTech DMCplus™ as 

offering simultaneously both process (zone) control and economic optimisation, in a 

combination that has become a standard feature for industrial control applications to 

perform. Schemes with guaranteed stability are not as popular in the industry since they 

result in unnecessarily slow control actions (as stated by Bemporad and Morari (1999), 

Robust MPC control actions may be excessively conservative).  

Whereas most recent academic research has been focusing on robust MPC, 

comparatively fewer contributions have been made for optimising zone constrained MPC. 

Some examples of research concerning zone control are found in González and Odloak 

(2009), Grosman et al. (2010), Luo et al. (2012) and Zhang et al. (2011). There is also a 

more sizeable bibliography of works covering the integration of economic optimisation 

and MPC control, such as Porfírio and Odloak (2011), Gouvêa and Odloak (1998) and 

Adetola and Guay (2010). 

In zone control each controlled variable has a minimum and maximum desired 

variable but some of these constraints may have more importance than others and, for this 

reason, when defining the MPC control problem it is common practice to assign each 

controlled variable a weight value, which establishes the relative priority each bound will 

have in the solution. For example, constraints to the process, the equipment and 

environmental safety normally have precedence over those concerning product 

specifications. Henceforth these weight values that relate the comparative importance of 

each controlled variable will be denominated �',PNNLH and �',)K�LH, meaning the weights 

respectively for the upper (maximum value) and lower (minimum value) bounds of 

controlled variable	w', where ¹ = 1,… , MQ, and MQ is the number of controlled variables. 

Let us now present a quick example to further clarify Zone Constrained MPC. For 

instance, consider now a system controlled by an MPC controller that consists of two 

controlled variables, w� and	w�, a single manipulated variable, f�, and a single 

disturbance, ë�. Also, consider that y� has a higher weight in the control problem than	y�, 

so that ��,PNNLH =��,)K�LH = 2  and	��,PNNLH =��,)K�LH = 0.5, and that the zone 
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constraints bounding the controlled variables are w�,�?� = 	w�,�?� = 2 and	w�,�'* =
	w�,�'* = −2. Let it be assumed that the models defined by Eq. 31 to Eq. 34 describe the 

interaction between the controlled variables, the manipulated variable and the 

disturbance: 

�Q�,P�k^m = .�
W�p|�|�  Eq. 31 

�Qp,P�k^m = .�
��|�  Eq. 32 

�Q�,,�k^m = �
�|�  Eq. 33 

�Qp,,�k^m = .B.�
�|�   Eq. 34 

Now consider that this system is subject to a disturbance	ë�k^m = W
�. If no control 

action is taken, w� will increase until it violates its upper bound while w� decreases, but 

without leaving its desired control zone. In order to keep higher priority w� within bounds, 

decreasing its value to the maximum limit, w�,�?� = 2  then the minimum control input 

necessary is	f�k^m = �
�. However, this movement in the manipulated variable will further 

decrease	w�, which will thus violate its lower bound, w�,�'* = −2. In this case, the zone 

constrained MPC controller will prioritise the variable whose deviation from bounds or 

error has the largest impact on its objective function, which means keeping w� in its 

control zone at the expense of the less important w�, since it doesn’t have enough degrees 

of freedom to control both. However, the controller should make the minimum movement 

necessary to maintain w� within its control zone, minimising the error due to violating w� 

restriction. 

 Let us assume that the controller takes 10 seconds to react to the ë�. In this case, 

the system response is the one shown in figure 6. Please note that the control action is 

very steep in this example and an MPC controller can be tuned to provide a more smooth 

response. However, this has been ignored to simplify the analysis. 
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Fig. 6 – How an MPC controller handles the zone control problem. 

Fig. 7 presents a diagram showing how a zone constrained MPC calculates the 

error (E¬) along the whole trajectory prediction:  

 
Fig. 7 – Error calculation for Zone Constrained MPC. 

Eq. 35 defines the error related to vector of controlled variables at each instant k: 
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c\ = µ��Vh − �\· ∙ s�de�T + µ�\ − ���
· ∙ s�YY�T  Eq. 35 

A key point here is that the definition of the control zone is related to process 

constraints, not to the controller; maximum and minimum values for each variable are 

usually provided by the operator through MPC control user interface. Safety concerns and 

desired product specifications are constraints to possible solutions by bounding the 

control zones. 

2.2.3 Interfaces of industrial MPC implementations  

 

Fig. 8 – Interfaces of an industrial MPC implementation. 

Industrial implementations of MPC schemes present several interfaces and 

components. Fig. 8 shows the interactions between the main elements inside the blue box: 

the model, which provides the output prediction; the cost function or algorithm, which 

evaluates the prediction according to the control goal priorities; and the optimiser or 

solver which searches for the optimal set of control action through the input-space. 

Human operators provide limits for MVs and CVs as well as the direction and priority 

(weight parameters) of economic optimisation, setting the cost function parameters and 

restrictions for the solver to use during its search for the optimal solution. Sensors located 

in the process site measure properties such as temperature, pressure, level and flow rate 

from the relevant streams. These measurements are filtered and converted to vectors of 

appropriate form (states) to enable future output prediction and bias correction. This 

conversion is performed by a state estimator, also known as state observer, which is a 
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system that provides an estimate of the internal state of a given real system, from 

measurements of the input and output of the real system. An estimator is required when 

using state-space models since in most practical cases, the real state of the system cannot 

be determined by direct observation. Instead, indirect effects of the internal state are 

observed by way of the system outputs. If a system is observable, it is possible to fully 

reconstruct the system state from its output measurements using the state observer 

(Definition 2.1.1.1.2). The Kalman filter, proposed in Kalman (1960) is the most 

commonly employed state estimator. All layers of the MPC implementation are equally 

important for a successful operation. 

2.2.4 Conclusions from the Model Predictive Control Review 

A brief review of Model Predictive Control was presented in order to bring the 

reader’s knowledge of to the level required to, firstly, understand some key choices made 

concerning the EMOP methodology development; secondly, allowing a full 

understanding of the review of Integrated Process Design and MPC Methodologies in the 

next Section. 

So the reader should now have a basic understanding of the MPC fundamentals 

and be aware now that it is the most popular ‘advanced control’ structure in the industry, 

and also the one that has been receiving more academic contributions. Particularly 

relevant in recent years are the contributions mostly focused in guaranteeing closed-loop 

robust performance, which was examined in Section 2.2.1. 

Section 2.2.2 presented ‘Zone Constrained MPC’, which is the form in which 

MPC control problem objectives are usually defined in industrial applications. The reader 

should now understand that the usual approach of fixed SPs or reference values is a 

special case of ‘Zone Control’, itself a broader definition of MPC control goals. 

Additionally, it is important to emphasise that most algorithms can be adapted as ‘Zone 

Constrained’ MPC, including those with guaranteed robust performance. 

2.3 Review of Integrated Process Design and Model Predictive Control 

Methodologies 

Adding MPC to the Integrated Process Design and Control framework is a very 

challenging task which has been only recently received the publication of several results. 

The purpose of this Section is to present a comprehensive survey of such works. 
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2.3.1 Embedding MPC in Flowsheet Analysis 

As discussed in the Literature Review of Methods of Integrated Control and 

Process Synthesis, Chapter 2, there are several interesting papers where the integrated 

design methodology is applied to determinate the optimal design and control structure for 

a given process. Most of them undertake challenging issues in the integrated design 

framework such as alternative procedures to evaluate controllability, uncertainties 

handling techniques, the inclusion of different control strategies or address a complex 

application. An important aspect of these works on integrated design is the type of 

controllers and control strategies considered. Given how necessary and widespread 

considered conventional feedback controllers such as PI or PID are for the control of 

continuous processes such as those found in the chemical industry, it is only natural that 

the bulk of simultaneous design and control methodologies developed for chemical 

processes use this kind of control structure in their analysis, and these works were covered 

in Section 2.1. The works that deal with advanced control structures, such as the hugely 

popular Model Predictive Control, are yet few. All of them, to the author’s knowledge, 

are discussed in this Section. 

Until now, MPC schemes appear seldom in the framework’s literature because the 

application of advanced control strategies in the integrated design framework is limited 

by the complexity of the resulting optimisation problems. However, the availability of 

improved computational resources allowing more powerful optimisation and computing 

methods, together with mature Controllability Analysis tools and advanced control 

technologies, provide the necessary driving force to address advanced control techniques, 

which introduce significant improvements in the process dynamic performance, 

particularly in the multivariable cases. MPC has become the advanced control method of 

choice in the chemical industries such oil refining for mixture separation, reactors and 

product blending, and for this reason, its insertion in the integrated design framework is 

a desirable development. 

Integrated design of the chemical processes and MPC controller problem consists 

of simultaneously determining the plant and MPC controller parameters together with a 

steady state working point, while the investment and operating costs are minimised. 

Applied in the design stage of a plant design, the MPC control has a higher potential for 

reducing the necessity for oversizing than the usual feedback controllers like the PID 

controller, especially for systems with large delays, nonlinear response, and MIMO 

system with considerable loop interactions. 
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Perhaps Brengel and Seider (1992) was the first work to propose advanced 

strategies to extend the integrated design approach to use a nonlinear MPC control. The 

nonlinear analysis was carried to obtain more economical designs that are flexible and 

controllable in regimes characterised by greater sensitivities to modelling errors 

(process/model mismatch) and changes in set-points, and in the rejection of disturbances 

are more difficult to achieve. Through the applications of nonlinear programming for 

multi-objective design, operations and control optimisation, they argue that it should be 

possible to reduce the occurrence of overdesign in the process industries. The MPC 

control is formulated as an NLP that includes a differential-algebraic by the state-space 

model for the process. An interesting Section of this paper is the one which approaches 

“coordinated optimisations”. The NLP solver uses the process model to evaluate the 

design objective function as well as the controllability of the proposed design, as the 

design optimisation proceeds. The idea is to simulate several disturbance scenarios and 

to penalise the design objective for poor controllability, which results in decreased 

profitability due to off-spec production. This was achieved by combining the two NLPs 

for design and control such that the results of each one affect the other. A nonlinear 

fermentation process was used as a study case and a coordinated optimisation strategy to 

solve the simultaneous problem is proposed, where the economic objective function is 

penalised by deficient controllability. This translates into a bi-level programming 

problem (BPP) which is later on simplified to obtain a solution, which can be classified 

as a multi-objective formulation (see Section 2.1.3.5). This work was published before 

robust MPC became the norm is thus no attention is paid to guaranteed closed-loop 

stability.  

Loeblein and Perkins (1999) introduce a methodology for analysing the economic 

performance of different structures of an integrated MPC and on-line optimisation 

system. The tuning of non-constrained MPC and the evaluation of its performance within 

the optimisation framework are performed. The variance of the constrained variables of 

a closed-loop system subject to stochastic disturbances is calculated and then the 

necessary amount of back-off from the constraints due to disturbance realisations is 

analysed and later related to process economics. A simulated case study of a fluid-

catalytic cracker is used to illustrate the methodology, but it consisted only of the riser-

regenerator section. Monte Carlo simulations were used to confirm method predictions. 

Although process simulation was available, the magnitude of model uncertainty was just 

assumed. Also, no guidance was provided on how to obtain the uncertainty parameters. 
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Contributions made in recent years include Sakizlis et al. (2003) and Sakizlis et 

al. (2004), which presented an extension of the process and control design framework that 

incorporates parametric model-based predictive controllers. Applying parametric 

programming for the controller derivation, the authors removed the need for solving an 

optimisation problem online by giving rise to a closed-form controller structure. 

Parametric programming algorithms derive the explicit mapping of the optimal control 

actions in the space of the state measurements. Thus, a simple explicit state feedback 

controller was derived that moves off-line the embedded on-line control optimisation and 

preserves all the beneficial features of MPC. The solution consists of a set of affine 

control functions in terms of the states and a set of regions where these functions are valid. 

This mapping of the manipulated inputs in the state space constitutes a feedback 

parametric control law for the system. The authors applied this strategy to a typical 

Benzene/Toluene distillation column, proving significant economic and operability 

benefits. The embedded MPC structure added terminal constraints to guarantee Lyapunov 

closed-loop stability, which is missing in some similar works. 

Baker and Swartz (2006) discussed the advantages of integrated design and the 

importance of accounting for actuator saturation, which could lead to suboptimal designs. 

In order to consider actuator saturation effects in the integrated design and control, which 

results in model discontinuities, and to avoid potential difficulties with a sequential 

solution approach in which the integration of the model differential-algebraic equation 

system is separated from the optimisation, they followed a simultaneous solution 

approach in which the actuator saturation is handled through mixed-integer constraints. 

The authors also considered integrated design and control with constrained model 

predictive control (MPC). The resulting problem shares the characteristic of model 

discontinuity with the actuator saturation problem above, but is more complex, since the 

control calculation involves the solution of a quadratic programming (QP) problem at 

every sampling period. When embedded within a design optimisation problem, this 

results in a multi-level optimisation problem. The authors proposed a simultaneous 

solution approach in which the MPC optimisation subproblems are replaced by their 

Karush-Kuhn-Tucker (KKT) optimality conditions. This results in a single-level 

optimisation problem with complementarity constraints. An interior point algorithm 

designed for mathematical programs with complementarity constraints was found to solve 

the problem more reliably and significantly faster than a mixed-integer quadratic 
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programming formulation. However, it is not made clear by the authors how the 

process/model mismatch could be handled using the methodology. 

An approach to deal with process/model mismatch is given in Chawankul et al. 

(2007). A variability cost is attributed each CV and the sum of capital and operating costs 

are added into a single objective function. The MPC internal model is a nominal linear 

model with parameter uncertainty, resulting in a robust model that represents the 

nonlinear process by a family of linear models. This approach avoided nonlinear dynamic 

simulations, offering computational advantages. The worst-case variability was 

quantified and its associated economic cost was calculated and referred to as the robust 

variability cost. This integrated method was applied to design a multi-component 

distillation column. A downside is that this methodology uses as process model a dynamic 

matrix of response coefficients. This approach is not as flexible and rigorous as state-

space models, and thus it has for long been abandoned by most of the academia 

(Lundström et al., 1995; Lee, Morari and Garcia, 1994). 

Francisco et al. (2011), whose methodology is intended to provide simultaneously 

the plant dimensions, the control parameters and a steady state working point using an 

IHMPC formulation with a terminal penalty and a model uncertainty approach for 

robustness. The optimisation problem is a multi-objective nonlinear constrained 

optimisation problem, including capital and operating costs and controllability indexes. 

Differently, from the previous works reviewed here, the authors used an MPC formulation 

which operates over an infinite horizon in order to guarantee stability. This IHMPC was 

implemented with a terminal penalty and a multi-model approach for robust performance. 

As it is often the case in integrated design papers, the methodology presented made use 

of norm-based indexes to assess controllability. The optimisation problem is stated as a 

multi-objective nonlinear constrained optimisation problem. The objective functions 

include investment, operating costs and dynamical controllability indexes based on the 

weighted sum of some norms of different closed-loop transfer functions of the system. 

The paper illustrated the application of the proposed methodology with the design of the 

activated sludge process of a wastewater treatment plant. A comparison between this 

procedure and the Economic MPC Optimisation index is presented in Section 7.2. 

However, performing this comparison was made somewhat difficult by the fact that 

Francisco et al. (2011) presented several controllability indexes without discussing how 

they should be prioritised, or how the different measures are related to each other. 
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Sánchez-Sánchez and Ricardez-Sandoval (2013a) presented a new integration of 

process flowsheet and control design methodology that incorporates MPC strategy in the 

robust analysis (see Section 2.1.4.2 for other robust methodologies). It consists of several 

layers of optimisation problems: dynamic flexibility analysis, a robust dynamic feasibility 

analysis, a nominal stability analysis, and a robust asymptotic stability analysis. The 

robust dynamic feasibility test implements a norm-bounded analysis that computes the 

critical realisations in the disturbances that produce the worst-case variability in the 

outputs. Likewise, process asymptotic stability is enforced by adding a formal asymptotic 

stability test. Those layers enable the specification of an optimal design that remains 

feasible and asymptotically stable despite critical realisations in the disturbances. The 

methodology incorporates structural decisions in the analysis for the selection of an 

optimal process flowsheet while formulating the analysis as a convex problem for which 

efficient numerical algorithms exist. The simultaneous process flowsheet and MPC 

design method were tested on a system of Continuous Stirred Tank Reactors. It is worth 

noting that the MPC formulation embedded in the analysis is perhaps over-simplistic 

since no effort was made to ensure the stability of the closed loop. Sakizlis et al. (2004) 

have a better approach in this particular case.  

An updated method was presented by Bahakim and Ricardez-Sandoval (2014), 

involving the identification of an internal MPC model and solving an optimisation 

problem at each time step in which the MPC algorithm rejected stochastic-based worst-

case disturbances. The control performance was added to a design cost function that also 

included the capital costs derived from equipment sizing parameters. The authors discuss 

the idea behind most of the optimisation -based approaches for simultaneous design and 

control, which is to determine the disturbances that produce the largest deviations in key 

controlled variables and therefore demand significant efforts from the control system to 

maintain the process within specifications in the presence of these conditions. Often 

termed worst-case scenario, this strategy is used by the simultaneous design and control 

methodologies to evaluate a design cost function. The several process constraints have to 

be considered in the analysis as well in order to contemplate the worst-case scenario in a 

safe and acceptable fashion without violating the critical operating restrictions of the 

system. An issue that this approach has is the challenge presented to the user in providing 

adequate parameters for the worst-variability distribution function. The assumption that 

this advanced degree of process knowledge is available is quite strong. 
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In order to avoid an unnecessary level of conservatism and thus incur in expensive 

process designs, Bahakim and Ricardez-Sandoval consider in their methodology how 

often the largest (worst-case) variability are going to occur and consider the level of 

significance of each violation. The authors considered in their methodology how often 

the worst-case would occur and the level of significance of constraints violations, arguing 

that it is not reasonable to overdesign the plant with increased costs due to extremely rare 

situations. The MPC controller presented in this paper uses a discrete linear state-space 

model that changes by each iteration as certain design parameters change. The model is 

also affected by the nominal (steady-state) conditions of the manipulated variables and 

the process set points. That means the linear MPC model needs to be identified (re-

calculated) at each optimisation step. Stochastic disturbances were used and analysis was 

performed to verify their effect on the constrained variables.  A probabilistic-based 

approach was employed to evaluate the process constraints; while a closed-loop nonlinear 

process model was simulated using multiple stochastic realisations of the disturbances. 

The worst-case (largest) deviation observed in any constraint for a particular realisation 

in the disturbances is called the stochastic-based worst-case variability (SB-WCV).  

The review presented in this Section is summarised in Table 2, which displays a 

comparison between the papers concerning numerical methodologies, control structures, 

case studies and modelling strategy used by each of them. 
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Table 2 – Paper comparison of integrated process design and MPC methodologies. 

  
Numerical 

Methodology 
MPC 

Structure 
Case Study 

Process 

Case Study 
Scale / 

Complexity 
Model 

Brengel 
and Seider 
(1992) 

 NLP 
(omotopy-

continuation 
method) 

 Nonlinear 
Economic  

 
Fermentation 

Plant 
 Small/Low  Phenomelological 

Loeblein 
and 
Perkins 
(1999) 

 Quadratic 
programming 

(QP) 

 Linear 
Unconstrained 

 Fluid-
Catalytic 
Cracker 

 Small/Low 
(linear 

model, 3 
outputs, 2 

inputs) 

 Hybrid Model 

Sakizlis et 
al. (2004) 

 Mixed-
Integer  

Nonlinear  
Programming  

(MINLP) 

 Parametric 
 Binary 

Distillation 
 Small/Low  Phenomenological 

Baker and 
Swartz 
(2006) 

 NLP (Interior 
Point 

Algorithm) 
 Linear  CSTR  Small/Low  Phenomenological 

Chawankul 
et al. 
(2007) 

 Linear  
Programming 

(LP) 
 Linear 

 Binary 
Distillation  

 Small/Low 
 

Phenomenological/Step 
test 

Francisco 
et al. 
(2011) 

 Sequential 
Quadratic 

Programming 
(SQP) and 

Multi-
Objective 

Goal 
Attainment 

Optimisation 

 Infinite 
Horizon 

 Activated 
Sludge 
Process 

(Wastewater 
Treatment) 

 Small/Low  Phenomenological 

Sanchez-
Sanchez 
and 
Ricardez-
Sandoval 
(2013) 

 Mixed-
Integer 

Nonlinear  
Programming  
(MINLP) and 

Quadratic 
Programming 

(QP) 

 Linear 
Constrained 

 CSTR  Small/Low  Phenomenological 

Bahakim 
and 
Ricardez-
Sandoval 
(2014) 

 Global 
Optimisation 

(Genetic 
Algorithms) 

 Linear 
 Wastewater 

plant 
 Small/Low  Phenomenological 

2.3.2 Conclusions from the review of integrated process design and MPC methodologies 

MPC control has a higher potential for reducing the necessity for oversizing than 

the usual feedback controllers like the PID controller, especially for systems with large 

delays, nonlinear response, and MIMO system with considerable loop interactions. While 

it is desirable to incorporate MPC in the simultaneous design and control methodology, 

significant computational challenges that arise from the methodologies already proposed 
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with this goal, e.g., the need to identify an internal MPC model and solve an optimisation 

problem (which may or not be convex) at each time step and simulating the resulting 

system. This is an issue that the works reviewed in this Section could not entirely 

overcome with the possible exception of Sakizlis et al. (2004), which proposes a different 

approach using parametric MPC that does not require dynamic simulations. 

Even without embedding MPC, finding the global solution for plantwide 

optimisation can be already a challenging task as NLP and MINLP problems are 

notoriously hard to solve (Sakizlis et al., 2004). Even without accounting for control 

performance of the resulting flowsheet, plantwide optimisation is not commonly 

employed in most projects of chemical and petrochemical plants due to the complexity of 

the resulting problems and the inherent difficulty of achieving a global solution for several 

thousands of nonlinear and often discontinuous equations. Hence for industrial 

applications, plantwide optimisation has often been rejected in favour of sequential design 

strategies. This framework consists of defining the design of each single equipment as a 

segregated optimisation problem, and using one subsystem’s solution to provide next 

one’s input conditions, and thus reducing the number of variables and computing time. 

This approach currently works better for the large problem and will remain to do so for 

the foreseeable future. 

The existing framework concerning integrated process design and MPC 

methodologies is subject to these same restrictions applicable to standalone plantwide 

optimisation, but when MPC is embedded in the objective function, these become more 

limiting. Therefore, in addition to not being effective under circumstances where 

plantwide optimisation is unsuitable, the body of work covered in this Section adds 

another layer of numerical and modelling complexity. As stated by Ricardez-Sandoval et 

al. (2009), the algorithmic framework involving MPC is computationally demanding even 

when a small number of process units are considered. Of course, it is true that the works 

discussed in this Section were undoubtedly successful in addressing ideally behaved 

processes such as binary distillation columns of chemically similar solvents and other 

separation processes of mixtures presenting near-ideal behaviour, i.e., systems whose 

deviation from Raoult's law can be ignored, or non-ideal solutions to which Raoult's law 

applies and fugacity and activity coefficients can be easily calculated. For a process that 

can be easily and satisfactory modelled such as these, the available integrated MPC and 

design problem framework was proven to be adequate.   
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Additionally, the range of problems to which these procedures may be applied is 

further restricted by the use of phenomenological models by all works reviewed here. 

While very general and elegant, this kind of model is not adequate for all kinds of 

processes. 

For example, difficulties arise when dealing with petroleum fractions: each 

subsystem usually has well over one hundred non-ideal hypothetical components; and the 

severe operating conditions mean that the behaviour of gases, solutions and mixtures is 

also non-ideal; multiphase flow is very common and hard to model adequately; equipment 

designs are intricate. Some petroleum refining processes such as delayed coker cannot be 

satisfyingly modelled phenomenologically, and in this cases, design teams use 

commercial process simulators whose models rely on statistical information, e.g., neural 

networks or hybrid models, which are closed-source intellectual property. That being the 

case, the user is not provided with the set of equations being used. For those reasons, and 

the time and engineering effort required for rigorous modelling is always very large and, 

unless models are linearised, even with the optimisation solvers and processing power 

available at the time of writing, it is doubtful that a solution could be found in reasonable 

time. To avoid these issues, the state-space models used by the EMOP method are 

obtained through the classical approach of assessing the dynamic response to step 

increments in the MVs and DVs, as discussed in Chapter 3. 

Another problem with the methodologies discussed here is that they always 

assume that a certain MPC formulation will be used, instead of being valid for any generic 

MPC algorithm. Furthermore, the control objectives were defined as SPs and not as 

control zones, which are more general formulations (see Section 2.2.2 for details). Given 

the usefulness and popularity of these control schemes, this is restrictive and an important 

omission. 

Briefly, not all process design necessities and use cases are covered by the body 

of work presented in this Section. There is an important gap. Precisely the kind of process 

that is hard to model and numerically demanding would benefit greatly from improved 

design, which could guarantee longer operating times and greater profitability for capital-

intensive industrial operations. The EMOP method addresses this challenge. 
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2.4 The Linear Hybrid Systems framework 

This Thesis presents a novel method for the linear approximation of nonlinear 

systems using multiple linear models, called Simultaneous Multi-Linear Prediction 

(SMLP), which is detailed in Section 4. For this reason, it is necessary to provide some 

information about the state-of-art multi-model approaches that are currently available 

alternatives as to the SMLP. Such approaches can be classified into the Linear Hybrid 

Systems framework, presented in this Section. 

A hybrid system is a collection of digital programs interacting with each other and 

with an analogue environment. Each logic state of the digital part of the hybrid system 

acts on the analogue part inducing a different operational mode. On the other hand, the 

evolution of the analogue part triggers switches in the states of the digital part. Many 

physical phenomena admit a natural hybrid description, such as control valve saturation; 

digital controllers embedded in a continuous process, which act on on/off valves; process 

equipment switching; switching on and off the electrical motor of pumps and 

compressors, and many others complications that demand adequate modelling. Moreover, 

some of the linear hybrid classes can be used to reduce the prediction error induced by 

process nonlinearity, a goal that the current work shares. Christophersen (2006) defined 

a general class of Linear Hybrid Systems that includes the following classes: 

• Mixed logical dynamical systems; 

• Linear complementary systems; 

• Max-min-plus-scaling systems; 

• Polyhedral piecewise affine systems or piecewise affine systems; 

Bemporad and Morari (1999) introduced the mixed logical dynamical systems. In 

this framework, auxiliary variables are used to transform logical facts involving 

continuous variables into linear inequalities. These auxiliary variables are incorporated 

into the state-space and used to update the state vector, expressing relations that describe 

interdependent physical laws, logic rules, and operating constraints. Saturation functions, 

discrete inputs, qualitative outputs, bilinear systems and finite state machines can be 

modelled by this class, which also provides a multi-model approach by expressing 

nonlinear dynamic systems through combinational logic as piecewise linear time-

invariant dynamic systems.  

Another hybrid system class was introduced in the seminal paper Heemels et al. 

(2000), which used ideas from the theory of the linear complementarity systems (LCS). 
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LCS is a hybrid dynamical system defined by a linear ordinary differential equation 

(ODE) involving an algebraic variable that is required to be a solution of a finite-

dimensional linear complementarity problem (LCP) (Cottle et al., 1992). The LCS is 

defined by a finite number of smooth ODEs, called modes, with transitions between the 

modes occurring along a state trajectory. One way to understand LCS is viewing it as a 

class of dynamical systems that switches between several operating modes. Within each 

mode, an LCS behaves like a linear system.  

Heemels et al. (2000) used LCP for the mode selection process. As for the 

determination of jumps, it was based on linear system theory, more specifically the 

geometric theory of linear systems. To obtain a solution of a complementarity system, the 

associated jumps of the state variables have to be specified, i.e., the conditions under 

which a transition from one given mode to another given mode will take place must be 

precisely defined. The state spaces corresponding to different modes are not necessarily 

of the same dimension, but they are embedded in one encompassing space. Therefore, 

state trajectories may exhibit discontinuities when a mode switch takes place, as 

acknowledged by the authors. 

De Schutter and Van Den Boom (2001) introduced a hybrid system class called 

max-min-plus-scaling systems in which discrete event systems that can be modelled using 

the operations maximisation, minimization, addition and scalar multiplication. These 

systems are extensions of max-plus linear systems (Baccelli et al., 1992; Cuninghame-

Green, 1979), which can be used to model discrete event systems with synchronisation 

but no choice. Introducing choice led to the appearance of the minimum operation, 

resulting in the max-min-plus systems. A further extension was obtained by adding scalar 

multiplication. This yielded max-min-plus-scaling (MMPS) systems, which is shown by 

the authors to encompass several other classes of discrete event systems such as max-

plus-linear systems, bilinear max-plus systems, polynomial max-plus systems, separated 

max-min-plus systems and regular max-min-plus systems. 

Finally, Piecewise affine approximations are a class of Linear Hybrid Systems that 

are used for approximating nonlinear systems using a multi-model approach (Heemels et 

al., 2001). They can capture nonlinearities by partitioning the state-input space into 

regions and associating with each region a different affine state update equation (Sontag, 

1981). This paradigm is a powerful modelling tool that can capture general nonlinearities 

(e.g. by local approximation), constraints, saturations, switches, discrete inputs and states, 

and other hybrid modelling phenomena in dynamical systems.  
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PWA systems can approximate nonlinear systems via multiple linearisations at 

different operating points (OP) (Sontag, 1981; Ferrari-Trecate et al., 2003; Roll et al., 

2004). Space is partitioned through a series of linear approximations.  As the plant 

operating point moves throughout the state-input space, the state update equation is 

changed according to the linear model valid locally, as shown in Fig. 9. The larger the 

number of partitions the closer the approximations become to the nonlinear model. 

  

Fig. 9 – The operating point moves through the boundaries of a PWA system. 

A Literature Review of switched and PWA models is presented in Roll (2003), 

and a tutorial paper in Paoletti et al. (2007). A survey on switched and piecewise affine 

system identification is presented in Garulli et al. (2012), from which the main approaches 

on the topic were presented. These main types of approaches were classified as 

optimisation-based, algebraic and recursive methods for Switched Autoregressive 

Exogenous (SARX) models, optimisation-based and clustering-based methods for 

PieceWise ARX (PWARX) models, and batch and recursive methods for state-space 

systems. According to Garulli et al. (2012), a common feature of the approaches, which 

is present in works such as Vidal et al. (2003), Roll et al. (2004), Ferrari-Trecate et al. 

(2003), Nakada et al. (2005), Juloski et al. (2005) and Bemporad et al. (2005), is that they 

lead to suboptimal solutions to the problem of inferring a PWARX model from data, 

while keeping an affordable computational burden. 

In Section 4 a few shortcomings of PWA systems while used to represent model 

nonlinearity are discussed. These shortcomings motivated the development of the SMLP 

method, and in that Section it is discussed how it addressed them. 
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2.5 Conclusions from the Literature Review 

Considering the discussion presented in this Chapter, it becomes clear that the 

most obvious gap in the existing Integrated Control and Process Synthesis (ICPS) body 

of work is the lack of an MPC-embedded method suitable for large-scale plants. This is 

in part caused by the increased complexity of the MPC control problem as compared to 

relatively simple feedback control structures, resulting in numerical and modelling 

challenges. Another issue is that while feedback controllers consist mostly in standardised 

PIDs, hundreds of distinct MPC algorithms exist, and each of the ICPS methods with 

embedded MPC discussed in Section 2.3 uses a different algorithm in their cost functions 

and simulations. Since the closed loop behaviour is being considered, the conclusions 

obtained by these methods are not valid for other algorithms, and even for different 

selections of tuning parameters. Furthermore, the closed loop analysis results in an 

optimisation problem composed of several layers that can be rapidly become intractable 

for larger systems, which are the main subjects of this work. Another gap currently found 

in the ICPS framework is the lack of a method with control goals defined as zones. 

Therefore, it is desirable to devise a methodology capable of fillings these gaps while 

tackling the challenge of a high computational demand. With this in mind, the Economic 

MPC Optimisation index is introduced in the next Chapter. 
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3 Assessing Plant Design for MPC Performance 

The starting point of the Economic MPC Optimisation index methodology is a set 

of previously generated candidate designs, which are kept fixed during the analysis. Since 

the approach adopted is sequential, one could classify the EMOP methodology as part of 

the Controllability Analysis framework (Sections 2.1.1 and 2.1.2) rather than ICPS 

(Section 2.1.3). At the same time, the sequential approach opens an interesting possibility: 

using the EMOP index in addition to any ICPS procedure in order to test and validate the 

flowsheets generated (as done in Section 7.2 for the activated sludge process). Another 

relevant choice made during the design of the EMOP methodology was to deal only with 

open loop dynamic behaviour and make no assumptions towards closed-loop 

performance since these cannot be generalised across different MPC algorithms. The 

main drawback of dealing solely with the open-loop is the need of all plants to be 

bounded-input, bounded-output stable while closed-loop methods can design plants with 

less rigorous degrees of stability. 

For the goal of embedding MPC in the IPDCF while dealing with large-scale, 

complex systems, segregating the problems of optimising capital expenditures (CAPEX) 

and operating expenses (OPEX) was the sensible choice. Restricting the analysis to 

OPEX greatly simplifies modelling and simulation and avoids the use of decision 

variables and the need for mixed-integer programming. This is the first reason why the 

candidate flowsheets were fixed; the second reason is to enable the use of commercial 

simulation packages to provide the models instead of first-principle models for most 

usage scenarios. The EMOP index makes use of multiple linear state-space models 

obtained through step-test model identification, a classic approach, using identification 

data provided by any given dynamic simulator. Although first-principle models can be 

used for simple processes, model identification is recommended for complex systems 

instead of iteratively solving mass and energy balances for each cost function evaluation. 

Using both a sequential approach and step response models greatly reduces the 

numerical complexity of the resulting problem, enabling the analysis of larger systems 

than similar methodologies. Even if the models thus obtained are linear, the effect of 

process nonlinearity in the analysis can be mitigated by the use of multiples models 

(Chapter 4) and by bounding results according to model uncertainty (Chapter 5). 
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One could argue that such simulation packages could provide input directly to the 

index evaluation, but this is not practical for three reasons: firstly, each cost function 

evaluation would require a new simulation, and the total time would require for thousands 

of evaluations would be too long; secondly, the EMOP algorithm software does not run 

in the same environment, and establishing a link between the dynamic simulator and the 

solver can be complicated, requiring the use of communication protocols and additional 

coding; thirdly and more importantly, commercial simulation packages act as black-

boxed which do not present their internal models to the user, but provide only numerical 

output. As such, assessing properties such as stability for these plants it would be 

impossible without using the numerical output to identify the models.  

Since the flowsheets are fixed, the EMOP index can only be used to answer two 

key questions: what candidate flowsheets meet the dynamic restrictions of the process? 

Among these, what candidate flowsheet is the most profitable? 

To this end, the main deliverables of this Thesis can be thus summarised: 

• A Controllability Analysis methodology to assess the dynamic behaviour 

of flowsheets with regard to MPC performance which is directly linked to 

process economics; 

• Two different case studies to demonstrate the use of the methodology, one 

of which is a large-scale process with embedded feedback control 

structures; 

• A new multi-model approach called Simultaneous Multi-Linear Prediction 

(SMLP), developed to reduce nonlinearity-related error and thus improve 

the accuracy of the EMOP index while keeping the advantages of the use 

of linear models; 

Zone Constrained MPC is assumed. The EMOP methodology favours solutions 

that have smooth transitions to the final state, and also penalises violations of zone 

constraints, making sure that the dynamic trajectory leading to the optimised steady-state 

is feasible. Also, restrictions concerning manipulated variables such as their maximum 

rate of change and maximum and minimum values are incorporated in the analysis.  
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Fig. 10 provides a workflow showing the order by which the methodologies 

presented in this Thesis should be performed, including the EMOP index and SMLP 

modelling. 

 

 

 

 

 

 

 

Fig. 10 – Workflow of the joint use of the EMOP index and the SMLP. 
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• Production targets/market conditions; 

• Alternative process routes; 

• Alternative process equipment technologies; 

• Alternative control and instrumentation systems. 
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Now each step shown in Fig. 10 is discussed in detail. The whole of these 

procedures compose the EMOP index method which is one of the main deliverables of 

this Thesis. 

Preliminary research 

Preliminary research normally includes research of market conditions and the 

definition of the product being marketed; product prices and production targets; research 

of alternative process routes, equipment technologies; energy and raw materials costs; but 

seldom involves alternatives for control systems and instrumentation. This a standard 

procedure in process engineering. 

Step 1 – Flowsheet Design Generation 

In this step, the candidate flowsheets are defined based on the findings of the 

preliminary research. It is assumed that operation is continuous for all plants and that 

control zones will be defined for each plant. 

At this point, the design team has usually picked out one of the alternative process 

routes and has some idea of the layout to be chosen. Differences between flowsheets 

might be subtle, such as different embedded regulatory control loop structures, or they 

might be moderate, e.g., different equipment layout, sizing and specifications for 

operating conditions. However, it is possible the information yielded by preliminary 

research was not enough to decide upon a single process route. In this case, considerable 

differences among flowsheets may arise, with production routes and layouts altogether 

different. In this case, the reader should consult Section 3.9.  

Step 2 – Dynamic Simulation or Rigorous Modelling  

Dynamic simulations of all flowsheets defined in Step 1 may be carried out in a 

commercial simulation package such as Petro-Sim®, UniSim®, Hysys®, etc. As 

previously discussed in this Chapter, these state-of-the-art simulators will support our 

integrated design and control approach, which is intended for large-scale, complex 

processes for which the full set of equations is unavailable. However, nothing prevents a 

first principles model to be used if the process is relatively simple. The dynamic 

simulations or first-principles model shall be referred in this Thesis as the nonlinear 

model. 

 

 



3 Assessing Plant Design for MPC Performance 

106 

 

Step 3 – Simulation Numeric Output (Optional) 

If dynamic simulation was used, attention must be paid to the consistency of the 

data generated. Its numeric output must be validated through a sufficiently broad range 

of operating conditions. Output and input data must be stored in convenient data formats 

such as .csv or .xlsx to be handled in the software environment containing the 

optimisation solver, e.g., MATLAB®, GAMS®, etc. In this Thesis, the simulation data 

is presented as a series of linear transfer functions in the Laplace domain describing the 

relation between each CV, MV and DV, since this format is compact and convenient. 

Step 4 – Step Response Model Identification (Optional) 

Linearising the nonlinear model brings advantages when using optimisation 

solvers to find the optimal operating point, resulting always in convex problems for which 

fast conversion can be obtained. In this Thesis, each linearisation or approximation of the 

nonlinear model is called a sub-model. 

Each sub-model is to be obtained through model identification on a set of data 

generated by step increments on MVs and DVs. Alternatively, the relay response could 

be used. Tests may be performed on a dynamic simulator or on an experimental pilot 

plant, or even on a real industrial unit, for the sake of the methodology, it is indifferent. 

Let us refer to the data thus obtained as the nonlinear model data, from which the sub-

models are derived and validated. The initial state from which a test is performed will be 

referred as an identification point (IP) or epicentre, and it will be considered the epicentre 

of the resulting sub-model. For each input/output couple of the MIMO system, different 

values for the sub-model’s order should be tested, and the order adopted is the one that 

minimises the residue between the nonlinear model data and the sub-model being 

considered. This procedure avoids model overfitting or underfitting, both of which can 

have catastrophic results especially when the operating point (OP) is removed from the 

vicinity of the model’s epicentre. In this Thesis, the identification data used was different 

from the validation data, and we consider this to be a good practice. 
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Step 5 – Generation of the SMLP Systems (Optional) 

This step is optional as the user may also use the nonlinear model, a single linear 

model or any other multi-model approach to predict plant behaviour. 

The SMLP is a method for obtaining a prediction for the future values of an output 

vector. Three main elements are used to provide this prediction: the initial state, the input 

profiles and the set of sub-models (linear approximations of a nonlinear model) identified 

at distinct states, yielded by Step 4. Hence the SMLP consists of the representation of a 

flowsheet as a collection of linear state-space models, which are combined to yield an 

overall output prediction. 

The greater the number of sub-models, the better the resilience of the resulting 

SMLP system with regard to process nonlinearity. The location of the epicentres of the 

sub-models is key to the SMLP method. The control engineer should select epicentres 

that are representative of the most common or critical operating conditions. In similar 

fashion to the sub-model validation of Step 4, the SMLP system should be validated 

against a test data set. Described in detail in Chapter 4 of this Thesis, the SMLP method 

has 3 variants. These variants present a trade-off between the accuracy displayed while 

emulating the nonlinear model and the time and effort required to assemble the system.  

Step 6 – Stability Check 

Being an open-loop reachability problem, the EMOP index only makes sense for 

Bounded-Input Bounded-Output (BIBO) stable flowsheets. We are interested in the 

optimal steady-state which is unbiased by the upper layer (MPC) control scheme. This 

optimal OP cannot be obtained for unbounded responses.  The classical stability criteria 

for MIMO systems is detailed by Lyapunov (1892) (see Section 2.1.3.2). If an SMLP 

system is being used, the reader is encouraged to perform the stability check presented in 

Section 4.1.6. 

Step 7 – Economic Analysis to Obtain Cost Function Parameters 

This step provides the link between process economics and dynamics by 

evaluating the impact of plant dynamic behaviour and disturbances on revenue and 

OPEX. Basically, each variable receives a price tag based on product prices, quality, and 

costs. This step is discussed in Sections 3.3, 3.4, 3.7 and 3.9 as the cost function is 

constructed step by step. While there is no universal approach to perform this Step, since 

it depends on the process and control goals considered, the main case study of this Thesis 

which is shown in Chapter 6 can serve as a guideline. 
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Step 8 – EMOP Index Tuning (MV restrictions) 

The EMOP index is an open-loop analysis intended to find each’s flowsheet 

optimal OP. There is, of course, a transient between the initial state and the optimal OP 

and, just like an MPC, the OP is reached by manipulating process inputs. However, the 

optimisation problem is reduced by the lack of feedback. In MPC the prediction horizon 

keeps being shifted forward and for this reason, MPC is sometimes called receding 

horizon control. The EMOP uses a fixed horizon instead of a receding horizon. Since no 

measurement noise and no unmeasured disturbances are present, states can be calculated 

from the state-space model (Section 3.1 and Appendix) without the need of using state 

estimators. 

There is, however, the need to ensure a smooth transition and no bound violation 

between initial and optimal OPs, and this subject is covered in Sections 3.5, 3.6 and 3.8. 

The control bounds on MVs usually reflect safety concerns. They may be related to 

equipment restrictions such as the maximum pressure and temperature tolerated by 

vessels, the minimum flow rate and the maximum head of pumps and compressors, etc. 

They may also refer to limits on feed, reflux or output flow rates.  

Step 9 – Simulation of Scenarios (initial state, DV profiles, restrictions) 

Process knowledge is paramount for the correct implementation of the EMOP 

method. This knowledge ideally encompasses the most commonly encountered 

disturbances encountered for the flowsheets being assessed, e.g., changing feed 

composition and production targets, changes in operating conditions such as variate 

bounds in temperature, pressure, product quality, etc. These scenarios consist of a range 

of operating conditions that reflect situations that are either very commonly experienced 

or uncommon but critical. 

Step 10 – Running Solver / Output Prediction 

Based on the scenarios defined in Step 9, the solver searches for the series of 

control actions leading to the OP of minimal OPEX/maximum revenue. Ideally, the same 

scenarios are evaluated for every flowsheet, i.e., the same changes in operating conditions 

are going to happen to all flowsheets. If this is unpractical due to existing differences in 

the flowsheets, the reader should use the method described in section 3.9. 

While the SMLP system is linear, nonlinear restrictions and variate parameters 

introduce nonlinearities into the optimisation problem. The solver to be used must be able 

to handle such complications. For the case studies presented in this Thesis, we found out 
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that the Interior-Point Algorithm with Analytic Hessian provided by MATLAB® 2016b 

(fmincon) was able to yield the desired results. 

Step 11 – EMOP Index Value for each Scenario and Flowsheet 

The gap between the EMOP indexes evaluated at the final and initial OPs yields 

a monetised measure of Controllability based on dynamic behaviour differences between 

flowsheets. This value is closely related to expected differences in OPEX between plants. 

The basic mathematical formula for the EMOP index evaluation is provided in Section 

3.4. The version incorporating smoothness concerns is presented in Section 3.5, and the 

version with variate product prices is given in Section 3.7. 

Step 12 – EMOP Index Ranking of Flowsheets 

The indexes yielded by each scenario must be combined into a single index that 

describes the overall quality of dynamic response for a certain flowsheet. A weighted 

geometric average is suggested. The ranking of overall EMOP indexes shows the most 

favourable among the set of candidate flowsheets. 

3.1 A State-Space Methodology 

Most MPC schemes make use of linear state-space models, which can be 

identified with relative ease through step tests of the manipulated inputs. The prediction 

yielded by space-state models can also be used to evaluate the EMOP index of a 

flowsheet. Lee et al. (1994) proposed a generic linear state-space model representation in 

the incremental form as defined in Eq. 36 and Eq. 37: 

�\ = �
\  Eq. 36 


\|� = �
\ + �∆�\ + �∆�\  Eq. 37 

where � ∈ ℝ*� is the vector of process outputs, 
 ∈ ℝ*� is the state vector, � ∈
ℝ*�  is the control input vector, � ∈ ℝ*�  is the disturbance vector and ∆�\ and ∆�\ are 

the matrices of MVs and DVs increments defined respectively by Eq. 38 and Eq. 39: 
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∆�\ =  �\|� − �\
�\|
 − �\|�⋮
�\|� − �\|�.�

"  Eq. 38 

∆�\ =  �\|� − �\
�\|
 − �\|�⋮
�\|Y − �\|Y.�

"  Eq. 39 

where � is the prediction horizon and � is the number of time increments of the 

control horizon, which is also the number of control actions performed. Here we assume 

that the number of DV movements is equal to the prediction horizon. 

The model formulation defined by Eq. 36 and Eq. 37 makes use of deviation 

variables and represents a process flowsheet that is assumed to be fixed during the 

analysis (this approach does not aim to replace early stage process synthesis usually based 

on steady-state information). Any steady state corresponds to a point where ∆�\ = ¾ and 

there is no need to know the explicit value of � at the steady state corresponding to a 

particular output SP. The matrices of the linear state-space model can be identified with 

relative ease through step tests of the manipulated inputs. Obtaining models from the 

analytical step response is a model identification procedure that has been widely used in 

the MPC framework as an option to phenomenological modelling. 

This state-space representation may be applied to time delayed stable, unstable 

and integrating systems as long as matrices	�, �, � and   can be defined to properly 

represent these complications. The state-space model formulation as proposed in Strutzel 

et al. (2013) meets these needs and for this reason was selected for use in this work. More 

details and further developments about this kind of model representation, designated 

output prediction oriented model (OPOM), which was first proposed by Rodrigues and 

Odloak (2000), can be found in Martins et al. (2013), in Santoro and Odloak (2012)  and 

González et al. (2007). 

Based on this model, we set the goal of obtaining a method to assess how 

promising a given flowsheet is with regard to zone constrained MPC performance, i.e., a 

method to assess which plant is better placed to accommodate DVs (Disturbance 

Variables) while being optimised by an MPC. To this end, obtaining the output vector at 

the end of the prediction horizon k�m is going to be useful in later Sections. At an arbitrary 
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time instant �, it is possible to predict the values of the process outputs at � + � using the 

following procedure described by Eq. 40: 

�\|� = �
\|� = ��
\ + ��∆�\ + � ∆�\   

�\|
 = �
\|
 = ��
\|� + ��∆�\|� + � ∆�\|�  

= ��

\ + µ���	��· # ∆�\∆�\|�$+ µ�� 	� · # ∆�\∆�\|�$   

⋮   

�\|Y = ��Y
\ +
µ��Y.��	��Y.
�… 	��Y.��·µ∆�\	∆�\|�…	∆�\|�.�·% +
µ��Y.� 	��Y.
 … 	��
 ·&∆�\	∆�\|�…	∆�\|Y.'(%   

Eq. 40 

3.2 Index for Control Bound Violations 

The weight values for zone constrained MPC will be denominated �',PNNLH and �',)K�LH meaning respectively the weights for the upper (maximum value) and lower 

(minimum value) bounds of the controlled variable w', where ¹ = 1,… , MQ, and MQ is the 

number of controlled variables. Initially, let us consider the steady-state achieved by the 

MPC where the plant will operate for much of the time. The questions of smoothness of 

the transient response shall be dealt with in Section 3.5, but for now, let us just assume 

that given enough time the plant will reach steady-state after a series of control and 

optimisation actions. If only the last instant in the prediction is considered, a new problem 

arises in which the goal is to minimise the sum of the predicted deviations from the control 

zone for each process output multiplied by its weight. A cost function for this control 

problem can be defined as defined in Eq. 41 to Eq. 44: 
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;<=)*+ = Ø��Vh − �\|YØ ∙ s�de�T + Ø�\|Y − ���
Ø ∙ s�YY�T  Eq. 41 

¹+	��Vh ≤ �\|Y ≤ ���
 	⇒s�YY�T = s�de�T = ¾  Eq. 42 

¹+	��Vh > �\|Y 	⇒s�de�T > ¾  Eq. 43 

¹+	�\|Y > ���
 	⇒s�YY�T > ¾  Eq. 44 

In this problem, it is of special interest to know if there is a set of manipulated 

variables that leads the system to a state where all outputs are within their zone constraints 

at the end of the prediction horizon. For this ideally bounded state, we have ;<=)*+ = 0. 

Alternatively, if there is no ideal solution for Eq. 41, the optimisation is going to find the 

final state that minimises the violation of the control bounds, resulting in the minimal 

;<=)*+. 

3.3 An Economic Optimisation Index 

MPC controllers found in the chemical industry frequently possess economic 

optimisation functions in addition to the control capabilities. Also, recent research has 

shown that process economics can be optimised directly in the dynamic control problem, 

which can take advantage of potentially higher profit transients to give a superior 

economic performance. Examples of this approach include Amrit et al. (2013) and 

Strutzel et al. (2013). The optimisation is performed by changing the manipulated process 

inputs when the process finds itself within its control bounds, and degrees of freedom are 

available to be employed in optimisation tasks. In oil refining processes, MVs are often 

related to process energy cost. For instance, it may be necessary to burn more natural gas 

in the fired heater to increase the temperature of the feed stream to a reactor. If the feed 

temperature is an MV increasing it has a negative impact on process profitability, which 

depends on the price of natural gas. Another example would be diesel production in an 

atmospheric crude oil distillation column. In this process, it is often possible to improve 

the quality of the diesel by reducing its output and, consequently, increasing the 

atmospheric residue output. However, diesel has a much higher commercial value, so if 

the flow rate of diesel is a manipulated variable, it is positively correlated to profitability. 

Other MVs are not strongly correlated to energy costs or product prices and can be altered 

freely. In inorganic processes, the goal is often to maximise chemical reaction conversion 

and the relation between MV and costs may be less obvious.  
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It is thus interesting to define for each MV whether it is positively or negatively 

related to profitability, and to what degree. Let us now define two sets of optimisation 

weights, -Ý,�'* and -Ý,�?�, where à = 1, … , MP, where MP is the number of MVs, which 

illustrate the optimisation direction and relative priority among the various MVs for 

economic purposes. If a given MV is positively correlated to profitability and at the 

present moment is not being employed for control actions, it should stay as close as 

possible to its maximum limit or upper bound. Likewise, if it is negatively related to 

profitability, it should stay close to its minimum limit or lower bound. In the single layer 

MPC control scheme, the optimisation weights -�'* and -�?� are very small compared 

to the control zone weights �PNNLH and �)K�LH in the cost function, and optimisation is 

performed without hindering the control objectives. Ferramosca et al. (2014) provide a 

formal proof of convergence for such an approach. 

A simplified optimisation cost function may then be established yielding Eq. 45, 

which relates the distance between MVs and their bounds at the prediction’s end.  

;4=)*+ = Ø�\|Y − ��VhØ ∙ j�Vh + Ø���
 − �\|YØ ∙ j��
  Eq. 45 

MVs are subject to: 

��Vh ≤ �\|Y ≤ ���
	 Eq. 46 

where: 

�\|Y =	∑ ∆�\|Õ�
Ý/� 	 Eq. 47 

Concerning the MVs, it is desired to determine how far they stand from the hard 

constraints because, depending on the direction of optimisation, this distance denotes how 

much room there is for optimisation. The optimisation weights denoting the direction of 

optimisation or increased profit are subject to Eq. 48, Eq. 49 and Eq. 50: 

-Ý,�'* ≥ 0  Eq. 48 

-Ý,�?� ≥ 0		 Eq. 49 

-Ý,�'* ∙ -Ý,�?� = 0		 Eq. 50 

where à = 1,… , MP. This set of restrictions was included to guarantee that a single 

economic optimisation direction exists for each variable if there is any: if for an MV of 
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index à, -Ý,�'* = -Ý,�?� = 0, then the variable doesn’t have any optimisation direction, 

being neutral for profitability.  

3.4 The Simplified Economic MPC Optimisation Index (EMOP) 

Adding Eq. 41 and Eq. 45 in a single cost function yields the basic form of the 

EMOP index: 

;(|N = ;<=)*+ + ;4=)*+  

= Ø��Vh − �\|YØ ∙ s�de�T + Ø�\|Y − ���
Ø ∙ s�YY�T +  

Ø�\|Y − ��VhØ ∙ j�Vh + Ø���
 − �\|YØ ∙ j��
  

Eq. 51 

Solutions are subject to Eq. 42 to Eq. 44, Eq. 46, and Eq. 48 to Eq. 50. The 

prediction of � at the time instant � + �  is given by Eq. 40, which can be further 

simplified by defining the following matrices: 

������ = µ��Y.��	��Y.
�… 	��Y.��·  Eq. 52 

������ = µ��Y.� 	��Y.
 … 	��
 ·  Eq. 53 

∆�! = µ∆�\	∆�\|�…	∆�\|�.�·%  Eq. 54 

∆�! = &∆�\	∆�\|�…	∆�\|Y.'(%  Eq. 55 

Replacing these new terms in Eq. 40 yields: 

�\|Y = ��Y
\ + ������	∆�! + ������	∆�!  Eq. 56 

The vector u1|2 may be calculated as shown in Eq. 57: 

�\|Y = ∑ ∆�\|Õ = ��.h� ∙ ∆�!�
Õ/�   Eq. 57 

where: 
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34.56 = 71 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 1

				
1 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 1

			⋯ 				1 ⋯ 0⋮ ⋱ ⋮
0 ⋯ 1

:
ÇÈÈÈÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÈÈÈÈÊ

;MP
�.*�

  Eq. 58 

Applying Eq. 56 and Eq. 57 in the cost function Eq. 51, and then rewriting the 

resulting equation in vector form, yields Eq. 59, which is a more functional form for the 

EMOP index. The definition below is valid: 

Definition 3.4.1 The Simplified Economic MPC Optimisation index. Let 

;(|N be an economics-based control performance index of a plant, which 

increases in value to penalise zone control bound violations at a time instant 

(� + �), where � is the initial time, � is the prediction horizon. Let 

s�de�T	<	ℝ*� and s�YY�T	<	ℝ*� be respectively the rate of increase of ;(|N 

due to lower control zone and upper control zone bound violations, and MQ 

be the number of CVs. Let there also be increases of ;(|N proportional to 

the gap between MVs and their optimal values at � + �. The intensity with 

which the gaps are penalised is proportional to weights j�Vh	<	ℝ*� and 

j��
	<	ℝ*�, which define the direction (maximisation or minimisation) and 

relative priority of economic optimisation, where  MP be the number of MVs. 

Let ∆�\	<	ℝ*�	�	� be a matrix of MV increments or control actions used, 

where the number of actions (control horizon) is �. Let ∆�\	<	ℝ*�	�	� be a 

matrix of DV increments or disturbances realisations, where the number of 

DVs is ë. Let ������	<	ℝ*�	�	� and ������	<	ℝ*�	�	� be the matrices defining the 

steady-state gains of the dynamic responses to ∆�\ and ∆�\. Let 

��.h�	<	ℝ�.*� be the result of the concatenation of � identity matrices of 

MP dimension. Let and ���
	<	ℝ*� and ��Vh	<	ℝ*� be vectors denoting the 

upper and lower control zone bounds defined for the CV set. An evaluation 

of the Economic MPC Optimisation (EMOP) index yields ;(|N, as defined 

in Eq. 59, relative to a set of values provided for ∆�\ and ∆�\. Let �= and �= be respectively the spaces of possible realisations of ∆f( and ∆ë(. For 

a plant described by the state-space model defined by Eq. 36 and Eq. 37, 

subject to a set of disturbance variables (DVs),	∆�! ∈  !, the basic form 

of the EMOP index is defined by Eq. 59. The methodology consists in solving 

the optimisation problem of Eq. 60 to find ∆�\ ∈  g that minimises ;(|N, 
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subject to the restrictions posed by Eq. 42 to Eq. 44, Eq. 46, and Eq. 48 to 

Eq. 50. 

;(|N = Ø��Vh − ��Y
\ − ������	∆�! − ������	∆�!Ø ∙ s�de�T  

+Ø��Y
\ + ������	∆f= + ������	∆�! − ���
Ø ∙ s�YY�T  

+Ø��.h� ∙ ∆�! − ��VhØ ∙ j�Vh + Ø���
 − ��.h� ∙ ∆�!Ø ∙ j��
  

Eq. 59 

23456	 = �¹M
∆�!∈	g

Ôá\|YÖ   Eq. 60 

3.5 Ensuring Viable Solutions 

The economic cost function defined in Eq. 60 guarantees that the final state will 

be as close as possible to the economically optimal state without violating the MPC 

constraints but does not consider the transient response. Now we shall modify the cost 

function to ensure that the transition to the final state is as smooth as possible.  To achieve 

this, we now introduce two new parameters in the cost function that will penalise 

steep changes in the final predicted values for the states, favouring smooth curves for the 

controlled variables at the end of the prediction. 

These new terms shall be called “Soft-Landing” matrices and will be inversely 

proportional respectively to the first and second order derivatives of the controlled 

variables at instant � + �.  

Definition 3.5.1 First-Order and Second-Order Soft-Landing matrices. 

Let b_`�	<	ℝ*� and b_`
<	ℝ*�  be parameter vectors that define the priority 

of stablishing steady-state for each CV at the end of the prediction horizon. 

Let ���
∗ 	<	ℝ*� and ��Vh∗ 	<	ℝ*� be vectors containing the maximum and 

minimum sensor ranges limits for each CV, ∆¿ be the sampling period and 

�h�	<	ℝ*�	�	*� be the identity matrix of MQ dimensions, where MQ is the 

number of CVs. The first-order and second-order Soft-Landing matrices 

_`� and _`
 for the complete form of the EMOP index are defined 

respectively by Eq. 61 and Eq. 62.  
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_`� = �h� − b_`� >,'??Ø�\*Y.�\*Y@�Ø∆@ ∙ ë¹~A|���
∗ − ��Vh∗ |.�C  Eq. 61 

_`
 = �h� − b_`
  ,'??D &�\*Y.�\*Y@�(
.&�\*Y@�.�\*Y@
(D

∆@p ∙ ë¹~A|���
∗ − ��Vh∗ |.�"  Eq. 62 

The larger the vectors of first and second order CV derivatives at the end of 

prediction horizon (� + �) are, the closer _`� and _`
 are from being null matrices of 

infinite determinant values. For null derivatives, _`� and _`
 are equal to identity 

matrices of equivalent dimensions. The rates by which _`� and _`
 grow detached from 

identity matrices as the derivatives increase are given by b_`� and b_`
,  that define the 

how strong sharp CV moves should be rejected for each variable. The Soft-Landing 

matrices will be relevant mostly if the prediction horizon,	�, is small and the system 

doesn’t have enough time to stabilise. 

By multiplying the economic cost function by the inverses of the Soft-Landing 

matrices, its value will increase proportionally to the slope of the final output prediction. 

Higher values favour flatter curves at the expense of a more aggressive approach. Values 

for b_`� and b_`
 must be assigned so that _`� and _`
 are contained in the unit circle. 

Tuning guidance for the Soft-Landing matrices is provided in Section 3.6. 

 The first order derivative is the difference between the controlled variable’s 

predictions at � + �	and � + � − 1, which can be obtained using Eq. 63: 

�\|Y − �\|Y.� =  

��Y
\ + µ��Y.��	��Y.
�… 	��Y.��·µ∆�\	∆�\|�…	∆�\|�.�·%  

+µ��Y.� 	��Y.
 … 	��
 ·&∆�\	∆�\|�…	∆�\|Y.'(% 

−��Y.�
\
− µ��Y.
�	��Y.'�… 	��Y.�.��·µ∆�\	∆�\|�…	∆�\|�.�·% 

−µ��Y.
 	��Y.' … 	�� ·&∆�\	∆�\|�…	∆�\|Y.'(%= 

&�h� − �.�( ∙  
E ��Y
\ +
µ��Y.��	��Y.
�… 	��Y.��·µ∆�\	∆�\|�…	∆�\|�.�·%
+µ��Y.� 	��Y.
 … 	��
 ·&∆�\	∆�\|�…	∆�\|Y.'(% ;  

Eq. 63 
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Replacing Eq. 63 and the matrices defined in Eq. 56, the first-order Soft-Landing 

matrix becomes Eq. 64: 

_`� = �h�  

−b_`� #ë¹~A	 Ø&�h�.�@�(&��Y
\|������	∆�!|������	∆�!(Ø
∆@ ∙ ë¹~A|���
 − ��Vh|.�$   Eq. 64 

A similar procedure may be used to obtain the SL�, the term related to the second 

order derivative of the controlled variables at k + p, which is the difference between the 

slope at k + p and the slope at k + p − 1. The second order derivative may be calculated 

as follows: 

&�\|Y − �\|Y.�(− &�\|Y.� − �\|Y.
( = �\|Y − 2�\|Y.� + �\|Y.
   

= &�h� − 2�.� + �.
( ∙ 
E ��Y
\ +
µ��Y.��	��Y.
�… 	��Y.��·µ∆�\	∆�\|�…	∆�\|�.�·%
+µ��Y.� 	��Y.
 … 	��
 ·&∆�\	∆�\|�…	∆�\|Y.'(% ; 

= &�h� − 2�.� + �.
(&��Y
\ + ������	∆�! + ������	∆�!(  
Eq. 65 

Hence Eq. 63 becomes: 

_`
 = �h� −   

b_`
 7ë¹~A	 Ø&�h�.��@�|�@
(&��Y
\|������	∆�!|������	∆�!(Ø
∆@p

∙ ë¹~A|���
 − ��Vh|.� :  Eq. 66 

The Soft-Landing matrices are incorporated into the cost function, which means 

that if one or more destabilising sequences of control actions do exist when under 

evaluation they would cause the cost function value to explode and thus these sequences 

would be ignored by the solver. If no smooth solution is available at all the final solution 

would have a high value that should alert the control engineer. 

Besides guaranteeing a smooth transition to steady-state at the prediction’s end, 

we shall now introduce a new term in the cost function that will penalise temporary 

violations of the control bounds that may occur during the trajectory between the initial 

state and the optimal final state. This matrix, shall be denoted the “error penalisation” 
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matrix (EP) and it will increase the cost function value if any of the controlled variables 

stay out of their control zone. 

Definition 3.5.2 Error-Penalisation matrix. Let bcR	<	ℝ*� be a parameter 

vector that define the priority of rejecting control zone bound violations for 

each CV, � be an auxiliary variable that denotes time during the transient, 

whose value varies from � = � (beginning of the prediction horizon) to � =
� + � (end of the prediction horizon), �G	<	ℝ*� be the vector of controlled 

variables at time alpha, and ���
	<	ℝ*� and ��Vh	<	ℝ*� be vectors 

denoting the upper and lower control zone bounds, b�YY�T,G	<	ℝ*�  and 

b�de�T,G	<	ℝ*� be parameter vectors that define, respectively, the active 

upper and lower control zone bounds at time alpha, where MQ is the number 

of CVs. The Error-Penalisation matrix cR	<	ℝ*�	�	*� is defined by Eq. 67. 

cR = �h� −  

bcR∑ Hµë¹~Ak�|���
 − ��Vh|m·.� ∙ ë¹~A I |�G − ���
| ∙ b�YY�T,G
+|��Vh − �G| ∙ b�de�T,GJK(|NL/(   

Eq. 67 

So �G is compared to ���
 and ��Vh throughout the transient to assess if any CV 

left its control zone. When obtaining solutions to the EMOP optimisation problem, the 

restrictions to b�YY�T	and b�de�T shown in Eq. 68 to Eq. 70 must be included. 

¹+	w',�'* ≤ w(|N,',L ≤ w',�?� 	⇒ a',PNNLH = a',)K�LH = 0  Eq. 68 

¹+	w',�'* > w(|N,',L 	⇒ a',)K�LH > 0  Eq. 69 

¹+	w(|N,',L > w',�?� 	⇒ a',PNNLH > 0  Eq. 70 

These restrictions guarantee that cR will decrease if, during the transient, any 

controlled variable overshoots. If that happens, the solution will be penalised even if the 

final state is within its control zone. Matrices b�de�T, b�YY�T and bcR define how strongly 

overshooting will be rejected, but they must be small enough to guarantee that cR > ¾ 

through all the transient response. 

 Finally, we can reach the complete form for the EMOP index by multiplying the 

cost function given by Eq. 59 by the inverse of the determinants of the Soft-Landing and 

the error penalisation matrices, _`�, _`
 and cR. 
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Definition 3.5.3 The Economic MPC Optimisation index. In the complete 

form of the EMOP index, the optimisation problem of Eq. 60 is replaced by 

the one defined by Eq. 71, which includes the effects of _`�, _`
 and cR. 

23456	 = �¹M
∆�!∈g

Ô|_`�|.�|_`
|.�	&;(|N + |cR.�|(Ö  Eq. 71 

The desired outcome is that, for the selected plant design, the impact of 

matrices	_`�, _`
 and cR on the Economic MPC Optimisation index will be very small. 

Should these matrices affect the EMOP index in a remarkable way, it would be a sign that 

either their tuning is too aggressive or that the flowsheet is rather inappropriate. In a 

typical use scenario, the optimal value is mostly a consequence of the control actions 

necessary to offset the effects of DVs, changes in the control zones or changes in 

economics parameters. Hence, the standard index formulation of Eq. 71 should cause the 

optimisation solver to discard solutions which present significant overshooting. A good 

solution for the EMOP problem guarantees that eventual violations of control zones are 

quick enough to keep the effects of the EP matrix relatively small. 

If the plant is stable and if the prediction horizon p is sufficiently larger than the 

control horizon �, control actions will already have taken full effect by the end of the 

prediction, � + �, and hence _`� and _`
 will be nearly identity matrices. In turn, this 

means the EMOP index refers to a steady state. If, however, if � is small the index cost 

function will increase, and the solution will be penalised heavily. 

3.6 EMOP Index Interpretation and Tuning  

So how can we interpret the Economic MPC Optimisation index? The index is 

indirectly related to properties such as controllability, flexibility, operability, feasibility 

and switch ability, but it provides results directly related to the economics of the process. 

Specifically, the EMOP index is measured by monetary units such as US dollars and is 

strongly linked to plant operating revenue. The feedback from this methodology enables 

the control engineer to validate changes in the flowsheets and assess their impact on 

controllability and profitability. 

What is being measured by the index? It quantifies the effects of key process 

design choices in the capacity of the MPC controller to avoid economic losses, providing 

a measure of how much a plant can be optimised while keeping controlled variables 

within the bounds of the zone control. The first two terms in Eq. 59 penalise any plant 
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whose optimal steady-state lies outside the bounds defined by zone control for one or 

more CVs. Typical MPC CVs be classified into two categories: 

• Product specifications, e.g., the purity grade of a chemical product; 

• Operation specifications, e.g., combustion chamber pressure of a fired 

heater. 

Products specifications are directly related to process economics since off-spec 

products have lower market value or even no value at all. Operation specifications are 

normally indirectly related to process economics, acting as restrictions to process 

optimisation. One exception would be catalyst temperature, which is related to 

deactivation rate and thus can be linked to monetary loss.  

Manipulated variables sometimes can also be linked to manufacturing costs or 

revenue. Some examples of MVs with a strong relation to process economics include: 

• Feed flow rate; 

• Product output; 

• Energy supply, e.g., electricity, natural gas, etc.; 

• Product recycles; 

• Pumparound Duty (energy saved due to feed preheating). 

The third and fourth terms in Eq. 59 penalise the gap between optimal MV value 

and the final steady-state value and may be interpreted as being the MV opportunity cost. 

The steady state is key in the analysis since it is where the plant is expected to operate 

during most of the time. However, it is also necessary to evaluate how the plant behaves 

during state transitions. It is of special importance to ascertain that environmental and 

safety CVs do not overshoot during the transient, as even small violations can have a 

significant negative impact. Eq. 67 was added to the index to penalise constraint 

violations as it is driven to the optimal state. Eq. 61 and Eq. 62 were added to promote 

control actions that result in smooth plant responses. If the Soft-Landing matrices 

(_`�	and	_`
) and the error penalization matrix (cR) are small this will cause the EMOP 

index to increase, reflecting a poor dynamic response. The magnitude of this penalisation 

depends on decisions made by the project team concerning which CVs must be prioritised 

and what harm can be brought by eventual constraint violations. 

The vectors	b_`�, b_`
,	bcR, b�YY�T and b�de�T all require manual tuning. Their 

values should reflect prioritisation among controlled variables as well the desired balance 

between steady-state optimisation and penalisation for eventual issues in the transient 
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behaviour. The larger the values, the greater the penalties for lack of a smooth transition 

to the final state and violations of the control zones. The exact values that should be 

assigned depending on the number of variables (a larger number of variables increases 

their cumulative effect) and the desired penalty. For example, one could tune bcR, b�YY�T 
and b�de�T in such a way that |cR|.� = ;(|N ∙ &0.5 MQ⁄ (, if a single variable stays 

unbounded for 50% of the transient. If in addition to that another variable is unbounded 

for 75% of the transient, |cR|.� = ;(|N ∙ &k0.5+ 0.75m MQ⁄ (, and so on. Another 

possibility is setting b_`� and b_`
 in such a way as to provide Soft-Landing matrices 

that follow, approximately, |_`�|.� = ;(|N ∙ �∏ O1 + �\|Yy �\|Y⁄Mw − 1� and |_`
|.� =
;(|N ∙ �∏ O1 + �\|Yyy �\|Y⁄Mw − 1�. While these are useful guidelines, the tuning choices 

ultimately depend on the control engineer’s judgement about the correct balance between 

steady-state and transient performances, both of which are important elements of the 

analysis. The concept of “optimal tuning” does not apply here: what is necessary is that 

the selection of tuning parameters reflects adequately the criteria by which process 

performance is going to be judged. The parameters must be the same for all flowsheets 

resulting in the use of the same criterion. 

3.7 Including price variations in the EMOP cost function 

In some processes, the market prices of one or more products are related to key 

CVs. Just to name two relevant examples, petrol (gasoline) and diesel oil are priced in the 

global market according to, respectively, their Octane Number and Cetane Index. Also, 

numerous inorganic chemical processes have their products priced according to their 

degree of purity. Therefore, the possibility of producing premium as opposed to regularly 

priced products should be incorporated into the EMOP index’s cost function. To 

accomplish that, a new term is added to the cost function for each product price variation. 

This new term is a function of a new variable, ∆������, defined as the difference between 

the key CV quality threshold value for which the price variation occurs, ������, and the 

average value of the key CV through the prediction horizon, �����, as shown in Eq. 72 

and Eq. 73: 

¹+	Ô������ − �����Ö ≥ ¾, ∆������ = Ô������ − �����Ö  Eq. 72 

¹+	Ô������ − �����Ö < ¾, ∆������ = ¾  Eq. 73 

So, the added cost function value, j�, is defined as: 
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Õ� = ∆������ ∙
∆R����
�YTd�

∙ �YTd�  Eq. 74 

Where ∆R���� is the added value, i.e., product price difference between premium 

priced and regular product, and �YTd� is the volume produced of said product. If there are 

more than one quality threshold for a single CV, adding the price increments of all the 

consecutive thresholds to the price of the regular product, RT�0, should yield the price of 

the most premium variant, R����,h�, as shown in Eq. 75: 

R����,� = RT�0 + ∆R����,�   

⋮   

R����,h� = RT�0 + ∑ ∆R����,Õh�
Õ/�   Eq. 75 

Where nq is the number of quality thresholds of the product being considered. For 

processes with several CVs with quality thresholds, it is useful to aggregate all added cost 

function values in a single term, as per Eq. 76: 

;> = ∑ ∑ ∆w�>P?),' ∙
∆6P�QR,x,�
J+ST�,� ∙ UNHK,,'*>,'

Ý/�*Q
'/�   Eq. 76 

Where ;> is total opportunity cost due to quality thresholds. This way, ;> becomes 

null if only the most premium priced product variants are being produced. Adding to Eq. 

71, the EMOP index becomes: 

23456	 = �¹M
∆PV∈8Ô|_`�|.�|_`
|.�	&;(|N + ;> + |cR.�|(Ö  Eq. 77 

3.8 Exploring the Relation between the Regulatory Control Layer, MPC 

Layer and the EMOP Index 

The approach presented in this Thesis is based on the premise that DVs are known 

and estimated a priori and follow a given time-dependent profile. While this may seem 

restrictive, this choice reflects the nature of the dual layer control strategy used, where 

the MPC is used for economic optimisation, and feedback controllers deal with fast 

disturbances. 

Also, that in many chemical processes often the MPC layer DVs are known and 

planned ahead of time by operating staff. Examples of MPC layer DVs include events 

such as changes in the feed composition and product specifications, programmed 
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equipment shutdowns, tank switches, and changes in pipeline alignment. Here we 

compare for each plant how planned one-off occurrences, which are very frequent and 

impact process profitability. DVs that may be modelled stochastically, such as 

observational noise, are normally dealt with by the regulatory control layer, which is 

much faster. The control engineer must keep in mind that the regulatory layer is part of 

the plant which is being evaluated and modifying it changes the model and analysis 

results. 

This Thesis does not concern the issue of the selection of the lower level control 

structure, i.e., selecting MVs and CVs for regulatory control and dealing with their 

interconnections. This important subject has already been investigated in Kookos and 

Perkins (2001) and Kookos and Perkins (2012), among others (a review of methods for 

input/output selection is presented in De Wal and Jager, 2001). For the EMOP index 

method, it is enough to assume that the plant is Integral Controllable and the embedded 

control structures of each flowsheet were correctly engineered and tested, yielding 

controllable plants. If this assumption is correct, the tuning of the lower level control 

structure will not affect the EMOP index significantly. 

For instance, in the case study provided in Section 4, the linear models that define 

each plant are closed-loop models involving multiloop feedback controllers. The sample 

time used for the state-space models was 10 minutes while PID controller sample time 

was set at 1 second at the simulation. The large difference in speed between MPC and 

PID variables greatly diminishes the index sensitivity to the regulatory control structure. 

Tests showed that the PIDs could bring its CVs back to their SPs easily and rapidly when 

the process was disturbed. Also, these PIDs proved themselves easy to tune and had 

excellent performance for all plants. And finally, the issue of feedback control structures 

for crude oil distillation has been adequately tackled in sources such as Luyben (2013) 

and Brambilla (2014), providing templates that could be embedded in the flowsheets. So, 

in this case, the effect of the regulatory control layer was small enough to be safely 

ignored.  

However, this may not always be the case. If there is no clarity over the selection 

of control structure, or if one or more flowsheets are not Integral Controllable, then the 

design and tuning of the lower layer may have an impact on the EMOP index. A bad score 

may help to detect, for example, if the regulatory control is tuned too slowly or 

aggressively, or if its actuators run at their saturation limits, etc., but should such issues 

be detected, the flowsheet should be discarded. 
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3.9 Using the EMOP index to compare plants with radically different 

layouts 

So far in this work, we focused on comparing flowsheets which share main 

characteristics and have enough similarity to possess the same MPC structure, i.e., the 

same set of CVs and MVs. Additionally, in our study case in Chapter 6, the same control 

zones were used for all plants, and all of them started the simulation at the same (null) 

state. Having the same control zones, optimisation weights and initial states greatly 

facilitates the flowsheet assessment. The effects of comparatively small design 

differences can be thus evaluated. But there may be situations where we desire to compare 

plants for which these assumptions are not accurate. During the early stages of chemical 

process design, it may be necessary to choose between the different routes and 

technologies available to produce a certain product. For instance, some different routes 

for methanol production exist, including synthesis from oil, natural gas or coal. It is 

unlikely that these candidate flowsheets will share the same MPC structure.  

So here a new parameter is introduced in the EMOP index as a means to enable 

comparison between plants that have each its own control bound definitions and starting 

point, MVs, CVs and parameters. This extended EMOP index can be used to compare 

completely different plants. 

The EMOP index is a measure of monetisation of the control effort, and it 

calculates changes in operating revenue caused by control actions and disturbances. One 

basic assumption until now, besides shared MPC structure, is that all flowsheet designs 

have the same expected operating revenue at the initial operating point. For instance, all 

crude oil distillation plants described in Chapter 4 have the feed flowrate, the same oil 

mix, and produce the same products at the start of the simulation. Therefore, all plants 

began the simulation with the same operating revenue. 

This basic assumption will not, of course, be correct for designs that use different 

production routes, raw materials, MPC control structures, etc. So, in this case, the distinct 

initial operating revenue of each plant must be account for. Let us subtract operational 

revenue (total sales minus costs) at an initial time k�m from the EMOP index definition, 

Eq. 77, yielding Eq. 78: 
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23456,			6W	 =  

�¹M
∆�![∈g[,6W ÷Ø_`�,[Ø

.�Ø_`
,[Ø
.�	&;(|N,X + ;>,X + ØcR[.�Ø(ø − �"UX(  

Eq. 78 

Where ç = 1,… , MN, and MN is the number of plants to be assessed. As before, the 

first term in Eq. 78 represents the changes in operating revenue during the transient and 

the new second term represents the starting point for revenue for plant ç. It is important 

to pay attention to ensure consistency in the time units used for Rev, which should be the 

same as in the first term. As before, lower values are better and, with this new definition, 

the EMOP index can now present negative values. Note that all terms of Eq. 78 are 

defined exclusively for plant θ, whose control problem no longer needs to be identical to 

those of the other plants. 

A difficulty that arises from this extended index of Eq. 78 is that each plant now 

has its own arbitrary set of tuning parameters, b_`�[, b_`
[ and	bcR[. These arbitrary 

definitions can determinate the outcome of flowsheet performance raking if not enough 

care is taken. This problem can be mitigated by two ways: the first method is to ignoring 

transient response by setting the parameters vectors b_`�[ = b_`
[ = bcR[ = ¾, 

yielding _`�,[ = _`
,[ = cR[ = �; the disadvantage proceeding like this is that a manual 

inspection of the transient of each solution is required. Another alternative is setting the 

tuning parameters b_`�[, b_`
[ and	bcR[ aggressively. It may sound counterintuitive that 

aggressive tuning can reduce the effects of the Soft-Landing and error penalisation 

matrices, but it should lead the optimisation algorithm to avoid transient responses with 

nonzero first and second CVs derivatives, and to ensure that no control bound violation 

occurs during the transient. If the solver is successful in obtaining such a set of control 

actions, it yields that _`�,[ = _`
,[ = cR[ = �. If it fails to do so, the cost function 

reaches nearly infinite values very quickly. The disadvantage is that solution thus 

obtained may be excessively conservative. 

Both these tuning alternatives guarantee that all viable solutions will have no 

impact from _`�,[, _`
,[ and cR[, and the indexes obtained from Eq. 78 become readily 

comparable between different process routes and plant layouts. However, the issue of 

weighting scenarios becomes critical. For flowsheets generated by the same production 

routes one can use the same scenarios and the same weights to average the EMOP 

indexes, and no unfair advantage is given to a plant. In this case weighting between 

scenarios can be defined based on a qualitative perception of what are their relative 



3 Assessing Plant Design for MPC Performance 

127 

 

importance. However, assessing alternative production routes require scenario weighting 

to be probabilistic based. Knowledge of the rate of occurrence of each scenario existing 

for each process route is required to avoid a biased assessment of the designs.  

In order to help the reader visualise the effect of aggressive tuning, let us consider 

the first-order soft-landing matrix k_`�m for system with 9 CVs. Let us also assume that 

the first-order derivative obtained at the end of prediction horizon is equal to an identity 

matrix. From Eq. 71, we have that the EMOP index ratio of increase due nonzero at time 

� + � is given by |_`�|.�, which can be obtained from Eq. 61: 

|_`�|.� = [�\ − b_`� >,'??Ø�\*Y.�\*Y@�Ø∆@ ∙ ë¹~A|���
∗ − ��Vh∗ |.�CÇÈÈÈÈÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÈÈÈÈÈÊ
�\

[.�  

= |�\ − b_`�|.�  

Eq. 79 

Let us define b_`� = �\. a]é� and plot |_`�|.� as a function of a]é� for this 

system. If a]é� assumes the values 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30, |_`�|.� 

increases nearly exponentially, as shown in Fig. 11. Therefore, the if we set the tuning 

parameter a]é� to an aggressive value such as 0.3, the solver will have a great incentive 

to avoid all solutions with nonzero first-order derivative at � + �, or the index will rise 

sharply. If we have aggressive tuning for all plants, transient dependent responses which 

are affected by tuning parameters will likely be discarded regardless of their process 

route, leading to evaluation based solely on the final steady-state.  

 

Fig. 11 – EMOP index increase due to first-order soft-landing matrix for a system with 
9 CVs and unitary first-order derivative at the end of prediction. 
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3.10 Conclusions concerning the EMOP index 

In brief, the EMOP index methodology can be considered as a state reachability 

problem that deals with zone restrictions, disturbances, smoothness of the transient 

response and process economics. Details of the concept of state reachability can be found 

in Vidyasagar (2002). As a way of recapping the contents of this Chapter, let us now 

outline the EMOP index’s main features: 

• The EMOP index measures the impact of process dynamics in the OPEX; 

• To this end, zone constrained MPC with economic capabilities is assumed; 

• The optimised EMOP index determines what are the most profitable and 

yet reachable state, and does so evaluating just how much room for 

optimisation is available. The lower the index, the better the state 

reachability for a given plant; 

• The index is used to assess how well-suited a flowsheet is to accommodate 

disturbances while being and controlled and optimised by any MPC, 

allowing comparison between different process plants; 

• The required control effort and the achievable control performance are 

measured in the face of a set of disturbances and zones constraints. For 

any adequate plant design, at least one set of control actions exists that 

successfully rejects disturbances while economically optimising the 

process; 

• Control performance is monetised by measuring the revenue changes 

caused by the control actions adopted and bound violations of 

environmental restrictions and product specifications, i.e., the index must 

account for the eventual economic losses due to the necessary control 

actions; 

• The index indicates the best achievable control performance from a broad 

economic and stability standpoint. As it is always the case for 

Controllability Analysis, it only depends on the plant’s own characteristics 

and control goals, independently of the MPC algorithm and tuning 

parameters that will be eventually used to control these plants; 

• The index provides a workable solution for assessing control performance 

and its economic ramifications for moderately complex plants (or a key 

section of a highly complex process unit, i.e., reactional section, 

distillation column, heat exchanging section, etc.); 
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• The EMOP index ranking of the candidate plant designs shows how they 

compare in terms of resilience to disturbances, controllability, product 

quality giveaway and costs.  

Considering the contributions above, one could argue that the EMOP index differs 

significantly from the existent body of work of integrated process design and control 

methods. Its innovation also comes from the fact that it is not intended to replace other 

methods, but to be used alongside them as a decision-making tool.  
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4 The simultaneous multi-linear prediction 

The assessment of control performance of large-scale systems uses data from 

commercial, black-box nonlinear dynamic simulation packages that are popular in the 

chemical industry.  These state-of-the-art simulators are the tools of choice of most 

process design teams. We use the integrated design and control approach for large-scale, 

complex processes for which the full set of equations is unavailable. 

Data from one such simulator was used in Strutzel and Bogle (2016) to identify 

linear state-space models that predicted the dynamic behaviour of each flowsheet. This is 

a better option than using the nonlinear simulation package directly since that is very 

computationally intensive. However, using linear models to predict the behaviour of 

nonlinear plants is inevitably going to result in some error. This problem was addressed 

by defining the EMOP index as an interval (bounded by best and worst scenarios) within 

which the true controllability index must be contained. 

In this Thesis, an alternative approach for reducing nonlinearity-introduced error 

is presented while keeping all the advantages of using linear models. This solution, a new 

multi-model state-space approach called Simultaneous Multi-Linear Prediction (SMLP), 

is described in the following Sections. The main idea is to ensure that the evaluation of 

the index and the subsequent ranking of flowsheets are as accurate as possible within a 

reasonable timeframe, thus rendering the EMOP index more resilient to process 

nonlinearity. While not the focus of this Thesis, the SMLP can also be used for process 

control purposes and for MPC in particular, since its open loop stability can be guaranteed 

as we will show. 

A major part of MPC’s appeal in industry stems from the use of a linear finite step 

response model of the process and a quadratic objective function. When MPC is 

employed on processes with significant nonlinearity, the application of a linear model-

based controller may have to be limited to relatively small operating regions. Specifically, 

since the computations are entirely based on the model prediction, the accuracy of the 

model has a significant effect on the performance of the closed-loop system (Gopinath et 

al, 1995). Hence, the capabilities of MPC will degrade as the operating level moves away 

from its original design level of operation (Dougherty and Cooper, 2003). Enhancing 
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prediction accuracy will increase closed-loop stability and help avoid overdamped or 

underdamped responses. 

MPC for SMLP also has one advantage over MPC with nonlinear models 

(NMPC): while NMPC may involve non-convex optimisation problems for which local 

minima can found but nothing can be said about the global minimum (Kantner and 

Primbs, 1997), the use of an SMLP prediction provides a convex cost function for which 

the global minimum can be easily found without the need for relaxation. 

As discussed in Section 2.4, PieceWise Affine (PWA) systems are popular 

methods for obtaining multi-model linear approximations of nonlinear systems. 

Nevertheless, PWA approximations have some issues that keep them from being the ideal 

solution for use with integrated process design and control approaches: firstly, the 

availability of the full set of equations of the nonlinear model is a requirement for existing 

PWA methods. This is not going to be the case if most of the commercial simulation 

packages are to be used.  

While it is relatively straightforward to employ a standard PWA approach to 

identify step response models, a good approximation of the nonlinear simulation package 

cannot be guaranteed. The clustering technique (Ferrari-Trecate et al., 2003) and the 

“point-to-point” method (Lowe and Zohdy, 2010) which are used to identify optimal 

partitions for PWA systems depend on the availability of a full set of differential 

equations describing the process. Alternatively, an explicit expression for probability 

density of the data can be used (Nakada et al. 2005). If this condition is not met, then any 

partition definition will necessarily be arbitrary since it will be dependent on the starting 

point of the identification data. Both the choice of linearisation points and boundaries will 

not be optimal, and the PWA identification problem becomes finding the best fit to the 

available data. In this situation, the only way one could ensure that a modified PWA 

scheme would provide an adequate approximation would be through the use of numerous 

models valid for small regions, if data is available from several starting points.  

This leads to the second issue: it is desirable to have a multi-model class capable 

of reliable and accurate prediction by using only a small number of sub-models. If the 

necessary number of partitions is high, the process of data-based model identification is 

very laborious and time-demanding. This is true when the data is provided by dynamic 

simulators but even more so when we desire to control an existing chemical plant. 
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Thirdly, the discontinuities at the boundaries of the regions can generate 

inconsistencies, with sudden changes in the output predictions that might introduce error 

in the plant assessment. For these reasons, the SMLP is presented as an alternative to 

PWA and other Linear Hybrid Systems. 

4.1.1 Generating sub-models  

The simultaneous multi-linear prediction is a method for obtaining a prediction 

for the future values of an output vector. Three main elements are used to provide this 

prediction: the initial state, the input profiles and a set of sub-models (linear 

approximations of a nonlinear model) identified at distinct states. 

Each sub-model is to be obtained through model identification on a set of data 

generated by step increments on MVs and DVs. Alternatively, the relay response could 

be used. Tests may be performed on a dynamic simulator or on an experimental pilot 

plant, or even on a real industrial unit, for the sake of the methodology it is indifferent. 

Let us refer to the data thus obtained as the nonlinear model data, from which the sub-

models are derived and validated. The initial state from which a test is performed will be 

referred as an identification point (IP), and it will be considered the epicentre of the 

resulting sub-model. The greater the number of IPs/sub-models, the better the resilience 

of the resulting SMLP system with regard to process nonlinearity. The control engineer 

should select IPs that are representative of the most common or critical operating 

conditions.  

For each input/output couple, several values for the order of each sub-model 

should be tested, and the order adopted is that which minimises the numerical residue 

between the nonlinear model data and the sub-model being considered for all 

epicentres/IPs, not only the one being identified. This procedure avoids model overfitting 

or underfitting, which can have catastrophic results especially when the operating point 

(OP) is out of the vicinity of the model’s IP. The model validation should be performed 

against a test data set for the SMLP system output and the output of each of its sub-models 

individually. In this Thesis, the identification data used was different from the validation 

data, and we consider this to be a good practice. The SMLP’s parameters are chosen in 

order to reflect a range of conditions and thus the SMLP system is expected to exhibit 

smaller numerical residue in relation to both the identification and validation data than 

any of its constituent sub-models. 
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4.1.2 Introducing the Simultaneous Multi-Linear Prediction (SMLP) 

In this Section, the novel multiple state-space model method, Simultaneous Multi-

Linear Prediction (SMLP), is presented. Its role is to reduce the nonlinearity-related error 

and avoid discontinuities between approximated regions. The SMLP avoids 

discontinuities by avoiding partitions and changes in the state update equation through 

the whole space of feasible operating points. Instead of a single state vector as found in 

Linear Hybrid Systems such as PWA, the SMLP uses multiple sub-state vectors 

calculated simultaneously, one for each linear state-space sub-model. Note that since 

these model matrices do not share the same state vector, they need not possess the same 

dimensions (a requirement for PWA systems). In the SMLP, all sub-states to some degree 

contribute to the main output at all times, as shown in Fig. 12: 

 
Fig. 12 – The output prediction can be generated by multiple simultaneous states, each 
one with its own update rule (SMLP system), or by a single state which continuously 

changes update rule (PWA system). 

Each sub-state creates an output rate of change vector, and the result of the 

weighted addition of these vectors will generate the main output. The contribution ratio 

of each component is defined by a weight parameter, itself a function of three factors: the 

current position of the operating point; the points where each sub-model was originally 

identified (known as identification points or IPs); and a set of parameters obtained through 

linear regression to minimise the gap between the SMLP output and the simulator.  
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The SMLP does not assume that one particular sub-model has priority over others 

within an arbitrary partition of the input space. Without being restricted to any arbitrary 

bounds, the weight parameters change freely inside the whole space with a view to 

minimising the nonlinearity error. Besides avoiding discontinuities, eliminating partitions 

may provide a gain in accuracy since the search for optimal parameters becomes an 

unconstrained optimisation problem. 

Three variants of the SMLP methodology have been devised by considering two 

different definitions of operating point (or OP) and two options for parametrisation 

obtained through regression analysis. In the first SMLP variant, the OP is the output (CV) 

vector kym, whereas for the other two variants the OP is the input vector kµu	d·m combining 

manipulated and disturbance variables (MVs and DVs). The first definition is appropriate 

when the CVs can be known precisely and updated regularly, and when there are no time 

delays or non-stationary (integrating) variables such as levels. On the other hand, OP can 

always be expressed as an MV vector since MVs are defined by the control system and 

are thus readily available. Measured disturbance variables (DVs) should also be 

incorporated in the OP. 

As for the parametrisations, the two options consist of either having a single set 

of parameters for each multivariable sub-model, which will be called MIMO 

parametrisation or having a separated set for each pair of output/input, called SISO 

parametrisation, which may yield an improved prediction. A key disadvantage of the 

SISO parametrisation as compared to the MIMO parametrisation is the increased time 

required to perform the regression analysis, as it is individually done for each CV/MV or 

CV/DV pair. This trade-off is significant if the number of variables is high. 

4.1.3 SMLP Method 1 – the MIMO parametrisation 

The Simultaneous Multi-Linear Prediction (SMLP) is a method for obtaining a 

prediction for the future values of an output vector. Three main elements are used to 

provide this prediction: the initial state, the input profiles and a set of sub-models (linear 

approximations of a nonlinear model) identified at distinct states. 

Let us first outline the SMLP method for the special case of an output vector with 

two variables, ��	and �
, which are to be controlled for a defined set of disturbances. 

Consider that, for a given flowsheet, model identification was performed at two 

identification points, �R� = &w�,a6� , w�,a6�( and �R
 = &w�,a6p , w�,a6p(, yielding 
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respectively sub-models 	� and 	
 that are Taylor approximations of the nonlinear 

model. 

The SMLP formulation makes use of a standard linear state-space formulation 

presented in Lee et al. (1994). The sub-models 	� and 	
 are systems of equations 

defined, respectively, by the state-space matrices ���, ���,	��� and  �� and ��
, 
��
,	��
 and  �
, as well as by state vectors of appropriate dimensions, 
\�� and 
\�
, 
where � is the time at initial conditions. The state vectors 
\�� and 
\�
 are henceforth 

called simultaneous sub-states since they evolve independently from each other, being 

subject to the same set of control actions (�\, �\|�, … , �\|�, where � is the number of 

control actions) through the control horizon, and also to the same set of disturbances 

(�\, �\|�, … , �\|Y, where � is the length of the prediction) through the entirety of the 

prediction horizon. Hence, each sub-model has a sub-state update equation in the 

incremental form, as shown in Eq. 80 and Eq. 81: 


\|��� = ���
\
�� + ���∆�\ + ��∆�\  Eq. 80 


\|��
 = ��

\
�
 + ��
∆�\ + �
∆�\  Eq. 81 

Where ∆�\ = µ�\ − �\.�·% and ∆�\ = µ�\ − �\.�·%. Therefore, even though 

the inputs are the same for both sub-models, different values for next-instant sub-states, 


\|���  and 
\|��
 , are obtained as well as different output predictions, respectively �\�� and 

�\�
 for 	� and 	
, as shown in Eq. 82 and Eq. 83: 

�\�� = ���
\
��  Eq. 82 

�\�
 = ��

\
�
  Eq. 83 

Let us define the operating point (OP) at time � as being the output vector of the 

multi-model system, i.e., ±R\ = &w�,(, w�,((. Note that usually ±R\ ≠ �\�� ≠ �\�
. Due 

to nonlinearity effects, the model 	� is expected to get less accurate the further the 

operating point ±R is removed from the first identification point �R�. In other words, if 

the plant is operated close to an identification point, its modelling error will probably be 

small. This should be valid as a general trend even if untrue at some points. So, it makes 

sense that the weights of 	� and 	
 are roughly inversely proportional to, respectively, 

the distance in the Euclidean MQ-space between points �R� and ±R\ k�R�±R\�����������m and 
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between �R
 and ±R\, k�R
±R\�����������m, where MQ is the number of CVs (MQ = 2, in this case). 

This concept is shown graphically in Fig. 13: 

 

 

 

 

 

 

 

 

Fig. 13 – The vectors connecting the operating point (±R) and �R� and �R
. 

Please note that obtaining more than one model for the same �R would make no 

sense, so we always assume �R� ≠ �R
. We define distance coefficients, ¨� and ¨� , to 

represent the normalised proximity between ±R\, �R� and �R
.  

	¨� = ∑ k‖�R�±R\�����������‖b|‖�R
±R\�����������‖bm ∆�Ó∗⁄pbc� ∑ ‖�R�±R\�����������‖b ∆�Ó∗⁄pbc�   Eq. 84 

	¨� = ∑ k‖�R�±R\�����������‖b|‖�R
±R\�����������‖bm ∆�Ó∗⁄pbc� ∑ ‖�R
±R\�����������‖b ∆�Ó∗⁄pbc� 	  Eq. 85 

where ∆�∗ = ���
∗ − ��Vh∗  is the sensor range of the outputs and ‖�R�±R\�����������‖ and 

‖�R
±R\�����������‖ are the Euclidean norms of, respectively, �R�±R\�����������  and �R�±R\�����������. The 

numerators of Eq. 84 and Eq. 85 both contain the sum of the Euclidean norms of the 

distances between the current operating point, ±R\, and the identification points of both 

	� and 	
, i.e., �R�±R\����������� and �R
±R\�����������, for each CV ¯, where	¯ = 1,2. On the other 

hand, the denominators of Eq. 84 and Eq. 85 contain, respectively, the sum of Euclidean 

norms of �R�±R\����������� and �R
±R\����������� for each CV ¯, where	¯ = 1,2. 

In exploring the dynamic performance using these linearised models the SMLP 

method will search across the space covered by the two sub-models. As it crosses the 

boundaries instead of switching between models or upgrade equations here we calculate 

and update simultaneously the two output vectors and use a weighted arithmetic average 

to provide the combined model output prediction, �\|�. The weights of 	� and 	
, 

denoted respectively as  � and  �, are functions of the distance coefficients, ¨� and ¨�. 
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The format and coefficients of these functions should be selected as a means of 

minimising the error of the multi-model prediction as compared to a set of reference 

trajectories. 

With this in mind, we introduce “degradation functions”, 0� and 0
, composed 

of positive, nonzero functions of the distance coefficients. They serve as nonlinear 

weighting parameters that will later be used to provide the averaged weights ( � and  �) 

of 	� and 	
 in the main prediction. It is desirable that the degradation functions become 

roughly proportional to, respectively, ¨� and ¨�, and with this in mind 0� and 0
 may 

assume any format the user considers to be appropriate. Here a 4th order polynomial with 

non-negative coefficients was used, as seen in Eq. 86 and Eq. 87. This format is adequate 

since it avoids negative numbers and the averaged weight “degradation” decreases 

monotonically as the ±R approaches a given �R. Hence, a sub-model is dominant over 

others as a component of the SMLP in the proximities of its �R, e.g., 0�k¨�m ≫ 0
k¨�m 
when ±R\ → �R�, and 0
k¨�m≫ 0�k¨�m when ±R\ → �R
 (note that 	¨� → ∞ and 

	¨� → 1 when �R�±R\����������� → µ0,0·. Similarly, 	¨� → ∞ and 	¨� → 1 when �R
±R\����������� → µ0,0·). 

0�k¨�m = A�,v¨�v + A�,W¨�W + A�,�¨�� + A�,�¨� + A�,B  Eq. 86 

0
k¨�m = A�,v¨�v + A�,W¨�W + A�,�¨�� + A�,�¨� + A�,B  Eq. 87 

By defining the degradation functions as a 4th order polynomial, a nonlinear 

component was added to the output update equation composed by a set of linear models. 

This number of coefficients was proved in later sections to be high enough to correctly 

capture the nonlinearity of the plants presented later in this paper. However, finding a 

suitable format for the degradation function is a trial and error process, and there is no 

way to predict which one is going to yield minimum model mismatch. In brief, the format 

of the degradation functions has to be decided on a case-by-case basis. 

While searching for the optimised degradation functions one should follow 

standard procedures of data analysis, especially with regard to avoiding the overfitting 

phenomenon. Overfit occurs when a model is too strongly tailored to the particularities 

of the training set and generalizes poorly to new data. The "classic" way to avoid this is 

to use three groups of datasets - a training set, a test set, and a validation set. Coefficients 

are obtained using the training set; the best form of the equation is found using the test 

set, and the validation set is used to test for over-fitting (Gareth, 2013). Another method 

commonly used to avoid overfitting is to insert a Tikhonov regularisation term, which 
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aims at measuring the complexity of the function. The higher the complexity, the higher 

the regularisation term will be (Tikhonov, 1963). 

These standard procedures are well known, and the reader is strongly encouraged 

to deploy them while applying the SMLP for engineering purposes. However, for the sake 

of making the paper simpler and shorter, only a 2nd and a 4th order polynomials were 

tested as degradation functions, and only a training dataset was used. Better results were 

obtained for the 4th order polynomial, which is assumed to be optimal. Fig. 14  shows a 

possible visual interpretation of functions 0� and 0
: 

 

 

 

 

 

Fig. 14 – The “degradation functions”, 0� and 0
, are functions of the “distance 
coefficients” ©� and ©
. 

The averaged weights for the arithmetic average between sub-models, ε� and ε� 

are given by the proportion of 	� and 	
 in the sum of the degradation functions, as per 

Eq. 88 and Eq. 89: 

 � = ?�kh�m?�kh�m|?pkhpm  Eq. 88 

 � = ?pkhpm?�kh�m|?pkhpm  Eq. 89 

Note that	 � +  � = 1. Finally, ε� and ε� are used in Eq. 90 to calculate the SMLP 

output at k� + �m. The SMLP output, which may also be called “main output” or “multi-

model output” is normally the vector of CVs, but may sometimes contain other, non-

 

0
k©
‖�R
±R���������‖m 

0�k©�‖�R�±R���������‖m 
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controlled variables that we wish to monitor. It must contain exactly the same variables 

as the sub-model outputs, i.e., dimk�\m = dimÔ�\��Ö = dimÔ�\�
Ö. 

µ�\|� − �\· = & �,(|�&�\|��� − �\��(  �,(|�&�\|��
 − �\�
((%  Eq. 90 

Note that the rate of change of w(|� is given by adding fractions ( �,(|� and  �,(|�) 

of the rates of change of �\|���  and �\|��
 , and no discontinuity is introduced in the 

prediction.  

Now we will extend the multi-model approach to any number M� of linear sub-

models and any number MQ of CVs, i.e., ±R\ = >w�,(, … , w*�,(C, �R� =

>w�,a6� , … , w*�,a6�C ,… ,  �Rh� = >w�,a6#_ , … , w*�,a6#_C. As before, there will be as many 

simultaneous sub-states and outputs as the number of sub-models, as shown in Eq. 91 and 

Eq. 92: 

	
\|��� = ���
\
�� + ���∆�\ + ��∆�\   

⋮   


\|�
�h� = ��h�
\

�h� + ��h�∆�\ + �h�∆�\  Eq. 91 

	�\�� = ���
\
��   

⋮   

	�\
�h� = ��h�
\

�h�   Eq. 92 

Eq. 93 may be used to obtain the distance coefficients,	τj: 

¨$ =
∑ ∑ k�R«±R\�����������kb ∆Qb∗⁄#�bc�#_lc�∑ ‖�R�±R\�����������‖b ∆Qb∗⁄#�bc� , m = 1,… , M�   Eq. 93 

Note that the demominator of Eq. 93 contains the sum of the Euclidean norms of 

the distances between the operating point ±R\ and identification point �R� k�R�±R\�����������m of  

a particular sub-model 	�, for each CV ¯, where	¯ = 1,… , MQ. The numerator, 

however, contains the sum of the sum of Euclidean norms of the distances between ±R\ 

and �R« Ô�R«±R\�����������Ö for each CV ̄ , where	¯ = 1,… , MQ, and each sub-model 	«, where n = 1,… , M�. The degradation function of sub-model 	� is given by Eq. 94: 
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0�k¨$m = A$,v¨�v + A$,W¨�W + A$,�¨�� + A$,�¨� + A$,B, m = 1,… , M�  Eq. 94 

The weight of sub-model 	� in the SMLP output prediction,	 $, is then defined 

by Eq. 95: 

 $ = ?okhom∑ ?lÔhlÖ#_lc� , m = 1,… , M�  Eq. 95 

Note that	∑  $*_
$/� = 1. The SMLP output prediction can now be obtained through 

the use of Eq. 96: 

µ�\|� − �\· = >∑  $,(|� >�\|��ho − �\�hoC*_
$/� C  Eq. 96 

A workflow showing the flux of data in this first variant of the SMLP method is 

presented in Fig. 15: 

 
Fig. 15 – Data workflow of the first SMLP method. The distance coefficients are 

functions of the output, and the new prediction is provided by the multiplication of the 

sub-model outputs and the averaged weights. 

In order to obtain the coefficients of the degradation functions A, we proceed with 
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model data (obtained from the commercial dynamic simulation package) and the SMLP, 

using the same inputs, through the entire prediction horizon. We recommend using 

several random trajectories and different starting points to properly identify the optimal 

constants through a range of scenarios. For this first method, a SMLP system can be 

defined as follows: 

Definition 4.1.3.1 Simultaneous Multi-Linear Prediction system with 

MIMO parametrisation (OP defined as the output vector). Let there be 

a set of M� sub-models, where each sub-model 	� is defined by the state-

space matrices ��o, ��o, ��o and  �o, a sub-state vector 
\
�o and an 

identification point �R$ = >w�,a6o , … , w*�,a6oC, where m = 1,… , M�, MQ is 

the number of CVs and � is an arbitrary initial time. Let the sub-state vectors 

for the next instant,	
\|�
�o , be provided by Eq. 91 and Eq. 92. Let the vector 

of distance coefficients of sub-model 	�, ©� ∈ ℝ*_ , be yielded by the ratio 

between ∑ �R«±R\�����������q/�,…,*_  and �R�±R\�����������	 normalised for each CV, as 

defined in Eq. 93, where is the ±R\ operating point at time k, here defined 

as ±R\ = >w�,(, … , w*�,(C, and w( is the main or multi-model output 

prediction at time k. Let the degradation function of sub-model 	�, 0�k©�m, 
be defined by a set of non-negative coefficients A$,v, A$,W, A$,�, A$,� and A$,B. Let the weight of the sub-model 	� in the main output prediction for 

each CV,  $, be defined as the ratio between 0�k©�m and  ∑ 0«Ô©«Ö*_q/� . 

For such a system, �\|� can be obtained through the use of Eq. 96, and the 

degradation function coefficients are obtained by solving the regression 

analysis problem given by Eq. 97 for a number M@ of trajectories. 

�¹M?o,r,?o,s,?o,p,?o,�,?o,t ∑ ∑ ∑ ÷>�u,Gh� − �u,G�hoC 	ë¹~A|���
∗ − ��Vh∗ |.�ø�Lv$   Eq. 97 

Where �h� is the training dataset provided by the dynamic simulator concerning 

the trajectories being tested, m = 1,… , M�; 		� = 1,… , �; 	w = 1,… , M@, and M@ is the 

number of reference trajectories that makes up the validation data set.   

Hence, the regression analysis parameters assume values that reduce as much as 

possible the prediction mismatch between the commercial dynamic simulation package 

and the multi-model prediction. This provides us with a high degree of information about 

the process, opening the “black box” of the commercial simulator and providing a proper 
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basis for the EMOP analysis. The regression analysis problem of Eq. 97 is demanding 

computationally for large MIMO systems and large datasets, so it cannot be done 

continuously. If should be performed again every time changes occur to the plant, 

alongside with sub-model identification, at least. 

As a reference to measure the performance of the SMLP, let us define in a similar 

way the linearisation error for a single sub-model 	�. The traditional single model 

approach is the equivalent of setting the degradation function of sub-model 	� to   $ =
1, thus ignoring the other sub-models, yielding Eq. 98: 

&)'*$xo/� =∑ ∑ Ô&�u,Gh� − �u,G�hm(	ë¹~A|���
∗ − ��Vh∗ |.�Ö�Lv   Eq. 98 

The formulation presented in this section for an output-tracking SMLP system 

was defined with a view to avoiding the disadvantages of PWA systems presented in 

section 2.4. The goal of the SMLP is enabling a good approximation of a nonlinear plant 

using a small number of sub-models obtained at arbitrarily defined identification points, 

while altogether avoiding the need of partitioning the state-space and the inherent 

discontinuities thus introduced at the boundaries. Key to this formulation is the use of 

“degradation functions”, that are defined to be continuous over the entire state-space, in 

order to shift smoothly the weight of each sub-model in the SMLP output. The most 

important step of the SMLP methodology is performing a regression analysis (Eq. 97) to 

find adequate format and parameters for the degradation functions. Having an optimised 

set of degradation functions results that, at any given point of the state-space, the SMLP 

output will tend to follow the sub-models that perform best in that region, while ignoring 

sub-models that perform poorly there, yielding a closer approximation to the nonlinear 

plant through the state-space covered by the test and validation data. The more 

comprehensive the data, the wider the range of states where the prediction is optimised. 

An infinite number of states can be associated with a single OP. For this reason, 

the degradation functions are defined over the OP space instead of over the space-state: 

obtaining optimal coefficients for a degradation function defined over the space-state 

would very likely be impossible given the issue of state multiplicity.  Moreover, OP 

concept is more intuitive, being widely applied in the chemical industry at large. In 

industrial operations, operators refer to operating points, not states. 
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4.1.4 SMLP Method 2 – Operating point (OP) defined as the input vector 

In the previous Section, we measured the distance between OP and IPs using the 

output values, which are linearly related to the sub-states. Now another possibility is 

presented: defining OP and IPs as sets of MVs and DVs. In this case, ±R\ =&f�,(, … , f*�,(, ë�,(, … , ë*�,((, �R� = &f�,a6� , … , f*�,a6� , ë�,a6� , … , ë*�,a6�(,…, �Rh� =>f�,a6#_ , … , fw*�,a6#_ , ë�,a6#_ , … , ë*�,a6#_C, where M, is the number of DVs. Eq. 93 is 

thus updated to provide the new distance coefficients,	¨$: 

¨$ =
∑ ∑ k�R«±R\�����������kb µ∆�	∆�·b⁄#�*#�b#_lc�∑ ‖�Ro±R\�����������‖b µ∆�	∆�·b⁄#�*#�b   Eq. 99 

Where ∆� = ���
 − ��Vh, fÝ,�?� > fÝ,�'*, à = 1, … , MP, ∆� = ���
 − ��Vh, 

ë),�?� > ë),�'*, F = 1, … , M,, and the Euclidean norm of the IP/OP distance is now 

normalised by the MV and DV ranges. The rest of the procedure to obtain the SMLP 

remains the same, but the parameters defining the degradation functions, 0�k¨$m, are 

different and thus another regression analysis has to be performed. Evidently, the 

coefficients for methods 1 and 2 are not interchangeable even if the regression analysis is 

defined by Eq. 97 for both. Fig. 16 shows a workflow of the data flux in this second 

variant of the SMLP method. 

 
Fig. 16 – Data workflow of the second SMLP method. The distance coefficients are 

now functions of the input vector instead of the output vector. 
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For this second method, a SMLP system can be defined as follows: 

Definition 4.1.4.1 Simultaneous Multi-Linear Prediction system with 

MIMO parametrisation (OP defined as the input vector). Let there be a 

set of M� sub-models, where each sub-model 	� is defined by the state-

space matrices ��o, ��o, ��o and  �o, a sub-state vector 
\
�o and an 

identification point �R$ = &f�,a6o , … , f*�,a6o , ë�,a6o , … , ë*�,a6o(, where m = 1,… , M�, MP is the number of MVs, M, is the number of DVs and � is 

an arbitrary initial time. Let the sub-state vectors for the next instant,	
\|�
�o , 

be provided by Eq. 91 and Eq. 92. Let the vector of distance coefficients of 

sub-model 	�, ©� ∈ ℝ*_ , be yielded by the ratio between ∑ �R«±R\�����������q/�,…,*_  and  �R�±R\�����������	 normalised for each MV, as defined in 

Eq. 99,  where is the ±R\ operating point at time k, here defined as ±R\ =&f�,(, … , f*�,(, ë�,(, … , ë*�,((. Let the degradation function of sub-model 

	$, 0�k©�m, be defined by a set of non-negative coefficients A$,v, A$,W, A$,�, A$,� and A$,B. Let the weight of the sub-model 	� in the main output 

prediction for each CV,	 $, be defined as the ratio between 0�k©�m and  ∑ 0«Ô©«Ö*_q/� . For such a system, the main or multi-model output prediction 

at time � + 1, �\|� can be obtained through the use of Eq. 96, and the 

degradation function coefficients are obtained by solving the regression 

analysis problem given by Eq. 97 for a number M@ of trajectories. 

4.1.5 SMLP Method 3 – the SISO parametrisation 

In previous Sections, the SMLP was based on the assumption that we can calculate 

a single weight  $ for each of the linear sub-model 	�, where m = 1,… , M�, which 

dictates the overall contribution of model ϑ. In this case, the contribution to the prediction 

calculation is, in relative terms, the same for all CVs and inputs. Let us return to the initial 

example of Section 3.1, where the multi-linear prediction was provided by two sub-

models, 	� and 	
, and we had two CVs, w� and w�. If, for instance,  � >  �, then sub-

model 	� is the main contributor for the prediction calculation of both w� and w�. 

However, maybe at current OP sub-model 	� is adequate to calculate y�, while sub-

model 	
 is better suited to provide w�, or vice-versa. In this case, there may be some 

accuracy gain by defining a different   to each MV, for each sub-model. Let us carry out 

a few changes in the multi-linear prediction to reflect this concept. Eq. 99 is modified to 
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provide the new distance coefficients, ¨P�$  and ¨,R$ , where à = 1,… , MP, F = 1,… , M, and m = 1,… , M�. 

¨P�$ = ∑ ka6��,l56������������������k ∆P�⁄#_lc�ka6��,o56������������������k ∆P�⁄    

⋮   

¨P#�$ = ∑ ya6�#� ,l56�#���������������������y ∆P#�z#_lc�ya6�#� ,o56�#����������������������y ∆P#�z   Eq. 100 

¨,�$ = ∑ ka6��,l56�������������������k ∆,�⁄#_lc�ka6��,o56������������������k ∆,�⁄    

⋮   

¨,#�$ =
∑ ya6�#� ,l56�#����������������������y ∆,#�z#_lc�ya6�#� ,o56�#����������������������y ∆,#�z   Eq. 101 

The degradation functions should now reflect variable by variable input tracking, 

and there will now be one set of functions for the MVs, 0�Õ� , where	à = 1,… , MP, and 

another set for the DVs, 0��� , where F = 1,… , M,, and m = 1,… , M�	for both sets. As 

before, these functions work as nonlinear weight parameters defining the weight of each 

sub-model 	� in the prediction of each CV, but now the weight is also distinct for each 

input. Once more a 4th order polynomial with non-negative coefficients is used as the 

format of the functions, as per Eq. 102 and Eq. 103: 

0�Õ� ÷¨P�$ ø = AP�$,v¨P�$ v + AP�$,W¨P�$ W + AP�$,�¨P�$ � + AP�$,�¨P�$ + AP�$,B  Eq. 102 

0��� Ô¨,R$ Ö = A,R$,v¨,R$ v + A,R$,W¨,R$ W + A,R$,�¨,R$ � + A,R$,�¨,R$ + A,R$,B  Eq. 103 

Eq. 95 is modified to reflect the fact that the weight parameters are in this case 

defined MV by MV and DV by DV, yielding Eq. 104 and Eq. 105: 

 P�$ =
?��o ÷h��,oø∑ ?��l ÷h��,lø#_lc�   Eq. 104 

 ,R$ = ?�Ro ÷h�R,oø∑ ?�Rl ÷h�R,lø#_lc�   Eq. 105 

The simultaneous sub-states are obtained from each linear sub-model 	�, where  m = 1,… , M�	, and the weights p� and p�, as shown in Eq. 106 to Eq. 108 



4 The simultaneous multi-linear prediction 

146 

 


\|��� = ���
\
�� + ��� P,(� ∆�\ + �� ,,(� ∆�\   

⋮   


\|�
�h� = ��h�
\

�h� + ��h� P,(
*_∆�\ + �h� ,,(*_∆�\  Eq. 106 

�\�� = ���
\��   

⋮   

�\
�h� = ��h�
\

�h�   Eq. 107 

�\ = �\�� +⋯+ �\�h�   Eq. 108 

Note that when variable by variable input tracking is being performed, we are not 

applying the full inputs, ∆� and ∆�, to all the linear sub-models, as in Sections 3.1 and 

3.2. Instead, we split the inputs among the sub-models (Eq. 106) using p� and p�, and 

sum the full resulting outputs (Eq. 108). The approach presented in this Section, 

henceforth called SMLP method 3, uses a larger number of regression analysis 

coefficients (3 ∙ kMP + M,m ∙ M�) as compared to method 1 and 2 k3 ∙ M�m, and this extra 

information most likely increases the prediction’s accuracy. Fig. 17 presents the data 

workflow of this third variant of the SMLP method. 

 
Fig. 17 – Data workflow of the third SMLP method. The averaged weights are 

now used to obtain the new sub-states.  
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A new regression analysis problem arises to obtain the coefficients of the 

functions 0�Õ,�k¨$m and 0��,�k¨$m. As before, we wish to minimise the square error 

between the nonlinear model and the SMLP, using a random trajectory, through the entire 

prediction horizon.  

For this third method, a SMLP system is defined as follows: 

Definition 4.1.5.1 Simultaneous Multi-Linear Prediction system with 

SISO parametrisation (OP defined as the input vector). Let there be a 

set of M� sub-models, where each sub-model 	� is defined by the state-

space matrices ��o, ��o, ��o and  �o, a sub-state vector 
\
�o and an 

identification point �R$ = &f�,a6o , … , f*�,a6o , ë�,a6o , … , ë*�,a6o(, where m = 1,… , M�, MP is the number of MVs, M, is the number of DVs and � is 

an arbitrary initial time. Let ̈ P�
$  be the distance coefficient of sub-model 	� 

related to the manipulated variable à, and ¨,R$  be the distance coefficient of 

sub-model 	� related to the disturbance variable F, where à = 1,… , MP, F =
1,… , M, and m = 1,… , M�. Let ¨P�$  be yielded by the ratio between 

∑ y2dP|,q�dP|�������������y*_q/�  and y2dP|,$�dP|�������������y normalised for each MV, and ¨,R$  be 

yielded by the ratio between ∑ k2d,R,q�d(,,R���������������k*_q/�  and k2d,R,$�d,R�������������k 

normalised for each DV, as defined in Eq. 100 and Eq. 101,  where is the 

±R\ operating point at time k, here defined as ±R\ =&f�,(, … , f*�,(, ë�,(, … , ë*�,((. Let the degradation functions of sub-model 

	� related respectively to fÝ  and ë), 0�Õ� ÷¨P�$ ø and 0��� Ô¨,R$ Ö, be defined by 

the sets of non-negative coefficients AP�$,v, AP�$,W, AP�$,�, AP�$,� and AP�$,B and A,R$,v, 

A,R$,W, A,R$,�, A,R$,� and A,R$,B. Let the weights of the sub-model 	� in the main 

output prediction for fÝ  and ë),  P�$  and  ,R$ , be defined respectively as the 

ratio between AP�$ ÷¨P�,$ø and  ∑ AP�q ÷¨P�,qø*_q/�  and the ratio between 

A,R$ Ô¨,R,$Ö and  ∑ A,Rq Ô¨,R,qÖ*_q/� . For such a system, the sub-state vectors 

for the next instant,	
\|�$ , can be obtained through the use of  Eq. 106 and 

Eq. 107. The main or multi-model output prediction at time � + 1, �\|�, is 

given by Eq. 108, and the coefficients of the degradation functions are 

obtained by solving the regression analysis problem given by Eq. 109. This 
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problem is defined for the variable by variable input tracking over a number 

M@ of trajectories. 

�¹M?��o,r,?��o,s,?��o,p,?��o,�,?��o,t?�Ro,r,?�Ro,s,?�Ro,p,?�Ro,�,?�Ro,t
∑ ∑ ∑ Ô&�u,Gh� − �u,G�hm(	ë¹~A|���
∗ − ��Vh∗ |.�Ö�Lv$   Eq. 

109 

 

For Eq. 109, we have as before	à = 1, … , MP, F = 1,… , M,, m = 1,… , M�, � =
1, … , �; 	w = 1,… , M@. 
4.1.6 The stability of an SMLP system  

Concerning the stability of a SLMP system, the following theorem is valid: 

Theorem 4.1.6.1 the stability of an SMLP system. An SMLP system is 

Lyapunov stable if and only if composed only of stable sub-models.  

Proof. An SMLP system consists of the sum of a finite number of dynamic 

responses relative to each sub-model, each of which is multiplied by a non-

negative scalar,  . If all sub-models are stable, the dynamic responses that 

make up the SMLP are going to be bound, and it is self-evident that the sum 

of a finite number of bounded dynamic responses is also bounded. The 

SMLP cannot make any of the individual responses unbounded. For 

instance, let us consider model state matrix ��� of sub-model 	�. From 

Lyapunov (1892), for continuous-time state-space formulations, if a model 

matrix ��� has eigenvalues Â$ with negative real parts, the system is BIBO 

(Bounded-Input Bounded-Output) stable. We have from the theorem of 

ESMM (Eigenvalues of a Scalar Multiple of a Matrix) that the eigenvalues 

 $Â$ of matrix & $���( will also have negative real parts since  $ ∈ µ0,1·. 
For discrete-time formulations, a model is asymptotically (Schur) stable if 

and only if all the eigenvalues of its state matrix � have a magnitude less 

than one, i.e. lie inside the unit circle. Assuming that the sub-model 	� is 

stable and thus |Â$| ∈ µ0,1·, it results in  $Â$ ∈ µ0,1·, and therefore the 

response remains BIBO stable. 

Being Lyapunov Stable is a requirement for all flowsheets being evaluated 

through the use of the EMOP index (Strutzel and Bogle, 2016).  
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4.1.7 Reachability of an SMLP system 

It is desirable to know if any given value for 
\
�hm  can be reached, i.e., if the system 

Ô��� , ���Ö is completely reachable. Hence, let us focus on the problem, defined in Eq. 

110, of determining a sequence of m incremental control actions transferring the sub-state 

vector from 
\
�hm = 
�,� to 
\|�

�hm = 
�,
.  


�,
 − ���� 	
�,�ÇÈÈÈÈÉÈÈÈÈÊ
���

= &��� 		������ …����.����(ÇÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÈÊ
Z��

µ∆�\	∆�\|�…	∆�\|�.�·bÇÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÊ
	∆�!b

  
Eq. 110 

This is equivalent to solving the linear system of Eq. 111 with respect to ∆u}: 

Z�� 	∆�!b = ���   Eq. 111 

The matrix Z�� ∈ ℝ��,�	
	�∙h� is called the reachability matrix of the subsystem. 

A solution ∆�! to Eq. 111 exists if and only if  ��� ∈ ��ÔZ��Ö, where ��ÔZ��Ö is the 

set of states that are reachable from the initial state 
�,�. According to the Rouché-Capelli 

theorem, this is true if �~M�ÔZ�� 	���Ö 	= 	�~M�ÔZ��Ö and hence the following well-

known theorem is valid: 

Theorem the complete reachability of a system (Kalman et al., 1969). The 

subsystem Ô��� , ���Ö is completely reachable if and only its reachability 

matrix is full rank, i.e., the largest rank possible for a matrix of the same 

dimensions  

The full rank value is the lesser of the number of rows and columns and in this 

case r~M�ÔZ��Ö = � ∙ MP, where m = 1,… , M�. A proof of the theorem is presented in 

Kalman et al. (1969). Let us now approach the multi-model reachability problem. The 

reachability matrices and the desired states of each sub-model can be concatenated 

yielding Eq. 112, the multi-model version of the system of Eq. 111. Note that the solution 

∆�! is the same as for Eq. 111. 

� Z��⋮
Z�h�

�
ÇÈÉÈÊ
Z	

	∆�!% = � ���⋮
��h�

�
ÇÈÉÈÊ
�	

   
Eq. 112 
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The theorem bellow is valid for SMLP systems: 

Theorem 4.1.7.1  the complete reachability of an SMLP system. An SMLP 

system is completely reachable if and only if composed solely of completely 

reachable sub-models. 

Proof. If an SMLP system is composed solely of completely reachable sub-

models, the reachability matrices of each sub-model 	�,	Z��, have full 

rank and the reachability matrix of the SMLP system, Z	, also has full 

rank. Since Z	 is the concatenation of the individual Z��, where m =
1,… , M�, it results in �~M�kZ	m = �~M�ÔZ��Ö = � ∙ MP. Likewise, Z	 

will be rank deficient and the SMLP system will not be completely 

reachable if one or more sub-systems do not have full rank. 

A completely reachable SMLP will be able to achieve any output value in the 

unrestricted control problem. In addition to that, it is shown in Hautus (1972) that 

controllability is a weaker condition than reachability, and also that controllable systems 

are stabilisable. Therefore, if an SMLP is completely reachable it is also controllable and 

stabilisable. 

4.1.8 Filtering sub-state changes 

Due to the unavoidable presence of measurement noise and unmeasured 

disturbances in industrial, closed-loop MPC applications, the control engineer should 

implement a state-estimator, such as a Kalman Filter, for each sub-state of a SMLP 

system. The usual tuning considerations on this subject apply (Gelb, 1974). Please note 

that the regression analysis problems given by Eq. 97 and  Eq. 109 are affected by the 

state-estimator tuning, and thus re-identification of the degradation functions is necessary 

if any of the estimators is changed. In this paper, state-estimators were not required since 

it was assumed that no measurement noise and no unmeasured disturbances were present 

in the case-studies. 
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5 Quantifying the effects of model uncertainty in 

the joint use of the EMOP index and the 

SMLP 

When performing Controllability Analysis, the evaluation of plant performance 

should be robust to uncertainty in the model parameters. In this Section model uncertainty 

is embedded in the EMOP Index for the special case of the SMLP. Even if the SMLP 

approach is suitable to represent process nonlinearity by successful in removing most of 

the linearisation error, the remaining error may be still enough to potentially lead to the 

wrong comparison of flowsheets in some cases, so the case for embedding model 

uncertainty is strong. 

We shall now define a model uncertainty measure suitable to represent process 

nonlinearity. Since simulation is the source of process data in the current work, and for 

this reason, there is no sensor related issues, model nonlinearity is the major source of 

modelling error (numerical error being the remaining possibility). We are interested in 

knowing the magnitude of uncertainty in the steady-state output change in response to an 

input such as a control action, as shown in Fig. 18: 

 
Fig. 18 – Uncertainty in the magnitude of the steady-state output change, given a 

certain input change. 

So how can we measure the uncertainty of an SMLP system describing the 

dynamic behaviour of an output/input pair? An interesting possibility is comparing the 

dynamic response of nonlinear model to that of the SMLP system as well as that of each 

one of the M� sub-models that compose it. For each linear sub-model m composing the 

system, let us consider the output response, w'$, to a unitary step change in a certain input, 

fÝ  or ë', where ¹ = 1,… , MQ, à = 1,… , MP and F = 1,… , M,, m = 1,… , M�, and �Vh� is the 

nonlinear system’s output. Similarly, let us also consider the SMLP system’s response, 

which we shall denote as w'$, m = 0. 
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Whereas the multi-linear system can better represent the flowsheet at most states, 

as it is shown in Section 6 for the crude oil study case, the linear sub-models are assumed 

to be accurate when close to their identification points. Thus, the maximum model 

mismatch between �Vh� and �V� during the prediction horizon is representative of the 

uncertainty of the multi-linear system’s prediction (where m = 0,… , M�, meaning we 

consider the largest mismatch among the outputs of all sub-models plus the main SMLP 

prediction). For instance, consider a multi-linear SMLP system of composed of 2 linear 

sub-models. Given the dynamic response to a unity step shown in Fig. 4 below, the model 

mismatch at the end of the prediction horizon for each sub-model will be ∆wN� and ∆wN�, 

and the model mismatch for the SMLP system will be ∆wNB. 

 
Fig. 19 – Model mismatch between sub-models 1, 2 and 3. 

Note that	∆wNB > 0, 	∆wN� > 0 and ∆wN� < 0, so the mismatch value can be positive 

or negative.  Let ∆wQx,P�
?�N

 be the norm of the amplitude of the dynamic response of the 

multi-linear system to a step at the end of the prediction horizon, for a certain CV/MV 

couple. Concerning fÝ  and w', the relative model mismatch between the nonlinear model 

and the sub-model m is given by Eq. 113: 

nQx,P�$ = ∆wN$ ∆wQx,P�
?�Nz   Eq. 113 

Similarly, the relative model mismatch between the nonlinear model and sub-

model m is given by Eq. 114 for a certain CV/DV couple: 

SMLP 

nonlinear model 
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nQx,,R$ = ∆wN$ ∆wQx,,R?�Nz   Eq. 114 

It is important to consider that if the output/input pair is weakly related 

÷∆wQx,,R?�N < 0.01	or	nQx,P�$ < 0.01ø, the denominators in Eq. 113 and Eq. 114 will be small 

and φ might become very large. In this case, this large uncertainty is meaningless and 

unhelpful to the analysis, and thus the control engineer should ignore uncertainty for this 

y/u or y/d pair by setting n = 0. It is important to notice that sub-models can be biased to 

a direction, e.g., providing always smaller changes in output prediction than plant data, 

consistently resulting in a negative model error. Or, alternatively, prediction error may be 

randomly distributed for different steps. For this reason, �Qx,P�.  and �Qx,P�| , respectively the 

minimum negative relative mismatch and the maximum positive relative mismatch 

between y¬ and u�, are defined Eq. 115 and Eq. 116:  

�Qx,P�. = �¹M
$/�,…,*_ �$ nQx,Px$ ,								¹ = 1,… , MQ,			à = 1,… , MP  

Eq. 115 

�Qx,P�| = �~u
$/�,…,*_ê$ nQx,Px$ ,								¹ = 1,… , MQ ,			à = 1, … , MP  

Eq. 116 

where �$ = 1 and ê$ = 0 if nQ�,Px$ < 0, μj = 0 and ê$ = 1 if nQ�,Px$ > 0. 

Parameters �Qx,P�. 	and �Qx,P�|  may be understood as fractions of the nominal multi-model 

response. Similarly, �Qx,,�.  and �Qx,,�|  are respectively the minimum negative and the 

maximum positive relative model mismatch between w' and the DV ëÝ, as defined in Eq. 

117 and Eq. 118: 

�Qx,,R. = �¹M
$/�,…,*� �$ nQx,,R$ ,								¹ = 1,… , MQ,			F = 1,… , M,  Eq. 117 

�Qx,,R| = �~u
$/�,…,*�ê$ nQx,,R$ ,								¹ = 1, … , MQ,			F = 1,… , M,  Eq. 118 

The control engineer should test several operating points (OPs) throughout the 

control zone and in the vicinity using different step amplitudes to obtain reliable sub-

models and to ensure that the magnitude of the resulting uncertainty parameter is 

representative of nonlinearity effects. Let us define a set of matrices �P|, �P., �,| and �,. 

in Eq. 119 to Eq. 122, which are going to store all model prediction error data from step 

tests obtained for each possible coupling of y/u or y/d: 
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��| = � �Q�,P�| ⋯ �Q#�,P�|⋮ ⋱ ⋮�Q�,P#�| ⋯ �Q#�,P#�|
�  Eq. 119 

��. = � �Q�,P�. ⋯ �Q#�,P�.⋮ ⋱ ⋮�Q�,P#�. ⋯ �Q#�,P#�.
�  Eq. 120 

��| = � �Q�,,�| ⋯ �Q#�,,�|⋮ ⋱ ⋮�Q�,,#�| ⋯ �Q#�,,#�|
�  Eq. 121 

��. = � �Q�,,�. ⋯ �Q#�,,�.⋮ ⋱ ⋮�Q�,,#�. ⋯ �Q#�,,#�.
�  Eq. 122 

The uncertainty related to an output change, ∆w'P, which arises due to an input 

movement, ∆fÝ, may be characterised by the model mismatch. The change in the steady-

state output prediction caused by a bounded realisation of MV uncertainty, ∆w'Py, is 

contained inside the interval defined by the nominal model prediction, ∆w'P, multiplied 

by  1 + �Q�,P�.  and 1 + �Q�,P�| , as shown in Eq. 123: 

∆w'Py ∈ >∆w' ∙ ÷1 + �Qx,P�. ø , ∆w' ∙ ÷1 + �Qx,P�| øC,	  
¹ = 1, … , MQ, à = 1,… , MP  

Eq. 123 

Likewise, for disturbances we have Eq. 124: 

∆w',
y ∈ >∆w' ∙ ÷1 + �Qx,,�. ø , ∆w' ∙ ÷1 + �Qx,,�| øC,  

		¹ = 1,… , MQ, à = 1,… , M,  
Eq. 124 

For the calculation procedure presented in the Section, it is also useful to define 

the uncertainty related to input changes. For instance, imagine we are able to measure 

plant output, and we observe a certain dynamic response, but for some reason, the input 

causing the change in the process cannot be measured. We may use the SMLP system to 

estimate the unknown magnitude of the MV (or disturbance) change, which will be 

contained in the value interval ∆fÝy (or ∆ëÝy), in a similar way to ∆w'Py. This concept is 

shown in Fig. 20: 
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Fig. 20 – Uncertainty in the magnitude of an unknown input change, given a certain 

output change. 

Now this concept of uncertainty is clearly defined, and we have the understanding 

that it describes input and output changes k∆f, ∆ë, ∆wm, not absolute values (f, ë, w). 

Given this uncertainty definition, if a linear continuous-time state-space model is being 

used, there is a relation of proportionality between 
∆Qx��
∆Qx�  and	∆P�

�
∆P�

, and also between 
∆Qx��
∆Qx�  

and 
∆,��
∆,�

. Due to model linearity, if we multiply an MV change, ∆fÝ, by any real number 

contained in >1 + �Qx,P�. , 1 + �Qx,P�| C, the resulting output change will be contained inside 

∆w'P. Similarly, multiplying a disturbance change, ∆ëÝ, by any real number contained in 

>1 + �Qx,,�. , 1 + �Qx,,�| C, the resulting output change will be contained inside ∆w',. We use 

this result to obtain Eq. 125 and Eq. 126, which are respectively the interval of control 

action magnitude of the uncertain model, ∆fÝy, and the interval of disturbance magnitude 

of the uncertain model, ∆ëÝy: 

∆fÝy ∈ >∆fÝ ∙ ÷1 + �Qx,P�. ø , ∆fÝ ∙ ÷1 + �Qx,P�| øC,	  
¹ = 1, … , MQ, à = 1,… , MP  

Eq. 125 

∆ëÝy ∈ >∆ëÝ ∙ ÷1 + �Qx,,�. ø , ∆ë' ∙ ÷1 + �Qx,,�| øC,  
		¹ = 1,… , MQ, à = 1,… , M,  

Eq. 126 

Let us define two new variables, the uncertainty realisation parameters �Qx,P� and 

�Qx,,�, which are real numbers that can assume any value inside the limits defined by, 

respectively, >1 + �Q�,P�. , 1 + �Q�,P�| C and >1 + �Q�,,�. , 1 + �Q�,,�| C, as shown in Eq. 127 and Eq. 

128: 
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�QxP� ∈ >1 + �Qx,P�. , 1 + �Qx,P�| C  Eq. 127 

�Qx,� ∈ >1 + �Qx,,�. , 1 + �Qx,,�| C  Eq. 128 

Eq. 106 to Eq. 108, which calculate the output prediction of the nominal SMLP 

model for method 3, can be modified to incorporate these new variables, obtaining new 

output trajectories as the uncertainty parameters assume different values. To do that, 

instead of applying the original MV change	∆f( at time �, we apply �QxP�∆f(, where ¹ =
1, …Mw, à = 1,…Mf. At time � + 1 we apply �QxP�∆f(|� instead of ∆f(|�, and so forth 

until the end of the control horizon, � + �. The same approach can be used for 

disturbances. We replace ∆ë( for �Qx,�∆ë( at time �, where ¹ = 1,…MQ, à = 1,…M,, and 

then replace ∆ë(|� for �Qx,�∆ë(|� at time � + 1, and proceed likewise all the way until 

the end of the prediction horizon, � + �. These substitutions yield Eq. 129 and Eq. 130, 

enabling us to calculate a new output prediction of the uncertain model,	�,, where �, ∈
Ô∆��⋃∆��Ö. 
�\|�� y = ���
\|�� = ������
\� + ë¹~AÔ������p�,\� 	���\Ö + ë¹~AÔ��� ��p�,\� 	���\Ö   

�\|
� y = ���
\|
� = ������
\|�� + ë¹~AÔ������p�,\|�� 	���\*�Ö     
+ë¹~AÔ��� ��p�,\|�� 	���\*�Ö 

= ������
 
\� + ë¹~A I&���������p�,\� 				������p�,\|�� ( # 	���\	���\*�$J +
ë¹~A I&������ ��p�,\� 				��� ��p�,\|�� ( # ���\���\*�$J   

 

⋮  
 

�\|Y� y = ������
Y 
\� +

ë¹~A�
�&������Y.����p�,\� 	������

Y.
���p�,\|�� 	������
Y.����p�,\|�� ( ��

�� ���\
	���\*�⋮
���\*�@���

��
�
� +

ë¹~A�
�&������Y.� ��p�,\� 	������Y.
 ��p�,\|�� 	������

Y.� ��p�,\|�� ( ��
�� ���\
	���\*�⋮
���\*�@���

��
�
�  

Eq. 129 

�\|�y = ∑ 	�\|����
�/� y

   Eq. 130 

where: 
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Where the matrices ���\ and ���\ are generated by the product between the sets 

of MVs and DVs and their respective bounded uncertainty realisations. The EMOP index 

procedure will be now updated to incorporate model uncertainty. Since Eq. 130 may be 

used to obtain the feasible intervals of predictions, enabling us to calculate the “worst” 

and “best” possible model indices. This new optimisation problem has three layers. The 

first step of the new procedure is to solve the nominal model problem described by 

standard EMOP index, obtaining the optimised output prediction provided by the nominal 

model. The second step is to use Eq. 130 to solve two new optimisation problems in which 

the model uncertainty parameters vary within their intervals (Eq. 127 and Eq. 128) in 

order to maximise (worst-case) or minimise (best case) the index cost function, while 

keeping the same set of optimised MVs from the first step, thus obtaining new CV values, 

�,. Let us define the difference between the uncertain (best and worst-cases) and nominal 

model’s prediction as ∆��	y = ��	y − �	and ∆�s	y = �s	y − �, which represents the 

bounded uncertainty of plant response related to process nonlinearity. The third and final 

step consists of solving the nominal problem again twice, but with two new starting points 

defined by Eq. 133 and Eq. 134: 

�\�	 = �\ + ∆��	,\|Yy   Eq. 133 

�\s	 = �\ + ∆�s	,\|Yy   Eq. 134 

The starting state provided by Eq. 133 is more favourable than the original, 

leading to a lower index value, while the state provided by Eq. 134 is less favourable, 

hence leading to a higher index value. The control engineer may interpret this third step 

as being the necessary correction in the control actions an MPC would take when 
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perceiving the prediction error between expected and real plant behaviour. The bounds of 

the EMOP index interval, obtained using the uncertainty definition and the 3-step 

procedure presented in this Section, are given by Eq. 135 and Eq. 136: 

23456.:4	 =  

�¹M
∆�!',	�\s	 � �~u

��,�,��,�,�,
#�¹M
∆�!�,�

Ô|���|.�|���|.�	&;(|N + ;> + |&d.�|(Ö$�  
Eq. 135 

23456.74	 =  

�¹M
∆�!',	�\�	 � �¹M

��,�,��,�,�,
#�¹M
∆�!�,�

Ô|���|.�|���|.�	&;(|N + ;> + |&d.�|(Ö$�  
Eq. 136 

where ∆u}� ∈ U, ∆u}W ∈ U. The difference between the nominal model index 

value found at step 1, and the value determined using Eq. 135 represents the increased 

control effort required for the worst model case. The lower control effort required by the 

best model case, provided by Eq. 136, reduces the index since the new starting point 

provides additional degrees of freedom for economic optimisation. The nominal model 

value is expected to be contained within the interval established by the best and worst-

cases which are the limiting cases representing the largest possible performance deviation 

from the nominal model. While the shape of the distribution function is not known for the 

model parameters, it is likely that the real model is much closer to the nominal model 

than to the extreme best and worst-case models. By incorporating model uncertainty, the 

analysis now provides for each flowsheet an index interval instead of a single value, 

bounding the expected MPC and optimisation performances of each plant. 

Since model uncertainty and nonlinearity are closely related, Eq. 135 provides the 

worst-case scenario which predicts the maximum damage that model nonlinearity effects 

can cause to the process. This worst-case may be either due to a poor plant response or 

the impossibility of meeting specifications. Similarly, Eq. 136 provides the maximum 

eventual benefits that could be brought by nonlinearity effects. The nonlinearity of plant 

behaviour is bounded if this extended method is used. we can use the difference between 

best-case and worst-case scenarios, |23456.:4	 − 23456.74	|, to define the EMOP index 

confidence interval, as shown in Eq. 137. 

23456.89	 ∈  

>23456 + �a����@��	.a����@��	
� � , 23456	 + �a����@��	.a����@��	

� �C  Eq. 137 
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It is important to notice that if the problem has nonlinear parameters V and W, 

which is the case for the crude oil distillation case study, the nominal model I ¡¢£	 is not 

directly comparable to I ¡¢£.¤¡	and I ¡¢£.¥¡. In this situation, no proof can be 

provided that Eq. 137 is valid. Nevertheless, unless the variation in V and W between 

steps 1 and 3 is very large, the interval defined by Eq. 137 will be a reasonable estimation 

of the confidence interval. 

Due to the use of zone control MPC, an additional term should be added in some 

cases to Eq. 136. When one or more CV is saturated or close to saturation at the end of 

the first step (nominal model evaluation), i.e., close or equal to their upper or lower 

boundaries at time p, the best scenario evaluation should open some slack between said 

CVs and their active control bound. This has the effect of penalising (increasing) the index 

during step 1, but open opportunities to further lower the index during step 3, enabling 

the solver to find the best solution. Let �i�{|  be the vector of CVs saturated at ���
 and 

�i�{.  be the vector of CVs saturated at ��Vh, where w�?@,'| = 0 if w' is not saturated at the 

upper bound and w�?@,'. = 0 if w' is not saturated at the lower bound.  Let us add a term 

;�?@ to Eq. 136 to drive these CVs away from saturation. This term is defined in Eq. 138 

and is only active during step 2. 

;�?@ = si�{,V
. 	�i�{. +si�{,Õ

| 	�i�{|   Eq. 138 

Where si�{,V
. 	and si�{,Õ

|  are negative and positive real numbers which act as 

optimisation weights. The control engineer should not set these weights at values large 

enough to unbind all saturated CVs, driving them further inside the desirable control zone. 

Adding Eq. 138 to the cost function of in Eq. 77, yields Eq. 139: 

23456.74	 =  

�¹M
∆�!',	�\�	 � �¹M

��,�,��,�,�,
#�¹M
∆�!�,�

Ô|_`�|.�|_`
|.�	&;(|N + ;> + |cR.�|+ ;�?@(Ö$�   
Eq. 139 

Fig. 21 illustrates the need for the inclusion of an anti-saturation parameter in Step 

2 of the EMOP index evaluation for uncertain models. As can be seen, the extra term 

corrects the lack of penalisation for CV movement inside the control zone, creating slack 

for additional optimisation during Step 3. 
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Fig. 21 – The inclusion of an anti-saturation parameter in Step 2 of the EMOP index 
evaluation for uncertain models. 

5.1.1 An alternative method to modelling uncertainty – the model identification error-

based approach  

As an alternative to the model mismatch-based uncertainty approach, one could 

consider instead that uncertainty arises from the inherent modelling error resulting from 

the state-space model identification. As discussed in the appendix, the state-space sub-

models used in this Thesis are derived from transfer functions, which in turn are identified 

from reference data from a commercial, nonlinear simulation package. Thus, one may 

consider that the state-space model of each CV/MV pair inherited the same level of 

uncertainty of the transfer function from which it was obtained. 

Let us assume that, for each input/output pair, the test used to identify the linear 

model consists of a series of M = 1,… ,O� steps. After the nominal sub-model is 

identified, we may validate it by comparing its response to the identification data, thereby 

obtaining the sub-model prediction error related to each one of the steps performed. The 

error value can be positive or negative, and so can step response amplitude. The relative 

error, φýj , which relates to the nth step the absolute value of prediction error of sub-model 

ϑ to the response amplitude of plant data, can be obtained using Eq. 140: 

n*$ = Ô∆Q¦#.∆Q¦#o Ö
∆Q¦# = L¦#o

∆Q¦#  Eq. 140 

where ∆w�# is the steady-state response amplitude of plant data related to the nth 

step; ∆w�#$  is the steady-state response amplitude of the nominal sub-model m related to 

�\ =	�i�{| → false	�\�		 
real	�\�	 ≠ �i�{|  

�\s	 

 

Slack 

Bounded CV → position indifferent to EMOP index  

Unbounded CV → position matters to EMOP index  

si�{
| , ;�?@ 

��Vh 

���
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the nth step; and "�#$ is the steady-state absolute value of the model error, also related to 

the nth step and sub-model m. Figure 7 illustrates this concept for a model identification 

test consisting of O� = 3 steps: 

 
Fig. 22 – Representation of model error for a step test. 

It is important to consider that if the output/input pair is weakly related, the 

denominator in Eq. 140 is small and n*$ might become too large (>1). In this case, the 

control engineer should ignore uncertainty for this y/u pair and set n*$ = 0 for M =
1, … , O�. It is important to notice that models can be biased to a particular direction, e.g., 

providing always smaller changes in output prediction than plant data, consistently 

resulting in a negative model error. Or, alternatively, prediction error may be randomly 

distributed for different steps. For this uncertainty definition, Eq. 141 and Eq. 142 define �Qx,P�.  and �Qx,P�| , respectively the minimum negative relative error and the maximum 

positive relative error between y� and u�:  

�Qx,P�. = �¹M$/�,…,*_
*/�,…,9¦

�*$ n*$,Qx,Px ,								¹ = 1,… , MQ,			à = 1,… , MP  
Eq. 141 

�Qx,P�| = �~u$/�,…,*_
*/�,…,9¦

ê*$ n*$,Qx,Px ,								¹ = 1,… , MQ,			à = 1,… , MP  
Eq. 142 

where �$ = 1 and ê$ = 0 if nQ�,Px$ < 0, �$ = 0 and ê$ = 1 if nQ�,Px$ > 0. The 

same procedure may be adopted to yield disturbance related uncertainty: 
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�Qx,,�. = �¹M$/�,…,*_
*/�,…,9¦

�*$ n*$,Qx,Px ,								¹ = 1, … , MQ,			à = 1,… , M,  
Eq. 143 

�Qx,,�| = �~u$/�,…,*_
*/�,…,9¦

ê*$ n*$,Qx,Px ,								¹ = 1,… , MQ,			à = 1,… , M,  
Eq. 144 

From this point, the procedure is similar as in the earlier Section. This approach 

was used in Strutzel and Bogle (2016), but it was later replaced with the model mismatch 

approach since the later was proved to capture the nonlinearity effects more efficiently. 

Matrices ��,�. , ��,�| , ��,�.  and ��,�|  seemed to be undersized by the model identification 

error approach presented in this Section. 

This happens because nonlinearity can be better observed in the change of the 

operating point from which model identification is performed, rather than in the steps 

tests themselves. The step inputs cannot be large enough to reveal the whole model 

uncertainty under penalty of destabilising the control system and even the dynamic 

simulation itself. 
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6 Case of Study - EMOP Index for an Oil 

Distillation Process Unit 

To demonstrate how the EMOP index may be applied to provide solutions to 

industrial scale problems, three possible designs for a crude oil distillation plant shall be 

presented. Also, a common set of controlled and manipulated variables for the MPC 

control problem will be defined. As the index is related to the best possible solution for 

this control problem, its value will indicate which plant can be better controlled by a well-

tuned MPC controller. The index will be evaluated for two different scenarios and four 

distinct designs. 

6.1 Describing the Control Problem 

The models of the plants presented here were obtained through dynamic 

simulation using Honeywell's UniSim® software. They have a very similar design, but 

present key differences. These differences represent significant design decisions that the 

project engineers have to make through the process of specifying the layout and 

dimensions of a chemical plant. The distillation plants are rather simple and have a typical 

configuration. The problem has 36 components, eight local PI controllers, 21 subsystems 

and the column has 29 trays.  This is considerably larger than the examples reported 

above.  The base case, or plant 1, can be seen Fig. 23. 

The process simulated has a realistically drafted layout for a medium-sized crude 

oil distillation process unit. The distillation column generates five different product 

streams (Naphtha, Kerosene, Light Diesel, Heavy Diesel and Residue). The Kerosene, 

Light Diesel, Heavy Diesel and Residue product streams are used to preheat the crude oil 

feed from 25 °C to about 220 °C in two series of heat exchangers, yielding high energetic 

efficiency. After the first series, the oil reaches an adequate temperature to enter the 

desalter drum where salt is removed from the oil. After passing through the second series 

of heat exchangers, the pre-heated oil enters a fired heater where its temperature is 

increased to 320-380 °C. The hot crude is then fed to the distillation column where the 

product streams are obtained. The cold light diesel and cold heavy diesel streams are 

mixed to generate the “Pool Diesel” stream, whose properties will be used to evaluate the 

cost index. 
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Fig. 23 – Plant 1 – Simplified Process Flowsheet. 

There are three different types of crude oil available for processing in the three 

distillations units: medium (29.0 °API), light (32.3 °API) and heavy (26.2 °API) crude 

oils. The light oil provides better yields of the more valuable naphtha, diesel and kerosene 

and lower yield of the less desired atmospheric residue. However, it is the most expensive. 

The heavy oil provides poor yields of the lighter, more valuable products but on the other 

hand, it is considerably cheaper. Table 3 provides costs for the crude oils and the prices 

for the products, which will be used in the simulation to calculate the profitability of the 

process. Diesel has different prices depending on its Cetane Index (or CI) since a premium 

is charged for high-performance fuel. Higher CI fuels provided benefits such as quicker 

starting, quieter operation, and improved fuel efficiency, among others. 

Table 3 – Crude Oil Costs and Product Prices. 

Stream US$/m3 Price 

Medium Crude Oil US$/m3 430.06 

Heavy Crude Oil US$/m3 398.21 

Light Crude Oil US$/m3 471.92 

Naphtha US$/m3 484.84 

Kerosene US$/m3 557.83 

Diesel - CI 46 US$/m3 551.21 

Diesel - CI 48 US$/m3 564.48 

Diesel - CI 50 US$/m3 583.88 

Residue US$/m3 446.66 

The optimisation problem for Plant 1, which is the same for Plants 2, 3 and 4, 

consists of maximising the share of Heavy Crude Oil in the feed while minimising the 

share of Light Crude Oil, bringing costs down, and at the same time increasing the yield 
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of higher priced Diesel and Kerosene in the products. It is necessary to guarantee that the 

properties of kerosene and diesel are within specifications to ensure profitability. Hence, 

these product specifications act as restrictions for profit maximisation. Table 4 shows a 

list of the controlled variables whose limits must be enforced by an MPC controller and 

must be considered while evaluating the EMOP index. The values below are true 

specifications for the fuels marketed in the European Union. 

Table 4 – Description and limits for the controlled variables. 
  Controlled Variables Description Unit Maximum Minimum 

�� Cetane Index DIESEL   - 44 

�
 Flash Point DIESEL C - 55 

�' ASTM D86 DIESEL 65% C - 250 

�© ASTM D86 DIESEL 85% C 350 - 

�ª ASTM D86 DIESEL 95% C 370 - 

�« Freezing Point DIESEL C -15 - 

�¬ Density (15 C) DIESEL kg/m3 860 820 

�­ ASTM D86 KEROSENE 100% C 300 - 

�\ Flash Point KEROSENE C - 38 

��¾ Density (15 C) KEROSENE kg/m3 840 775 

��� Freezing Point KEROSENE C -47 - 

The manipulated variables available to the MPC controller and their limits can be 

found in Table 5. The plant has some PID feedback controllers, and the plant state-space 

model is a closed loop model. In a classic two-layer control framework, the MPC 

manipulated variables are the PID controllers’ set points. 

Table 5  – Description and limits for the manipulated variables. *Total diesel production 
(sum of fW and fv) must be at least 110 m3/h. **The sum of f�, f® and f¯ must be 

equal to 800 m3/h, keeping the total feed flow constant.  
Manipulated Variables Description Unit Maximum Minimum 

�� Temperature 01 tray TIC01.SP C 70 40 

�
 Temperature Fired Heater TIC02(B).SP C 380 320 

�' Light Diesel Output FC02.SP m3/h 270 (*) 0 

�© Heavy Diesel Output FC03.SP m3/h 65 (*) 0 

�ª Medium Crude Flow Rate FC01A.SP m3/h 800 (**) 0 

�« Light Crude Flow Rate FC01B.SP m3/h 800 (**) 0 

�¬ Heavy Crude Flow Rate FC01C.SP m3/h 800 (**) 0 

A recycle of slop will be used as a measured DV. Processes such as atmospheric 

or vacuum distillation produce several main cuts as well as slop cuts. Slop oil is the 

collective term for mixtures of heavy fractions of oil, chemicals and water derived from 

a wide variety of sources in refineries or oil fields, often forming emulsions. For example, 

in a vacuum distillation unit, the slop oil and water are separated by gravity in the vacuum 

drum. It is also formed when tank waggons and oil tanks are cleaned and during 
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maintenance work or in unforeseen oil accidents. Slop oil formation can be reduced but 

cannot be avoided, and the need to dispose of it results in one of the largest challenges in 

the everyday operation of an oil refinery.  

The slop cuts produced during the operation of oil refining are conventionally 

stored in large oil lagoons or tanks to receive chemical treatment so as to enable them to 

be recycled to process units such as fluid catalytic cracking or, very often, atmospheric 

distillation units. Therefore, slop oil must be incorporated into the process feed from time 

to time. In the distillation unit simulated in this work, it is possible to treat the recycle of 

slop oil as a DV and measure the impact of changes in its flow rate in the controlled 

variables. The same set of variables was defined for all three plants, and a state space 

model for every pair of input and output has been identified through step tests carried out 

by dynamic simulation. These models are shown in the appendix.  

Plant 2 is essentially the same process as plant 1, but has two product tanks which 

collect respectively the kerosene and pool diesel output streams. The kerosene tank has a 

volume of 616 m3 and the diesel tank, 1692 m3. This implies a residence time of 10 hours 

for both the kerosene and diesel streams if flow rates remain at their steady-state values.  

In plant 2, instead of being concerned about the properties of distillation column side 

streams of diesel and kerosene as in plant 1, it is desired to control the properties of the 

diesel and kerosene streams exiting the product tanks. Plant 2 is presented in Fig. 24.  The 

virtual analysers AI01 and AI02 are placed in new positions, i.e., after the diesel and 

kerosene product tanks instead of after the column. 

 
Fig. 24 – Plant 2 – Simplified Process Flowsheet – Plant with Product Tanks. 
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Plant 3 and 4 are also very similar to plant 1, but with distillations columns of 

remarkably different dimensions. Plant 3’s column is of increased size compared to plants 

1 and 2’s, while Plant 4’s has a smaller column accompanied by a pre-flash drum that 

removes the lighter fractions such as C1-C4 gases and light naphtha and an extra fired 

heater. This extra fired heater ensures the feed has an appropriate relation between gas 

and liquid phases.  Plant 3’s column may be considered to be slightly oversized for the 

nominal feed flow rate of 800 m3/h, and the interesting point here is the slower dynamic 

response provided by a larger column. Plant 4’s pre-flash drum has a volume of 12.56 m3. 

The differences in the sizing parameters of the columns in plant 1, 2, 3 and 4 (column 

height and number of trays are the same) are shown in Table 6: 

Table 6 – Column Sizing Parameters for Plants 1, 2, 3 and 4. 
 Plant 1 and 2 Plant 3 Plant 4 

Column Diameter (m) 13.7 15 11.62 

Kerosene Stripper Diameter (m) 1.2 1.5 1.2 

Light Diesel Stripper Diameter (m) 3.0 3.75 3.0 

Heavy Diesel Stripper Diameter (m) 1.5 1.75 1.5 

Tray Space (m) 0.60 0.70 0.51 

Tray Volume (m3) 88.45 123.7 52.1 

Weir Height (mm) 50 65 42.40 

Weir Length (m) 10.0 14.0 7.9 

Downcomer Volume (m3) 0.08836 0.1 0.08836 

Internal Type Sieve Bubble Cap Sieve 

 
Fig. 25 – Plant 4 – Simplified Process Flowsheet – Plant with Pre-flash Drum. 

6.2 Measuring the Economic Impact of the Control Effort  

In the case of an oil distillation unit, it is necessary to burn more natural gas in the 

fired heater to increase the temperature of the feed stream to the column. Therefore, since 

the feed temperature is a manipulated variable increasing it has a negative impact on 
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process profitability, which depends on the price of natural gas. Thus, f� is negatively 

correlated to profitability. 

The MPC controller also should be able to maintain the diesel output at the 

maximum value that guarantees a specified product, without reducing output 

unnecessarily. The commercial value of the residue stream is much lower than that of the 

diesel, thus transferring hydrocarbons from the diesel to residue decreases revenue. 

Therefore, fv is positively correlated to profitability. 

Finally, the composition of the feed is also defined by the MPC controller. It can 

manipulate the flow rate of Light, Medium and Heavy oil crudes to keep specifications 

within constraints, decreasing the volume of heavy oil and increasing light oil when 

necessary. Once more, there is a trade-off between profitability and product 

specifications, because lighter crudes usually generate better products but also cost more. 

The medium crude will make the bulk of the feed and has properties in between those of 

heavy and light oil. 

6.3 Defining parameters for the measurement of a monetised control cost 

As discussed in Sections 3.2 and 3.3, each of the process inputs and outputs 

requires a weighting parameter to which the analysis is highly sensitive. In this Section, 

adequate values for these shall be defined using market prices for the crude oil feed, 

product streams, energy costs and data from the simulation.  

u� – Temperature 01 tray (TIC01.SP) 

Concerning the distillation column top temperature control, there is an energetic 

cost to decreasing it due to the fact that more cooling water will be spent to increase the 

reflux flow rate. Calculating the cost of generating cooling water is a complex task, but it 

can all nevertheless be assumed that this cost is insignificant compared the other costs 

involved and therefore will be considered equal to zero. Thus, it is assumed that -�,�'* =-�,�?� = 0. 

u� – Temperature Fired Heater (TIC02.SP / TIC02B.SP) 

It is possible to establish a relation between the crude oil temperature at the fired 

heater outlet and the heat duty for plant 1,2 and 3. At a fixed feed flow of 800 m3/h, the 

simulation provides the values found in Table 7: 
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Table 7 – Energy consumption by the fired heater. 
T (C) Q (Mcal/h) 

330.07 61,066 

334.11 62,406 

335.13 62,676 

336.10 62,966 

340.00 64,332 

where T is the fired heater outlet temperature, and Q is the heat duty. From the values 

above, we obtain the increase in energy consumption related to the increase in outlet 

temperature, as shown in Table 8: 

Table 8 – Increase in energy consumption by the fired heater. 
∆T 
(C) 

∆Q 
(Mcal/h) 

∆Q/∆T 
(Mcal/(C.h)) 

4.04 1,339.8 331.4 

1.02 270.8 265.5 

0.97 289.8 299.2 

3.90 1,365.5 349.9 

Clearly, the energy cost is dependent on the starting temperature, and the 

relationship is nonlinear. It also depends on the feed flow to the column. However, for 

control purposes, the values are close enough, and an average value can be used without 

any compromises to control performance. The average of ∆Q/∆T = 311.5 Mcal/(C.h) 

shall be considered at any feed flow rate. Considering the Lower Heating Value (LHV) 

of natural gas equal to 8.747 Mcal/m3 and a natural gas price of 0.33 US$/m3, the cost 

related to u�	can be calculated as follows:  

-�,�'* = ∆° ∆%⁄
é±= 	d9² = W��.�	4C?) <.³⁄´.¯v¯	4C?) �s⁄ 	0.33 8]$

�s = 11.75 8]$
<.³   Eq. 145 

-�,�?� = 0  Eq. 146 

For plant 4 u� is defined as the temperature at the fired heater B outlet. Because 

the light components are separated from the feed at the pre-flash drum, the feed properties 

and, thus the heat exchange coefficients, are slightly different. However, for the sake of 

simplicity, this difference will be ignored since its effects are very small. 

fW / fv – Light Diesel Output (FC02.SP) and Heavy Diesel Output (FC03.SP) 

In this example, the light and heavy diesel streams are combined to produce the 

“pool diesel”. The kerosene output and diesel output are placed sequentially in the boiling 

point curve and therefore transferring hydrocarbons between these streams is part of 

normal of everyday operations. However, the UniSim® simulation used in this example 

considers a fixed kerosene output in order for the simulator to be able to solve the fluid 
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flow dynamic equations. However, there is a variable flux between the diesel output and 

the residue output and thus the optimisation gain is defined as the price difference 

between these streams: 

-3,�~u = -4,�~u = dë¹"^"F − d�"^¹ëf" = 551.21 − 470.17 = 81.04 US$m3   Eq. 147 

-3,�¹M = -4,�¹M = 0  Eq. 148 

As discussed at the beginning of this Section, increasing heavy diesel output 

reduces the residue output and thus increases profitability. In this case study the 

separation between light and heavy diesel output has no commercial importance, but in 

most refineries, these hydrocarbon streams have different destinations, such as being fed 

to different hydrotreating or hydrocracking process units, and therefore they may have 

different commercial values. These possibilities are not considered here. 

5u – Medium Crude Oil Feed Flow Rate (FC01A.SP) 

Given a set of flow rate values for each of the crude oils that compose the feed to 

the distillation column, at any given time the average price of the oil processed is given 

by: 

d?JL = v��.®¸	�¹|v¸®.¯®	�º|v�¸.�¯	�»
�¹|�º|�» 	¼½$

�s   Eq. 149 

The difference between average oil price and the medium crude will provide the 

optimisation coefficient. 

∆d�L,'P� = d�L,'P� − d?JL   Eq. 150 

Therefore, the following rule may be defined to obtain V�,�¬ý and V�,��¾: 

if	∆d�L,'P� > 0				⟹ 		-�,�?� = 0,				-�,�'* = ∆d�L,'P�  Eq. 151 

if	∆d�L,'P� < 0				⟹ 		-�,�?� = −∆d�L,'P�,				-�,�'* = 0  Eq. 152 

if	∆d�L,'P� = 0				⟹ 		-�,�?� = -�,�'* = 0  Eq. 153 

In the third case, all feed is already entirely composed of medium crude and 

average oil price doesn’t change with changes in u�. 
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u®– Light Crude Oil Feed Flow Rate (FC01B.SP) 

In a similar manner to the approach used for u�, the difference between average 

oil price and the medium crude will provide the optimisation coefficient V®,�¬ý, and since 

the light oil is the most expensive, the maximisation coefficient will always be zero. 

-®,�'* = ∆d)'?³@ = d)'?³@ − d?JL  Eq. 154 

-®,�?� = 0  Eq. 155 

u¯ – Heavy Crude Oil Feed Flow Rate (FC01C.SP) 

In a similar manner to the approach used for 5u and 6u , the difference between an 

average oil price and the medium crude will provide the optimisation coefficient V̄ ,��¾, 

and since the light oil is the most expensive, the minimisation coefficient will always be 

zero: 

-̄ ,�?� = ∆d³L?JQ = d?JL−d³L?JQ  Eq. 156 

-̄ ,�'* = 0  Eq. 157 

ë – Disturbance slop recycle 

In the operation of oil refineries, slop streams require a complex and expensive 

previous treatment to be able to be incorporated into the feed and reprocessed. In this case 

study, however, this cost will be ignored. Such simplification will not change the EMOP 

index problem because the slop recycle is a disturbance, and hence the MPC is not able 

to fix anyway. Also, it is important to notice that the slop stream does not have a price 

tag, meaning that it does not need to be purchased. Concerning the EMOP index, the 

hydrocarbons recovered from slop are available for “free”. Therefore, they cause the 

index to decrease in comparison with the first scenario once they replace crude oil in the 

feed. At the same time, since slop is composed mostly of very heavy, difficult to process 

oil cuts it diminishes the maximum quantity of cheap heavy oil that can be processed and 

increases the energy consumption, and in its turn, these effects increase the index. This 

discussion is to show that the relative values of the index are consequential to plant 

assessment, not the absolute. The difference between the indexes of each plant is key to 

evaluate performance.  
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Controlled Variables  

To avoid having controlled variables out of their control zones due to the 

optimisation efforts, the parameters W�22�À and W�ÁÂ�À must have high enough values 

that the cost generated by one or more process outputs outside their control zone is much 

higher than the cost due to optimisation. From an economic perspective, since product 

specifications are requirements for the product to be saleable, the optimisation weight for 

each controlled value can be defined as the value of the relevant product stream as 

provided in Table 3. Since y� to y¯ are related to diesel specifications, the cost of violating 

their restrictions will be equal to the diesel price multiplied by diesel output, which is 

defined as the sum of uW and uv. In this case study the possibility, of selling diesel and 

kerosene as fuel oil is not being considered, and such a procedure is also very unlikely in 

industrial operations. 

551.21 ¼½$
�s kfW + fvm �s

k�B	�¬ým = 551.21kfW + fvm ¼½$
k�B	�¬ým  Eq. 158 

Similarly, y´ to y�� are related to kerosene specifications, and their weight in the 

optimisation problem will be equal to the kerosene price multiplied by kerosene output, 

which is kept fixed at 61.29 m3/h, or 10.215 m3/(10 min). 

557.83 ¼½$
�s 10.215 �s

k�B	�¬ým = 5698.23 ¼½$
k�B	�¬ým  Eq. 159 

Hence, the set of rules below was adopted for defining the weights of each 

controlled variable in the cost function: 

if	w',�'* ≤ w(|N,' ≤ w',�?� 				⟹ 		�',)K�LH =�',PNNLH = 0  Eq. 160 

if	w',�'* > w(|N,' 				⟹ 		�',)K�LH = 551.21kfW + fvm,			i = 1,2,3,4,5,6,7  Eq. 161 

if	w(|N,' > w',�?� 				⟹ 		�',PNNLH = 551.21kfW + fvm,			i = 1,2,3,4,5,6,7  Eq. 162 

if	w',�'* > w(|N,' 				⟹ 		�',)K�LH = 5698.23,			i = 8,9,10,11  Eq. 163 

if	w(|N,' > w',�?� 				⟹ 		�',PNNLH = 5698.23,			i = 8,9,10,11  Eq. 164 

6.4 Results and Discussion 

In this Section, the results obtained through the application of the EMOP to 

assessing alternative distillation plant designs are presented.  
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6.4.1 Applying the SMLP approach for the Crude Oil distillation 

The output predictions for the four crude oil distillation plants were no longer 

provided by single linear state-space models, as has been done in Strutzel and Bogle 

(2016), but by SMLP systems composed of three sub-models each. Defining the IPs for 

each plant is the first step to building an SMLP system. Each IP may be defined as an 

output set for use with SMLP method 1 or, alternatively, as an input set for use with 

SMLP methods 2 and 3. Table 9 provides the IPs as input sets, which are common for all 

the four plant designs: 

Table 9 – Input-based IPs identification points 1, 2 and 3. 

 ��kÅm �
kÅm �' I4'Æ J �© I4'Æ J �ª I4'Æ J �« I4'Æ J �¬ I4'Æ J �� I4'Æ J
3Ç� 44.4 341.1 139.5 29.7 550.0 230.0 15.0 5.0 3Ç
 47.4 342.8 134.0 29.9 470.0 210.0 95.0 25.0 3Ç' 50.0 344.5 128.5 40.0 400.0 200.0 155.0 45.0 

But since the designs are all different, note that for each flowsheet the same inputs 

will result in a different output, so the output-based IPs are not equal between plants, even 

if the input-based IPs are. The resulting IPs as output vectors are presented in Table 10: 

Table 10 – Output-based IPs Identification points 1, 2 and 3.  
plant 1 plant 2 plant 3 plant 4 

 
�R� �R
 �R' �R� �R
 �R' �R� �R
 �R' �R� �R
 �R' 

�� 40.98 41.76 42.82 39.67 40.35 40.87 40.97 41.76 42.81 41.16 41.97 41.56 

�
 82.95 87.11 90.40 74.07 77.82 81.14 82.96 87.10 90.41 72.28 80.06 76.17 

�' 290.38 302.33 312.99 290.37 302.33 312.94 290.35 302.46 312.95 297.51 313.86 305.69 

�© 321.67 335.92 350.71 321.65 335.91 350.64 321.61 336.15 350.63 343.17 365.80 354.48 

�ª 343.91 360.31 378.59 343.89 360.30 378.55 343.83 360.59 378.49 378.29 412.22 395.26 

�« -24.83 -20.22 -16.22 -26.83 -22.30 -19.11 -24.84 -20.17 -16.23 -24.40 -18.60 -21.50 

�¬ 826.35 830.75 835.42 826.35 830.75 835.42 826.36 830.74 835.43 831.84 837.91 834.88 

�­ 250.13 257.50 269.52 250.13 257.50 269.52 250.08 257.53 269.47 218.92 237.40 228.16 

�\ 49.93 56.69 63.15 49.92 56.69 63.11 49.93 56.74 63.14 9.51 17.68 13.59 

��¾ 812.98 817.71 820.49 812.98 817.71 820.49 812.97 817.73 820.49 791.32 799.70 795.51 

��� -68.45 -62.17 -56.81 -68.46 -62.30 -56.72 -68.46 -62.11 -56.71 -76.82 -74.66 -75.74 

Now that IPs are fully defined for all plants, it is necessary to generate reference 

trajectories for the regression analysis. When generating an SMLP system, it is 

recommended that one performs a comprehensive regression analysis in order to obtain 

adequate constants for the degradation functions.  As per Eq. 97 and Eq. 109, model error 

related to the nonlinear dynamic simulator must be minimised by testing several 

trajectories in order to identify the optimal constants. The three SMLP procedures 

detailed in Section 4 were tested and the results are presented in this Section. Due to space 
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restrictions, only three trajectories were used to generate the regression analysis problems 

for each plant. Those trajectories are generated by Eq. 165, Eq. 166 and Eq. 167, through 

a control horizon of p = 60 (time unit is 10 minutes). 

��,\h� = �R� + µ3	 − 6			27	 − 6.5			80	 − 80			26.7	 − 4·sin ÷Èk1.�m�B ø  Eq. 165 

�
,\h� = �R
 + µ−3			6	 − 27			6.5		 − 80			80		 − 80			4·sin ÷Èk1.�m�B ø  Eq. 166 

�',\h� = �R' + µ1.5	 − 3			13.5	 − 3.25			40	 − 40			40	 − 2·sin ÷Èk1.�m�B ø  Eq. 167 

where �R�, �R
 and �R' are each sub-model’ input-based IPs. Now we are going 

to present the results from regression analysis problems presented in Section 4 to obtain 

parameters for the degradation functions. The analysis consists of minimising the sum of 

the normalised squared prediction error (due to linearisation) for all variables through a 

prediction horizon of p = 60, for each one of the 3 reference trajectories, as defined by 

Eq. 97 (methods 1 and 2) and Eq. 109 (method 3). Table 11 contains the optimised 

objective function values for plants 1, 2, 3 and 4 using the 3 SMLP methods. 

At first, the regression analysis was performed using 2nd order degradation 

functions (keeping A$,v = A$,W = 0, and allowing A$,�, A$,� and A$,B to assume any real 

value in the interval 0 < 	g	 ≤ 	 10¯). The goal was to assess which of the three method 

variants had better performance and if the difference was significant. 

Table 11 – Residual from regression analysis for the SMLP problem. 

Total normalised squared error Plant 1 Plant 2 Plant 3 Plant 4 

Linear sub-model 1 k�R�m 10.35 17.34 22.83 2.39 

Linear sub-model 2 k�R
m 32.42 8.87 12.05 6.82 

Linear sub-model 3 k�R'm 18.24 9.63 32.36 9.08 

SMLP Method 1 – 2nd order 6.40 5.46 4.96 2.23 

SMLP Method 2 – 2nd order 6.79 3.74 5.05 2.28 

SMLP Method 3 – 2nd order 2.31 1.68 2.78 1.34 

SMLP Method 1 – 4th order 5.89 3.50 4.87 2.21 

SMLP Method 2 – 4th order 6.17 3.74 5.05 2.23 

SMLP Method 3 – 4th order 2.31 1.59 2.78 1.33 

As can be seen in Table 11, which contains the residue for each method variant as 

defined in Eq. 98, all methods performed better than any of the single linear sub-models, 

for each of the 4 plants. Additionally, method 3 provided the lowest prediction error for 

all plants, significantly reducing nonlinearity-induced error. 
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Another regression analysis was carried out, this time using 4th order degradation 

functions. The aim was to assess if additional parameters would reduce the error further, 

as compared to using a 2nd order polynomial. The results are shown in the last three lines 

of Table 11. The use of the 4th order polynomial resulted in significant accuracy gains for 

the SMLP Method 1, especially for plants 1 and 2, for which the residual was reduced 

respectively in 8% and 36%. Regarding the SMLP Method 2, a modest gain obtained for 

plants 1 and 4, of 9% and 2% residual reduction respectively. Finally, for the SMLP 

Method 3, a small improvement in accuracy could be gained for plant 2, of 5% residual 

reduction. We expect very small further error reduction to be available by using yet larger 

order degradation functions (or by the use of more complex functions). For this case 

study, a 4th order seems to be the sensible choice, presenting a good compromise between 

performance and time required for the regression analysis. 

It is also evident that the single model prediction error (as compared to the 

nonlinear dynamic simulator) varies significantly among the different linear 

approximations. This demonstrates that Eq. 98 is useful to provide insight concerning the 

low performing linear models among each plant’s set. Without comparison to reference 

trajectories, gaining this insight may be difficult. For instance, it was found out that “fit 

to model” data is a poor predictor of linearisation error for this case study, since the step 

test model identification provided a good fit to model data (always over 80%, reaching 

up to 99.9% in some cases) for the models of all input/output pairs. Thus, the significant 

prediction error in comparison to the nonlinear dynamic simulator is mostly due to 

process nonlinearity, not the standard step test identification procedure that provided 

state-space model matrices �, �, Ê and �. 

6.4.2 Scenario 1 – Simultaneous control and optimisation while handling a measured 

disturbance   

The four different plants were given the same starting point, i.e. the same initial 

values for the controlled and manipulated variables. Although we recommend several 

distinct starting points to be tested for thorough analysis, due to lack of space our analysis 

will be carried out using the single one: the system’s origin. Initial values for all variables 

can be found in Table 12 and Table 13: 

Table 12 – Initial values for process outputs. 
 �� �
 �' �© �ª �« �¬ �­ �\ ��¾ ��� 

Case 1 46.00 81.76 288.81 319.42 341.63 -25.47 826.79 251.11 49.79 812.88 -68.38 
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Table 13 – Initial values for process inputs. 
 �� �
 �' �© �ª �« �¬ �� 

Case 1 42.64 335.13 135.75 25.71 550.00 250.00 0.00 0.00 

In this first scenario, all variables are at first within their control zones, but the 

plants are going to be disturbed by an increase in the slop feed to the process, which is 

raised from 0 to 40	�W ℎ⁄ . The rate of increase will be of 24 Ô�s D⁄ Ö
D , so the value is 

achieved in 1h40m. 

 Optimisation was carried out with the restriction of constant total feed flow and 

the set of parameters introduced in Section 6.3 for plants 1, 2, 3 and 4, and using a control 

horizon � = 10, a prediction horizon � = 60 (10 hours) and b_`� and b_`
 equal to 

unitary vectors multiplied by scalar 5. The weights b�de�T and b�YY�T are unitary vectors 

when variables are outside their control zones and null when they are within. The vector 

bcR	was defined as being equal a vector containing the product prices related to each 

variable: bcR = 	µ551.21;551.21;551.21;551.21;551.21;551.21;551.21;557.83;557.83;557.83;557.83·. 
Sensor ranges are given by ���
∗ 	= 	 µ94; 143;353;394;428;35;874;318; 106;848;−16·, ��Vh∗ 	=

	µ−4; 17;214;264;300;−75;834; 169; −6;783;−137·. Given the starting point for case 1, the MVs 

Table 14 (only final values are shown) were found to be the best available for each plant, 

resulting in the CVs values for each plant provided in Table 15. 

Table 14 – Inputs for the scenario 1. *fW + fv ≥ 110; **f� + f® + f¯ + ë� = 800. 

 Manipulated Variables 
Description 

Unit 
Max. 
Value 

Min. 
Value 

Initial 
Value 

Final Value 

Plant 
1 

Plant 
2 

Plant 
3 

Plant 
4 

�� Temperature 01 tray TIC01.SP C 70.0 40.0 42.64 42.95 41.57 43.76 45.71 

�
 Temperature Fired Heater TIC02.SP C 380.0 320.0 335.13 334.09 330.61 339.96 336.01 

�' Light Diesel Output FC02.SP m3/h 270.0 0.0 * 135.75 135.78 130.54 130.72 126.24 

�© Heavy Diesel Output FC03.SP m3/h 65.0 0.0 * 25.71 26.65 21.44 29.33 30.81 

�ª Medium Crude Flow Rate FC01A.SP m3/h 800 ** 0.0 550.00 584.98 539.61 461.83 601.27 

�« Light Crude Flow Rate FC01B.SP m3/h 800 ** 0.0 250.00 143.82 219.48 175.43 80.52 
�¬ Heavy Crude Flow Rate FC01C.SP m3/h 800 ** 0.0 0.00 31.20 0.90 122.74 78.21 
�� Slop Oil Feed Recycling Flow Rate m3/h 0.00 0.00 0.00 40.00 40.00 40.00 40.00 

Table 15 – Output predictions for the scenario 1. 

 Controlled  Variables Description Unit 
Min. 
Value 

Max. 
Value 

Initial 
Value 

Final Value 

Plant 
1 

Plant 
2 

Plant 
3 

Plant 
4 

�� Cetane Index DIESEL  46.0 - 46.00 50.00 46.55 50.67 49.86 

�
 Flash Point DIESEL C 55.0 - 81.76 88.35 84.96 93.42 109.22 

�' ASTM D86 DIESEL 65% C 250.0 - 288.81 313.34 303.50 326.36 313.24 

�© ASTM D86 DIESEL 85% C - 350.0 319.42 343.63 334.11 340.11 342.98 

�ª ASTM D86 DIESEL 95% C - 370.0 341.63 368.99 369.97 370.00 363.07 
�« Freezing Point DIESEL C - -15.0 -25.47 -25.60 -21.94 -15.01 -15.00 

�¬ Density (15 C) DIESEL kg/m3 820.0 860.0 826.79 828.54 829.96 832.99 834.33 

�­ ASTM D86 KEROSENE 100% C - 300.0 251.11 255.23 265.27 269.45 279.38 

�\ Flash Point KEROSENE C 38.0 - 49.79 55.44 64.27 71.79 54.96 

��¾ Density (15 C) KEROSENE kg/m3 775.0 840.0 812.88 817.47 815.31 824.07 826.24 

��� Freezing Point KEROSENE C - -47.0 -68.38 -69.12 -64.88 -49.78 -66.95 

For these sets of process inputs, the optimised cost function values for each plant 

are provided in Table 16. 
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Table 16 – Cost function values for each plant – scenario 1. 
 Plant 1 Plant 2 Plant 3 Plant 4 

EMOP Index 
Scenario 1 

11819 24465 10758 12139 

All plants managed to keep CVs within control bounds, so the difference in index 

values is explained by two factors: the mix of crude oil fed into the plant, and also by the 

quality (Cetane index) of diesel oil produced. Increasing the percentage of light oil makes 

it easier to meet quality requirements but increase costs, while adding more heavy oil has 

the contrary effect: it decreases the quality while cutting raw materials cost. Lower values 

for EMOP index are better and thus plant 3 presented the best performance through the 

use a large amount of heavy crude. It was closely followed by plant 1, which processed 

less heavy crude but also less light crude. Both plants 1 and 3 produced premium priced 

diesel with 50 Cetane Index (CI), which improved the EMOP index as compared to plants 

2 and 4. Plant 4’s performance was not as good but still acceptable. It used little light oil 

and a significant amount of heavy oil, but its diesel output did not meet the 50 CI bound, 

thus it would need to be marketed instead as 48 CI. The CV y� reached the upper bound 

of its control zone for plants 2 and 3, preventing further optimisation, whereas y® limited 

gains for plants 3 and 4. Plant 1 was limited by the control effort needed to attain the 

upper-quality threshold of w� > 50.  

Plant 2 had the worst results, producing low priced 46 CI diesel, processing almost 

no heavy oil while requiring a large volume of pricey light oil. Since plants 1 and 2 are 

identical except for the location of the analysers, we can presume the reason for plants 

2’s higher index is poor controllability, which led to conservative control actions. The 

diesel and kerosene product tanks modified the dynamics of the product quality variables, 

rendering them slow to respond to MV changes. When assessing designs for which huge 

time delays such as this cannot be avoided, the EMOP parameters should be tuned to de-

emphasise the transient response, focusing instead on achieving an optimal steady state. 

6.4.3 Scenario 2 – Price changes 

In this second scenario, changes were made to the crude oil and diesel prices and 

the process optimisation is resumed at the same state where each plant was at the end of 

scenario 1, meaning that each plant has a different starting point. How favourable this 

new starting point depends on the flowsheets themselves and their performance in the 

first scenario. The sale prices of all diesel oil variants were increased in 5%, and the costs 

of Medium and Light crudes were increased in 4% and 2% respectively, whereas the 

cheap heavy Crude was lowered in 11%. The new values are provided in Table 17: 
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Table 17 – New Crude Oil Costs and Product Prices. 

Stream US$/m3 Price 

Medium Crude Oil US$/m3 447.26 

Heavy Crude Oil US$/m3 354.41 

Light Crude Oil US$/m3 481.36 

Diesel - CI 46 US$/m3 578.77 

Diesel - CI 48 US$/m3 592.70 

Diesel - CI 50 US$/m3 613.07 

 

The vector T £	 is thus updated to the new Diesel - CI 46 price: bcR = 

	µ578.77;578.77;578.77;578.77;578.77;578.77;578.77;557.83;557.83;557.83;557.83·. Also, the 

process is to be disturbed by a decrease in the slop feed to the process from 40 to 

20	mW h⁄ , and the decrease rate will be of 12 Ô�s D⁄ Ö
D . Once again, the final flow is 

achieved in 1h40m. Optimisation was carried out with keeping all remaining parameters 

constant, providing the MVs in Table 18 and the CVs in Table 19: 

Table 18 – Inputs for the scenario 1. *fW + fv ≥ 110; **f� + f® + f¯ + ë� = 800; 
*** Initial MVs are the final values in Table 14. 

 Manipulated Variables 
Description 

Unit Max. Value 
Min. 
Value 

Initial 
Value 

Final Value 

Plant 1 
Plant 

2 
Plant 

3 
Plant 

4 
�� Temperature 01 tray TIC01.SP C 70.0 40.0 *** 43.05 57.91 44.73 44.97 
�
 Temperature Fired Heater TIC02.SP C 380.0 320.0 *** 335.26 338.17 339.48 334.79 

�' Light Diesel Output FC02.SP m3/h 270.0 0.0 * *** 138.77 98.01 128.42 128.68 

�© Heavy Diesel Output FC03.SP m3/h 65.0 0.0 * *** 27.42 12.80 28.63 31.84 

�ª Medium Crude Flow Rate FC01A.SP m3/h 800 ** 0.0 *** 584.95 499.15 465.77 636.30 

�« Light Crude Flow Rate FC01B.SP m3/h 800 ** 0.0 *** 143.67 189.28 166.19 58.96 

�¬ Heavy Crude Flow Rate FC01C.SP m3/h 800 ** 0.0 *** 51.39 91.57 148.04 84.75 

�� Slop Oil Feed Recycling Flow Rate m3/h 0.00 0.00 *** 20.00 20.00 20.00 20.00 

Table 19 – Output predictions for the scenario 2. * Initial CVs are the final values in 
Table 15. 

 Controlled  Variables Description Unit 
Min. 
Value 

Max. 
Value 

Initial 
Value 

Final Value 

Plant 
1 

Plant 
2 

Plant 
3 

Plant 
4 

�� Cetane Index DIESEL  46.0 - * 49.99 48.00 50.00 50.00 

�
 Flash Point DIESEL C 55.0 - * 89.02 83.00 94.16 108.73 

�' ASTM D86 DIESEL 65% C 250.0 - * 314.32 296.18 326.41 312.50 

�© ASTM D86 DIESEL 85% C - 350.0 * 345.06 320.50 341.60 340.62 

�ª ASTM D86 DIESEL 95% C - 370.0 * 369.95 369.99 369.78 357.36 

�« Freezing Point DIESEL C - -15.0 * -25.12 -27.46 -15.02 -15.08 
�¬ Density (15 C) DIESEL kg/m3 820.0 860.0 * 827.80 843.46 834.04 833.71 

�­ ASTM D86 KEROSENE 100% C - 300.0 * 254.30 285.92 272.60 278.56 

�\ Flash Point KEROSENE C 38.0 - * 54.95 64.65 72.71 52.59 

��¾ Density (15 C) KEROSENE kg/m3 775.0 840.0 * 817.73 824.22 825.46 825.10 

��� Freezing Point KEROSENE C - -47.0 * -69.23 -57.33 -47.50 -67.34 

For these sets of process inputs, the optimal cost function values for each plant are 

provided in Table 20. 

Table 20 – Cost function values for each plant – scenario 1.  
 Plant 1 Plant 2 Plant 3 Plant 4 

EMOP Index 
Scenario 2 

16958 23885 15392 15675 
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Again, all CVs were kept within control zones, and plant 3 presented the best 

performance through the use a large amount of heavy crude and production of 50 CI 

diesel. Plant 4 also managed to produce 50 CI diesel this time, and used little of the 

expensive light oil, significantly improved its performance and thus coming in second. 

Plant 1 reached the 50 CI threshold and but processed very little heavy oil. Plant 2 once 

more was the last in performance and expected profitability, again providing a 46 CI 

diesel output. It is important to notice that y� acted as an active restriction for plants 1, 2 

and 4, while y� acted as an active restriction for plants 1 and 2, and y® acted as a restriction 

for plants 3 and 4. 

6.4.4 Selecting the Best Plant 

The results obtained in both scenarios must be considered together in order to 

draw a consistent conclusion about which plant has the better characteristics when it 

comes to MPC zone control. The average index used in this Section was defined as the 

geometric mean of each plant’s indices multiplied by the weight for each scenario, which 

was defined as 1 for both of them. 

Table 21  – Average index for each plant. 
 Plant 1 Plant 2 Plant 3 Plant 4 Case Weight 

Case 1 11819 24465 10758 12139 1 
Case 2 16958 23885 15392 15675 1 

Geometric Mean 14157 24173 12868 13794  

As can be seen in Table 21, plant 3 had the best overall results in this application 

of the EMOP index and should provide better MPC controllability than the alternative 

flowsheets. However, plant 1 and 4 reasonably close results. In a comprehensive analysis, 

including capital and maintenance costs, one of them might prove itself the sensible 

choice. Plants 2 is an inadequate design. The choice of instrument location for plants 2 is 

obviously very poor, which had an adverse impact on model dynamics and control 

performance, and it should be avoided due to poor controllability. 

Comparing these results to those obtained whilst assessing the same flowsheets in 

Strutzel and Bogle (2016), which used predictions provided by single linear models 

obtained for the same plants, a striking difference appears: the index of plant 4, which 

was the worst performer in the previous analysis, now stands between plant 1 and 3. The 

quality of the assessment done previously for this flowsheet was poor due to its strongly 

nonlinear gain.  A linear model cannot represent this. By contrast, representing plant 4 as 

an SMLP system yielded a more accurate EMOP index, showing the advantages of this 

multi-model formulation for use with integrated process design and control. 
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 It should be noted that while here only two scenarios were tested for a single 

disturbance, for the design of industrial plants many more possibilities should be 

investigated for a comprehensive analysis. 

6.4.5 Effect of Soft-Landing matrices and error penalization matrices 

The influence of the Soft-Landing matrices in the results was small, as can be seen 

from Table 22 which presents the rate by which they increased the EMOP index. 

Table 22 – Effect of SL matrices. |ÍÎ�|.�|ÍÎ
|.� Plant 1 Plant 2 Plant 3 Plant 4 

Case 1 1.0067 1.0048 1.0074 1.0070 
Case 2 1.0069 1.0048 1.0074 1.0072 

This is as expected because the system is stable and the prediction horizon is 

sufficiently large. However, if not enough time is given to the plant to settle, the impact 

of _`� and _`
 may be significant and the solutions will be greatly penalized. Figure 13 

shows the index increase for smaller values of �: 

 
Fig. 26  – Effect of Soft-Landing matrices k|_`�|.�|_`
|.�m for plant 1, scenario 1, for 

various values of �. 

Since this work is a steady-state focused analysis, the inclusion of SL matrices can 

be considered a cautionary measure to ensure validity of the results and force the 

optimisation algorithm to disregard oscillatory or overshooting solutions if 

possible. However, in some design cases the speed of dynamic response may be key and 

thus it may be necessary to assess the system thoroughly by testing several different 

values for �.  

The identity matrix was always used for the error penalization matrix - which 

means no bound violations are permitted during the transients – with the exception of 
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plant 2 in scenario 2 where |cR| = 1.0104  to allow w� < w�'*,� over the whole predicted 

range. 

6.4.6 Optimisation algorithm and computational cost 

The optimisation problem was solved using the interior-point routine available in 

the optimisation toolbox in MATLAB. It is also worth noting that the problem has 

nonlinear constraints and required a solver able to deal with disjunctive programming. 

The results proved to be sensitive to the initial point chosen, and the optimisation 

algorithm often reached a local minimum instead of a global one. To avoid this 

shortcoming an iterative “genetic” algorithm strategy was implemented consisting of 

using the previous solution the new starting point, but randomly modifying it so as to 

implement “mutations”, then evaluating the cost function and storing the new solution if 

it was better than the at least one of the 15 best previous ones. In this case, the worst 

solution among the set of 15 was dropped and replaced by the new, better solution. The 

random mutations were constrained to be within ±15% of the acceptable range for each 

manipulated variable, and 15000 iterations were performed for each plant and case 

studied. The fact that, in both scenarios, one or more CVs correlated to product quality 

were saturated at the end of the prediction horizon seems to suggest that the solutions 

presented are global. Saturated CVs mean no slack left for further optimisation since the 

use of a cheaper mix of raw materials or less energy would result in off-spec products 

with zero market value. While we hold the belief that global solutions have been obtained, 

no formal proof can be provided due to the nonlinear nature of the optimisation problem 

(introduced by varying weights and restrictions).  

The same method was used as well for regression analysis problem given by Eq. 

97 and Eq. 109, so the best fit could be obtained for the parameters of the degradation 

functions. At the time of writing, even if linear models are used, solving the economic 

MPC optimisation index involves a significant computational cost when dealing with 

complex systems. For example, the problem described in Section 6 was solved using 

MATLAB® R2016b running on a 3GHz quad-core Intel Xeon E5-1607 CPU, of which 

50% of its capacity was available to the solver. In this condition, each iteration of the 

method took between 5 and 15 seconds, so a typical simulation would take 40h or so. 

However, the computational demand can be lowered by using smaller control or 

prediction horizons, � and �. Using � = 1 reduced the computing time used by each 

iteration to only 2-4 seconds. Setting � as high as possible is recommended, since it 

enables additional degrees of freedom for the algorithm, which in turn leads to less 
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conservative control actions. On the other hand, � needs only to be high enough as to 

provide the entire transient prediction. 

Using models obtained through step test model identification instead of mass and 

energy balances reduced the number of variables of the optimisation problem from around 

30000 (500 variables of UniSim® simulation, multiplied by � = 60) to only 762 

ÔMP ∙ �	 +	ÔMQ + M,Ö ∙ �Ö. 

6.4.7 Model uncertainty - obtaining a EMOP index interval for one of the designs 

In order to demonstrate the uncertain model methodology of Chapter 5, let us 

present the EMOP index interval of plant 3, scenario 1 (due to space limitations model 

uncertainty will not be evaluated for all scenarios and flowsheets). The uncertainty 

matrices ��|, ��., ��| and ��. for this flowsheet can be found in the appendix (Table 59 

to Table 62). Applying the uncertain model method, it is possible to obtain an index 

interval inside which the real flowsheet will be contained. In order to keep w�, w� and w� 

from getting saturated during step 2, Eq. 138 and Eq. 139 were used instead of the 

standard Eq. 136. The anti-saturation parameters used were ��?@,�. =��?@,®. = 100 and ��?@,�
| = −100. The results yielded by best and worst flowsheets within model 

uncertainty limits are presented in Table 23, Table 24 and Table 25, together with those 

of the nominal model. 

Table 23 – Plant 3 - uncertain model’s CVs. 

Plant 3 
Case 2 

Step 1 Step 2 Step 3 

Nominal 
Model 

Worst 
Case 

Best 
Case 

Worst 
Case 

Best 
Case 

�� 50.67 50.60 50.70 50.73 50.83 

�
 93.42 93.97 92.73 94.37 93.44 

�' 326.36 323.61 328.97 324.39 330.84 

�© 340.11 345.51 331.26 349.62 336.10 

�ª 370.00 371.85 368.40 370.00 369.99 

�« -15.01 -17.09 -17.16 -15.28 -15.01 

�¬ 832.99 833.10 832.77 832.69 832.98 

�­ 269.45 269.18 269.71 271.04 271.50 

�\ 71.79 72.01 71.16 72.40 71.93 

��¾ 824.07 824.20 823.98 824.02 824.31 

��� -49.78 -49.51 -50.17 -50.43 -50.12 
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Table 24 – Plant 3 uncertain model’s MVs. 

Plant 3 
Case 2 

Step 1/2 Step 3 

Nominal 
Model 

Worst 
Case 

Best 
Case 

�� 43.76 43.99 43.94 

�
 339.96 340.87 339.65 

�' 130.72 133.06 132.14 

�© 29.33 30.07 30.73 

�ª 461.83 447.86 447.26 

�« 175.43 184.94 178.79 

�¬ 122.74 127.20 133.95 

�� 40.00 40.00 40.00 

Table 25 – Plant 3 uncertain model’s EMOP index. 
Plant 3 

scenario 1 
Nominal  
Model 

Best  
Model 

Worst  
Model 

Step 1 10758 - - 
Step 2 - 13813 175500 
Step 3 - 9470 9395 

Table 25 shows that the EMOP index is very sensitive to uncertainty in step 2, 

causing w� > w�,�?�	k= 370m. This error resulted in substandard, unfit to be sold diesel 

being produced, causing the index to explode from 10758 (nominal model, I ¡¢£) to 

175500 (worst model, 23456.:4	). However, this deviation was easily corrected by the 

additional set of control actions defined in step 3, bringing 23456.:4	down to 9470. Note 

that the use of the additional anti-saturation parameter ;�?@, defined in Eq. 138, caused 

23456.74	 > 23456 after step 2. The difference between 23456.:4	 and 23456.74	is 

quantifies the maximum negative and maximum positive impact of that can be caused by 

model uncertainty, as defined in Chapter 5, for this case study. As can be seen, after step 

3 this difference becomes rather small, showing that the index is resilient to this level of 

uncertainty. It is also important to notice that both 23456.:4	 and 23456.74	 are smaller 

than the nominal model 23456. This happens because the effect of the Soft-Landing 

matrices k|_`�|.�|_`
|.�m was reduced from 0.62% in step 1 to 0.03% in step 3, and 

V�,��¾ was reduced from 2.18 to 0.75, and -®,�?� was reduced from 7.49 to 6.06, due to 

the changes in the initial composition of the crude oil feed between step 1 and 3. The 

EMOP index interval for plant 3, scenario 1 can be obtained through Eq. 137, yielding 

23456.89,N)?*@	W	 ∈ µ10720,10796·. 
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6.4.8 Conclusions from the Crude Oil Distillation Study Case  

This Section illustrated the EMOP index through a case study consisting of high 

complexity, the large-scale process consisting of four alternative designs for an oil 

distillation plant. It is useful to assess how the complexity of each of these flowsheets 

compares to those found in other contributions to the integrated process design and 

control framework (IPDCF). Key metrics were compiled in Table 26 for a number of such 

studies that addressed the problem of large-scale systems, describing the inherent 

complexity of the case study provided in each paper, as well a short description of the 

process. Measures provided in Table 26 include the number of components and PI 

controllers are provided. A higher number of these will increase model complexity and 

the need for extra computational power. The number of subsystems means the number of 

process equipment such as mixers, heat exchangers, etc. If one of this equipment is a 

distillation column with multiple trays, the number of trays is provided. While all systems 

addressed by works above are genuinely large-scale, oil refining processes, such as the 

set of crude oil distillation plants studied here, presents a particular challenge. 

Table 26 – Complexity comparison between study cases. 

Paper Case study Complexity 
Bansal et al. (2002) benzene/toluene binary distillation 2 components 

3 PI controllers 
4 subsystems + 30 trays 

Bansal et al. (2000) double-effect binary distillation 
(methanol/water) 

2 components 
3 PI controllers 
7 subsystems (don’t disclose 
how many trays) 

Trainor et al. (2013) ternary distillation (Toluene, 
Hexane, Heptane) 

3 components 
2 PI controllers 
6 subsystems + 28 trays 

Ricardez-Sandoval et 
al. (2011)                  

Tennessee Eastman process 8 components 
8 PI controllers 
5 subsystems 

Alvarado-Morales et al. 
(2010) 

bioethanol production 16 components 
2 PI controllers 
7 subsystems 

Strutzel and Bogle 
(2016) 

crude oil distillation 36 components 
8 PI controllers 
21 subsystems+ 29 trays 

The phenomenological models used by the papers presented in this Chapter are 

adequate for separation processes of mixtures presenting near-ideal behaviour, i.e., where 

deviation from Raoult’s law can be ignored, or mixtures of chemically similar solvents, 

or non-ideal solutions to which Raoult’s law applies and fugacity and activity coefficients 

can be easily calculated. But difficulties arise when dealing with petroleum fractions: 
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each subsystem usually has dozens of non-ideal hypothetical components; severe 

operating conditions mean that the behaviour of gases, solutions and mixtures is also non-

ideal; multiphase flow is very common and hard to model adequately; equipment designs 

are intricate. The best simulators for this kind of process do not provide their set of 

equations, which are closed-source intellectual property. For all these reasons, and the 

time and engineering effort required for rigorous modelling is always very large and, 

unless models are linearised, even with the optimisation solvers and processing power 

available at the time of writing it is doubtful that a solution could be found in reasonable 

time. This Thesis aims to offer an alternative Controllability Analysis approach that is 

better suited for the plant-wide design of oil refining processes, and also to include the 

use of Model Predictive Control as the main control strategy. With this goal in mind, the 

use of commercial simulation packages for modelling was very successful as none of the 

IPDCF case studies in the benchmark matches the complexity and scale of the problem 

presented in this Section.  
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7 Comparison between two Integrated Process 

Design and Control Methodologies 

In this Section, the Economic MPC Optimisation index is applied to the case study 

provided in Francisco et al. (2011), with the goal of enabling comparison between it and 

another methodology available in open literature. Both works s can be classified as 

Integrated Process Design and Control methods specially designed for flowsheets 

controlled by MPC schemes. 

However, they possess different characteristics and goals. As detailed in Section 

2.3.1, Francisco et al. (2011) present a synthesis method for the obtaining of new 

flowsheet designs by evaluating MPC performance. It combines controllability and 

economic indexes that are evaluated at each iteration as key plant parameters are changed. 

The EMOP index is used to assess the optimal operating point of a given flowsheet and 

finding the optimal trajectory to reach it, which is restricted by the control zones of the 

MPC scheme. The purpose of this comparison is determining whether the differences 

between methods can lead to different plant assessment. 

To ensure the equivalence of models while comparing the methods, a 

phenomenological nonlinear state-space model will be used to represent several designs 

for the activated sludge process (ASP) of a wastewater treatment plant. Unlike the case 

study of the atmospheric distillation plant of Chapter 6, the numerical complexity is low 

for obtaining the dynamic response of the ASP. Thus, another goal is assessing the 

computational demands posed by the use of a small-scale nonlinear model, as compared 

to the large-scale linear model described in Chapter 6. 
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7.1 Description of an Activated Sludge Wastewater Treatment Plant 

 
Fig. 27 – Plant and controller layout for the ASP for substrate elimination. 

A wastewater treatment plant is used to process sewage and return clean to a water 

body, and the activated sludge process (ASP) is a very important part of the cleaning 

procedure. The water treatment comprises the following basic steps, though in this 

Chapter only (b) and (c) are considered: 

a) The primary treatment is dedicated to the removal of gross solids, sand, oil 

and grease. A primary sedimentation is the last step of this stage. This 

process removes up to 50% of the total polluting sewage load. 

b) The secondary treatment is the ASP. The mixed outlet stream from the 

primary sedimentation tanks is passed to the reactor. There, the aerobic 

action of a mixture of microorganisms is used to reduce the substrate 

concentration in the water. A bacterial culture degrades the organic 

substrate converting it into inorganic products, more biomass and water. 

The dissolved oxygen required is provided by a set of aeration turbines. 

c) Clarification. The effluent is feed into clarification tanks, where the 

activated sludge and clean water are separated. After this, the water 

contains approximately 10% of the waste material, and the water is 

discharged to the river. Between 25% and 100% of the settled activated 

sludge is recycled to re-inoculate the reactor. 

7.1.1 Mathematical model of the ASP for substrate removal 

Now a simple model of ASP only for organic matter (substrate) elimination shall 

be described. The plant and controller layout can be seen in Fig. 27, comprising a 

bioreactor and a settler for clarification. The mathematical model assumes perfectly 

mixed tanks and is based on mass balances presented in Moreno et al. (1992). 
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7.1.1.1 Mass balance for the aeration tanks 

The rate of change of the biomass, organic substrate and dissolved oxygen 

concentrations are given by: 

,��
,@ = ��?�wC ����

k=¦|��m−A, ��p
�� − A,u� + >

=� ku'H − u�m  Eq. 168 

,��
,@ = −��?� ����

k=¦|��m− +(,A, ��p
�� + +(,ACu� + >

=� k^'H − ^�m  Eq. 169 

,C�
,@ = A)?+(�k�� − ��m − ��� −

>
=� ��  Eq. 170 

where u�, ^� and �� are the biomass, substrate (Chemical Oxygen Demand, COD) 

and dissolved oxygen (DO) concentration at the output of the aeration tanks (mg/l); u'H 
and ^'H are respectively the inlet biomass and substrate (mg/l). ��?� is the maximum 

growth rate of the microorganisms, � is the inlet flow (m3/h), A, is the kinetic coefficient 

of biomass decay by endogenous metabolism (1/h), AC is the kinetic coefficient of 

biomass decay by biological waste, -� is the total useful volume for the six aeration tanks 

(m3), wC is the yield coefficient between cellular growth and substrate elimination, +(, is 

the yield coefficient between biomass endogenous and substrate contribution to the 

medium, �� is the DO concentration at saturation, A)? is the mass transfer coefficient, +(� 

is the aeration factor which depends on the number and speed of working turbines, OUR 

is the oxygen uptake rate and A� is the saturation constant. 

For the biomass rate of change, the first term describes the biomass growth 

according to the Monod model, the second describes cell death, the third describes the 

biological waste, and the final term quantifies the dilution effects. For the rate of 

consumption of organic substrate, the first term expresses the decrease of the substrate 

through the activity of the biomass (Monod model), the second and third ones describe 

the transformation part of the dead biomass and biological waste into organic substrate, 

and the last term is the difference between the input and output substrate mass flow. 

For the dissolved oxygen concentration, the Eq. 169 follows the classic literature: 

the first term is the rate of oxygen transferred to the water, the second describes the rate 

of oxygen used by the microorganisms (uptake rate), and the final term quantifies the 

dilution effects. Algebraic equations for u'H	and ^'H are expressed as mass balances: 
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u'H = �x>x|�S>S
>   Eq. 171 

^'H = �x>x|��>S
>   Eq. 172 

where u', ^' are the biomass and substrate at the influent, �' is the input flow to 

the process. uH and �H are the recycle concentrations and flow rate. The equation for 

oxygen uptake rate is: 

��� = −AB���?� ����
k=¦|��m  Eq. 173 

where AB� is the yield coefficient between the cellular growth and the oxygen 

consumption rate. 

7.1.1.2 Mass balance for the secondary clarifiers (settlers)  

The operation of these elements is described by mass balance equations and one 

expression for the settling of activated sludge. The model considers the difference in 

settling rates between layers of increasing biomass concentration. 

This model attempts to capture the dynamic behaviour of the clarifiers: 

��F, ,��
,@ = ��?)uG − ��?)u, − ��U�ku,m  Eq. 174 

��FG ,�Ï
,@ = �u� − ��?)uG − ��uG + ��U�ku,m − ��U�kuGm   Eq. 175 

��FH ,�S
,@ = ��uG − ��uH − ��U�kuGm  Eq. 176 

where	u, is the biomass concentration at the surface of the settler leaving the 

plant, ��?) is the flow of clean water at the output of the settler, uG is the biomass 

concentration in the second layer, �� is the activated sludge total recycling flow, uH is the 

biomass concentration at the bottom of the settler, U� is the settling rate of the activated 

sludge, �� is the area of the settler, and F,, FG , FH are the height of the first, second and 

third layer, respectively (Fig. 27). Note that the settler input flow � enters to the unit at 

the second layer level. The settling rate parameters are fitted to a curve provided by pilot 

plants: 
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U�kuGm = M�	uG"k.?H	�Ïm  Eq. 177 

U�ku,m = M�	u,"k.?H	��m  Eq. 178 

The relations between the different flow rates are: 

� = �' + �H  Eq. 179 

��?) = �' − �N  Eq. 180 

�� = �H + �N  Eq. 181 

where �N is the purge flow. The control of this process aims to keep the substrate 

at the output (^�) below the legal requirement value despite the large variations of the 

flow rate (�') and the substrate concentration of the incoming water (^'). The disturbances 

vector is: d	 = 	 k^', �'m. The recycling flow (�H) is the manipulated variable, and the 

controlled output is the substrate (^�) in the reactor: fk�m = 	�H; 	wk�m = ^�. Biomass (u�) 

in the reactor is a bounded variable. Table 27 provides a symbol list for the variables and 

parameters of the activated sludge process, as well as their units and values when 

convenient. 
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Table 27 – Operational, biological and physical parameters for the selected activated 
sludge process. 

Symbol Parameter Unit Value 

¤��
  Maximum growth rate of the microorganisms ℎ.�  0.1824 

�°  Yield coefficient between cellular growth and substrate 
elimination 

 
0.5948 

Ü\�  Yield coefficient between biomass endogenous and substrate 
contribution to the medium 

�.�  0.2 

!�  Kinetic coefficient of biomass decay by endogenous 
metabolism 

é³  5.5e-5 

!i   Saturation constant �?
é   300 

!°  Kinetic coefficient of biomass decay by biological waste é³  1.333e-4 

°i  Saturation oxygen (DO) concentration in the aeration tanks �?
é   8 

!��  Mass transfer coefficient in aeration process oxygen uptake rate ℎ.�  0.7 

±gZ  Oxygen uptake rate �?
é ∙ ℎ  (Variable) 

!¾�  Yield coefficient between the cellular growth and the oxygen 
consumption rate 

 
0.0001 


V  Biomass concentration at the influent �?
é   (Variable) 

iV  Substrate concentration at the influent �?
é   (Variable) 

�V  Influent flow �W ℎ⁄   (Variable) 


�  Biomass concentration at the output of the aeration tanks �?
é   (Variable) 

i�  Substrate (COD) concentration at the output of the aeration 
tanks 

�?
é   (Variable) 

°�  Dissolved oxygen (DO) concentration at the output of the 
aeration tanks input flow 

�?
é   (Variable) 

°  Bioreactor input flow �W ℎ⁄   (Variable) 

�T  Recycle flow �W ℎ⁄   (Variable) 

�Y  Purge flow �W ℎ⁄   (Variable) 


VT  Bioreactor inlet biomass concentration �?
é   (Variable) 

iVT  Bioreactor inlet substrate concentration �?
é   (Variable) 

Ü\�  Aeration factor 
 

0.15039 

j�  Bioreactor volume �W  (Depends 
on 
flowsheet) 

�i  Settler area ��  (Depends 
on 
flowsheet) 


�  Biomass concentration at the surface of the settler �?
é   (Variable) 


l  Biomass concentration in the settler second layer �?
é   (Variable) 


T  Biomass concentration at the bottom of the settler �?
é   (Variable) 

�ik
�m  Settling rate function of the activated sludge in the settler 
depending on u� 

?
�p ∙ ℎ  (Variable) 

�ik
lm  Settling rate function of the activated sludge in the settler 
depending on uG 

?
�p ∙ ℎ  (Variable) 

hT  Settling rate experimental parameter 
 

3.1563 

�T  Settling rate experimental parameter é
�?  -7.8567e-04 

7.1.2 Results from the Integrated Design (ID) Methodology (Francisco et al., 2011) 

Present the full methodology developed in Francisco et al. (2011) is beyond the 

scope of this comparison. Here we are only interested in the results obtained, especially 

how the control performance of each plant was evaluated. 
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Each flowsheet was the result of a multi-objective nonlinear constrained 

optimisation problem, the objective function of which includes investment, operating 

costs, and controllability. The performance of each plant is assessed using an infinite 

horizon MPC simulation, implemented with a terminal penalty to guarantee stability. The 

simulation results are used to calculate a series of controllability indexes.  

The control structure used is extremely simple and consists of SISO (single input 

single output) MPC, where the controlled variable is the Substrate (COD) concentration 

at the output of the aeration tanks, ^�, and the manipulated variable is the Recycle flow, 

�H. Two disturbances were considered: the substrate concentration of the incoming water, 

^', and the plant flow rate, �'. The control objective is that ^� remains below 100 
��
� , 

which is a set point defined by environmental regulation. 

The flowsheets are then compared with each other regarding some key 

performance metrics which were defined by the authors. In brief, the key metrics are: 

Index of disturbance rejection kÐN ∙ �B ∙ �,Bk; a numerical value that needs to have 

magnitude lower than 1 in order ensure disturbance rejection. Small values are desired; 

The control sensitivity IB (the transfer function between the worst-case disturbances and 

the control signals when the SP is set to zero). ‖IB‖ should be lesser than certain limits 

to avoid saturations and to keep the control system in the linear region. Small values are 

preferable; MPC controller weight, �. Lower values are better, as higher values increase 

costs; Maximum controlled variable deviation from SP Ômax 	Ø^� − �̂
�NØÖ; Flowsheet 

costs (capital expenditure). 

Table 28 below provides the data for the key metrics proposed in Francisco et al. 

(2011). The results obtained will be later compared with the Economic MPC Optimisation 

index for each plant. All designs are solutions to the same optimisation problem which 

was solved through the use of different mathematical algorithms and procedures.   

Table 28 – Candidate designs for the Active Sludge Process (Francisco et al., 2011). 

Flowsheet A B C D E F 

Z controller weight 0.00737 0.00694 0.00665 0.00575 0.00696 0.00724 

j� (m3) 3628 3616.5 3796.3 3604.3 3632.1 3605.4 

�i (m2) 2449.4 2459.4 2308.9 2452 2432 2452.1 

��
 	Øi� − i�
iYØ 13.98 13.88 13.66 13.68 13.97 14.09 keY ∙ _¾ ∙ Z�¾k 0.909 0.879 0.849 0.789 0.881 0.903 

‖	¾‖ 3403.3 3500 3532.5 3808.4 3498.6 3443.4 

Cost 0.142 0.1428 0.14395 0.14194 0.14198 0.14194 
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In Francisco et al. (2011) the authors refrain from pointing out the best among the 

plants generated by its methodology, highlighting instead where each one performed well 

or badly. 

Therefore, a straightforward comparison between this method and the EMOP is 

not possible. An alternative to help to enable this comparison is to define a global measure 

of each plant’s performance using the indexes of Table 28. It is straightforward to group 

all the indexes into a single one, which we shall refer to as “global index” (GI). Like the 

EMOP index, we wish lower values of this global measure to signify better general 

controllability and better designs. Therefore, the cost, kÐN ∙ �B ∙ �,Bk, ‖MB‖, R must be 

directly proportional to the global index, while max 	Ø^� − �̂
�NØ must be inversely 

proportional. Thus, GI can be obtained as shown in Eq. 182: 

�2 = ÊÑ^¿ ∙ kÐN ∙ �B ∙ �,Bk ∙ ‖IB‖ ∙ � ∙ �~u 	Ø^� − �̂
�NØ  Eq. 182 

This global index is interesting because it assembles all the parameters used in 

Francisco et al. (2011) to assess plant performance for the purpose of enabling a direct 

comparison with the EMOP index. Applying Eq. 182 for each of the flowsheets presented 

in Table 28 yields the results presented in Table 29: 

Table 29 – Global Index for the ASP candidate designs. 

Flowsheet A B C D E F 

R controller weight 45.26 42.32 39.22 33.55 42.55 45.02 

As can be seen, by this metric plant D had the best performance while A had the 

worst. 

7.1.3 Nonlinear State-Space Model for the ASP 

Before applying the EMOP index methodology to the active sludge process, it is 

necessary first to obtain a state-space model of the process. Here we use a nonlinear state-

space formulation detailed in Eq. 183 and Eq. 184 to provide the output prediction: 

�¼ = �� + �� +  �  Eq. 183 

� = ��  Eq. 184 

where the letter � was used to denote the states instead of 
 to avoid confusion 

with some ASP variables. Let us now define the states, MVs and DVs of the MPC 

problem. It is important to point out that the variable scheme used in Francisco et al. 
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(2011) is arguably not ideal, and the case study does not have the flexibility expected 

from an industrial process. For example, there is no feed tank, and thus the feed flow rate 

cannot be lowered to ensure on spec plant effluent, as it is common in situations such as 

this where heavy penalties can be imposed on companies who fail to meet environmental 

standards. For this reason, the plant flow rate will be considered a disturbance, whose 

variability may undermine the plant control goals. Additionally, there is no control of the 

purge flow rate in the original case study. In the next Section, we shall examine how the 

inclusion of purge flow as an MV enables better controllability, as the flowsheets shall 

be evaluated for both the cases of the fixed and variable purge. 

So, unlike the control problem defined in Francisco et al. (2011), which considers 

only the recycling flow rate, qÀ, as an MV, we shall also set the purge flow rate, q2, also 

as an MV. Table 30, Table 31 and Table 32 present respectively the model states, 

manipulated variables and disturbances to be used in the EMOP problem. The single 

controlled variable is y = δ� (substrate chemical oxygen demand). 

Table 30 – States of the ASP model. 

  The ASP Model States 

�� u� biomass COD (Chemical Oxygen Demand) (
��
� ) 

�
 ^� substrate COD (Chemical Oxygen Demand) (
��
� ) 

�' �� dissolved oxygen (DO) concentration at the output of the aeration tanks (
��
� ) 

�© u, biomass concentration at the surface of the settler (
��
� ) 

�ª uG biomass concentration in the second layer (
��
� ) 

�« uH biomass concentration at the bottom of the settler (
��
� ) 

Table 31 – ASP Process inputs. 
  The ASP Model Inputs 

�� �H recycling flow rate (m3/h) 

�
 �N purge flow rate (m3/h) 

Table 32 – ASP process disturbances. 
  The ASP Model Disturbances 

�� ^' substrate concentration of the incoming water (mg/L) 

�
 �' plant flow rate (m3/h) 

Therefore, the state array � = µÓ�, Ó�, ÓW, Óv, Ó�, Ó®·, the MV array  	
� = µf�, f�· and the disturbance array  � = µë�, ë�·  are defined.  

Combining Eq. 168 to Eq. 181 and replacing the variables defined in Table 30 to 

Table 32, yields the final form of the mass balance differential equations for the aeration 

tank and secondary clarifier, as presented in Eq. 185 to Eq. 190.  
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+Ô� = ,Ô�
,@ = ��?�wC ÔpÔ�

k=¦|Ôpm− A, Ô�pÔp − ACÓ� + �
=� ku'ë� + Ó®f� − Ó�ë� −Ó�f�m  Eq. 185 

+Ôp = ,Ôp
,@ = −��?� ÔpÔ�

k=¦|Ôpm+ +(,Ó� ÷A, Ô�Ôp +		ACø + ,p
=� kë� − Ó�m  Eq. 186 

+Ôs = ,Ôs
,@ = A)?+(�k�� − ÓWm + AB���?� ÔpÔ�

k=¦|Ôpm− Ôs
=� kë� + f�m  Eq. 187 

+Ôr = ,Ôr
,@ =

,pÔ¹
ñ¦)� − PpÔ¹

ñ¦)� − ,pÔr
ñ¦)� + PpÔr

ñ¦)� − *H	Ôr	Lk@QS	Õrm
)�   Eq. 188 

+Ô¹ = ,Ô¹
,@ =

,pÔ�
ñ¦)Ï + P�Ô�

ñ¦)Ï − ,pÔ¹
ñ¦)Ï − P�Ô¹

ñ¦)Ï + *H	Ôr	Lk@QS	Õrm
)Ï − *H	Ô¹Lk@QS	Õ¹m

)Ï    Eq. 189 

+Ôº = ,Ôº
,@ =

P�Ô¹
ñ¦)S + PpÔ¹

ñ¦)S − P�Ôº
ñ¦)S − PpÔº

ñ¦)S + *H	Ô¹Lk@QS	Õ¹m
)S   Eq. 190 

The nonlinear state-space model matrices can be easily obtained by rearranging 

the differential equations of the ASP process, yielding the system described in Eq. 191 to 

Eq. 194: 

� =

��
��
��
��
��
� >��?�wC Ôp

k=¦|Ôpm− A, Ô�Ôp − ACC>−��?� Ô�
k=¦|Ôpm+ 
)�Ô�Ôp ÷A, Ô�Ôp +		ACøC>A)?+(� ÷C¦Ôs − 1ø + =t�Ö_Q�Ôs ÔpÔ�

k=¦|ÔpmC>− *H	Lk@QS	Õrm
)� C

>*H	ÔrLk@QS	ÕrmÔ¹)Ï − *H	Lk@QS	Õ¹m
)Ï C

>*H	Ô¹	Lk@QS	Õ¹mÔº)S C ��
��
��
��
��
�
  Eq. 191 

� =

��
���
���
�� >Ôº.Ô�

=� C			 µ0·			
µ0·				 µ0·			
	>− Ôs

=�C				 µ0·			

	µ0· >Ô¹.Ôr
ñ¦)� C>Ô�.Ô¹

ñ¦)Ï C µ0·>Ô¹.Ôº
ñ¦)S C >Ô¹.Ôº

ñ¦)S C��
���
���
��
  

Eq. 192 

  

 



7 Comparison between two Integrated Process Design and Control Methodologies 

196 

 

� = ë¹~Aµ0 1 0					0 0 0·  Eq. 193 

 =

��
���
���
��			µ0· >�x.Ô�

=� C			
		>>x=�C >− Ôp

=�C			
			µ0· >− Ôs

=�C			
	µ0· >Ô¹.Ôr

ñ¦)� C
	µ0· >Ô�.Ô¹

ñ¦)Ï C
	µ0· µ0· ��

���
���
��
   

 

Eq. 194 

7.1.4 Applying the Economic MPC Optimisation index to the ASP 

The EMOP index will now be calculated for each ASP flowsheet provided by 

Francisco et al. (2011). Let us consider a case study in which si and qi obey the patterns 

defined by Eq. 195 and Eq. 196: 

^'k¿m = 0.4+ 0.05 FÑAk¿m  Eq. 195 

�'k¿m = 1150 + 100 ^¹Mk¿m  Eq. 196 

The prediction horizon considered is 100 hours (p = 100).  Eq. 195 means that ^' 
will increase value from 0.4 to 0.5 mg/L during the prediction horizon. Meanwhile, �' 
will oscillate around 1150 m3/h, as per Eq. 196. 

ASP process economics were not deeply discussed in Francisco et al. (2011). The 

operational costs are considered to be proportional to the sum of the recycle and purge 

flow rates, q2, and a gain equal to 1 was used in the objective function. Let us assume that 

the penalty for constraint violation is 100 times larger than the benefit of reducing q2. 

Based on these assumptions, we obtain the necessary economic optimisation parameters 

for the application of the EMOP index: �)K�LH = 0, �PNNLH = 100, j�Vh = µ1		1·, 
j��
 = µ0		0·. Other parameters used include: control horizon equal to prediction 

horizon (� = 100); b_`� and b_`
 equal to unitary vectors multiplied by scalar 0.005; 

the weights a)K�LH = aPNNLH = 1 when y is outside its control zone and null when it is 

within.  

Here two scenarios will be explored: in the first one the system considered is a 

SISO system in which the controller can very only �T, while �Y is kept at the fixed value 

of 115 m3/h, the same procedure discussed in Francisco et al. (2011). In the second 

scenario, both �T and �Y are available to the controller as MVs, and the system becomes 
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1x2 (one output, two inputs), which should be helpful by adding a freedom degree. The 

EMOP index was calculated for these two scenarios, and the results are displayed in Table 

33: 

Table 33 – EMOP index for the alternative ASP flowsheets. 
 Index Value for each ASP Plant 
 A B C D E F 

1x1 2.5634 2.6770 2.5215 2.4357 2.5633 2.0045 
1x2 1.7773 1.6518 1.5397 1.6406 1.4706 1.5689 

Average 2.1345 2.1028 1.9704 1.9990 1.9415 1.7734 

So now it is possible to verify if the methodology described in Francisco et al. 

(2011) and the procedure proposed in this project provide comparable results. Let us 

carry out a comparison of the Global Index (Eq. 182) and the EMOP index for each 

ASP plant by plotting the results against each other in Fig. 28: 

 
Fig. 28 – Economic MPC Optimisation index versus global index defined in Eq. 182. 

As can be seen in Fig. 28, there no correlation between the results provided by 

both indexes. The lack of a well-defined relation is by no means a surprise: it simply 

confirms that each methodology is measuring controllability in a different way. Indeed, 

throughout this work, the case was made that it is not obvious that a plant with better 

input-output (or state) controllability is the most sensible choice from an economic 

perspective.  
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For instance, take the dynamic response provided by plant A in the 1x2 case, 

which is presented in Fig. 29 and Fig. 30. As one can see, there are control zone violations 

in the first 28 hours of operation, as the oxygen demand rises quickly, but later the plant 

stabilises below the upper bound. In this process, what is desired of an MPC is that purge 

and reflux (qr and qp) both remain in the lowest values that do not result in deterioration 

of output quality.  

The EMOP index measures the trade-off between eventual (and sometimes 

unavoidable) constraint violations and optimised steady-state operation. The variability 

observed after the CV enters the control zone is of no importance to economical purposes, 

but it is relevant to the controllability measures provided in Francisco et al. (2011). Also, 

the degree to which �T and �Y can be decreased is also of no consequence to some 

traditional controllability measures. What can be concluded by the comparison performed 

in this Section is that the Economic MPC Optimisation index is a good complement to 

the approaches currently available in the open literature since it properly monetises 

control performance and plant’s dynamic behaviour, leading to the selection of the best 

design. It is also noteworthy that since the plants being compared are very similar, with 

almost identical dimensions, the difference between their EMOP indexes is small, and 

therefore their performance can be considered roughly similar. Since this optimisation 

problem is nonlinear, the index values found refer to the best local minimum available. 

Better solutions may be found by different solvers or different initial estimates for the 

solutions. 

 
Fig. 29 – Dynamic Response Plant A – Controlled Variables.  
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Fig. 30 – Dynamic Response Plant A – Manipulated Variables and Disturbances. 

7.1.5 Computational cost of the ASP case study  

As the model dimensions grow, the number of calculations involved in solving 

the Economic MPC Optimisation Index increases exponentially. Therefore, having a 

smaller system such as the ASP process described in this Section lowers considerably 

computational demand. In turn, this enables the use of much higher prediction and control 

horizons, p and m, proving a more detailed solution.  

The same computer used for the crude oil distillation case study could solve the 

EMOP index problem for the ASP with each iteration for the problem taking around 150s. 

For this case, purge flow was used as MVs and the prediction and control horizons were 

set at � = � = 100. Using	� = 60 and � = 6 instead has brought the iteration time to 

only 4s, approximately.  

7.2 Using the ASP as a case study to benchmark the Simultaneous Multi-

Linear Prediction (SMLP)  

It is desirable to know if the SLMP can approximate nonlinear models more 

accurately than the commonly employed piecewise affine (PWA) systems, i.e., if SLMP 

can further reduce error due to linearisation under frequent circumstances. With this goal 

in mind, the activated sludge process (ASP) case study will be used to benchmark the 

SLMP, by means of comparing its prediction to those generated by the nonlinear model 

presented in this Chapter and by a standard PWA approach. The fact that the set of ODEs 
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is available for the ASP, and that the model is relatively simple, makes it convenient to 

perform such a comparison. 

The SMLP method is a particularly interesting option to consider when the 

nonlinear model is unknown and the linear models must be obtained through model 

identification at arbitrary states. To emulate this typical use scenario, the model matrices 

(Eq. 199 to Eq. 202) were evaluated at three distinct, arbitrary states, yielding three linear 

models. These models were used to generate a SMLP and a PWA system. Since these 

systems consist of the same collection of linearised models and were provided with the 

same initial operating point (OP), MVs and DVs, differences in the predictions are the 

direct and sole result of differences in the methodologies themselves. 

The PWA partition rules i.e., the boundaries of the active region of each 

linearisation, were defined by the arithmetic mean between the model’s linearisation 

states. Due to the multivariable nature of this control problem, a conflict may arise when 

selecting the active model (the one used to update the state): a certain OP might lie inside 

the validity region of different models at the same time if multiple variables are 

considered. Therefore, the PWA model selection will be given by a voting system: each 

variable casts a vote according to which space partition it is currently within, and the 

model with more votes is going to be selected. In the case of a tie, the current model has 

the preference if it is one the models with the same number of votes; otherwise, a random 

selection of the new active model occurs. 

7.2.1 A linearised state-space model for the ASP 

The linearisation of the model presented in Eq. 199 to Eq. 202 is the starting point 

of the process of obtaining an SMLP system for the ASP. The system was linearised at 

M� different points and the resulting system was assembled in a state-space format, as 

shown in Eq. 197 and Eq. 198. The linearised matrices are given in Eq. 199 to Eq. 202. 
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7.2.2 PWA and SMLP representations of the ASP  

The operating point (OP), the identification points (IPs) and the partitions for the 

PWA system will be defined, respectively, as the input vectors (MVs + DVs) and input 

ranges.  Table 34 provides the IPs values used to obtain the models: 

Table 34 – Input-based IPs identification points 1, 2 and 3. 

 ��k4' Æ⁄ m �
k4' Æ⁄ m �� ÷
4ØÎ ø �
 I4'Æ J 

�R� 170 1020 1 1700 

�R
 720 45 0.70 900 

�R' 400 400 4.100 1000 

The PWA partition definitions and voting rules are provided below in Eq. 203 to 

Eq. 206. Variables I�JK@L, I�JK@L and IWJK@L signify the number of votes cast to each 



7 Comparison between two Integrated Process Design and Control Methodologies 

203 

 

model according to the position of each variable. They are set to zero each time the 

prediction is computed. 

if	f� ≤ 285	 → I�JK@L = I�JK@L + 1;	  

if	285 < f� ≤ 560	 → IWJK@L = IWJK@L + 1;	   

if	560 < 	 f� → I�JK@L = I�JK@L + 1;	  
Eq. 203 

if	u� ≤ 222.5	 → I�JK@L = I�JK@L + 1;	  

if	222.5 < f� ≤ 710	 → IWJK@L = IWJK@L + 1;	   

if	710 < 	 f� → I�JK@L = I�JK@L + 1;	  
Eq. 204 

if	d� ≤ 0.85	 → I�JK@L = I�JK@L + 1;	  

if	0.85 < d� ≤ 2.55 → I�JK@L = I�JK@L + 1;	   

if	2.55 < 	 d� → IWJK@L = IWJK@L + 1;	  
Eq. 205 

if	d� ≤ 950	 → I�JK@L = I�JK@L + 1;	  

if	950 < ë� ≤ 1350 → IWJK@L = IWJK@L + 1;	   

if	1350 < 	 ë� → I�JK@L = I�JK@L + 1;	  
Eq. 206 

As for the SMLP system, SMLP method 2 was chosen to represent the plant, and 

thus the same IPs defined in Table 34 can be used. A second order polynomial was used 

as an attraction function, and regression analysis was performed to obtain its parameters, 

thus minimising the error between the nonlinear model and the SMLP system. 

7.2.3 Comparison of results 

The linearised models of plants contained in Table 28 have eigenvalues out of the 

unit circle and therefore are not BIBO stable. A better visual comparison between the 

PWA and the SMLP systems can be obtained if the plant reaches a steady-state after the 

input changes, and for this reason, a new plant was created which is BIBO stable. This 

new plant is based on plant A but with different heights for the first, second and third 

layers of the settlers (and F, = 6	m, FG = 3	m, FH = 4.5	m). 

The prediction of the single controlled variable of the ASP, the chemical oxygen 

demand (COD), was obtained from the nonlinear model as well as from PWA and the 

SMLP systems. An initial OP distinct from the three linearisation points was selected 
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k±R\ = µ345, 115, 0.40, 1150·m, and also a rule is provided for describing the OP as a 

function of time, which is presented in Eq. 207, yielding a series of control moves and 

disturbances: 

±R\|G = ���
�� �d�,( ∙ expk−0.002�m

�d�,( ∙ expk−0.002�m.�
�dW,( + 10 ∙ µ1 − expk−0.1�m·
�dv,( ∙ k1 + sink�m 10⁄ m ���

�� , � = 1,… ,p   Eq. 207 

Comparing side-by-side the predictions shown in Fig. 31, the SMLP prediction 

was considerably more accurate and further reduced the error arising from process 

nonlinearity. One can also see the significant discontinuities caused by sudden changes 

in the state update rule for the PWA system, and also the SMLP approximation is more 

accurate most of the time. Using the nonlinear model as a reference, the integration of 

error over the period of 100 minutes yielded 138.32 mg ∙ �¬ý�  and 76.27  mg ∙ �¬ý�  for the 

PWA and the SMLP systems respectively. This translates into a 44.86% error additional 

reduction provided by the SMLP method over the PWA in this use scenario.   

 
Fig. 31 – Predictions generated by the SMLP and PWA systems and by the ASP 

nonlinear model. 
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7.3 Final considerations about the Simultaneous Multi-Linear Prediction 

method 

The Simultaneous Multi-Linear Prediction (SMLP) method becomes an 

interesting option when it is desired to obtain linear approximations of an unknown model 

relying just on its numerical output. Moreover, the SMLP is recommended when the 

number of available linearisations (sub-models) is limited but the expected operational 

range is considerably wide. Thus, the SMLP brings performance improvements in some 

frequent and important situations: when commercial, closed source dynamic simulation 

packages are to be used for designing new plants, or when an existing plant is to be 

modelled for MPC. The models show that the SMLP is able to greatly reduce the inherent 

error incurred when using linearised models. It was shown that SMLP systems can be 

applied in the fields of control, dynamic analysis and, as demonstrated in this Thesis, 

integrated process design and control. 

The main alternative to using an SMLP system would be a multi-model PWA 

system. But for the typical SMLP use scenario, this may not be as good an option. The 

issue is that switching the state update rules based on arbitrary, fixed thresholds may not 

improve the quality of the multi-model prediction. This is true because a linear sub-model 

of a piecewise affine system might not be more accurate than the rest in the entirety of its 

region, i.e., there is no guarantee of obtaining an optimal partition. But even optimal 

partitions can sometimes be a problem. Sudden and possibly drastic model transitions 

may happen as the OP crosses a threshold. This issue is normally minimised by the 

introduction of restrictions to obtain smoother transitions between the region boundaries, 

but this reduces the fidelity of the approximation. Avoiding this trade-off, the use of 

SMLP shifts the priority among sub-models continuously, without the need for 

boundaries as a means to achieve a more faithful reproduction of the nonlinear model. No 

threshold or partition rule is used and changes in the output update equation are likely to 

be smoother. The SMLP regression analysis is unconstrained and solely focused on 

reducing model mismatch. Also, the SMLP method does not require the use of mixed-

integer linear programming (MILP), allowing the use of faster optimisation algorithms. 

SMLP systems can be used to evaluate expected flowsheet control performance 

for integrated process design and control. In the case study provided, an SMLP system 

was assembled to predict the dynamic behaviour of a crude oil distillation plant. This 

provided the basis successfully for an application of the Economic MPC optimisation 

(EMOP) index presented in Strutzel and Bogle (2016). Hence, by using the EMOP index 
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together with the SMLP, the former became more precise and accurate in its analysis of 

the economic impact of the MPC control effort. 
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8 Conclusions  

This Thesis presents a novel methodology for integrated design and control of 

chemical processes, the Economic MPC Optimisation (EMOP) index. It is used to 

economically assessing flowsheet designs from the standpoint of zone constrained MPC 

with single layer economic optimisation, whose consequences on optimal plant design 

had not yet been explored at the time of writing. It is also a suitable ‘Controllability 

Analysis’ approach to address industrial-scale, highly complexes systems, with special 

emphasis on petroleum refining processes. 

The EMOP index uses knowledge of process economics to indicate the differences 

in expected revenue (or operating expenses) between candidate process designs. For this 

goal, the weighting parameters in the cost function in EMOP must be representative of 

the real operating conditions, and a careful selection of operation scenarios must be done 

based on expected disturbances and price changes of raw materials, products and energy. 

Assessing the effects of measured, modelled disturbances such as feed composition 

changes is an important part of the methodology, being precisely the kind of disturbance 

MPC controllers can successfully deal with. Hence, defining the scenarios for the EMOP 

index evaluation is a key aspect of the analysis, requiring knowledge of both the 

challenges faced during operation and the marketplace.  

The fact that the EMOP cost function slightly resembles MPC cost function may 

be confusing to some readers. Hence, it is important to point out that the closed-loop 

behaviour was not investigated in this Thesis, which instead dealt with the issue of state 

reachability constrained by zone control and disturbances, where the optimal steady-state 

is defined by process economics. The option of not investigating closed-loop behaviour 

was based on the desire of avoiding the generality loss that would occur if concerns such 

as the choice of MPC algorithm and the selection of tuning parameters were incorporated 

in the EMOP method. It is usually the flowsheet design rather than the MPC algorithm 

that limits economic performance, and hence the focus was placed solely on the open-

loop behaviour. Hence, the EMOP isolates the contribution of each flowsheet’s 

characteristics to an expected economic performance from other facts. A downside of this 

decision is that some advances in MPC theory, such as guaranteed closed-loop stability, 
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could not be incorporated into the EMOP methodology. Assessing closed-loop steady-

states instead of open-loop could lead to the selection of plants which are not stable but 

are stabilisable or controllable. The optimal operating points for such plants are likely to 

lie closer to the active restrictions, and profitability could thus be higher, but the operation 

could become impractical even with small malfunctions of the control system. 

The other unique contribution presented in this Thesis is the Simultaneous Multi-

Linear Prediction (SMLP) method, a representation of dynamic systems composed of 

multiple linear state-space models that can approximate nonlinear models or existing 

plants.  Strong evidence was given that the SMLP can reduce the error greatly inherently 

possessed by linearisations while keeping its advantages. An important feature of SMLP 

systems is that they can be built without being based on an explicit set of equations based 

on first-principles. Only the numerical output of the nonlinear model (or real-world plant) 

is required, differentiating the SMLP from competing approaches.  

A comparison between a PieceWise Affine system (a standard multi-model 

formulation) and the SMLP showed that the later provided an accuracy gain of 44.86%, 

using the nonlinear model as a reference. Future work could involve the inclusion of 

logical variables in the SMLP state update equations, which is an element found in the 

formulations belonging to the linear hybrid framework. This would be useful to represent 

complications such as saturation functions, discrete inputs, qualitative outputs, bilinear 

systems and finite state machines, which are important in many processes. 

It is also important to discuss openly the weaknesses of the EMOP/SMLP 

framework. First of all, the large-scale case study presented in Chapter 6 was based on a 

simulation that ran on a commercial, closed-source software. Such simulators are 

expensive, and often the full license required to enable all the software capabilities is not 

available. Furthermore, it is already a daunting task to assemble a working steady-state 

simulation for a full plant and obtain consistent results. Using the dynamic mode greatly 

complicates matters and, to the author’s knowledge, many design teams are satisfied with 

a good steady-state simulation. The main incentive behind the development of dynamic 

models in recent years has been providing training platforms for operators. In this case, 

the dynamic simulation is linked to the control system and its user interface, generating a 

high-fidelity environment where the operators can be prepared to perform their duties. 

This opens up an interesting possibility for the EMOP index and the SMLP, which is to 
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build the models alongside the training platform, so the costs of dynamic modelling are 

shared between these two activities. 

Another issue encountered while building SMLP systems was a considerable time 

necessary to perform the step identification and generate linear sub-models at several IPs. 

A semi-automatic routine was later developed to this end, but all sub-models had to be 

inspected for consistency by a person, one by one. During this process, it was found out 

that a model can have an excellent fit to data scores, i.e., its output may match the 

identification data perfectly, and still be far from accurate, providing very poor results 

with any other input. 

In my opinion, future work in the IPDCF should prioritise the multivariable 

control problem, with the aim of yielding global solutions that take every variable into 

account. Also present in future work should be the concern for the monetisation of control 

performance, i.e., providing a clear estimate of the gains brought on by improved design. 

To this end, embedding zone-constrained MPC control goal formulations is a natural 

choice, especially since it is the de facto standard in the chemical industry. The ever-

growing computing power and software tools available to researchers will enable 

increasingly complex first-principles or hybrid models to be built. Such models can be 

used to investigate robust closed-loop performance in face of challenges such as steady-

state multiplicity, recycles, and interactions between control layers, and integration with 

real-time optimisation algorithms. A plant thus projected will be truly optimised both 

from the economic, operability and sustainability standpoints. I believe the way forward 

should include partnerships and deep cooperation between academic institutions, 

automation/process software vendors, projecting and chemical companies, which has not 

been happening frequently enough. There is much to be gain from such cooperation since 

hardly any of these players alone has all the pieces necessary to solve the puzzle of 

designing the interconnected and smart chemical plant of the 21st century. 

Future work concerning the SMLP may involve uniting it with the Linear Hybrid 

Systems framework. The update equations of the SMLP’s multiple simultaneous sub-

states may be adapted to present switching behaviour, with partitions valid over regions 

of the input space. Also, the update equations may be formulated with logical variables 

to represent other complications of the chemical process. Also, the degradation functions 

may be changed to ascribe some weight to past OP coordinates. This could act as a filter 

to the rate of change between sub-model weights in the main output prediction. 
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Appendix  

A State-Space Formulation for Time-Delayed, Integrating Systems 

The state-space formulation proposed in Strutzel (2013), which is adequate for 

integrating systems with time delays and was used for this Thesis. It also has complexities 

such as the “funnel” definition of control zones, which are not relevant to the case study 

contemplated here. This formulation is part of the output prediction oriented model 

(OPOM) framework, where the model can be interpreted as a generalisation of the step 

response represented in the analytical form. More details about this class of models can 

be found in Martins et al. (2013) and González et al. (2007), Rodrigues and Odloak 

(2000), Santoro and Odloak (2012), and several others, which addressed the infinite 

horizon MPC problem among other developments. In this Appendix, a simplified version 

of this state-space framework is presented.  

For this purpose, assume that the multivariable system has MP inputs and MQ 

outputs from which M' are integrating variables. Considering that for each pair (w', fÝ), 
one has a transfer function of the form: 

/V,Õkim =
Gx,�,t|Gx,�,��|⋯|Gx,�,#Ï�#Ï

�Ô�.Hx,�,�ÖÔ�.Hx,�,pÖ⋯Ô�.Hx,�,#QÖ ".Xx,��  Eq. 208 

where it is assumed that the poles of /V,Õ are non-repeated. The step response of 

the above transfer function can be represented as shown in Eq. 209: 

_V,Õkim =
²x,�k�m
� = ,x,�t

� "
.Xx,�� + ,x,�,��

�.Hx,�,� ".Xx,�� +⋯+ ,x,�,#Q�
�.Hx,�,#Q ".Xx,�� +

,x,�x

�p "
.Xx,��  Eq. 209 

Assuming that ∆t is the sampling time, Eq. 209 is equivalent to Eq. 210: 

�',Ýk�∆¿m = 0, ¹+	�∆¿ ≤ ç',Ý  Eq. 210 

Where �',Ýk�∆¿m is defined in Eq. 211: 
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�',Ýk�∆¿m = ë',ÝB + ë',Ý,�, "Hx,�,�(∆@.Xx,� +⋯+ ë',Ý,*?, "Hx,�,#Q(∆@.Xx,� +
ë',Ý' Ô�∆¿ − ç',ÝÖ, ¹+	�∆¿ > ç',Ý  

Eq. 211 

Following the OPOM approach, the multivariable system, the step response 

defined in Eq. 210 can be translated into the model: 

�
\|�i


\|��


\|�V
� = ��h�		¾		∆{�h�∗		¾				Ù					¾					

¾				¾					�h�∗
� �
\i
\�

\V

�+ ��¾i�¾�
�¾V

�∆�\ + ���i���
��V

�∆�\.� +⋯+
 �[��
i

�[��
�

�[��
V
"∆�\.[��
  

Eq. 212 

�\ = >�h� 		Ú		¾h�∙h�C 	
\  Eq. 213 

Where 
i ∈ 	ℝh�;	
� ∈ 	ℂh� , h� = h�	h�	h�; 
V ∈ ℝh� , � ∈ ℝh� and [��
 is the 

largest time delay between any input and any output. 

The state vector component 
\i  corresponds to the integrating states introduced 

into the model through the adopted incremental form of the input. The state components 


\� and 
\V  correspond respectively to the stable and integrating states of the original 

system,	�h�∗  is a diagonal matrix with ones in the entries corresponding to the integrating 

outputs and zeros in the remaining positions. If the stable poles of the system are non-

repeated, matrix F can be represented as stated in Eq. 214 

Ù = ë¹~Ak"H�,�,�∆@⋯ "H�,�,#Q∆@⋯ "H�,#�,�∆@⋯ "H�,#�,#Q∆@⋯ "H#�,�,�∆@   
⋯ "H#�,�,#Q∆@⋯ "H#�,#�,�∆@⋯ "H#�,#�,#Q∆@m   Ý ∈ ℂ5Ð∙5Ð  Eq. 214 

Matrices ��i  and ��V, with F = 1,… , ç�?� are computed as shown in Eq. 215 and 

Eq. 216: 

¹+	F ≠ ç',Ý 	→ 	��i = 0;	��V = 0  Eq. 215 

¹+	F = ç',Ý 	→ 	 µ��i·V,Õ = �V,Õ¾ + ∆{�V,ÕV ; 	&��V(V,Õ = �V,ÕV   Eq. 216 

Construction of matrices ��� is a little more subtle. If there were no dead times 

(l=0) then	��� =  �Ù¡, where matrices  � and ¡ are computed as follows: 



Appendix 

226 

 

 =  

ë¹~A ÷ë�,�,�, ⋯ ë�,�,*Q, ⋯ë�,*�,�, ⋯ë�,*�,*Q, ⋯ ë*�,�,�, ⋯ ë*�,�,*Q, ⋯ë*Q,*�,�, ⋯ë*�,*�,*Q, ø, 

 ∈ ℂh�∙h�  

Eq. 
217 

¡ =  áá⋮
á
"	Þh�, ¡ ∈ ℝh�∙h� 

 

Eq. 
218 

á =

���
���
���
�1			0		⋯ 			0⋮				⋮				⋱					⋮
1			0			⋯ 		0
0			1		⋯ 			0⋮				⋮				⋱					⋮
0			1			⋯ 		0
						⋱

0			0			⋯ 			1⋮				⋮				⋱					⋮
0			0			⋯ 		1 ��

���
���
��
, á ∈ ℝh�	h�	∙	h�  Eq. 

219 

Alternatively, if F ≠ 0, then each matrix ���  would have the same dimension as 

 �Ù¡ where those elements corresponding to transfer functions with dead time different 

from F are replaced with zeros.  

Finally, the matrices  Ú   and ß that appear in the output matrix C are given by 

Eq. 220 and Eq. 221: 

Ú = 7ß												¾⋱
	¾												ß: ,Ú ∈ ℝh�∙h�  Eq. 220 

ß = µ1⋯1·,ß ∈ ℝh�	h�  Eq. 221 

The state of the OPOM state-space representation is defined in Eq. 222: 


\ = >
\ib			
\�b			
\V b				ã�,\b				ã
,\b 			⋯ 			ã[��
,\bCb  Eq. 222 

The additional components of the state defined in Eq. 222, ã�, … , ã[��
 , have a 

clear physical interpretation as these components correspond to the past input moves, or 

ãÕ,\ = ∆�\.Õ. The following matrices states are considered: 
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� =

��
���
��
��h� ¾ ∆{�h�∗
¾ Ù ¾
¾ ¾ �h�∗

					
��i �
i ⋯ 		�[��
.�i �[��
i

��� �
� ⋯ 		�[��
.�� �[��
	�

��V �
V ⋯ 		�[��
.�V �[��
V

¾ 		¾		 		¾
¾ 		¾		 		¾⋮ 		⋮		 		⋮ 										

¾		 ¾		 ⋯
�h� ¾		 ⋯⋮		 ⋮		 ⋱ 							

¾											 ¾
¾											 ¾⋮											 ⋮ 					

¾	 ¾ 				¾										¾		 ¾ 		⋯						�h�					 		¾					 ��
���
��
�
  Eq. 223 

�
 =

���
���
���¾i�¾�
�¾V
�h�
¾⋮
¾ ���

���
��
  Eq. 224 

� = >�h� 		Ú		¾h�∙Ôh�|h�	[��
ÖC  Eq. 225 

where 
 ∈ ℂh
, h
 = 
h� + h� + h�	[��
, ã�, … , ã[��
á	ℝh�. The matrices 

describing respectively the effects of control actions, B, and the effects of disturbances, 

D, are formulated in an identical way as stated in Eq. 224. 

 

 

  



Appendix 

228 

 

Continuous-Time Transfer Functions for the Crude Oil Distillation Process 

As discussed in the first part of this appendix, this work made use of the output 

prediction oriented model (OPOM), a state-space formulation that is built upon the 

transfer functions that define the interaction between each pair of 

manipulated/disturbance and controlled variable. In order to identify these models, a 

series of step tests were carried using the dynamic simulations of the four different 

designs of the crude oil distillation process presented in Chapter 6. Table 35 to Table 58 

display parameters to be substituted in Eq. 226 as a means to represent each model as a 

5th order transfer function, which can be easily converted to any state-space formulation. 

/V,Õk^m =
Gx,�,t|Gx,�,��|Gx,�,p�p|Gx,�,s�s|Gx,�,r�r|Gx,�,¹�¹
?x,�,t|?x,�,��|?x,�,p�p|?x,�,s�s|?x,�,r�r|?x,�,¹�¹  Eq. 226 
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Table 35 – Plant 1 – Sub-model 1 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0.0000827924 0 

b4 0.0090046489 0 -0.0000642898 0 0 0 0.0051925815 0 

b3 0.0043974221 0 -0.0970145448 0.0002514577 0 0.0112212326 -0.0000020317 0.0006379532 

b2 0.0005638163 -0.6594430621 0.0354375930 0.1170434304 0.0099090955 -0.0022919057 -0.0039022526 -0.0034168098 

b1 0.0000061370 6.1537399176 0.0000181738 0.0314538294 -0.0112287701 -0.0056052935 -0.0004885562 -0.0000818437 

b0 0.0000000934 -0.1649113672 0.0000027346 0.0022399915 -0.0007643234 -0.0000044667 -0.0000146137 -0.0000082694 

y2 

b5 0 0 0 0 0 0 0 -0.0039176576 

b4 0.0747179135 0 0 -0.0000711789 0 0 0 0.0442060078 

b3 0.0816719547 -0.0532769731 0 0.7364941116 0.0790217947 1.4750338736 4.6963905563 -0.0282380084 

b2 0.0078314266 0.7789631714 0.1158548845 0.8395632971 -0.0331556249 -0.2509076518 -0.4239366006 -0.0132062440 

b1 0.0000783820 1.4515902382 0.1946674648 1.2313993214 -0.0237464687 -0.6868907059 -2.7430205912 -0.0003776090 

b0 0.0000022620 0.0604834238 0.0225121073 0.1265831132 -0.0010333426 -0.0654041668 -0.3381401040 -0.0000307580 

y3 

b5 0 0 0 0 0.0006031578 0 0 -0.0078241560 

b4 -0.0010643203 0 0 0 0.1770685145 0.2292102963 0 0.1387827555 

b3 -0.0451047972 0 0 0 -0.0374658115 -0.0462469651 1.3875247314 -0.1056419195 

b2 0.3155489702 0.8002098341 0 0 -0.0873803269 -0.1071820022 -0.4942325967 -0.0255144588 

b1 0.3454852269 0.6807099310 1.6339371062 14.6682006006 -0.0075465301 -0.0088016359 -0.6833511239 -0.0008565464 

b0 0.0268754518 -0.0760942812 0.2388023195 2.0351357929 -0.0000103318 -0.0000021889 -0.0490273716 -0.0000573083 

y4 

b5 0 0 0 0 0 0 0.0004709939 0 

b4 -0.0162231038 0 -0.2452035375 0.0004679805 0 0.1106209763 0.0752665477 0 

b3 0.0978435571 0 0.0669171922 0.8430420219 0.3091892740 -0.0038294545 -0.0302638315 0.0259084502 

b2 0.0093171805 0 0.1641553439 0.1979932971 -0.2402945056 -0.0758286215 -0.0357991060 -0.0638219403 

b1 0.0001607394 5.0075273851 0.0258918941 0.0082076933 -0.0863192117 -0.0083275461 -0.0015410310 -0.0017041691 

b0 0.0000148895 -0.6795222504 0.0008431281 0.0000186757 -0.0000986479 -0.0000073962 -0.0000315367 -0.0001405162 

y5 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0.0867369582 0 0 258.6169725597 0.0589507346 0.0683384722 0.0606853155 0.0324977233 

b2 0.0108980333 0.2998447194 0 70.4315334882 -0.0439624255 -0.0598330588 -0.0722236828 -0.0373699023 

b1 0.0001717923 -0.0351875261 -1.8879141230 0.1818354435 -0.0087983807 -0.0038011994 0.0001152627 -0.0008893935 

b0 0.0000210849 -0.0014306767 2.3445408666 0.0064477173 -0.0000150397 -0.0000410719 -0.0001240765 -0.0000931558 

y6 

b5 0 0 0 0 0.0005307665 0 0 -0.0029482526 

b4 0.0821977635 0 -0.0001504349 0 0.0955779821 0 0 0.0663042250 

b3 0.0178273905 0.0381162756 -0.0597518725 0 -0.0242476520 0.7581758789 0.3249895310 -0.0458074657 

b2 0.0010297013 0.3497284145 0.0530862854 0 -0.0390703616 -0.4194856202 -0.0815733115 -0.0130573512 

b1 0.0000176315 0.1129314912 0.0710194257 19.0693044826 -0.0018749581 -0.1995891094 -0.1903307177 -0.0004125399 

b0 0.0000001491 -0.0127890170 0.0053773140 2.7287280009 -0.0000001333 -0.0007969403 -0.0140803468 -0.0000279777 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 -3.0271358881 0 0.3880124442 0.4163597840 0 0.2775690202 

b2 0 0.1091487602 -5.9243531239 4.9786105812 0.0181331491 -0.0305611047 0.3260241842 -0.0109702671 

b1 0.1376325604 0.0658030622 -2.1194935057 0.7924741674 -0.0330846199 -0.0362997601 0.0099098431 0.0003656075 

b0 0.0255050957 -0.0138732779 -0.1342463138 0.0000251844 -0.0009484470 -0.0001324338 -0.0184660586 -0.0000559589 

y8 

b5 -0.0121949090 0 0 -0.0015066432 0 0 0 0 

b4 0.0970648052 0 0 0.0000734494 0.0690251188 0 0 0 

b3 0.0035051418 0 -0.0042571857 0.0000724827 -0.0652502557 -0.0264413295 -0.0170304497 -0.0138963430 

b2 0.0001970770 0 0.0044588544 0.0000020141 -0.0021282216 -0.0051758494 -0.0019693558 -0.0002502991 

b1 0.0000063562 0.7102439397 0.0029591906 0.0000003236 -0.0007543690 -0.0000490512 -0.0000455681 -0.0000426759 

b0 0.0000000052 -0.1597287902 0.0022493446 0.0000000030 -0.0000351613 -0.0000094627 -0.0000051709 -0.0000007559 

y9 

b5 0 0 -0.0000164821 0 0 0 0 0 

b4 0 0 -0.0010495568 0 0 0 0.0001548918 0 

b3 0 0 0.0012967152 0.0000115087 0.0309192381 0.0471477828 0.0223837834 0 

b2 0.0359652354 0.0671704385 0.0005591556 0.0000029886 -0.0508373933 -0.0700138198 -0.0239104759 -0.0050198665 

b1 0.0276181022 -0.0015624070 0.0000409578 0.0000000539 -0.0085309103 -0.0100855729 -0.0035153836 -0.0001168482 

b0 0.0019580329 -0.0006271116 0.0000001146 04 -0.0000044584 -0.0000020480 -0.0000460903 -0.0000124103 

y10 

b5 0.0056735964 0 0.0000138869 -0.0000967890 0 0 0 0 

b4 0.0410511767 0 0.0005097213 0.0004647256 0.0001841934 0 0.0002185129 0 

b3 0.0295247698 -0.0192206172 0.0000136878 -0.0000080792 0.0347347974 0.4157241285 0.0321966102 0.0967770094 

b2 0.0004325970 0.0498177801 0.0000020999 0.0000031314 -0.0026645324 -0.2338815381 0.0024139064 -0.0431490673 

b1 0.0000189232 -0.0062600699 0.0000000387 -0.0000000149 -0.0141678732 -0.0022116008 -0.0110937285 -0.0008018156 

b0 0.0000002495 -0.0012845818 06 0.0000000019 -0.0004648858 -0.0002996656 -0.0005389941 -0.0001150853 

y11 

b5 0 0 0 0 0 0.0003436242 0 0 

b4 0.0003965794 0 0 0.0000233070 0 0.0181322527 0.0137018772 0 

b3 0.0337817002 0 -0.0051585523 -0.0006363237 0.0237010712 -0.0077802518 -0.0025838221 0 

b2 0.0039805533 0 0.0060271977 -0.0009181902 -0.0149834729 -0.0203592838 -0.0176664947 -0.0111466432 

b1 0.0000548537 0.5327197971 0.0020309064 -0.0003318486 -0.0170900199 -0.0000024080 -0.0004839236 -0.0002498950 

b0 0.0000062141 -0.1692145439 0.0020933222 0.0002137905 -0.0000385986 -0.0000014032 -0.0000093485 -0.0000258462 
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Table 36 – Plant 1 – Sub-model 1 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 0 0 1 1 

a4 0.6376390753 57.1240909686 1 0 1 1 1.5122470740 0.8136305093 

a3 0.1322298355 156.7735836415 8.1357214750 1 1.5801584466 1.7196928081 1.5074339043 1.3362904921 

a2 0.0080263469 236.5827898243 0.9439806983 2.2100051025 3.0070639878 1.3360674485 0.3008729069 0.1622953301 

a1 0.0000950738 165.6208330689 0.0007965546 0.4713110802 0.5212112141 0.1228274930 0.0211192310 0.0067340413 

a0 0.0000010704 15.4518103400 0.0000924136 0.0273070331 0.0201899285 0.0000599817 0.0004773942 0.0002897067 

y2 

a5 1 1 1 0 0 1 1 1 

a4 1.3278953420 3.6576647817 4.9012112744 1 1 16.6094350165 95.8401252103 1.8201627346 

a3 0.3752173026 8.9158923567 7.9942874779 11.4994150299 1.8341648229 31.1553933763 168.6592112869 1.2230239712 

a2 0.0202036315 9.8120268519 9.7774412065 13.9017159872 1.4103307078 29.0997296260 171.6892181336 0.1433695161 

a1 0.0002547788 6.5966726403 3.5632778260 15.5351561628 0.2035035379 6.2701698644 44.2651784920 0.0059863981 

a0 0.0000051845 0.7428053223 0.2723426722 1.3937089513 0.0063406477 0.3219933993 2.6568020301 0.0002481811 

y3 

a5 0 1 1 0 1 1 1 1 

a4 1 2.4245475283 5.2755653801 1 1.9457762481 1.9961759251 11.7769250694 2.1087801542 

a3 2.0028746433 5.1984982118 11.5445251418 5.6238719390 1.7586052625 1.7818732706 20.9001916538 1.2119772528 

a2 2.7893292198 4.8294145910 17.1270741318 30.7544473828 0.4571749186 0.4526660670 17.5715500180 0.1446742887 

a1 0.8630318094 2.8794271345 7.0067920429 46.6570644154 0.0264278913 0.0249497504 4.2001278868 0.0060438319 

a0 0.0475172625 0.4609213712 0.6115198372 5.2150081579 0.0000336321 0.0000047723 0.2119332424 0.0002584772 

y4 

a5 0 1 1 0 1 1 1 1 

a4 1 7.5881091615 2.9559319124 1 3.7898928598 1.7658249566 1.5997777071 1.0649173198 

a3 0.2635317565 21.8722984645 2.4740266887 2.1938582561 6.0117423820 1.5581603359 1.1360377891 1.9079339328 

a2 0.0148306566 26.1850741805 0.6039037884 0.3563116655 2.6625149784 0.3301554825 0.1637285866 0.2958316331 

a1 0.0004260715 19.2491806619 0.0516786169 0.0127994659 0.2295704910 0.0180718191 0.0058910766 0.0112649004 

a0 0.0000213632 2.1338495124 0.0013213614 0.0000304089 0.0002185642 0.0000145557 0.0001031183 0.0004790850 

y5 

a5 1 1 0 1 0 0 1 0 

a4 1.6580025362 2.0006753461 1 457.0479648004 1 1 1.8909971144 1 

a3 0.3330722403 2.7495806366 8.1534543966 1075.9588635942 1.6878895950 1.6286853258 2.6566233896 1.5869053470 

a2 0.0194010926 1.4793237172 21.8234721865 98.8421596462 0.4024010878 0.2329158275 0.2373771443 0.1789559326 

a1 0.0006438550 0.1553686195 35.9909918166 0.3283061034 0.0234793039 0.0092526531 0.0045494059 0.0076433876 

a0 0.0000314555 0.0035939288 3.3698219597 0.0087679585 0.0000375938 0.0000873961 0.0004012124 0.0003145127 

y6 

a5 1 1 0 0 1 1 1 1 

a4 0.6140711714 2.1960723463 1 1 2.0352841347 7.5141247204 5.9853857184 2.0737858045 

a3 0.0976140892 3.9822238468 2.4681022507 9.1676510426 1.8353589886 13.8377073705 11.9193206955 1.3893296425 

a2 0.0047715333 3.3912359210 2.7313277561 83.8700654331 0.4472053389 9.8533544748 10.5147557568 0.1919253203 

a1 0.0000823666 1.5590911264 0.8274170919 131.6245735233 0.0170416048 1.5246720417 2.9770516802 0.0074797246 

a0 0.0000005926 0.2284077604 0.0484101856 15.9715960487 0.0000026470 0.0054389259 0.1609326046 0.0003336819 

y7 

a5 0 1 1 1 1 1 0 1 

a4 1 1.8148804636 6.0536403540 6.4241505644 5.3113139195 5.0512876743 1 2.0608536674 

a3 2.1020247489 3.8583457155 18.4650334338 36.0886567056 10.3013530737 9.6607909649 4.7869368711 6.8582307181 

a2 4.3823966491 2.9580136241 21.6225906701 56.6163820428 6.3610635551 5.3827757642 9.3967792883 1.3362625300 

a1 2.2205404909 1.6256626938 7.8854340393 5.8856372886 0.8128597136 0.5406899398 5.1618982900 0.0516441851 

a0 0.1936483460 0.1839608115 0.6364571386 0.0002308046 0.0176920243 0.0017990754 0.4815347622 0.0025668940 

y8 

a5 1 1 0 1 1 1 1 1 

a4 0.1503165495 5.2914989943 1 0.0823363411 1.7612233230 0.7143893521 0.7118270698 0.6364857458 

a3 0.0060416343 9.4383170595 1.6288532678 0.0186780306 0.2808403785 0.1869629710 0.1427399489 0.0773446327 

a2 0.0003013495 12.1910527159 1.9415184315 0.0002493173 0.0284959740 0.0126794867 0.0091525279 0.0029083717 

a1 0.0000071973 7.0272021743 1.0849974820 0.0000465862 0.0030861613 0.0003410102 0.0003667913 0.0002271625 

a0 0.0000000114 0.6875865416 0.0913812231 0.0000000154 0.0000952984 0.0000209327 0.0000190806 0.0000029419 

y9 

a5 0 1 1 1 1 1 0 0 

a4 0 2.6709005522 0.9036684355 0.2617045411 2.9727260851 2.9932566279 1 0 

a3 1 4.1595781982 2.0342735754 0.0489651777 6.7243287020 7.0669115231 4.0633355224 1 

a2 1.1685556864 3.4141065060 0.2971676921 0.0032226781 1.8625722509 1.8595146699 1.0704070385 0.0958438593 

a1 0.1850699637 0.6893360445 0.0116842004 0.0000348537 0.0859687417 0.0783596957 0.0565865968 0.0046538370 

a0 0.0060289535 0.0266493390 0.0000246267 0.0000002589 0 0.0000201669 0.0006022054 0.0001558030 

y10 

a5 1 0 1 1 0 0 0 1 

a4 0.9306103428 1 0.1063412273 0.0267282066 1 1 1 3.3101140498 

a3 0.1221665947 1.6811218332 0.0078952170 0.0066844438 2.2590439479 16.9902911759 2.4091250004 7.3266801993 

a2 0.0012536788 1.9082785185 0.0003241362 0.0000928110 1.7318674230 2.4789318458 1.8934078219 0.9991431874 

a1 0.0000836952 0.4641571252 0.0000114926 0.0000092154 0.2176257211 0.0454442316 0.2651306812 0.0420559587 

a0 0.0000004220 0.0259298442 0 0.0000000334 0.0050433158 0.0027168395 0.0080547305 0.0017131294 

y11 

a5 0 0 1 0 0 1 1 0 

a4 1 1 4.0983180413 1 1 1.8742551779 2.6825700945 1 

a3 0.3106013697 19.3228011827 8.7774769532 1.0770241763 3.0245839487 1.8409289498 2.5703082765 1.6621158799 

a2 0.0224269003 24.2754485938 9.0843086864 2.7237344215 2.0572526620 0.2449227627 0.4299471920 0.2816174992 

a1 0.0004886125 26.2075178899 6.1064968801 1.1386682736 0.2700825364 0.0001327012 0.0111093562 0.0102825282 

a0 0.0000328028 4.9283050708 0.7390441708 0.1384226495 0.0005657081 0.0000175345 0.0001905284 0.0005086611 
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Table 37 – Plant 1 – Sub-model 2 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0.0002146302 0 0 0.0001991927 0 0 0 

b4 0 -0.0091778720 0 -0.0877340801 0.0030313393 0.0022730715 0.0012874287 0.0029588065 

b3 -0.0079423550 0.0181795846 -0.0002508646 -0.0435629399 -0.0018012112 -0.0016158390 -0.0010001109 -0.0000777862 

b2 0.0095037786 -0.0008025337 -0.0249249493 -0.0046837892 0.0000052602 0.0000215192 -0.0000351598 -0.0015015828 

b1 0.0000194712 0.0000091555 -0.0003267190 -0.0000143808 -0.0000048748 -0.0000043698 -0.0000013400 0.0000000542 

b0 0.0000007962 -0.0000005514 0.0006744252 -0.0000005031 -0.0000000094 0.0000000167 -0.0000000534 -0.0000022689 

y2 

b5 0 0 0 0 0 0 0 0 

b4 0.0521636527 0 -0.0001009798 0 0.0003659946 0.0004327485 0 0.0007363627 

b3 0.0060836313 0 -0.0065319674 0 0.0434373753 0.0594636373 29.9651601030 0.0362862506 

b2 0.0005396908 0.3349364887 0.0171041502 0 -0.0110023791 -0.0140148487 7.2259065302 -0.0132590808 

b1 0.0000033853 0.5725661320 0.0244778080 -18.5684789504 -0.0195015508 -0.0243091461 -26.7994206729 -0.0164533929 

b0 0.0000003148 0.0282268255 0.0024515306 -1.3873768420 -0.0021226183 -0.0026178983 -4.4093097111 -0.0015633454 

y3 

b5 -0.0337646192 0 0 0 0.0006279500 0.0007721963 0.0007758228 0 

b4 0.2363204459 0 0 0 0.2172214216 0.2808631326 0.1634205421 0.0030942392 

b3 0.0225452558 0.2010943643 0 -0.0036898623 -0.0501463474 -0.0641572368 -0.0439888308 0.1756340215 

b2 0.0016099874 0.4804647470 0 -0.7247103167 -0.1083237102 -0.1312876888 -0.0853293027 -0.0662359789 

b1 0.0000029123 0.0068414809 1.7897630169 -0.2543273379 -0.0107644133 -0.0132143858 -0.0081850536 -0.0967420312 

b0 0.0000001300 -0.0069024056 0.2719221215 -0.0166320858 -0.0002140996 -0.0002729038 -0.0001252842 -0.0078371380 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0 -0.1336041481 0 0 0 0 -0.0000959287 0.1023303000 

b3 0.1414380112 0.3603402729 -0.6030535362 0 0.1277869614 0.1623408600 0.0966623292 -0.0289608721 

b2 0.0580529255 -0.0268997006 0.6295819702 0 -0.0727991469 -0.0899402405 -0.0585538252 -0.0706419973 

b1 0.0010176285 -0.0030226315 0.1416424460 -24.0670993774 -0.0437659767 -0.0519242744 -0.0355953678 -0.0086890873 

b0 0.0000033161 -0.0001232224 0.0002680490 -3.9779829636 -0.0007629059 -0.0007614144 -0.0006209541 -0.0001929708 

y5 

b5 0 0 0 0 0 -0.0003280257 0 0 

b4 0 0.0046948424 0 0 0.0375018471 0.0929178364 0.0280719387 0 

b3 0.0707807272 -0.1129361573 0 0 0.0269282941 -0.0829216990 0.0164128009 0.0670042328 

b2 0.0022775607 0.2684966859 0 -2.0016005150 -0.0634511952 0.0002001833 -0.0486720999 -0.0983470215 

b1 0.0001089771 -0.0355565109 -1.6060185179 -0.8949813679 -0.0000028644 -0.0002049021 -0.0000000700 -0.0039557350 

b0 0.0000032533 -0.0010936047 1.9607818990 -0.0913878226 -0.0000025468 -0.0000001159 -0.0000067180 -0.0001594683 

y6 

b5 0 0 0 0 0 0.0004505751 0 0.0014077985 

b4 0.0858024497 0 -0.0608132462 0.0000268360 0.1067491631 0.1456024414 0.0777383310 0.0874905741 

b3 0.1492274059 0 0.0469674439 -0.3840213399 -0.0307634743 -0.0464665621 -0.0253199179 -0.0306304452 

b2 0.0161710214 0.3157452976 0.0710748110 -0.6460479300 -0.0445654917 -0.0496766341 -0.0345228444 -0.0432067962 

b1 0.0004277372 0.5487360624 0.0050956458 -1.0102261358 -0.0029798129 -0.0048663910 -0.0022543584 -0.0035318038 

b0 0.0000004574 -0.0575535158 0.0000052445 -0.1210646585 0.0000000785 -0.0001584398 0.0000000192 -0.0000391020 

y7 

b5 -0.0083946917 0 0 0 0 0.0008093867 0 0 

b4 0.0401243332 -0.0592688987 0 0 0 0.1136692777 0 0 

b3 0.0010344802 0.0820757314 -314.9523250879 0 0 -0.0076795437 0 0.3852055680 

b2 0.0000815129 0.0693023977 -1111.4994997105 0 0.3800259882 -0.0099875009 0.3384561951 0.2106610259 

b1 0.0000021456 -0.0137862773 -384.2158446832 -29.6418815565 -0.0126609687 -0.0000001350 0.0101257614 -0.0451727921 

b0 -0.0000000014 -0.0002087618 -23.2691026127 -4.4540756355 -0.0317558105 -0.0000002988 -0.0231595213 -0.0053058495 

y8 

b5 0 0 0 -0.0000323204 0 0.0005355930 0 0 

b4 0.0063559044 -0.0074842651 0 0.0079870465 0.0107381233 0.0113991776 0 0 

b3 0.0684302768 0.0198918749 0.0003903671 -0.0006060402 -0.0127017484 -0.0134820848 0 -0.0014367760 

b2 0.0098427817 -0.0049155320 0.0004873674 -0.0005184105 -0.0001956947 -0.0007796724 0.0110529353 -0.0087370890 

b1 0.0003623304 0.0000424227 0.0000219739 -0.0000189613 -0.0000134171 -0.0000199797 -0.0196982484 -0.0000758577 

b0 0.0000010432 -0.0000156402 0.0000084517 -0.0000054193 -0.0000000739 -0.0000012031 -0.0020074994 -0.0000010334 

y9 

b5 -0.0130697290 0 0 0 0 0 0 0 

b4 0.0851551426 -0.0146580685 -0.0031936663 0 0 0 0 0 

b3 0.0028532439 0.0563754993 0.0036821408 0 0 -0.0219922201 0 0 

b2 0.0001502676 -0.0073639632 0.0011757357 0.0004164096 0 -0.0002864484 -0.0237533887 -0.0299635544 

b1 0.0000055956 0.0000929425 0.0000040912 -0.0002031343 -0.5706961589 -0.0000154155 -0.0000004559 -0.0038388194 

b0 0.0000000119 -0.0000293714 -0.0000000367 -0.0000001145 -0.0671957832 -0.0000000917 -0.0000250836 -0.0001096460 

y10 

b5 -0.0060572555 0 0 0 0 0.0000737797 0 0 

b4 0.0437713712 -0.0088165804 0 0 0.0002127268 0.0427194468 0.0000927648 0 

b3 0.0318135077 0.0319785020 0 0.0034857104 0.0443641067 0.0021497875 0.0368548069 0.0326595181 

b2 0.0022059135 -0.0081458033 0 -0.0012411413 -0.0071797241 -0.0261361530 -0.0027459713 -0.0177493951 

b1 0.0000054979 -0.0001382865 0.0010170757 -0.0000307257 -0.0148612980 -0.0013902795 -0.0098143257 -0.0056016050 

b0 0.0000002837 -0.0000386645 0.0000013186 -02 -0.0009267309 -0.0000194948 -0.0005826612 -0.0003276632 

y11 

b5 0 0.0003831918 -0.0000330637 0 0 0 0.0002230434 0 

b4 0.1040332878 -0.0247073304 -0.0061841163 0 0.0383432016 0.0514251280 0.0269388996 0 

b3 0.0021919315 0.0822546796 0.0044392204 0.0135463363 -0.0288359031 -0.0381738374 -0.0201305491 0 

b2 0.0002618435 -0.0284917187 0.0017175958 0.0019412132 -0.0496629748 -0.0649313674 -0.0364963404 0 

b1 0.0000047342 0.0001897244 0.0015459534 0.0027038105 -0.0024824425 -0.0039339645 -0.0016246151 -0.2499667813 

b0 0.0000000154 -0.0000704215 0.0000501103 -0.0030142777 -0.0000487449 -0.0000947204 -0.0000284683 -0.0188611926 
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Table 38 – Plant 1 – Sub-model 2 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 0 1 0 1 1 1 0 1 

a4 1 1.5863431790 0 2.1803382245 1.1653529350 0.9127108126 1 3.1465133506 

a3 1.9634013903 1.0929610333 1 0.8550422205 0.1062679781 0.0644747018 0.0818647411 1.3281985360 

a2 0.2262916483 0.0733621716 2.2108900231 0.0678752044 0.0032936354 0.0026376131 0.0053487386 0.1066712159 

a1 0.0000817782 0.0014374533 0.5148179606 0.0002395325 0.0002699555 0.0001767125 0.0001043429 0.0019922814 

a0 0.0000094198 0.0000325355 0.0331597387 0.0000068608 0.0000006742 0.0000000556 0.0000047653 0.0001530909 

y2 

a5 1 1 0 1 0 0 1 0 

a4 0.3586605734 3.1435165448 1 18.1643362325 1 1 1087.4648679863 1 

a3 0.0347112457 7.2263765857 1.6189296032 76.2075014748 1.9132921918 2.0312439336 2154.7558528451 1.9421480424 

a2 0.0020026558 7.4947368044 2.1229981129 304.6166419178 1.7759833082 1.8457684467 2572.4713057740 1.7558052732 

a1 0.0000207490 4.8353542906 0.7153229996 388.3135855956 0.4209199792 0.4262556543 888.7696869794 0.3759866373 

a0 0.0000010856 0.5641451307 0.0503075212 25.7746010743 0.0244031913 0.0243706714 64.0157601313 0.0199645020 

y3 

a5 1 1 1 0 1 1 1 0 

a4 0.3991593691 1.7094392482 5.4486123664 0 2.0415018007 2.1085185438 1.9612797413 1 

a3 0.0339379718 2.5318482096 11.4383418668 1 1.8850142499 1.9142321211 1.8118449836 2.0303986971 

a2 0.0018764020 1.6801529425 16.7909812311 2.2401194239 0.5085058024 0.5099233388 0.4876968877 1.8676529341 

a1 0.0000033498 0.4850132799 6.9549123331 0.6389431682 0.0358021003 0.0362296041 0.0329505560 0.4723729921 

a0 0.0000001762 0.0349938839 0.6188665237 0.0378474662 0.0006410903 0.0006694947 0.0004659655 0.0259577782 

y4 

a5 0 1 1 0 0 0 0 1 

a4 1 1.2951765223 3.2520621379 1 1 1 1 1.9659315548 

a3 0.5326458606 1.2432125924 6.8929852163 6.0586652722 1.7125811687 1.7512344638 1.6462184814 1.6455653465 

a2 0.0585181001 0.2220385226 2.3841822849 33.0046149577 0.9902837377 0.9841650722 0.9763860107 0.3594607856 

a1 0.0008872903 0.0125548069 0.1901982596 50.9921842281 0.1098362138 0.1053159357 0.1097852944 0.0251860816 

a0 0.0000025378 0.0003109919 0.0003575290 5.2604727386 0.0016378032 0.0013455154 0.0016415341 0.0004649292 

y5 

a5 1 0 0 0 1 1 1 1 

a4 0.7041379740 1 1 1 1.8129458714 1.6775030674 1.6906030371 2.3236528497 

a3 0.0986204748 1.6580126375 4.3884671837 3.6041274084 1.6356099496 0.1512081004 1.5311969514 2.9430452663 

a2 0.0028502793 1.0604933480 15.9254022438 8.1144306105 0.1370645541 0.0042303887 0.1292581932 0.3608217346 

a1 0.0001423993 0.1120001902 25.0038678638 1.8388353645 0.0000687994 0.0003671955 0.0002127275 0.0142521013 

a0 0.0000026649 0.0021941299 2.3630123503 0.1076137288 0.0000056511 0.0000002200 0.0000178802 0.0003829989 

y6 

a5 1 1 1 0 1 1 1 1 

a4 1.7514711252 3.0623146116 2.3226288187 1 2.1744554220 2.3064448515 2.0455218086 2.2278636863 

a3 0.6583751275 6.5563052108 2.6612791463 4.2763828835 1.9851500854 2.0078676081 1.8833286610 2.1097605721 

a2 0.0555031246 7.0386792863 0.8124032351 7.0193830250 0.5122965154 0.5166456043 0.4898531725 0.5731863595 

a1 0.0012953632 4.6306050281 0.0453345896 6.5329211718 0.0256250119 0.0397586735 0.0242208776 0.0352600767 

a0 0.0000010900 0.9606460068 0.0000503355 0.6940991158 0 0.0011135936 0.0000003587 0.0003702289 

y7 

a5 1 1 1 1 0 1 0 1 

a4 0.2512475731 2.4705772400 406.0004562291 10.8584288100 1 2.0690613263 1 4.6940318138 

a3 0.0071567393 2.4556371630 1961.7520011917 60.8840037455 4.6546437534 1.2860244374 4.5820985625 11.1476292586 

a2 0.0005175063 1.5189765894 3677.0068254992 239.6080670394 9.1526816090 0.1280276754 9.0889078817 10.4580667082 

a1 0.0000103205 0.1974073983 1399.2763018625 337.6633778572 5.3326736457 0.0000399174 5.3367394071 2.2731617217 

a0 0.0000000134 0.0024908786 111.8001507921 32.6985057066 0.5266523888 0.0000039719 0.5224473956 0.1144739578 

y8 

a5 1 1 1 1 1 1 0 1 

a4 3.0504392263 1.3903808122 0.5582292966 29.0988633487 1.9834821136 1.8095909167 1 1.7812822383 

a3 0.7315342305 1.0577258493 1.2018544174 6.9624012105 0.2571980245 0.2945232188 3.4656779367 1.5055856751 

a2 0.0604398121 0.1210196845 0.1666989405 0.8278837601 0.0056938940 0.0137248879 4.3616914398 0.1692941205 

a1 0.0016968156 0.0038189527 0.0233805869 0.0682349377 0.0002428236 0.0004345511 0.8835584044 0.0013953628 

a0 0.0000032047 0.0003553788 0.0021261344 0.0039630920 0.0000013145 0.0000163452 0.0438712875 0.0000203861 

y9 

a5 1 1 1 0 1 0 1 0 

a4 0.1690003618 1.0654944405 0.9340274267 0 12.4756378719 1 0.8049609463 1 

a3 0.0052687202 1.4208060977 2.0942286299 0 22.1117468233 0.0905405756 1.8674606401 1.7456078154 

a2 0.0002969044 0.1658473654 0.1612055062 1 32.4322828994 0.0014365377 0.1482006585 0.3868629456 

a1 0.0000059368 0.0074166788 0.0003490659 0.0813347336 6.9020534078 0.0000583804 0.0019038054 0.0239826861 

a0 0.0000000342 0.0004923439 0.0000032125 0 0.2817842012 0.0000001976 0.0001502978 0.0004738553 

y10 

a5 1 1 0 0 0 1 0 0 

a4 0.9069574187 1.2500616859 1 1 1 2.8851670571 1 1 

a3 0.1474422506 1.5191853715 0.3602428086 5.7345674487 3.1613973878 2.4869349356 2.9291231117 2.8254065465 

a2 0.0064791250 0.2527339655 2.0173064550 1.0883232686 1.9914664151 0.3858883536 1.8231944977 0.9882077373 

a1 0.0000226059 0.0125770621 0.2526402824 0.0152910706 0.3000167079 0.0143891464 0.2656463577 0.1143734343 

a0 0.0000009730 0.0008372243 0 0.0000988037 0.0107585464 0.0001795438 0.0091519719 0.0039596981 

y11 

a5 1 1 1 1 1 1 1 0 

a4 0.1689933991 1.3620224712 2.0773725498 4.7333583211 2.5330580504 2.6729051613 2.3452855084 1 

a3 0.0056213301 1.6458034930 2.7334846259 9.6850145044 2.2498199207 2.3448082179 2.1443793560 7.0162296952 

a2 0.0004205433 0.3138127425 1.7461871920 10.6349105993 0.3850463087 0.4196815266 0.3602769951 10.4909879450 

a1 0.0000066893 0.0040711895 0.2611855443 7.1200149308 0.0158511132 0.0204092881 0.0134133634 2.2441307690 

a0 0.0000000258 0.0007690826 0.0068166056 0.9016776896 0.0002714832 0.0004146653 0.0002086911 0.1067113398 
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Table 39 – Plant 1 – Sub-model 3 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 -0.0000304206 -0.0004811173 0 0 0 0 0 

b4 -0.0967598548 -0.0009884211 -0.0296067046 0 0.0024055083 0 0 0.0038449213 

b3 0.0757443938 0.0018699441 -0.0025507392 0 0.0012435071 0 0 -0.0018803664 

b2 0.0402694524 0.0037816404 0.0005873454 0.1872027740 -0.0004363791 0.0064371603 0.0014603898 -0.0007214263 

b1 0.0008788880 0.0011459035 -0.0000212824 0.3804417343 -0.0020497651 -0.0003911489 -0.0016085650 -0.0000010313 

b0 0.0000024289 -0.0000059921 0.0000070799 0.0611929572 -0.0000691372 -0.0041725982 -0.0000012559 -0.0000003004 

y2 

b5 0 0 0 0 0 0 0 0 

b4 0 0 -0.0004595011 0 0.0009349578 0.0964977502 0.0004338471 0.0010607255 

b3 0.1701853788 0 -0.0154080337 0.2929186916 0.1098390664 -0.0330707891 0.0436993928 0.0543642719 

b2 0.0645609446 0.0785754810 0.0209652632 0.3446787536 -0.0402159523 -0.0325872920 -0.0149114427 -0.0195216732 

b1 0.0000126727 0.1500729702 0.0288375261 0.5291807252 -0.0424606605 -0.0026768588 -0.0218512442 -0.0247581780 

b0 0.0000240915 0.0095622703 0.0021209980 0.0649327586 -0.0034825132 -0.0000007496 -0.0021296606 -0.0021241143 

y3 

b5 0 0 -0.0034423830 0 0 0 0 0.0028266091 

b4 0.2933262611 0 -0.2178252255 0.0012458682 0.0032479772 0.3126539383 0 0.2206005931 

b3 0.0037663145 -0.0073530113 0.1401979813 0.4167266571 0.3968248155 -0.0979865917 3.2373336680 -0.0953843127 

b2 0.0006276029 0.1388094874 0.1968575734 0.0859389794 -0.1491127943 -0.1453533498 -1.6801852762 -0.1096309346 

b1 0.0000084007 0.2324094432 0.0170033709 0.0002299544 -0.1860377963 -0.0105997862 -1.4104925956 -0.0076602082 

b0 0.0000000291 -0.0356017729 0.0000143683 0.0000466836 -0.0132415865 0.0000001275 -0.0882192990 -0.0000777037 

y4 

b5 0.0056303574 0 0 0 0 0.0017757943 0.0010649518 0 

b4 -0.5768002099 0 0 0 0.0018503252 0.1356180743 0.0786049685 0 

b3 0.9627108377 0 -0.0047701229 0 0.1804136720 -0.0081378350 -0.0136045652 0.8790667934 

b2 0.1807511817 0.0851166922 -0.3508763309 0 -0.0339960560 -0.1089559456 -0.0710357052 -0.1041722242 

b1 0.0067432843 0.1696093864 0.0644862404 35.0254446464 -0.1419415046 -0.0094952184 -0.0059001702 -0.8932084302 

b0 0.0000094498 -0.0347332831 0.1771092640 7.4652959797 -0.0061583284 -0.0002858034 -0.0001489775 -0.0255336445 

y5 

b5 0 0 0 0 0 0 0 0 

b4 -0.0997037821 0 -0.4500685627 0 0.0902973172 0 0.0412096157 0 

b3 0.1459416038 0 0.4059725295 0 0.0191763759 0.1771056001 0.0123993562 0 

b2 0.0334931150 0.0530276560 -0.0046429290 35.2806476778 -0.1161101580 -0.1920668770 -0.0584595608 0.2172711511 

b1 0.0000392396 0.1334069169 0.0047835183 16.4295202161 0.0000021175 -0.0111699596 -0.0062537222 -0.2777015389 

b0 0.0000025036 -0.0324804720 0.0000139824 0.1260652020 -0.0000014995 -0.0007044555 -0.0003545904 -0.0220038195 

y6 

b5 0 0 0 0 0 0 0 0 

b4 -0.0004675831 0 0 0 0 0.0007157070 0.0004893828 0.0823001165 

b3 -0.0666103798 0 -0.2676786259 0 0.1618401644 0.1228331290 0.0708239799 -0.0313958109 

b2 0.2087545187 0.0472180377 0.1795643659 0 -0.0598624839 -0.0378395231 -0.0244844278 -0.0400162512 

b1 0.2074568881 0.0881291009 0.2066113331 17.2795835259 -0.0652118665 -0.0511321408 -0.0335057212 -0.0046856523 

b0 0.0131703726 -0.0118095499 0.0001926803 2.0582675939 -0.0040324235 -0.0033729533 -0.0022635411 -0.0001764549 

y7 

b5 0 0 0 0.0003960432 0 0 0 0 

b4 0 0 0 0.0636796773 0 0 0 0 

b3 0.0741208265 0 0 0.0173826029 0 0.5394954237 0.3635085128 0.4112716783 

b2 0.0328476819 0.0172579835 -2.6721977459 0.0002649429 0.7420823303 0.0107212801 0.0530503394 0.1673423923 

b1 0.0000045688 0.0216876943 -2.5838894295 0.0000227459 0.0001344630 -0.0739762568 -0.0364941213 -0.0623591554 

b0 0.0000089132 -0.0052030159 -0.2055267629 0.0000000139 -0.0794124225 -0.0029112182 -0.0013249714 -0.0023645576 

y8 

b5 0 0 0 0 0 -0.0063925466 0 0 

b4 0 0 0 0.0001026033 0 0.4701152233 0 0 

b3 0 0.0049959836 0.0018195983 0.0000332704 0 -0.5212368032 0.0241700324 -0.0230110074 

b2 0.2411165069 0.0117398640 0.0000092617 0.0000004157 0.0866805382 0.0001641637 -0.0408932188 -0.0135836427 

b1 0.0287416034 -0.0056688548 0.0000061724 0.0000001260 -0.1258846718 -0.0012919484 -0.0000201526 -0.0003656413 

b0 0.0000004719 -0.0000551889 -0.0000000061 03 -0.0000749529 -0.0000014223 -0.0000010659 -0.0000170570 

y9 

b5 0 0 0 0 0 0 0 0 

b4 0.0497344087 0 -0.0033056454 -0.0000125879 0 0 0 0 

b3 0.0058706050 0.0020056980 0.0023038402 -0.0006560784 -0.0198088948 0 0 0 

b2 0.0001555260 0.0040816319 0.0023817555 0.0001722519 -0.0041790486 -0.0278235870 -0.0164384305 -0.0686159728 

b1 0.0000124831 -0.0002274497 0.0007858726 0.0000132644 -0.0000527292 -0.0022620946 -0.0014284604 -0.1063029955 

b0 0.0000000658 -0.0000713210 0.0000351091 0.0000174236 -0.0000102258 -0.0000017045 -0.0000002121 -0.0086614055 

y10 

b5 0 0 0 0 0 0.0002468965 0 0 

b4 0.0497222865 0 -0.0018456209 0 0.0771085143 0.0530115805 0 0 

b3 0.1624272265 0 0.0018350115 -0.0061221821 0.0007292580 -0.0056877641 12.9621447071 0.0360322429 

b2 0.0011747171 0.0420119747 0.0006960273 0.0017809492 -0.0327787949 -0.0252289037 20.1871287867 -0.0204498601 

b1 0.0001387676 -0.0186320257 0.0004168678 0.0000613299 -0.0013168704 -0.0012354086 -14.3512831331 -0.0039670023 

b0 0.0000007692 -0.0006685108 -0.0000000615 0.0000001408 -0.0000100117 -0.0000008527 -1.1353433423 -0.0001378550 

y11 

b5 0 0 -0.0000934202 -0.0000183621 0 0.0005417753 0.0003286385 0 

b4 0.1365172836 -0.0000661001 -0.0046557073 -0.0018390046 0 0.0447057305 0.0237660745 0 

b3 0.0262371205 -0.0026124443 0.0034097977 -0.0000195326 0.0680361355 -0.0388019267 -0.0210196327 0 

b2 0.0014844508 0.0090516703 0.0023949468 -0.0000981210 -0.0643536292 -0.0657235635 -0.0372750394 -0.0262663223 

b1 0.0000175874 0.0063418806 0.0010802997 0.0001812689 -0.0837513303 -0.0024093602 -0.0016661070 -0.0405761206 

b0 0.0000009636 -0.0066301879 0.0003404349 0.0000072024 -0.0044569281 -0.0000115763 -0.0000292552 -0.0021460877 
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Table 40 – Plant 1 – Sub-model 3 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 1 0 1 0 0 1 

a4 22.3899483137 1.8265912935 2.2621052653 1 1.3686827472 1 0 2.2188077140 

a3 8.3232794084 2.4632781813 0.6522204290 6.2568572818 1.7391254410 2.6458118104 1 0.6119921057 

a2 0.7685965336 1.3732289193 0.0682333687 19.5679070116 0.8222238684 4.5861236843 1.0794972534 0.0459516726 

a1 0.0136561983 0.3389528802 0.0052685580 18.4285107472 0.0935949087 2.2162871662 0.1085460142 0.0002548693 

a0 0.0000334310 0.0249025025 0.0004067646 1.9822943182 0.0022716357 0.1908772561 0.0000733851 0.0000187628 

y2 

a5 1 1 0 0 0 1 0 0 

a4 1.7900687557 3.1856999094 1 1 1 2.0984813991 1 1 

a3 1.2270688810 7.3488314417 1.4352434028 11.4776718308 1.8682055980 1.8098983768 1.7244453505 1.9264305955 

a2 0.1265876627 7.6708633142 1.8543864029 14.9137499280 1.6601539493 0.3577383636 1.6549080429 1.8028381211 

a1 0.0004472899 5.2179139993 0.5316387653 15.7616425268 0.3408810659 0.0182207835 0.3888063675 0.3816696142 

a0 0.0000459052 0.6880023792 0.0298542604 1.7179647670 0.0172865146 0.0000048123 0.0221496386 0.0196212800 

y3 

a5 1 1 1 0 0 1 1 1 

a4 0.2179810997 2.7787750234 2.0469883594 1 1 1.9691972317 18.4321962481 2.0300083531 

a3 0.0048087394 6.1909271899 2.0348118471 2.0498828666 1.8502269999 1.7568554441 32.8891545138 1.8278414768 

a2 0.0004679240 6.1432122167 0.5249571299 0.3357303695 1.6411551689 0.4154127254 26.8727831046 0.4162581158 

a1 0.0000056830 4.1716362571 0.0320222242 0.0011146151 0.3811533771 0.0210711783 5.7092531710 0.0217820114 

a0 0.0000000252 0.7524431903 0.0000277954 0.0001822563 0.0191512119 0.0000006419 0.2631691110 0.0002094602 

y4 

a5 1 1 0 0 0 1 1 1 

a4 4.3926740048 2.9554371944 0 1 1 1.7096616009 1.5753533015 8.9656148171 

a3 1.3497299191 5.6157649824 1 16.5747694418 1.6077899917 1.4845143836 1.3873363288 16.4311633450 

a2 0.1247732517 5.6083217038 2.3056953589 96.9952971583 1.3370636703 0.2816318963 0.2619603330 15.3285149203 

a1 0.0034979787 3.0264533364 1.6084581270 138.0003649608 0.2059178707 0.0174308556 0.0154048820 2.1937296088 

a0 0.0000050387 0.3477638403 0.1934240529 16.6866512432 0.0064517797 0.0004142638 0.0003196828 0.0497641779 

y5 

a5 0 1 1 0 1 1 1 0 

a4 1 3.1978256166 3.3264923611 1 1.4909592006 2.1943011128 1.6394881605 1 

a3 0.2662668467 5.5948892543 0.4058937291 125.7762211227 1.2544136085 2.9439131469 1.4576661989 4.5127786490 

a2 0.0178015161 5.6700829611 0.0400721787 290.6294570245 0.1164251580 0.4531322357 0.2665183039 5.8082702559 

a1 0.0000293075 2.6256615633 0.0046148862 33.4964716501 0.0000178378 0.0262942903 0.0206585024 0.9739688662 

a0 0.0000015131 0.2398736313 0.0000131932 0.2437732444 0.0000016270 0.0009745806 0.0007241222 0.0409429484 

y6 

a5 0 1 1 1 0 0 0 1 

a4 1 2.9687600653 5.1363763013 8.7468269673 1 1 1 2.2012783410 

a3 2.1986666535 6.5121772051 9.5874594894 50.1355839555 2.0532219181 2.1244872525 1.9717565629 2.1442537286 

a2 2.4118909634 6.9704355677 9.8230124027 175.6137535982 1.8805096470 1.9819517242 1.8837612807 0.6212532068 

a1 0.6603196982 4.8191217801 2.0158038919 243.1102517175 0.4646944714 0.5083553999 0.5015072532 0.0555289334 

a0 0.0315294019 1.0743592950 0.0018851559 25.0518332694 0.0219476851 0.0251166753 0.0255314784 0.0017656474 

y7 

a5 1 1 0 1 0 1 1 1 

a4 1.2899678802 1.9184020491 1 2.1674124994 1 5.4389150316 4.6753639680 4.9282169350 

a3 0.8673357614 4.2417780091 4.4327748772 0.3095053000 4.8962259116 10.6412167244 9.2202257761 10.5263886655 

a2 0.0985143015 3.4368956134 10.8115252479 0.0055560015 9.4990757359 7.2055825498 6.3065116156 9.1990270845 

a1 0.0002230907 2.1871098925 8.4882439095 0.0003864341 5.9524896069 1.0459071934 0.9013319349 1.4996624341 

a0 0.0000252535 0.2744672723 1.0371296677 0 0.6349777324 0.0301310210 0.0236729795 0.0397025529 

y8 

a5 0 1 0 1 0 1 0 1 

a4 1 1.9127912654 1 0.2404627238 0 12.7819786998 1 1.1868208477 

a3 1.7274488271 2.2769193141 0.1170897031 0.0234804562 1 1.4452951753 1.6959629572 0.5703454519 

a2 0.3601226890 1.2995303429 0.0044119139 0.0008934976 2.3675030916 0.0330306386 0.1908760472 0.0617919084 

a1 0.0198803570 0.1562441146 0.0003781282 0.0000698780 0.2714326500 0.0036430045 0.0000595262 0.0019087334 

a0 0 0.0013521820 0.0000000640 0.0000001020 0 0.0000015311 0.0000066599 0.0000608017 

y9 

a5 1 1 1 0 1 1 1 1 

a4 0.2121624978 1.6506552801 2.6698689789 1 1.3344287230 1.3806923892 1.3202965809 6.3565688815 

a3 0.0133927061 2.4192547112 3.0940355058 1.1915448950 0.4445537426 2.5422022003 2.4650823992 12.8692140780 

a2 0.0004634203 1.5922231387 2.1636563884 1.8246936667 0.0292980631 0.4635913032 0.4746295994 13.5279587427 

a1 0.0000235113 0.3900713193 0.2998871567 0.3548812223 0.0011240103 0.0179252534 0.0189117869 2.2920221761 

a0 0.0000000469 0.0222601207 0.0093653809 0.0686911608 0.0000619218 0.0000155961 0.0000046286 0.0876309853 

y10 

a5 1 1 1 0 1 1 1 0 

a4 3.1879133674 12.4770097957 1.7089162274 1 3.2420730370 3.2965395506 552.7986058614 1 

a3 0.3799787766 13.1655631524 2.1072350289 14.9867882816 2.5697749554 2.5590566726 1447.9103568379 2.9666748932 

a2 0.0046729179 14.7682934904 1.2821375169 5.7470030424 0.3601600697 0.3750967472 2405.7514833214 0.8408439430 

a1 0.0003195953 2.9155807504 0.1231764223 0.1517361862 0.0104679260 0.0118230676 459.7186921792 0.0716036185 

a0 0.0000012435 0.0792449635 0 0.0003111686 0.0000788441 0.0000104738 19.0051696861 0.0017808717 

y11 

a5 1 0 1 1 0 1 1 0 

a4 0.3404266928 1 1.7923237081 1.5912334123 1 2.3830874281 2.1114267401 1 

a3 0.0379420946 2.1003810462 2.7165020411 2.2958893268 2.5670401905 2.3117101431 2.1562798640 1.8859937841 

a2 0.0015905250 2.7656634273 1.7377825637 1.2756813233 2.2835377288 0.3748704352 0.3678869607 1.8695312487 

a1 0.0000257336 1.8645354845 0.6011589015 0.2374295248 0.3953766413 0.0106934623 0.0135512492 0.3297399120 

a0 0.0000009356 0.3748473374 0.0559731116 0.0077789922 0.0145339932 0.0000527354 0.0002116879 0.0120333511 
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Table 41 – Plant 2 – Sub-model 1 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0.0000105592 0 0.0006485585 -0.0000530434 0 0 0 

b2 0.0002021277 0.0008053314 0.0001090997 0.0001103545 -0.0001276728 0 0 0 

b1 -0.0000008793 0.0000616034 0.0000001065 0.0000014156 -0.0000019503 0 0 0 

b0 0.0000000276 -0.0000022755 0.0000000037 0.0000002450 -0.0000000157 0 0 0 

y2 

b5 0 0 0.0000333343 0 0 0 0 0 

b4 0 -0.0011797225 -0.0028658019 0 -0.0001033887 0 0 0 

b3 0 0.0020624122 -0.0013776906 0 0.0002552216 0 0 0 

b2 0.0003760169 0.0005599782 0.0047383111 0.0025884668 -0.0002887653 0 0 0 

b1 -0.0000012762 0.0000075953 -0.0000020041 -0.0000006613 -0.0000064880 0 0 0 

b0 0.0000000748 0.0000010915 0.0000016630 0.0000044051 -0.0000000470 0 0 0 

y3 

b5 0 0 -0.0002605893 0 -0.0002379648 0 0 0 

b4 0 0 -0.0033864604 0 0.0012166461 0 0 0 

b3 0 0 0.0026076766 0.0031594354 -0.0005156922 0 0 0 

b2 0.0023543340 0.0049545352 0.0012502043 0.0019575861 -0.0004600914 0 0 0 

b1 -0.0000124809 -0.0001814582 0.0000049563 0.0000162856 -0.0000467351 0 0 0 

b0 0.0000004465 -0.0000315574 0.0000012144 0.0000000240 -0.0000001554 0 0 0 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0.0005437500 0 -0.0008883635 0 0.0007678622 0 0 0 

b3 0.0007419398 0 -0.0027730092 0.0176006554 -0.0006663475 0 0 0 

b2 0.0021915415 0.0078522676 0.0023060602 0.0055162226 -0.0000031747 0 0 0 

b1 -0.0000125387 -0.0006204302 -0.0000010161 0.0006891328 -0.0000014867 0 0 0 

b0 0.0000004024 -0.0000577645 0.0000015692 0.0000007035 -0.0000000037 0 0 0 

y5 

b5 0 0.0002257902 0.0000747327 0 -0.0001335956 0 0 0 

b4 0.0010501639 -0.0006795354 -0.0012156465 0 0.0008051448 0 0 0 

b3 -0.0002100744 0.0022503538 0.0008367428 -0.0001970067 -0.0004396091 0 0 0 

b2 0.0007886041 -0.0002568101 0.0000331362 0.0026969878 -0.0000086461 0 0 0 

b1 -0.0000041693 0.0000001108 0.0000006100 0.0009504691 -0.0000020170 0 0 0 

b0 0.0000001352 -0.0000007408 0.0000000226 0.0000005902 0.0000000024 0 0 0 

y6 

b5 0 0 0 0 0 0 0 0 

b4 -0.0010427388 0 -0.0004883568 0.0001517918 0 0 0 0 

b3 0.0015805409 0 0.0006906983 0.0011194126 0 0.0018713711 0 0 

b2 0.0013186353 0 0.0000903036 0.0039374246 0.0016684874 -0.0017119642 0.0017174627 -0.0034511624 

b1 -0.0000034714 0.0048981531 0.0000018591 0.0002826369 -0.0020450245 -0.0000662931 -0.0020575607 -0.0000434738 

b0 0.0000001334 -0.0004532158 0.0000000811 0.0000141302 -0.0000000070 -0.0000000993 -0.0000041105 -0.0000090459 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0.0665698364 0 0 0.1471002289 0.2888052733 0.5773483454 0 0.3820623195 

b2 0.0281275457 0.1501707398 -2.6051938439 0.0248314830 0.0121883336 -0.0438761340 0.2430387054 -0.0151120690 

b1 0.0000274984 0.0914268778 -2.6286378281 0.0000097100 -0.0244003082 -0.0498693842 0.0073465225 0.0005123089 

b0 0.0000082372 -0.0192359460 -0.2108396101 0.0000004808 -0.0006675078 -0.0001483825 -0.0137453794 -0.0000773529 

y8 

b5 -0.0090656644 0 0.0000932625 -0.0020177510 -0.0058362569 0 0 0 

b4 0.0721577293 0 -0.0028639391 0.0000944744 0.0398799246 0 0 0 

b3 0.0026057135 0 0.0031608319 0.0001013188 -0.0302840739 -0.0196564171 -0.0235121585 -0.0103305061 

b2 0.0001465065 0 0.0021929233 0.0000028536 -0.0554138279 -0.0038477133 -0.0027188833 -0.0001860717 

b1 0.0000047252 0.5407470620 0.0013435382 0.0000004508 -0.0009972414 -0.0000364645 -0.0000629111 -0.0000317251 

b0 0.0000000039 -0.1212838147 0.0000392868 0.0000000042 -0.0000066728 -0.0000070346 -0.0000071390 -0.0000005620 

y9 

b5 0 0.0000003985 0 0 0 0 0 0 

b4 0 -0.0000606421 0.0000084610 0 0 0.0001015675 0.0000309521 -0.0003126651 

b3 0 0.0002750513 0.0000030143 0 0 0.0000588567 -0.0001166646 -0.0001356060 

b2 0 -0.0000127488 0.0000000685 0 -0.0012679443 -0.0001214780 -0.0000524500 -0.0000512510 

b1 0.0083630022 -0.0000006064 0.0000000113 0.0000005850 0.0000245838 0.0000001386 -0.0000000675 -0.0000003677 

b0 0.0026028561 -0.0000001119 01 0.0000001041 -0.0001907248 -0.0000000289 -0.0000000179 -0.0000000963 

y10 

b5 0 0 0 -0.0000784936 0 0 0.0001944190 0 

b4 0.0280751511 0.0000483327 0 0.0003485420 0.0002551417 0 0.3027194636 0 

b3 0.0058796909 -0.0157766891 0.0042810907 -0.0000068064 0.0479136684 0.2029774843 -0.0954799828 0.0719437826 

b2 0.0000969388 0.0387891436 0.0000236632 0.0000023508 -0.0036102989 -0.1178633076 -0.0239908233 -0.0320769069 

b1 0.0000063278 -0.0033572042 0.0001435389 -0.0000000115 -0.0195869412 -0.0006042024 -0.0001064624 -0.0005960677 

b0 0.0000000348 -0.0013626740 0.0000003119 0.0000000015 -0.0006445468 -0.0001476188 -0.0000068921 -0.0000855542 

y11 

b5 0 -0.0000192161 0 0.0000053272 0.0001771473 0 0 0 

b4 0 0.0001549295 0.0000144473 0.0000122718 0.0000808719 0 -0.0000487828 0 

b3 0 0.0002944829 -0.0000078867 0.0000004165 -0.0001121576 0 0.0002000716 -0.0000227317 

b2 -0.0069739157 -0.0000916487 0.0000197535 0.0000000540 -0.0000009131 0 -0.0001960566 -0.0000837834 

b1 0.0018871296 -0.0000017362 -0.0000003185 06 -0.0000014968 -0.0002871898 -0.0000059933 -0.0000011680 

b0 -0.0000175362 -0.0000002145 0.0000071819 0 -0.0000000223 -0.0000012773 -0.0000000016 -0.0000002729 
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Table 42 – Plant 2 – Sub-model 1 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 0 1 0 1 1 0 0 0 

a4 1 1.3507773846 1 2.0505333586 2.5459409282 0 0 0 

a3 0.1389741430 1.1178069763 0.1278988268 0.2432815790 0.3156891595 0 0 0 

a2 0.0012515215 0.2175232032 0.0021193276 0.0081242947 0.0086520647 0 0 0 

a1 0.0000122512 0.0134499920 0.0000045124 0.0005295602 0.0000971112 0 0 0 

a0 0.0000001026 0.0001699655 0.0000000735 0.0000079519 0.0000005114 1 1 1 

y2 

a5 0 1 1 0 0 0 0 0 

a4 1 1.0321925954 16.8526437466 1 1 0 0 0 

a3 0.2235842644 0.2887153565 7.0514227451 4.8607540969 0.2562881211 0 0 0 

a2 0.0017588627 0.0092619440 0.1160946870 0.0891436860 0.0080387517 0 0 0 

a1 0.0000445817 0.0005933967 0.0024769828 0.0082455499 0.0001178249 0 0 0 

a0 0.0000001417 0.0000102265 0.0000387033 0.0001483415 0.0000003869 1 1 1 

y3 

a5 0 1 1 0 1 0 0 0 

a4 1 1.3256143351 0.8770312258 1 0.8030191512 0 0 0 

a3 0.3491007758 1.2309820553 0.1519942911 0.4178283212 0.2059811911 0 0 0 

a2 0.0023434779 0.3371775272 0.0034117767 0.0099103709 0.0161713210 0 0 0 

a1 0.0000482234 0.0198294963 0.0001494529 0.0000648156 0.0002609199 0 0 0 

a0 0.0000003046 0.0002560674 0.0000022327 0.0000001167 0.0000007662 1 1 1 

y4 

a5 0 1 0 1 1 0 0 0 

a4 1 1.6024388138 1 1.7965021318 0.1648570086 0 0 0 

a3 0.1471268816 1.2565771703 0.1738836809 0.5288161072 0.0056337703 0 0 0 

a2 0.0009963385 0.2304979257 0.0032637295 0.0541375393 0.0003659525 0 0 0 

a1 0.0000188194 0.0108847753 0.0001191037 0.0008067949 0.0000060483 0 0 0 

a0 0.0000001111 0.0001337089 0.0000017663 0.0000012991 0.0000000097 1 1 1 

y5 

a5 0 1 1 0 1 0 0 0 

a4 1 0.7430327125 0.1489796612 0 0.1485903016 0 0 0 

a3 0.0998199022 0.0852072696 0.0071800090 1 0.0087500236 0 0 0 

a2 0.0008420395 0.0044157477 0.0001622476 0.1204811684 0.0005913750 0 0 0 

a1 0.0000103375 0.0001862951 0.0000044619 0.0018161334 0.0000058419 0 0 0 

a0 0.0000000765 0.0000028488 0.0000000411 0.0000020726 0.0000000325 1 1 1 

y6 

a5 0 0 1 0 1 1 1 1 

a4 1 1 0.6473935561 1 1.2903523520 2.4446258986 1.4683268549 10.4732031134 

a3 0.2653296007 1.5431967181 0.0773744616 1.5432376945 2.5683166616 1.0772813419 2.8901158270 3.7222645358 

a2 0.0031078612 1.3283514917 0.0026113749 0.1361410524 0.9198969436 0.0510432746 1.0832577634 0.1236758551 

a1 0.0000193241 0.3767487921 0.0000819485 0.0073189983 0.0148284997 0.0006577167 0.0195003172 0.0102044684 

a0 0.0000001729 0.0062836388 0.0000010081 0.0000951577 0.0000035217 0.0000004053 0.0000402803 0.0001431268 

y7 

a5 1 1 0 0 1 1 0 1 

a4 1.3572130005 1.8097388978 1 1 5.3083619025 5.0581347472 1 2.0503248828 

a3 1.2342340899 3.8604394101 5.8838370829 2.2562370610 10.3018254782 9.6996882654 4.7959686546 6.8378238706 

a2 0.1577333624 2.9585351944 15.1889006110 0.2490035716 6.3185649178 5.3682685821 9.4236350956 1.3305939516 

a1 0.0003662304 1.6304808086 12.2535482201 0.0000581560 0.7981747255 0.5349731362 5.1716543055 0.0515429933 

a0 0.0000466952 0.1847430953 1.3430591345 0.0000064175 0.0167372794 0.0014379936 0.4822115293 0.0025696256 

y8 

a5 1 1 1 1 1 1 1 1 

a4 0.1503165495 5.2958977956 1.4426653376 0.0819735316 1.6707276449 0.7143893521 0.7118270698 0.6364857458 

a3 0.0060416343 9.6051772750 1.9036848539 0.0189506739 1.2823644598 0.1869629710 0.1427399489 0.0773446327 

a2 0.0003013495 12.4041520034 0.8948105947 0.0002445433 0.1213568826 0.0126794867 0.0091525279 0.0029083717 

a1 0.0000071973 7.1742903199 0.0968367840 0.0000471779 0.0021935868 0.0003410102 0.0003667913 0.0002271625 

a0 0.0000000114 0.7023874291 0.0021394427 0.0000000076 0.0000103854 0.0000209327 0.0000190806 0.0000029419 

y9 

a5 0 1 1 0 0 0 1 0 

a4 0 1.0520707432 0.0846599356 0 0 1 0.4973705586 1 

a3 0 0.2011216030 0.0059078738 1 0 0.1004218807 0.0404825688 0.0696313712 

a2 0 0.0135481797 0.0003194767 0.0682934679 1 0.0011761851 0.0006461549 0.0028875427 

a1 1 0.0005700614 0.0000081714 0.0126378766 0.1034187624 0.0000257065 0.0000139432 0.0001277360 

a0 0.0012442849 0.0000067138 0.0000000235 0.0000088941 0.0011842736 0.0000002356 0.0000001644 0.0000015950 

y10 

a5 1 0 1 1 0 0 1 1 

a4 0.3508745334 1 10.3303617886 0.0266592523 1 1 12.1942436420 3.3101140498 

a3 0.0329630540 1.8072304391 1.3849122268 0.0067533245 2.2582640232 10.1444276417 4.0762547364 7.3266801993 

a2 0.0004869378 2.0463462435 0.3502970090 0.0000904611 1.7336864338 1.4145982715 0.2805338782 0.9991431874 

a1 0.0000342696 0.5705451687 0.0424946191 0.0000093553 0.2180957901 0.0213939878 0.0020121829 0.0420559587 

a0 0.0000000216 0.0371332563 0.0000018047 0.0000000323 0.0050649862 0.0015783916 0.0000766420 0.0017131294 

y11 

a5 0 1 0 1 1 1 0 0 

a4 0 0.8374120844 1 0.0205744522 0.1556860330 1.7553458934 1 1 

a3 0 0.1807903308 0.1616483189 0.0041432406 0.0189629132 1.9200749947 0.2257513582 0.1612929715 

a2 1 0.0083958996 0.7696995569 0.0000493362 0.0021255042 0.3222545834 0.0088047129 0.0073685733 

a1 0.0022672061 0.0003959719 0.1208917214 0.0000030674 0.0000638827 0.0060404997 0.0000904162 0.0005383537 

a0 0.0000110931 0.0000057115 0.0018330126 0.0000000167 0.0000003994 0.0000226508 0.0000000207 0.0000069499 
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Table 43 – Plant 2 – Sub-model 2 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0 0.0000083959 

b4 0 0 0 0 0.0001646988 0.0001945853 0 0.0000245339 

b3 0 0.0004579769 -0.0000755727 0 -0.0000415313 -0.0000363037 0 -0.0000077387 

b2 0.0000266875 -0.0000120663 -0.0000852804 0.0013504814 0.0000027681 0.0000025809 0.0004399067 -0.0000030015 

b1 0.0000091466 0.0000010903 0.0000266649 -0.0002071391 -0.0000005413 -0.0000003578 -0.0002935855 -0.0000000350 

b0 -0.0000000437 -0.0000000313 -0.0000000342 0.0000024410 04 0.0000000020 -0.0000008720 -0.0000000022 

y2 

b5 0 0 0 0 0.0000445325 0 0 0 

b4 0 0 0 0 0.0002779238 0.0002916357 0 0.0003070780 

b3 0.0010106250 -0.0015726386 0 0 -0.0001881113 0.0004773534 0.0001881203 0.0000832513 

b2 0.0012054628 0.0028013185 0.0005213455 -0.0190835358 -0.0000545334 -0.0003711473 0.0000794712 -0.0001363461 

b1 0.0002495583 0.0008950736 0.0001495288 -0.0026425631 -0.0000031566 -0.0000514493 -0.0001490255 -0.0000003114 

b0 0.0000004676 0.0000153172 -0.0000000312 -0.0000021044 -0.0000000027 -0.0000013860 -0.0000004961 -0.0000002835 

y3 

b5 0 -0.0004267206 0 0 0 0 0 0 

b4 0 -0.0087536959 0 0 0.0001429595 0.0004666645 0.0001485433 -0.0004235691 

b3 0 0.0115364458 -0.0045768795 -0.0034364386 0.0012508687 0.0026747842 0.0009805454 0.0020048723 

b2 0 -0.0011981122 0.0059345573 -0.0020279844 -0.0011416812 -0.0025076291 -0.0009347483 -0.0019532109 

b1 -0.0035877559 0.0000207564 0.0013661854 -0.0000033794 -0.0000266400 -0.0000563681 -0.0000240001 -0.0001205239 

b0 0.0064160140 -0.0000040714 0.0000004825 -0.0000017302 -0.0000001717 -0.0000003426 -0.0000000903 -0.0000033023 

y4 

b5 0 -0.0004195370 0 0 0 0 0 0 

b4 0 -0.0072930566 0 0 0 0 0 0 

b3 0 0.0083951082 0 -0.0205209457 0 0 0 0 

b2 0 -0.0011352139 -0.0146373318 -0.0045843759 0 0 0 -0.0008417440 

b1 -0.0045614631 0.0000023551 0.0163370273 -0.0000060247 -0.0010914736 -0.0006197362 -0.0009954657 0.0000003341 

b0 0.0047473950 -0.0000037782 0.0000209701 -0.0000015374 -0.0000004490 -0.0000000668 -0.0000005434 -0.0000013480 

y5 

b5 0 -0.0005394863 0 0 0 0 0 0 

b4 0 -0.0016683556 0 0 0 0 0 0 

b3 0 0.0018487474 0 -0.0031201381 0.0016208241 0.0003430117 0.0014969053 0 

b2 0 -0.0002780772 0 -0.0011419668 -0.0014593569 -0.0005164719 -0.0014175673 0.0007745400 

b1 -0.0027651123 -0.0000023218 -0.0019280963 -0.0000045661 0.0000013119 0.0000004274 0.0000013405 -0.0009032513 

b0 0.0017894571 -0.0000009383 0.0011135411 -0.0000003297 -0.0000003316 -0.0000001217 -0.0000002536 -0.0000028607 

y6 

b5 0 0 -0.0000211806 0 0 0 0 0 

b4 0 -0.0015753530 -0.0011157351 0 0 -0.0000468704 0 0 

b3 0 0.0023805120 0.0014797675 -0.0070229353 0 0.0008365529 0 0.0005070473 

b2 0.0037396289 -0.0002208452 0.0000065378 -0.0006138597 0.0008631190 -0.0006965313 0.0005662017 -0.0004538986 

b1 0.0001189712 0.0000042213 0.0000056547 -0.0000056215 -0.0012233663 -0.0000090619 -0.0004782242 0.0000013788 

b0 0.0000014600 -0.0000006401 02 -0.0000004919 -0.0000016283 -0.0000000361 -0.0000002515 -0.0000010479 

y7 

b5 -0.0061526846 0 0 0 0 0 0 0 

b4 0.0296668498 0 0 0 0 0 0 0 

b3 0.0008082933 0 0 0 0 0 0 0.2734867646 

b2 0.0000636204 0.1321910413 -4.2785460923 -1.0846738670 0.5091044695 0.3581208846 0.4622904385 0.1156658241 

b1 0.0000017696 -0.0225098633 -4.3044072055 -1.9576299851 -0.0203533212 -0.0387203183 0.0129070084 -0.0354414360 

b0 07 -0.0002223130 -0.3355447832 -0.2722545938 -0.0417693541 -0.0324541603 -0.0314011268 -0.0012892473 

y8 

b5 0 0 0 0.0000817090 0 0.0003981585 0 0 

b4 0.0050271593 -0.0055637836 0 0.0000344088 0.0148250023 0.0084741196 0 0 

b3 0.0497708158 0.0147875692 0.0002901979 -0.0000209241 -0.0175359739 -0.0100225475 0 -0.0010680956 

b2 0.0072378057 -0.0036541940 0.0003623077 -0.0000027475 -0.0002701752 -0.0005796065 0.0517751917 -0.0064951298 

b1 0.0002707512 0.0000315369 0.0000163354 -0.0000004381 -0.0000185236 -0.0000148529 -0.1099601828 -0.0000563924 

b0 0.0000007591 -0.0000116269 0.0000062830 -0.0000000115 -0.0000001020 -0.0000008944 -0.0089639132 -0.0000007683 

y9 

b5 0 -0.0001188010 0 0 0 0.0012065733 0 0 

b4 0 -0.0240690388 0 0 0 0.0004719949 0 0 

b3 0 0.0200082325 0 0 0 -0.0004660992 0 0 

b2 -0.0002016495 -0.0028511082 0 -0.0000038731 -0.0002153636 -0.0000592822 -0.0001977354 -0.0002283097 

b1 0.0010289943 0.0000599742 0.0000166552 -0.0000000435 -0.0000460999 -0.0000003429 -0.0000350732 -0.0000004358 

b0 0.0013293070 -0.0000107140 -0.0000002102 -06 0.0000000132 -04 0.0000000127 -0.0000003504 

y10 

b5 -0.0040354413 0 0 0 0 0.0000614155 0.0000286214 0 

b4 0.0322028014 -0.0068020531 0 0.0000355112 0 0.0362719151 11.6760861163 0.0001643220 

b3 0.0167444308 0.0239450464 0.0007411858 0.0025927586 0.3243103791 0.0019762885 -2.8697500175 0.0240872290 

b2 0.0011291981 -0.0061656389 0.0004712910 -0.0009114023 0.3059953575 -0.0222968342 -1.0800340567 -0.0136841675 

b1 0.0000027097 -0.0000845970 0.0000043797 -0.0000040963 -0.3848958333 -0.0011960293 -0.0436156677 -0.0035952072 

b0 0.0000001239 -0.0000294108 0.0000000318 0.0000001074 -0.0292012080 -0.0000163213 -0.0000436047 -0.0001918816 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0 0.0000789961 0 0 0 0 0 0.0001827257 

b3 0 0.0001541394 0.0000200309 0 0 0.0003744995 0 -0.0002969679 

b2 0 -0.0000991345 -0.0000001390 0 0 -0.0004501734 0 -0.0000682615 

b1 0.0012500148 0.0000001303 0.0000000686 -0.0000089236 -0.0005127704 -0.0000065300 -0.0005042485 -0.0000001914 

b0 0.0000008153 -0.0000003078 -05 -0.0000000353 0.0000001098 -0.0000000174 -0.0000000136 -0.0000000119 
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Table 44 – Plant 2 – Sub-model 2 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 1 1 0 1 

a4 0.9022658577 1.4167540291 0 0 0.1402274786 0.2397707429 1 0.3139954487 

a3 0.3173851327 0.1144181768 1 0 0.0156038975 0.0114872846 21.6057345836 0.0276853766 

a2 0.0255477291 0.0076090816 0.1329340032 1 0.0018798958 0.0021917784 2.5612733951 0.0008726327 

a1 0.0002253713 0.0002574887 0.0018370107 0.0017388599 0.0000294349 0.0000166053 0.0435563322 0.0000205078 

a0 0.0000002662 0.0000066296 0 0.0000747768 0.0000000080 0.0000001465 0.0001119346 0.0000003009 

y2 

a5 0 0 1 1 1 0 0 0 

a4 1 1 1.4609958758 3.8032430285 0.5491104364 1 0 1 

a3 0.4897330091 1.0653609121 0.9353149427 13.3563647566 0.0825374409 0.3531747536 1 0.1732826433 

a2 0.0563708683 0.3286032327 0.1610617195 2.0530141748 0.0042803077 0.0346824855 0.2093974551 0.0053417270 

a1 0.0006991356 0.0112487072 0.0023945335 0.0328002825 0.0000540074 0.0010997108 0.0035888443 0.0003592680 

a0 0.0000071343 0.0000907810 0.0000000301 0.0000197011 0.0000000388 0.0000113428 0.0000142317 0.0000053242 

y3 

a5 0 1 1 0 0 0 0 0 

a4 0 1.1493784228 3.8886158584 1 1 1 1 1 

a3 0 0.3309695649 2.2749239139 0.3922966508 0.3363296518 0.3252537675 0.3434637049 0.4009238735 

a2 1 0.0104316017 0.2865644933 0.0070564978 0.0114593500 0.0108665445 0.0122610604 0.0251294677 

a1 0.3449236252 0.0010461294 0.0042584574 0.0003343929 0.0001576989 0.0001448445 0.0001545607 0.0008157440 

a0 0.0048397043 0.0000129245 0.0000023299 0.0000052884 0.0000006354 0.0000005570 0.0000003900 0.0000074581 

y4 

a5 0 1 0 1 1 1 1 1 

a4 0 1.0201588062 1 3.5714659176 0.7507242908 0.6735141682 0.8286698481 1.3977570748 

a3 0 0.1800965935 12.2595753515 0.5535729355 0.8632976847 0.7621399370 0.9532127408 0.1874560514 

a2 1 0.0072207071 1.9553151965 0.0088355212 0.1183576305 0.1026561292 0.1330434304 0.0049621452 

a1 0.2091556904 0.0005193761 0.0313827594 0.0001892288 0.0017253097 0.0014724350 0.0019524728 0.0002989867 

a0 0.0026829128 0.0000057891 0.0000371099 0.0000026043 0.0000017616 0.0000009751 0.0000023834 0.0000043654 

y5 

a5 0 1 0 0 1 1 1 1 

a4 0 0.5687713341 0 1 1.4699109337 0.8346571866 1.7451058141 1.3745938232 

a3 0 0.0801955458 0 0.1270054779 0.1624665830 0.0893185832 0.1919656249 2.0351323311 

a2 1 0.0034060145 1 0.0024742197 0.0023563156 0.0012771814 0.0027367182 0.2143254141 

a1 0.1579902477 0.0002111567 0.1257493303 0.0000417821 0.0000380656 0.0000217722 0.0000348602 0.0035846856 

a0 0.0018123064 0.0000019125 0.0017827840 0.0000005723 0.0000004720 0.0000002623 0.0000004398 0.0000099388 

y6 

a5 0 1 1 1 1 0 0 0 

a4 1 0.9698714976 0.5954991382 2.7477883929 1.3258623878 1 0 1 

a3 1.0553524202 0.3615643339 0.0180458683 0.2882374723 2.5555033053 0.4453838244 1 0.3692358911 

a2 0.0437484849 0.0105674664 0.0023318739 0.0061063638 0.9265907561 0.0122280387 0.4491529310 0.0083144703 

a1 0.0009137417 0.0010295630 0.0000377092 0.0002323759 0.0156587066 0.0001133455 0.0073182757 0.0008544210 

a0 0.0000024354 0.0000143565 0.0000000180 0.0000031408 0.0000252732 0.0000003001 0.0000069820 0.0000138852 

y7 

a5 1 1 0 1 0 0 0 1 

a4 0.2516606967 3.0552345950 1 4.7678810673 1 1 1 4.4033571585 

a3 0.0075797767 3.3615651340 5.5873022701 17.9036346473 4.5314974527 4.6258713970 4.5222249435 10.1203516285 

a2 0.0005472978 2.8085427909 14.2614550266 37.2565227113 8.9445384355 9.0630227573 9.0057115879 8.9918088444 

a1 0.0000115863 0.4171279077 11.5592086229 29.3734958867 5.1306521332 5.0596839112 5.2583191917 1.4625895061 

a0 0.0000000266 0.0037049659 1.2631255000 2.6897968259 0.5015135716 0.4870742807 0.5131920208 0.0371892621 

y8 

a5 1 1 1 1 1 1 1 1 

a4 2.9875467844 1.3903808122 0.5582292966 0.4969747432 1.9834821136 1.8095909167 6.3309963745 1.7812822383 

a3 0.7203395005 1.0577258493 1.2018544174 0.0783270383 0.2571980245 0.2945232188 14.3930697228 1.5055856751 

a2 0.0600511505 0.1210196845 0.1666989405 0.0098272301 0.0056938940 0.0137248879 17.4986753520 0.1692941205 

a1 0.0017076050 0.0038189527 0.0233805869 0.0005700999 0.0002428236 0.0004345511 3.2100470531 0.0013953628 

a0 0.0000030964 0.0003553788 0.0021261344 0.0000118567 0.0000013145 0.0000163452 0.1418164524 0.0000203861 

y9 

a5 0 1 0 0 1 1 1 0 

a4 0 32.6992877304 0 1 1.2628323939 0.2147019182 1.4360957771 1 

a3 0 4.7137164960 1 0.0818784103 0.3226717796 0.0132708183 0.3421977710 0.1041241910 

a2 1 0.2033522271 0.1246992002 0.0019432189 0.0225012340 0.0002018663 0.0227273771 0.0026059392 

a1 0.1386706609 0.0172574502 0.0000159029 0.0000193616 0.0002415064 0.0000013049 0.0002427179 0.0001606628 

a0 0.0012259182 0.0002098152 0.0000019830 0.0000000088 0.0000008700 0.0000000016 0.0000007680 0.0000016400 

y10 

a5 1 1 1 0 1 1 1 0 

a4 0.6778925912 1.2489268998 0.4669077588 1 10.1678115424 2.8874563752 456.6826204285 1 

a3 0.1034473339 1.5270514898 1.5154201059 5.6154548676 26.7957935483 2.4961804940 178.6062121511 2.7366984250 

a2 0.0044574198 0.2505126585 0.1507556211 0.9081818579 32.8319818511 0.3885616676 18.4290042430 0.8939480133 

a1 0.0000142108 0.0122712014 0.0014157508 0.0001173394 6.1339980248 0.0145190679 0.5019425324 0.0952741995 

a0 0.0000005982 0.0008566492 0.0000002274 0.0000153144 0.2456834863 0.0001769231 0.0004975308 0.0031165035 

y11 

a5 1 1 1 0 1 0 1 1 

a4 0.9049849117 0.4975606977 0.1427663052 0 1.2602621676 1 1.5926543722 0.3722848156 

a3 0.6372676372 0.0997878349 0.0046206328 1 1.6580641686 0.1926480226 2.1277577405 0.0373841108 

a2 0.0849876385 0.0028738145 0.0005153596 0.1211725019 0.2558788680 0.0051261064 0.3310813409 0.0006396440 

a1 0.0013767782 0.0003055812 0.0000032551 0.0024834831 0.0037105051 0.0000466205 0.0048703332 0.0000075642 

a0 0.0000040080 0.0000039898 0.0000000085 0.0000015873 0.0000007325 0.0000000730 0.0000022506 0.0000000846 
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Table 45 – Plant 2 – Sub-model 3 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0.0000175239 0 0 -0.0000333074 -0.0000372682 0.0000319584 0 

b2 0 0.0000005680 0 0 -0.0000392829 -0.0000228452 -0.0000190525 0.0010899294 

b1 0.0000665099 0.0000000178 0.0001262609 0.0000331833 -0.0000097290 -0.0000009110 -0.0000011602 -0.0002110223 

b0 -0.0000005132 -05 0.0000175729 -0.0000002939 -0.0000000461 -0.0000000067 0.0000000017 0.0000013831 

y2 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 -0.0016103813 0.0004405647 0 0 0 0 0 -0.0003027473 

b2 0.0019083898 -0.0000036305 0.0004840073 0.0058592297 0 -0.0008393909 0 -0.0000034523 

b1 0.0000090411 0.0000016609 0.0000071425 -0.0000074492 -0.0003246591 -0.0002703587 -0.0001866340 -0.0000047599 

b0 -0.0000000990 -0.0000000097 0.0000000210 0.0000000261 -0.0000004223 -0.0000008478 0.0000006028 0.0000000048 

y3 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 -0.0002043482 

b3 0 0 0.0052484237 0 0 0 0 -0.0022874121 

b2 0.0061340698 0 -0.0095451519 0 0 0 0 -0.0010612134 

b1 0.0000140237 -0.0000801431 0.0061282710 0.0089135247 -0.0021110274 -0.0020838636 -0.0047037902 -0.0000057284 

b0 -0.0000001858 -0.0000004924 -0.0000033103 0.0051078944 0.0000005953 -0.0000009606 -0.0000003227 -0.0000000687 

y4 

b5 0 0 0 0 0 0 0 0.0008202328 

b4 -0.0030490538 0 0 0 -0.0002678044 0 0 0.0001039400 

b3 -0.0030681869 0 0 0 -0.0014278452 0 0 -0.0007550896 

b2 0.0029098675 -0.0000196715 0.0030428617 0 -0.0000045963 0 0 -0.0000441384 

b1 0.0000046170 -0.0000016641 0.0055855208 0.0076101457 -0.0000020413 -0.0009716500 -0.0011924207 -0.0000042160 

b0 -0.0000000679 -0.0000000313 0.0001668090 -0.0000106677 -0.0000000064 -0.0000005271 0.0000003736 -0.0000000104 

y5 

b5 0 0 0 0 0 0 -0.0002883790 0 

b4 0 0 0 0 0.0023714099 0.0027427250 0.0009104693 0 

b3 0 0 0 0.0012924335 -0.0013684009 -0.0015221134 -0.0006148573 0.0017498474 

b2 -0.0156977637 0.0017547171 0.0026802565 0.0006677549 0.0000100803 -0.0000762867 -0.0000342308 -0.0007545139 

b1 0.0007754898 -0.0003634464 0.0000078206 0.0000115395 -0.0000047640 -0.0000047937 -0.0000039121 0.0000023857 

b0 0.0029331458 -0.0000018932 0.0000000138 -0.0000000302 0.0000000017 0.0000000020 -0.0000000012 -0.0000001466 

y6 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 0 0.0002852926 0 

b2 0.0033199036 0.0015373411 -0.0035800828 0.0004254101 0 0 0.0001025960 0 

b1 0.0001184041 -0.0001885723 0.0020361844 0.0000226659 -0.0007031823 -0.0008220264 -0.0003432217 -0.0007390235 

b0 -0.0000003228 0.0000005544 0.0000024102 -0.0000003319 -0.0000000609 -0.0000000370 -0.0000002025 0.0000023095 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0.0970009299 0 0 0 0 0.7354469313 0.2528129462 0 

b2 0.0422178516 0.0224736172 -1.9154960249 0 1.2772605815 0.0526000159 0.0260166174 0.5305425938 

b1 0.0000453325 0.0277576844 -1.9601720792 25.3117557456 -0.0605915309 -0.1091498343 -0.0239855565 0.2047934264 

b0 0.0000115303 -0.0066741618 -0.1568666168 5.3411632263 -0.1313758473 -0.0060268188 -0.0005026206 -0.0859792667 

y8 

b5 0 0 0 0 0 -0.0083261013 0 0 

b4 0.0718807243 0 0 0.0000748122 0 0.6090570143 0.1162237335 0 

b3 0.1855911945 0.0064947786 0.0023654778 0.0000211687 0 -0.6757156899 -0.1278380390 -0.0296744462 

b2 0.0248093522 0.0152618232 0.0000120402 0.0000002983 0.0693444306 0.0002008011 -0.0003207655 -0.0183699815 

b1 0.0001961484 -0.0073695112 0.0000080242 0.0000000788 -0.1007077374 -0.0016791518 -0.0004219872 -0.0004884064 

b0 0.0000019400 -0.0000717456 -0.0000000079 02 -0.0000599623 -0.0000019481 -0.0000017881 -0.0000229578 

y9 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 0 0 -0.0001405224 0 0 

b2 -0.0275423287 0.0005879621 0.0000007831 0.0000000252 0 -0.0000556917 0 0 

b1 0.0047213447 -0.0000178545 0.0000000051 -0.0000000418 -0.0002381400 -0.0000034266 -0.0001410354 -0.0001006227 

b0 -0.0000441181 0.0000017793 04 0.0000000012 0.0000010185 0.0000000137 0.0000002612 0.0000008231 

y10 

b5 0 -0.0000594176 0 0 0 0.0002954625 0 0 

b4 0.0664476649 -0.0013910804 -0.0023953517 0 0 0.0629222633 0.0000711968 0 

b3 0.2247552834 0.0045989169 0.0023891502 -0.0042855275 0.2203472006 -0.0070594978 0.0294013806 0.0348918527 

b2 0.0016409563 0.0027479811 0.0008943826 0.0012466645 0.1562178688 -0.0298472639 0.0002873347 -0.0086190178 

b1 0.0001930643 -0.0014772641 0.0005389002 0.0000429309 -0.2299438601 -0.0014515736 -0.0084886602 -0.0128737798 

b0 0.0000010602 -0.0004231430 -0.0000000678 0.0000000986 -0.0165988601 -0.0000014236 -0.0004700969 -0.0006437994 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0 0 0 0 0 

b3 0 0 0 -0.0001029896 0 0 0 -0.0005288331 

b2 0.0027001630 0.0014687961 0 -0.0000041810 0 0 0.0048142306 -0.0000023269 

b1 0.0000076554 -0.0003705849 01 0.0000014123 -0.0004753838 -0.0013369067 -0.0012253774 -0.0000019404 

b0 -0.0000000454 0.0000002433 0 -0.0000000094 -0.0000002590 0.0000002482 0.0000115119 -0.0000000017 
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Table 46 – Plant 2 – Sub-model 3 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 0 0 1 0 0 

a4 1.9437103443 1.0792119713 0 1 1 0.9072922849 1 0 

a3 0.7143443581 0.0707527664 0 2.1983888194 0.4251510121 0.1091559238 0.2020622332 0 

a2 0.0859927770 0.0078773966 1 0.5297253220 0.0329832869 0.0045115186 0.0102481912 1 

a1 0.0004979633 0.0000061654 0.1356894124 0.0031492844 0.0006812622 0.0000754165 0.0001052777 0.0036092864 

a0 0.0000009085 0.0000006791 0.0011941802 0.0000088090 0 0 0.0000001004 0.0000418789 

y2 

a5 0 0 1 0 0 0 0 1 

a4 1 1 2.1075204692 1 0 0 0 0.1975822494 

a3 0.2564361342 0.0021601916 0.7658630905 13.4277390131 1 1 1 0.0205439005 

a2 0.0046579580 0.0044086048 0.0233969096 0.2240552976 0.1828531210 0.1123260894 0.2374377036 0.0029399411 

a1 0.0000207119 0.0000091743 0.0002014657 0.0000647941 0.0030779313 0.0021939279 0.0023543267 0.0000393287 

a0 0.0000000554 0.0000006354 0.0000002153 0.0000010811 0 0 0.0000046793 0.0000000188 

y3 

a5 0 0 0 0 0 0 0 1 

a4 1 0 0 0 0 0 1 0.9925006063 

a3 0.2154916885 1 1 0 1 1 6.5221993089 0.1425551858 

a2 0.0038821826 0.0824912314 0.5471030839 0 0.2177880861 0.2189989745 1.2682328782 0.0030819964 

a1 0.0000073457 0.0020456550 0.0081355739 1 0.0032679128 0.0034723635 0.0201941630 0.0000197278 

a0 0.0000001312 0.0000006134 0.0000013831 0.0134701790 0.0000013529 0.0000018736 0.0000021755 0.0000001494 

y4 

a5 0 1 0 1 1 0 0 1 

a4 1 0.2702288864 1 0.5666471409 0.1417926749 0 1 0.1952332486 

a3 0.1535808615 0.0430988270 1.8948298151 1.9893123147 0.0040484736 1 0.9194209174 0.0158637915 

a2 0.0025558601 0.0017667511 0.3679234928 0.8345452862 0.0002071486 0.1310004623 0.1310771296 0.0008773493 

a1 0.0000049981 0.0000647373 0.0132345705 0.0115816918 0.0000037175 0.0020809290 0.0018886121 0.0000138640 

a0 0.0000000815 0.0000000308 0.0001292340 0.0000031502 0.0000000095 0 0.0000003708 0 

y5 

a5 0 0 1 0 1 1 1 0 

a4 0 1 1.0808078268 1 0.1356875409 0.1658560715 0.1905169869 1 

a3 0 1.3450114802 0.1294062948 0.1325142579 0.0053589168 0.0110564208 0.0156341499 0.1405678430 

a2 1 0.1387174401 0.0022962383 0.0041750403 0.0004739352 0.0004350384 0.0008724358 0.0017794477 

a1 0.1578057914 0.0030303748 0.0000010316 0.0000233801 0.0000065632 0.0000052534 0.0000115330 0.0000303582 

a0 0.0017228853 0.0000027633 0.0000000182 0.0000000597 0.0000000135 0.0000000063 0 0.0000003377 

y6 

a5 1 0 0 0 1 0 0 0 

a4 1.2633682283 0 0 1 1.0862546737 0 0 0 

a3 0.4565080131 0 0 0.7281657003 1.1533039922 1 1 1 

a2 0.0215590591 1 1 0.0717378832 0.3623527309 0.3105109927 0.3582234572 0.3952098298 

a1 0.0001887205 0.0110687674 0.0177371785 0.0000433089 0.0058685140 0.0049962541 0.0061996472 0.0043662938 

a0 0.0000002882 0.0000139002 0.0000430692 0.0000008697 0.0000012371 0.0000012273 0 0.0000011461 

y7 

a5 1 1 0 1 1 1 1 0 

a4 1.3029538655 1.9091158389 1 32.1874512866 4.1088033657 5.7423226156 4.5673784461 1 

a3 0.8604396958 4.2177240905 4.5948269484 187.1237466730 16.1937504630 11.2783989314 9.0509097484 4.3568320419 

a2 0.0980359743 3.4071816312 11.2353745117 875.9302122263 25.6972487651 8.1087497083 5.8644876839 9.7378446459 

a1 0.0003130028 2.1630282268 9.1694637496 1174.4912737547 14.7783594479 1.3136450563 0.7496808360 8.8452948280 

a0 0.0000250928 0.2708406040 1.1310118916 126.9067017526 1.4978805877 0.0480188375 0.0127866078 1.1226297471 

y8 

a5 1 1 0 1 0 1 1 1 

a4 1.0339842524 1.9127912654 1 0.2230116372 0 12.7467919109 7.2549735463 1.1970907055 

a3 0.2284505932 2.2769193141 0.1170897031 0.0217619164 1 1.4410824244 0.8808461329 0.5890879389 

a2 0.0139786303 1.2995303429 0.0044119139 0.0008039078 2.3675030916 0.0330596082 0.0272952806 0.0641150113 

a1 0.0001146625 0.1562441146 0.0003781282 0.0000628793 0.2714326500 0.0036443081 0.0028805275 0.0019656608 

a0 0.0000009217 0.0013521820 0.0000000640 0.0000000852 0 0.0000017461 0.0000099237 0.0000629548 

y9 

a5 0 0 1 1 0 1 0 0 

a4 0 0 0.1953875742 0.6736834115 0 0.4000706693 0 0 

a3 0 0 0.0078388615 0.2383293498 1 0.0553641531 1 1 

a2 1 1 0.0002745032 0.1205854426 0.1118368532 0.0024845421 0.1069916161 0.1156748743 

a1 0.0000000751 04 0.0000036622 0.0018937306 0.0008161224 0.0000184722 0.0011263857 0.0003763260 

a0 0.0000425295 0.0001452077 0.0000000042 0.0000002790 0.0000027146 0.0000000354 0.0000010150 0.0000048594 

y10 

a5 1 1 1 0 1 1 0 0 

a4 3.3902397213 1.8661201094 1.7012287890 1 7.6019118506 3.2652756085 1 1 

a3 0.4043723931 2.5864514964 2.1031711520 14.9867882816 18.0062174622 2.5258945684 3.2326786915 2.5191818108 

a2 0.0050261507 1.6423202143 1.2714686993 5.7470030424 21.4910426112 0.3688696063 2.2926086962 1.4945664037 

a1 0.0003415775 0.4643899603 0.1226615814 0.1517361862 3.8478500278 0.0116130644 0.3336864832 0.2012598078 

a0 0.0000013223 0.0387077374 0 0.0003111686 0.1535906434 0.0000136045 0.0112262603 0.0063804478 

y11 

a5 0 0 1 0 0 0 0 1 

a4 1 0 0.0434593880 0 0 1 0 0.1750310058 

a3 0.1479431059 0 0.0020290995 1 1 1.9631340720 0 0.0060747686 

a2 0.0027004884 1 0.0000348783 0.1658187045 0.1474516580 0.2991203847 1 0.0006895879 

a1 0.0000060077 0.0138249033 0.0000008874 0.0023489638 0.0022809940 0.0042941403 0.0007605556 0.0000085470 

a0 0.0000001080 0.0000060835 0 0.0000003977 0 0.0000000670 0.0000526818 0.0000000619 
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Table 47 – Plant 3 – Sub-model 1 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0 0 

b4 0.0088265377 0 0 0.1148066535 0 -0.0000617049 0.0056779129 0 

b3 0.0032902506 0 0 0.0774254574 0.0078000437 0.0114822949 -0.0012490954 0 

b2 0.0003150114 -0.0258105881 -0.0757127689 0.0082045612 -0.0019656391 -0.0026171062 -0.0031390142 -0.0029029759 

b1 0.0000041281 0.5849528973 0.0116802676 0.0000282916 -0.0038822835 -0.0048766530 -0.0000017349 -0.0000723765 

b0 0.0000000510 -0.0149272364 0.0061516246 0.0000006085 0.0000001888 -0.0000100091 -0.0000027660 -0.0000069582 

y2 

b5 -0.0039096482 0 0 0.0000258205 0 0 0 -0.0038565107 

b4 0.0707643044 0 -0.1960958602 0.7428811725 0 0 0.0003487225 0.0642953837 

b3 0.0578356360 -0.0493317362 -0.1388095299 0.9875932485 1.1629408914 0.5514690706 0.0578688278 -0.0316719715 

b2 0.0068412453 0.5632949179 0.1393578490 1.2819935417 -0.3309061086 -0.2555883639 -0.0130848198 -0.0149671831 

b1 0.0000518072 1.0262823462 0.8795715778 0.1125098406 -0.3955333648 -0.1413999845 -0.0223051227 -0.0004341016 

b0 0.0000013232 0.0400236244 0.1017949219 0.0002946908 -0.0306112196 -0.0066498750 -0.0021445081 -0.0000348271 

y3 

b5 0 0 0 0 0 0.0010956671 0.0002767085 -0.0079085427 

b4 -0.0009043812 0 -0.2033617575 0 0.1731163471 0.2145907014 0.1398816110 0.1602123021 

b3 -0.1103957089 0 0.1982914405 0 -0.0298955412 -0.0345505893 -0.0497696964 -0.1070915423 

b2 0.3100273231 0.5916043620 0.1365419591 0 -0.0806847628 -0.0977007066 -0.0502784387 -0.0264095833 

b1 0.3099043910 0.6165535354 0.0081760591 16.3121853737 -0.0069315319 -0.0073931353 -0.0026991857 -0.0009044360 

b0 0.0207475447 -0.0671774358 0.0000559529 1.9215007790 -0.0000037294 -0.0000008061 -0.0000020235 -0.0000590189 

y4 

b5 0 0 0 0 -0.0003545851 0 0.0002887180 0 

b4 -0.0195094886 0 -0.2605066146 0 0.0801275690 0.0983953472 0.0697419224 0 

b3 0.0909114681 0 0.0467562611 0 -0.0034139430 0.0083311167 -0.0230844811 0.0321276965 

b2 0.0070711099 0 0.1390273359 0 -0.0564177330 -0.0710786167 -0.0330389274 -0.0642091967 

b1 0.0001939331 2.3949561661 0.0220481508 31.9946799923 -0.0040492612 -0.0077383904 -0.0021999788 -0.0017565333 

b0 0.0000147083 -0.3220977687 0.0008159501 4.6345899078 -0.0000051504 -0.0000016178 -0.0000543340 -0.0001414797 

y5 

b5 0 0 0 0.0015950460 0 0 0 0 

b4 0 0 0 0.6325692292 -0.0002152645 0 0.0232248731 -0.0032027931 

b3 -1.4331843106 0 0 0.2048819219 0.0358501529 0 0.0202420286 0.0111445825 

b2 2.0498547018 0.2388432977 0 0.0169193848 0.0032407326 0 -0.0392489436 -0.0228388709 

b1 0.0000249920 -0.0271222814 -2.3662893349 0.0012400850 -0.0333401267 -0.0465852208 0.0000374170 -0.0005267533 

b0 0.0014582277 -0.0011019907 2.3908854272 0.0000479255 -0.0000261511 -0.0003934891 -0.0000650229 -0.0000585280 

y6 

b5 0 0 0 0 0.0004255303 0 0 -0.0035621339 

b4 -0.0001993029 0 -0.0730081339 0 0.0947819198 0 0 0.6508748026 

b3 -0.0488922018 0.0362862725 0.0429753535 0 -0.0181301911 0.7958644884 1.8474594330 -0.3447143136 

b2 0.1524119450 0.2554372844 0.0685545186 0 -0.0380285671 -0.4378828407 -0.6884694848 -0.0181009459 

b1 0.1609509211 0.0670647409 0.0058467833 4.0285151031 -0.0021521860 -0.1684534920 -0.5956396808 -0.0012913937 

b0 0.0093404961 -0.0079507790 0.0001296385 0.9388559704 -0.0000027027 -0.0006366489 -0.0227983311 -0.0000490580 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0.0003241525 0 0 0 0 0 0 

b3 -0.1306272230 -0.0480606686 -4.1243525373 0 148.1765787534 83.0834925148 0 0.2927647102 

b2 0.1911461735 0.0836295155 -6.1844755747 0 192.2670447375 160.3316323779 0.3376626862 -0.0090080920 

b1 0.6326307601 0.0138171154 -1.1851615513 4.8059581634 -24.4777095916 -26.4063505361 0.0046509577 0.0004088230 

b0 0.0926010159 -0.0045004903 -0.0517847126 0.6320786479 -7.6814565117 -7.9399927693 -0.0145975139 -0.0000544584 

y8 

b5 0 0 0 0.0000919421 0 -0.0017356215 0 0.0125468543 

b4 0 0 0 -0.0058194907 0 0.0322926547 0 -0.0176851611 

b3 0 0 0.0018431750 0.0014470922 0 -0.0044007366 -0.0169669526 -0.0047684193 

b2 0 0 0.0005927737 -0.0000222052 0.0505149412 -0.0502010419 -0.0019167301 -0.0001406101 

b1 0.3536987244 0.5087488668 0.0000004105 0.0000028158 -0.0519237853 -0.0003217669 -0.0000345536 -0.0000134945 

b0 0.0182118185 -0.1263767806 0.0000000174 -0.0000000161 -0.0001548623 -0.0000032684 -0.0000038000 -0.0000002523 

y9 

b5 0 0 0 0 0 0 0 0 

b4 0.0270166590 0 -0.0017986188 0 0 0 0 0 

b3 0.0051171588 0 0.0017198022 0 0 0.0442326090 0.0159780365 0 

b2 0.0002748816 0.0413796129 0.0005921534 0.0000459729 0.1412746290 -0.0672689292 -0.0287456332 -0.0049872295 

b1 0.0000113360 -0.0021155042 0.0000144183 0.0000001023 -0.1283318760 -0.0084394240 -0.0031337366 -0.0001281669 

b0 0.0000004667 -0.0003840880 0.0000000183 0.0000000066 -0.0129213440 -0.0000025141 -0.0000375047 -0.0000117683 

y10 

b5 0 0 -0.0002329884 0 0.0001945052 0 0.0001500766 0 

b4 0.0346272897 0.0000291861 0.0004924264 0 3.1342867044 0.0764542171 0.0314577474 0 

b3 0.0048306266 -0.0130930416 0.0000046642 -0.0001709291 -1.3961641608 -0.0342246943 -0.0048573904 0 

b2 0.0001887476 0.0359678091 0.0000014958 0.0000917689 -0.1070289033 -0.0096250696 -0.0066050925 -0.0029198309 

b1 0.0000162736 -0.0050282540 -0.0000000032 0.0000003677 -0.0026111186 -0.0001302558 -0.0000046493 -0.0000686361 

b0 0.0000002659 -0.0012887783 01 0.0000000414 -0.0001881337 -0.0000060997 -0.0000027361 -0.0000081407 

y11 

b5 0 0 0.0000018737 0 0 0 0 0.0018521551 

b4 0 0 -0.0022431971 -0.0006424568 0 0 0 -0.0067241188 

b3 0.1051089725 -0.0024466439 0.0013955060 0.0003785498 0.0219737666 0.0105784662 0.0245907406 -0.0006535329 

b2 0.1565109935 0.0221512126 0.0004965740 0.0000037643 -0.0125871686 -0.0327703927 -0.0433200762 -0.0000394042 

b1 0.0199789880 -0.0076288055 0.0006027662 0.0000008628 -0.0175910544 -0.0000057333 -0.0005842263 -0.0000016700 

b0 0.0000105473 -0.0002975147 0.0000005740 0.0000000043 -0.0000116030 -0.0000046244 -0.0000309957 -0.0000000149 
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Table 48 – Plant 3 – Sub-model 1 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 0 1 0 0 1 1 

a4 0.5420352999 8.0997348473 1 2.3869080177 1 1 1.4276071350 0.9009321133 

a3 0.0838202251 19.3943925899 3.0050675717 1.2303588213 1.7316577218 1.7515205325 1.1733907369 1.1983509221 

a2 0.0043612914 25.2111950271 7.4568623565 0.0950071648 1.2244885743 1.2245796060 0.0990416196 0.1346417397 

a1 0.0000587865 15.7308369225 2.2305534753 0.0003576191 0.0972009874 0.1019277635 0.0010388924 0.0057199256 

a0 0.0000005338 1.3031046440 0.1472555752 0.0000068000 0.0000082843 0.0001673819 0.0000855731 0.0002286027 

y2 

a5 1 1 1 1 1 1 0 1 

a4 1.0451917605 3.2031584009 20.1809928713 11.4872832543 15.0081649321 6.1080777537 1 2.1473339271 

a3 0.2863526382 7.3152749558 29.8328307695 15.1796611678 28.7770606974 11.7200341127 1.8132397804 1.4128656129 

a2 0.0168520323 7.4044811660 42.1170592104 15.0295527146 22.5011722877 7.2475549629 1.5337793339 0.1576429838 

a1 0.0001565830 4.5760072507 15.8073351046 1.1703213263 4.0495433917 0.9666258010 0.3160632902 0.0066979271 

a0 0.0000027823 0.4637748046 1.1585537176 0.0030872546 0.1769979908 0.0306874812 0.0158200344 0.0002642918 

y3 

a5 0 1 1 0 1 1 1 1 

a4 1 2.3086378016 2.6197167746 1 1.9467407210 1.9249428705 1.8284486520 2.2613972464 

a3 2.1511435309 4.8310667085 2.0764588783 5.8084314488 1.6519098957 1.6363781849 1.3820765884 1.2340026311 

a2 2.6993655636 4.2951520880 0.4342313827 31.9441054075 0.4100443925 0.3913131619 0.2783000212 0.1443269922 

a1 0.7258880651 2.5138165763 0.0203402531 47.9974534683 0.0227740954 0.0197615693 0.0110084894 0.0061252832 

a0 0.0344441703 0.3838913084 0.0001359016 4.6163321593 0.0000096091 0 0.0000091735 0.0002504049 

y4 

a5 0 1 1 0 1 1 1 1 

a4 1 5.3598101911 2.8591708683 1 1.5949844551 1.6933235365 1.5803362173 1.1033836709 

a3 0.2251875118 12.4926620123 2.2417079420 6.0947788633 1.4110055096 1.5059902781 1.0926074734 1.9948612470 

a2 0.0115399278 13.8988482383 0.5201517755 48.6768134884 0.2426325792 0.3074331450 0.1709470658 0.2901370838 

a1 0.0004741857 9.5351062667 0.0439748981 75.3745687858 0.0100503835 0.0158161869 0.0083757216 0.0113091511 

a0 0.0000198659 0.9528042112 0.0012035139 6.7816941578 0.0000124724 0.0000015847 0.0001662860 0.0004545131 

y5 

a5 0 1 0 1 0 1 1 0 

a4 1 1.8713547307 1 2.5629963412 1 1.6082723890 1.6469246769 1 

a3 35.9861829997 2.4200232367 8.0115818562 0.4110356330 1.6494422176 2.1445802043 1.5824570143 1.0549331742 

a2 2.8727792217 1.2142883512 22.9247121578 0.0336515259 1.1331198937 1.3306434961 0.1226738205 0.1036841544 

a1 0.0270069649 0.1171852194 38.8299892996 0.0021348753 0.0831071985 0.1058364062 0.0026080906 0.0046809970 

a0 0.0020173140 0.0026099516 3.2367233062 0.0000625864 0.0000542774 0.0007724304 0.0001979098 0.0001855032 

y6 

a5 0 1 1 0 1 1 1 1 

a4 1 1.9408888239 2.5475515435 1 2.0667435717 7.7306510551 26.6684770842 12.6398839832 

a3 2.2054242323 3.2699327462 2.6900699928 4.7344257284 1.7776267628 14.2375588546 50.1852163500 5.6815009258 

a2 2.9235643324 2.4953574234 0.7930457057 16.8786855124 0.4307778915 8.9368405390 38.6659041382 0.2862004856 

a1 0.8636984246 1.0248401303 0.0542064478 28.2262187579 0.0185694369 1.2133687887 7.8153551784 0.0197788641 

a0 0.0387529528 0.1335654221 0.0010990883 5.1788204688 0.0000232408 0.0040521906 0.2445554744 0.0005477836 

y7 

a5 1 0 1 0 1 1 0 1 

a4 7.3917026348 1 6.8246384925 1 1805.9596748276 948.3495199444 1 2.0734325016 

a3 16.9987542031 1.7392956975 19.3684508878 6.2878992224 4987.4841820789 3052.2536534611 4.7122255119 6.7594093878 

a2 23.8969649199 1.6479796097 20.0938014038 32.9526072471 6129.3282656364 4194.3895596366 9.1929229152 1.2516181780 

a1 9.1460099059 0.6404981404 4.3658855502 50.3521540302 2020.4876010679 1525.4928131253 4.4087552783 0.0506197671 

a0 0.6593463905 0.0561753656 0.2317566708 4.4008996768 136.8468743808 107.0143049482 0.3592429484 0.0023315967 

y8 

a5 0 1 0 1 0 1 1 1 

a4 0 4.8703871565 1 1.9795342521 0 1.7283884398 0.7293039537 0.3090645789 

a3 1 9.2235405981 0.3178278661 0.0925333203 1 1.2818755606 0.1362030777 0.0273547056 

a2 3.9080105692 10.8683050812 0.0231679662 0.0048792004 1.3959563496 0.1097421928 0.0077285200 0.0012071585 

a1 0.5872469870 5.8224828287 0.0000137355 0.0001841375 0.1413582106 0.0008050927 0.0002734883 0.0000684287 

a0 0.0190596374 0.5087515264 0.0000009984 0.0000001778 0.0003862549 0.0000044551 0.0000127238 0.0000009220 

y9 

a5 1 1 1 0 0 1 1 0 

a4 0.3054785764 2.3359906413 1.2335275727 1 0 3.0239267732 2.2490124256 0 

a3 0.0290146519 3.4431425918 2.3802456141 0.4877599682 1 7.1158006163 5.3164043879 1 

a2 0.0012740843 2.5009564719 0.1986109627 0.0319638579 16.9856424413 1.6514622181 1.0697407423 0.1004546643 

a1 0.0000588735 0.4486206167 0.0037346661 0.0000167656 3.4826251058 0.0618429212 0.0476154220 0.0046348653 

a0 0.0000013248 0.0152850975 0.0000000165 0.0000010975 0.1195352183 0.0000220420 0.0004628941 0.0001398355 

y10 

a5 1 0 1 0 1 1 1 1 

a4 0.2745828135 1 0.1118098203 1 151.1456953548 3.7849948084 2.1979487995 1.4822657760 

a3 0.0221439790 1.6428972026 0.0045847365 0.2075031157 29.8362997861 1.2384676028 1.2308065859 0.6134784506 

a2 0.0011753068 1.6807687745 0.0002698688 0.0334946658 1.4454349779 0.0975105773 0.0982558705 0.0673643158 

a1 0.0000625557 0.4229118048 0.0000001560 0.0000824670 0.0528394850 0.0016340659 0.0005112244 0.0031395107 

a0 0.0000008729 0.0247006258 0.0000000091 0.0000131328 0.0019356836 0.0000525676 0.0000404456 0.0001139918 

y11 

a5 1 0 1 1 0 1 1 1 

a4 3.0394706468 1 2.0805845617 1.3188140016 1 1.5831727509 3.1574527976 0.2425215160 

a3 5.9801864243 1.2716332870 2.6792576219 0.2627269411 3.0847056885 2.7941272468 5.8715913401 0.0189393657 

a2 1.4946073937 1.3222869137 1.6037916380 0.0031240341 2.1548732063 0.3706318470 0.9240439721 0.0011378699 

a1 0.0996855891 0.2747634656 0.1994905451 0.0005475502 0.2590855297 0.0004023455 0.0156097946 0.0000334105 

a0 0.0000887906 0.0080078656 0.0001283311 0.0000000980 0.0001393897 0.0000533396 0.0005962020 0.0000002805 
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Table 49 – Plant 3 – Sub-model 2 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0 0 

b4 0 -0.0114852360 0 0 0 0 0 0 

b3 -0.0023079261 0.0164335978 -0.0200895799 0 -0.0004055095 0 0 0.0181282697 

b2 0.0034330665 -0.0007400408 0.0032745330 -0.1003064131 0.0000055145 -0.0001909173 -0.0008010328 -0.0072229269 

b1 -0.0000022186 0.0000079968 0.0000056640 -0.0121859332 -0.0000009959 -0.0000010139 -0.0000814506 -0.0005997186 

b0 0.0000004643 -0.0000006004 0.0000003346 0.0000031483 0.0000000049 -0.0000001336 0.0000000099 -0.0000415031 

y2 

b5 0 0 0 0 0.0001807522 0 0 0 

b4 0.0118910160 0 0 0 0.1033978507 0 0.0003384502 0 

b3 0.0367370167 0 0 0 -0.0548384868 0.1505536789 0.0621832549 0.6615889000 

b2 0.0041981086 0 -0.0578403402 0 -0.0112477858 -0.0724879498 -0.0367419712 -0.2421566706 

b1 0.0000507331 1.9043147866 0.1133910438 -268.0677337434 -0.0000810825 -0.0153807854 -0.0072544176 -0.0635182366 

b0 0.0000003630 0.0932461342 0.0388239502 -182.6822578418 -0.0000001757 -0.0000001261 -0.0000001948 -0.0011890148 

y3 

b5 0 -0.0013114288 -0.0012280469 0 0 0 0 0 

b4 0 -0.0407344766 -0.2003386419 0 0.2348672648 0.2815438819 0.1773960062 0 

b3 0 0.1027854980 0.2070622905 0 -0.1417372042 -0.1366884928 -0.1028141678 0 

b2 0.5890488437 0.2877992619 0.0634013217 0 -0.0474004927 -0.0787310859 -0.0445187150 0.4362402392 

b1 0.1027456076 -0.0092834763 0.0003721147 -4641.7907678691 -0.0030167615 -0.0052771691 -0.0028509980 -0.5250847724 

b0 0.0000590585 -0.0047585806 0.0001144129 -2321.4891731725 -0.0000370251 -0.0000319270 -0.0000225462 -0.0567903099 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 -0.9481559382 0.1527737729 0 0.1280244577 0 

b3 0.1159177449 0 0 -0.2849407076 -0.1020343762 0.1648350547 -0.0846065740 0 

b2 0.0022243464 0.3355772504 0.1051544571 -0.0253977703 -0.0199126161 -0.0738167036 -0.0157495007 0.4383647567 

b1 0.0000564409 -0.0389667947 0.0099810141 -0.0005948706 -0.0000000833 -0.0582736998 -0.0000006280 -0.4579870372 

b0 0.0000008737 -0.0043783719 0.0000692159 -0.0000428554 -0.0000001511 -0.0039496135 -0.0000002129 -0.0692368603 

y5 

b5 0 0 0 0 0 0 0.0005210000 0 

b4 0 -0.0994365257 0.0004990659 -0.0027974626 0 0 0.0495148577 0 

b3 0 0.1868729469 -0.2500369572 -0.6397489267 0 0.0710277604 -0.0480584462 0.0497685957 

b2 0.0881384448 -0.0221563544 0.1808098062 -0.1850037621 0.0685838279 -0.0642340841 -0.0006756610 -0.0480902252 

b1 -0.0000810388 -0.0015063329 0.0010486460 -0.0103702393 -0.0587518169 -0.0021622788 -0.0003030340 -0.0024717538 

b0 0.0000214652 -0.0001630454 0.0001727514 -0.0000000442 -0.0008656014 -0.0000069189 -0.0000062280 -0.0000231190 

y6 

b5 0 0 0 0 0 0 0 0.0004224611 

b4 0 0 0 0 0.1177128734 0 0.0900648011 0.0995328700 

b3 0.3222398244 0 0 -0.3058024990 -0.0310029078 0 -0.0413039318 -0.0336578910 

b2 0.0510489911 0.1865504605 -0.1562780715 -0.1499519708 -0.0470255178 0.1633647422 -0.0257349915 -0.0390018704 

b1 0.0000834190 -0.0107780654 0.1926911970 -0.0041383703 -0.0028027845 -0.1104021718 -0.0018712208 -0.0028855661 

b0 0.0000027520 -0.0015547693 0.0495014336 -0.0000127414 0.0000001237 -0.0129850840 -0.0000016240 -0.0000659441 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 -0.0233585654 0 0 0 0 0 0.0787489714 

b3 0 0.0536869346 0 0 1.9852945801 1.3825742162 0 0.0902797164 

b2 0.0553082773 -0.0044984571 -3.4375137306 0 -0.1738376749 -0.1717429734 5.5515058049 -0.0177177061 

b1 0.0189839789 -0.0012705472 -3.0720065887 -6.0688182519 -0.0757639938 -0.0678536843 -0.0526347885 0.0000962323 

b0 0.0000103471 -0.0000567210 -0.1973736792 -0.7376776812 -0.0002263665 -0.0002855750 -0.1917480314 -0.0000180310 

y8 

b5 -0.0031915945 0.0001144851 0 0 0.0000678504 0 -0.0000048991 0 

b4 0.0178052469 -0.0029515215 0 0 0.0033807883 0 0.0034909828 0 

b3 0.0096293268 0.0089411649 0 0 -0.0062837031 0.0068151145 -0.0052999489 0 

b2 0.0005519233 -0.0032831042 0 -0.0001011497 -0.0001790236 -0.0101345745 -0.0002013563 -0.0101139640 

b1 0.0000018920 -0.0000024212 0.0006209544 -0.0000471890 -0.0000085668 0.0000190508 -0.0000097876 0.0000027954 

b0 0.0000001298 -0.0000105062 0.0000004228 -0.0000002420 -0.0000002434 -0.0000194770 -0.0000003732 -0.0000137105 

y9 

b5 0 -0.0019066345 0 0 0 0 0 0 

b4 0 0.0160506820 0 0 0.0096258192 0 0.0059970572 0 

b3 0.4256979415 -0.0002309334 0 -0.0011503691 -0.0149514719 0 -0.0114628089 0 

b2 0.0418674900 -0.0004550253 0.5745911097 -0.0001716955 -0.0017204902 -0.0291000722 -0.0009102005 -0.1531010564 

b1 0.0001544442 -0.0000041360 0.1003061724 -0.0000014942 -0.0000471916 -0.0019376101 -0.0000154180 -0.0193701613 

b0 0.0000059923 -0.0000030648 0.0000167308 -0.0000000084 -0.0000000182 -0.0000013681 -0.0000000811 -0.0002240421 

y10 

b5 0 0 0 0 0 0 0 0 

b4 0.0009385476 0 0 0 0 0 0 0 

b3 0.0353316364 0 0 -0.0016918754 -0.0044324562 4.4121816527 0 0.2290544383 

b2 0.0020826456 0.0096245123 0 -0.0001836556 -0.0007154779 -2.2816782801 0.5502544024 -0.1121062886 

b1 0.0000151242 -0.0046567497 0.0003037978 -0.0000095520 -0.0000284203 -0.1539641039 -0.2700462580 -0.0069326925 

b0 0.0000001925 -0.0000318107 -0.0000008120 -0.0000000171 -0.0000000439 -0.0000474691 -0.0002450115 -0.0000197075 

y11 

b5 0 0 0 0 0 0 0 0 

b4 0.0907764945 -0.0030141848 0 0 0 0 0 0 

b3 0.0104081107 0.0315345810 0.0005351950 0.0048233699 0 0 0 0 

b2 0.0002632177 -0.0179642877 0.0007609547 -0.0025666591 0 0 0 0 

b1 0.0000183248 -0.0003301155 0.0000041637 -0.0000247112 -0.0502191488 -0.0654406655 -0.0387873745 -0.1513733548 

b0 0.0000001599 -0.0000592867 0.0000000859 -0.0000000645 -0.0004321930 -0.0023742147 -0.0001834978 -0.0025601818 
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Table 50 – Plant 3 – Sub-model 2 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 0 1 0 0 1 1 0 0 

a4 0 1.7259684747 1 0 0.3279144091 0.4688894218 0 1 

a3 1 1.1260394628 1.4849268612 1 0.0186549268 0.1283969563 1 8.6454335141 

a2 0.0624803316 0.0531176183 0.1485259632 2.0340335389 0.0008712436 0.0108422404 0.1124333551 1.1610790672 

a1 0.0000864841 0.0017547225 0.0000747711 0.1661605821 0.0000416539 0.0000870359 0.0046822606 0.0822447156 

a0 0.0000054025 0.0000201649 0.0000067989 0.0000031125 0.0000000539 0.0000071293 0.0000025833 0.0025990330 

y2 

a5 0 1 0 0 1 0 0 0 

a4 1 7.5728156988 1 0 3.7112049665 1 1 1 

a3 0.2513917507 19.5850466537 4.8796669756 1 1.7896117013 4.0708320367 2.9659467266 19.0793252347 

a2 0.0166660767 23.3288115612 8.0944369828 1698.9120211027 0.1311250472 1.9892932469 1.4549352186 10.5895524291 

a1 0.0001780432 16.7660469181 5.9488759717 7144.0268613974 0.0009054390 0.1357568738 0.0996467773 0.9188214656 

a0 0.0000014830 1.7222133878 0.7533237887 3215.5911026662 0.0000020205 0.0000024215 0.0000076016 0.0144357970 

y3 

a5 0 1 1 0 1 1 1 0 

a4 1 1.6833249419 2.0714062343 0 2.2492446529 2.2534504718 2.1719249042 1 

a3 2.6133735853 2.3054162122 1.2315876929 1 1.2419800792 1.4459528846 1.3093402459 4.3111380638 

a2 1.2597102590 1.3919552118 0.1407800628 3405.3155088275 0.1900901710 0.2649167355 0.2214249292 7.8080130436 

a1 0.1099838152 0.3576578743 0.0022065482 15389.6284493676 0.0091846794 0.0126633402 0.0104781508 2.8544726645 

a0 0 0.0224327837 0.0002459237 5031.2740133113 0.0001042294 0.0000734378 0.0000787397 0.1769685932 

y4 

a5 0 1 1 1 1 0 1 0 

a4 1 2.1308549906 1.5539747622 2.0192431458 2.1282038618 1 2.1506927219 1 

a3 0.1200853459 2.6193615051 1.3892146228 0.4820623478 0.6612317669 2.1401587105 0.6524308528 5.3110624680 

a2 0.0024347497 1.6837082748 0.2611270230 0.0337355304 0.0406821123 1.1973227011 0.0396112363 10.3268359313 

a1 0.0000583918 0.2625732519 0.0132765866 0.0009747076 0.0000054761 0.1714696977 0.0000120451 2.7869795133 

a0 0.0000007392 0.0101822982 0.0000857916 0.0000535654 0.0000003014 0.0066737581 0.0000005139 0.1571999631 

y5 

a5 0 1 0 0 0 0 1 0 

a4 1 1.7193729101 1 1 0 1 1.7708805305 1 

a3 1.1808955921 1.0856363618 2.7292406209 2.2364681621 1 1.6379165814 0.1637261397 1.6970780825 

a2 0.0725317278 0.1403677466 0.2268627719 0.3127798050 1.7379775428 0.1643908112 0.0136220648 0.1974406352 

a1 0.0002708010 0.0090832007 0.0040335893 0.0114904886 0.1464856031 0.0037835406 0.0009922651 0.0063898460 

a0 0.0000165779 0.0003042935 0.0001955784 0.0000001968 0.0017413420 0.0000114768 0.0000155046 0.0000522597 

y6 

a5 1 1 0 0 1 0 1 1 

a4 3.9216268673 1.8481040582 1 1 2.6031563748 0 2.5023336579 2.4872027412 

a3 1.5966060996 2.7596054786 3.0261358025 2.2512197064 2.1738927610 1 1.7550131331 2.0885680008 

a2 0.1580762893 1.8704570330 6.2143318557 0.8384293208 0.5160396382 2.6415495300 0.3650426259 0.4942870607 

a1 0.0001645189 0.4939342959 3.5455696662 0.0223064373 0.0226904361 1.2255865369 0.0192397863 0.0289756406 

a0 0.0000145525 0.0240110503 0.4153945616 0.0000682973 0.0000006196 0.0861439240 0.0000166336 0.0005846857 

y7 

a5 0 1 0 0 1 1 0 1 

a4 1 1.3488935314 1 1 17.3122511519 11.9976759084 1 1.9678649967 

a3 1.2997763883 1.1733262941 5.1916183331 5.9068121903 41.8751444681 26.6235248465 49.1040920453 2.8573263468 

a2 0.8915096884 0.3006765964 13.0625851308 40.9277553695 17.4890422688 11.5416867951 124.1685889750 0.4330159321 

a1 0.0902840295 0.0235156591 9.6365956223 64.7360749552 1.2180997818 0.8508099286 56.2837393233 0.0028619843 

a0 0 0.0006524709 0.8875345902 5.0876736612 0.0036442294 0.0034601223 4.0483156997 0.0004282429 

y8 

a5 1 1 0 0 1 0 1 1 

a4 0.5878079185 1.1854260972 0 1 1.1996204165 1 1.3065952789 2.2661203315 

a3 0.0704426256 0.8319660677 1 1.2837134834 0.1424915878 1.5058758877 0.1710408392 2.0483910523 

a2 0.0024833276 0.0823302142 1.5646100368 0.5337851950 0.0043799176 0.1339736421 0.0065749799 0.1726748542 

a1 0.0000153561 0.0032674172 0.1492619064 0.0309051963 0.0001912812 0.0028599411 0.0003072318 0.0027759150 

a0 0.0000005146 0.0002249889 0.0000811123 0.0001526724 0.0000037326 0.0002508342 0.0000076023 0.0002299913 

y9 

a5 1 1 0 1 0 0 0 1 

a4 6.9678913555 0.6308441336 1 5.4247181826 1 1 1 5.7274766296 

a3 1.1110514369 0.1892057190 429.7969223364 1.3000930052 0.1891926947 1.4827973571 0.1530954394 10.2868093798 

a2 0.0449668314 0.0132182148 232.2954426682 0.0667972895 0.0108780605 0.2129262449 0.0066323423 2.1245201115 

a1 0.0002187157 0.0010679454 11.4112771550 0.0004533462 0.0001853873 0.0059830272 0.0000865736 0.0966926808 

a0 0.0000062137 0.0000478641 0.0024048135 0.0000008222 0.0000003511 0.0000060309 0.0000006513 0.0008979680 

y10 

a5 0 0 0 1 1 0 0 0 

a4 1 1 0 10.1405496473 0.7117908588 1 0 1 

a3 0.1553255978 0.7841784974 0 2.0525553745 0.1549288932 217.2563658822 1 15.1369873778 

a2 0.0060111252 0.8766096176 1 0.1527780926 0.0122859480 38.1725859208 43.8167285190 2.4489831736 

a1 0.0000428767 0.1025802201 0.0647889578 0.0052089611 0.0003157011 1.3085218261 4.1749030819 0.0822613150 

a0 0.0000005956 0.0006514557 0.0000127418 0.0000005845 0.0000004819 0.0004162519 02 0.0002399978 

y11 

a5 1 1 0 0 0 0 0 0 

a4 0.2373350513 1.0985346141 0 1 1 1 1 1 

a3 0.0164699107 1.1454248512 1 5.3887026754 1.6002133768 1.7890719964 1.5671613641 4.2944189667 

a2 0.0005203813 0.2211082973 0.0885136946 0.7792755619 2.3833322273 2.4826808752 2.4017021532 7.2901869601 

a1 0.0000259881 0.0078820348 0.0007153449 0.0077667983 0.2868002099 0.3651672206 0.2811487098 0.9442051583 

a0 0.0000001783 0.0006046363 0.0000023497 0.0000156242 0.0021904437 0.0097407334 0.0011857124 0.0133891270 
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Table 51 – Plant 3 – Sub-model 3 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 -0.0007834414 0 0 0 0 0 

b4 -0.0338356492 0 -0.0315665952 0 -0.0000021439 -0.0000192419 0 0.0045153607 

b3 0.0301776976 0 -0.0053121674 0 0.0040476663 0.0032452578 0.0010091304 -0.0016282240 

b2 0.0140949862 0 0.0006274727 0 -0.0022995834 -0.0013931431 -0.0007928835 -0.0009795173 

b1 0.0002560498 0.1059939085 -0.0000548763 2.1151558888 -0.0006188477 -0.0005838876 -0.0008388003 -0.0000011262 

b0 0.0000008188 -0.0004768229 0.0000103432 0.3311729829 -0.0000224284 -0.0000080936 -0.0000005116 -0.0000005073 

y2 

b5 -0.0184846410 0 -0.0002944467 0 0 0 0 0 

b4 0.0810384065 0 -0.0219186891 0 0.0009506876 0.0006431024 0 0 

b3 0.0088632961 -0.0091839383 0.0220363425 0.0004264313 0.1142628429 0.0904472615 0.0466980902 74.8080846124 

b2 0.0008055759 0.0628592683 0.0210985004 0.0642341737 -0.0347750970 -0.0214851714 -0.0136025204 -11.8632378735 

b1 0.0000014403 0.1265192953 0.0006871098 0.0220243148 -0.0354048641 -0.0283541830 -0.0180585215 -27.3714615130 

b0 0.0000000894 0.0072920013 0.0000019087 0.0004261021 -0.0028003152 -0.0024734394 -0.0016085733 -2.7552698413 

y3 

b5 0 0 -0.0038665483 0 0 0 0 0 

b4 0 0 -0.2351553374 0.0000653202 0.3334750819 0.0023662572 0.0015624268 0.0039707882 

b3 0 0 0.1036103206 0.4022769915 -0.0748973720 0.2503254657 0.1508118546 0.2069935964 

b2 0.7610818160 0.0879853685 0.1651986422 0.0707971505 -0.1686508411 -0.0586246364 -0.0416713834 -0.0806495677 

b1 0.0009873382 0.1332497450 0.0141241480 0.0016807930 -0.0155037590 -0.1187766192 -0.0791482395 -0.0860416179 

b0 0.0000586507 -0.0192131380 0.0000099600 0.0000033189 -0.0000063465 -0.0088194219 -0.0059006502 -0.0047182138 

y4 

b5 0 0 0 0 0 0 0.0011738672 0 

b4 0 0 -0.2670754044 0 0 0 0.0649046836 0.0985489683 

b3 0 0 -0.0254540389 0 366.5466737365 0.3576309291 -0.0045028046 -0.0262994496 

b2 0.4676111287 0.0567671619 0.1596314933 16.9692099343 128.2578911893 -0.1924386477 -0.0588573853 -0.0655091469 

b1 0.0305870794 0.1077690557 0.0000037001 3.1760631184 -438.3503112003 -0.1741303201 -0.0024768821 -0.0004834947 

b0 0.0000478667 -0.0207364407 0.0000486728 0.0075766919 -21.9426757804 -0.0065944953 -0.0000523056 -0.0001182751 

y5 

b5 0 0 0 0 0 0 0 0 

b4 0 0 -0.0053917706 0.2905631499 0 0 0.0367873596 0 

b3 0 0 -0.2973991307 0.1573012703 0 0.1276513480 0.0086615083 0 

b2 0 0.0365243746 -0.0374266176 0.0171685033 0.1571108624 -0.1367863356 -0.0471219762 0.7919520356 

b1 0.1315696810 0.0880926956 0.2232469978 0.0000930574 -0.1858893549 -0.0059733543 -0.0003102722 -0.8466611454 

b0 0.0005817011 -0.0201821327 0.0003432590 0.0000097933 -0.0045550288 -0.0004777067 -0.0001379901 -0.0510918158 

y6 

b5 0 0.0000707234 0 0 0.0010990922 0.0007250703 0.0005175091 0 

b4 0 -0.0021435431 -0.0806746116 0 0.1361960283 0.1043612171 0.0615058756 0 

b3 0 0.0006377914 0.0353710261 0 -0.0373723520 -0.0243133637 -0.0170871854 0.0833111531 

b2 0.0815953559 0.0289230789 0.0319658425 0 -0.0554827045 -0.0425548187 -0.0277869460 -0.0263668555 

b1 0.1864655531 0.0573189313 0.0002866695 514.8636293363 -0.0035866558 -0.0031687589 -0.0017197081 -0.0351883223 

b0 0.0115851820 -0.0072259817 0.0000802179 365.3251647928 -0.0000723344 -0.0000358835 -0.0000081742 -0.0021230027 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0 0.0004502139 0.0012719269 0.0007935494 0 0 

b3 0.0500173719 0 0 0.0692417993 0.1612725505 0.1055173894 0 0.4069008106 

b2 0.0045825393 0.0132484841 -2.7496224761 0.0144507119 0.0243388723 0.0185549211 0.3704492862 0.1748114023 

b1 0.0000814015 0.0106539823 -2.0246407717 0.0000311329 -0.0154721412 -0.0133039617 0.0130572166 -0.0468989629 

b0 0.0000003379 -0.0025413087 -0.1399467106 0.0000059129 -0.0010789953 -0.0011855497 -0.0242764892 -0.0033795972 

y8 

b5 -0.0061329133 0 0 0 0 0 0 0 

b4 0.0674823406 0 0 -0.0002233522 0.1161332399 0.0722334552 0.0336153509 0.0226864396 

b3 0.0909113303 0 0 0.0001473781 -0.1337467241 -0.0867857635 -0.0423134413 -0.0428496923 

b2 0.0049449922 0 0.0029813265 -0.0000020191 -0.0055539412 -0.0002096741 -0.0002188660 -0.0001005361 

b1 0.0000110758 0.0194225230 0.0000069287 0.0000003528 -0.0000686603 -0.0001883988 -0.0000794953 -0.0000720798 

b0 0.0000005686 -0.0082295989 0.0000002450 -0.0000000022 -0.0000024656 -0.0000004229 -0.0000004637 -0.0000003046 

y9 

b5 0 0 -0.0000670460 0 0 0 0 0 

b4 0.0428659356 -0.0011640654 -0.0016707917 0 0 0 0 0 

b3 0.0044701796 0.0029307348 0.0020057569 0 0.0237937628 -0.0014162852 0.0087702761 -0.0058547035 

b2 0.0001204638 0.0004043665 0.0006396034 0.0007659521 -0.0621915416 -0.0163681898 -0.0260241408 -0.0135911429 

b1 0.0000099848 -0.0001087345 0.0000321955 0.0000411847 -0.0053259803 0.0000035590 -0.0022290695 -0.0025697199 

b0 0.0000000338 -0.0000015105 0.0000000827 0.0000000495 -0.0000036601 -0.0000189281 -0.0000009189 -0.0001108412 

y10 

b5 0 0 -0.0001871928 0 0 0 0 -0.0002760305 

b4 0 0 -0.0008754998 -0.0000424609 0 0 0 0.0344216368 

b3 0.4770412366 0 0.0007616054 0.0001743711 0.0811476813 0.0472161638 0 -0.0192596998 

b2 0.0427129458 0.0047917692 0.0005645629 0.0000067874 -0.0048425156 -0.0022512850 0.0771350424 -0.0019015794 

b1 0.0010259441 -0.0021258065 0.0000509866 0.0000004324 -0.0232991587 -0.0195810535 -0.0363200351 -0.0000716104 

b0 0.0000021075 -0.0002939552 0.0000000442 0.0000000062 -0.0013160002 -0.0011003716 -0.0035566393 -0.0000025134 

y11 

b5 -0.0074984476 0 -0.0000399708 0 0.0006513002 0 0.0004555181 0 

b4 0.1196562177 0 -0.0078493606 0 0.0695097696 0 0.0251706822 0 

b3 0.0059563206 0 0.0057130378 -0.0021894093 -0.0473057556 0.0391406608 -0.0180913643 -0.0142529372 

b2 0.0002889589 0.0152611939 0.0009538667 0.0012671029 -0.0767660486 -0.1121803292 -0.0300844740 -0.0397909026 

b1 0.0000007541 0.0005537411 0.0012427103 -0.0000023441 -0.0046033002 -0.0067681569 -0.0005399470 -0.0036641346 

b0 0.0000000272 -0.0061921005 -0.0000001013 0.0000001215 -0.0000015056 -0.0000105181 -0.0000292672 -0.0001114199 
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Table 52 – Plant 3 – Sub-model 3 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 1 1 0 0 0 1 1 

a4 10.0743618760 22.3195357228 2.3807299891 1 1 1 1.2426368266 2.8478862808 

a3 3.2669003890 37.5581722754 0.7558476485 10.9508581644 1.4467858531 1.5330178970 1.9584587876 0.8586887061 

a2 0.2654940855 51.8079960721 0.0827640983 73.7523822460 0.3538643391 0.4174437988 0.7402260218 0.0625464979 

a1 0.0039795489 23.6105478840 0.0076051303 106.3817633764 0.0298714886 0.0315086395 0.0565011183 0.0004421940 

a0 0.0000116848 2.0274519205 0.0005964805 10.7222616849 0.0007352679 0.0003637264 0.0000245216 0.0000314724 

y2 

a5 1 1 1 0 0 0 0 1 

a4 0.3064254033 3.3279063067 1.4293206215 0 1 1 1 877.0097335184 

a3 0.0299090799 7.1557031627 1.6174547945 1 1.9140948352 2.0376476667 1.7796079593 2302.5053671870 

a2 0.0016507981 7.1003741540 0.3423169820 2.2021592050 1.5451026108 1.6809645969 1.5387310274 2122.1197711066 

a1 0.0000036660 4.4406647366 0.0097797255 0.6000390521 0.2939022199 0.3369089355 0.3262248811 478.3482993331 

a0 0.0000001985 0.5215519962 0.0000255622 0.0112123588 0.0138955259 0.0167325261 0.0167366249 25.5683792976 

y3 

a5 1 1 1 0 1 0 0 0 

a4 1.2432355983 2.2878429309 2.0270504441 1 1.7883133121 1 1 1 

a3 2.7229958523 4.6901035782 1.8833749371 1.9429153827 1.5628362967 1.7839304864 1.6949184537 1.9194037364 

a2 0.5641778065 4.1244824828 0.4563927422 0.2849638219 0.3881395207 1.5310258606 1.4819354788 1.5884350013 

a1 0.0003168514 2.5428021684 0.0265948288 0.0065140682 0.0225717884 0.3530697158 0.3491997474 0.3173077429 

a0 0.0000638298 0.4085835373 0.0000193856 0.0000134297 0.0000080616 0.0175354047 0.0176110847 0.0127228591 

y4 

a5 1 1 1 1 1 1 1 1 

a4 1.8176546621 2.5246325958 1.7728054806 4.2139327200 2888.1017115377 3.5316298469 1.4503840695 1.7439677312 

a3 2.4166150798 4.5521251244 1.5524816256 42.2623597151 4331.3758213331 5.3257134355 1.2346945258 1.2868243207 

a2 0.3995741933 4.0895213119 0.1753820414 65.7577245736 4421.8239154723 2.8045059616 0.1799405931 0.1418375468 

a1 0.0162002038 2.0435529055 0.0004765443 7.1659258228 688.9334662087 0.3488662655 0.0063822833 0.0031768415 

a0 0.0000158008 0.2082186948 0.0000536776 0.0171750961 22.9831825695 0.0095397551 0.0001130320 0.0002328264 

y5 

a5 0 1 0 1 0 1 1 0 

a4 0 2.8209609881 1 2.5379894457 1 1.9535917224 1.5051624825 1 

a3 1 4.6684291569 2.9443368004 0.5682052084 1.8589399057 2.3570512483 1.1708846096 14.9612715849 

a2 0.8628689758 4.3036295632 2.3317549959 0.0346934996 2.2030809228 0.3057810875 0.1096919050 19.6177188069 

a1 0.0717501875 1.8493013335 0.2143933291 0.0003273922 0.2432045354 0.0165932925 0.0040901254 2.7837558904 

a0 0.0002858408 0.1493587927 0.0003350367 0.0000191659 0.0045366420 0.0006606032 0.0002827755 0.0951420273 

y6 

a5 0 1 1 0 1 1 1 0 

a4 1 2.6525240745 1.9575012423 0 1.9076335660 2.0002483172 1.8629682761 1 

a3 1.5120611823 5.3008584329 1.7936829623 1 1.6856787667 1.7683788805 1.6734046610 2.1690679258 

a2 2.0616541162 5.1728427996 0.3285743034 2346.8953679495 0.4101603761 0.4476076169 0.4190578610 1.9663779107 

a1 0.6069485517 3.2679630391 0.0065131391 9581.9363781622 0.0216427093 0.0250991244 0.0198776847 0.4731496483 

a0 0.0277187089 0.6609924080 0.0007791340 4451.3530379269 0.0003959710 0.0002672234 0.0000930676 0.0212815222 

y7 

a5 0 1 0 0 0 0 0 1 

a4 1 1.6550176194 1 1 1 1 1 4.6063138578 

a3 0.2484307556 3.2348714335 4.3351093896 2.2970187596 1.9415969650 1.9529978584 4.6394969994 10.0356624239 

a2 0.0157165059 2.3118883799 10.4245591662 0.2428666730 1.3642438970 1.4659156708 8.9055200257 8.5564226519 

a1 0.0002446194 1.2444913235 6.6850430803 0.0009448162 0.2179783555 0.2664712796 4.7599487810 1.4836220101 

a0 0.0000007919 0.1354913470 0.7099741284 0.0000997273 0.0085959504 0.0122783426 0.4365046410 0.0567851754 

y8 

a5 1 0 1 0 1 1 1 1 

a4 0.7400256815 1 0.4380010397 1 2.9973293627 2.4032097350 1.9122620070 1.6508469249 

a3 0.0997378266 2.9765392495 1.6446002301 0.0599332589 0.4053510814 0.2597754241 0.2124547192 0.1613104735 

a2 0.0034288142 3.2691971293 0.1868047340 0.0029567707 0.0125427085 0.0052866947 0.0044522173 0.0035389580 

a1 0.0000113145 2.0357321967 0.0005748348 0.0001525765 0.0002070692 0.0005487653 0.0003911328 0.0002696587 

a0 0.0000003799 0.2036518082 0.0000156348 0.0000000899 0.0000044013 0.0000003166 0.0000016728 0.0000012668 

y9 

a5 1 1 1 0 1 1 1 1 

a4 0.1838661485 1.2395827145 1.1087673084 1 1.8338607997 0.9436008867 1.7472743539 1.7043842367 

a3 0.0105930448 1.3779075374 1.8226076098 16.3617758085 4.6971194602 1.7607926589 4.2801811327 2.0247788214 

a2 0.0004103052 0.4540738570 0.2506308915 3.1126787162 0.8682593271 0.1417280586 0.8012335813 0.5126643830 

a1 0.0000183994 0.0438305128 0.0089262734 0.1797342025 0.0322600152 0.0019764066 0.0296732771 0.0439373167 

a0 0.0000000168 0.0004600290 0.0000192615 0.0001831791 0.0000277081 0.0001579702 0.0000166244 0.0011323786 

y10 

a5 1 1 1 0 0 0 0 1 

a4 10.0303256873 2.2527884640 0.7882580906 1 1 1 1 2.8224679454 

a3 1.9397990796 3.0374012638 1.7260037312 0.3784133174 3.3957164524 3.0819720997 2.6836894774 0.5743383799 

a2 0.1124659418 2.3487844871 0.3131519759 0.0049896221 2.1726035878 2.2550391929 6.8856017745 0.0361704014 

a1 0.0021508744 0.5854890757 0.0152863809 0.0009263826 0.2965492054 0.3182377942 1.3797697118 0.0013404049 

a0 0.0000037509 0.0345366390 0.0000232236 0.0000026920 0.0097508915 0.0105023650 0.0599055159 0.0000322227 

y11 

a5 1 1 1 1 1 1 1 1 

a4 0.1714470632 2.8163149122 2.4402934066 1.0261510926 2.6453699072 1.9090442353 2.1040198687 1.7556032618 

a3 0.0085089835 4.9443255372 2.6590151022 5.0872864567 2.3284920247 3.9495940648 1.9640064592 2.0503307718 

a2 0.0003015557 4.5024750324 1.7287019667 1.2064381705 0.3923757289 0.7626984824 0.2587946022 0.4111607399 

a1 0.0000008950 2.2964122956 0.2043876559 0.0000675194 0.0151765909 0.0295677865 0.0056739749 0.0266174254 

a0 0.0000000301 0.3523913633 0.0000001234 0.0000160119 0.0000042734 0.0000474080 0.0002143944 0.0006288629 
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Table 53 – Plant 4 – Sub-model 1 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 -0.0003398582 0 0 0 0 0 

b4 0 0 -0.0128412996 0 0 0 0 0 

b3 0 0.0026264473 -0.0037183714 0.0006134323 0.2000838754 0.2266069046 0 -0.0065871858 

b2 0.0061243144 0.0831890611 0.0031908585 0.1497157262 -0.0927013696 -0.0854313423 0.1540238991 0.0000465880 

b1 0.2244401151 0.0410823410 -0.0000067821 0.0774527353 -0.1905269933 -0.2119712587 -0.1016525640 0.0003774270 

b0 0.0819371965 -0.0172775025 0.0000055159 0.0074412121 -0.0082899544 -0.0140656791 -0.1409328227 0.0000310042 

y2 

b5 0 0 -0.0003021472 0 0 0 0 0 

b4 0 0 -0.0512095361 0 0 0 0 0 

b3 0 0 0.2803122228 0.5417407438 0 0 2.4538636436 -0.0942408770 

b2 25.7075822962 0.7998142125 0.1452219134 0.4910952854 1.0061286592 1.2620750798 -0.9043532802 0.0244584000 

b1 55.7570703564 0.5160450721 0.3845366713 0.4607010355 -1.2777362802 -1.5163945644 -2.6360488410 0.0157011996 

b0 11.9648468751 -0.1907211448 0.0576317456 0.0003823091 -0.4580917922 -0.5068752753 -0.3408726849 0.0007352902 

y3 

b5 0 0 0 0 0 0 0 0.0127278626 

b4 0 0 0 0 0 0 0 -0.0428284385 

b3 0 0.8034483315 0 2.7781586283 11.7045942151 0 1.7812271397 0.0025038550 

b2 0.4162919516 0.3276532755 2.0151904942 3.5419922850 6.3441837096 6.9348203850 -0.3094577362 -0.0161289950 

b1 7.6014871675 -0.4052022066 1.7057527905 2.8822344228 -22.6724407442 1.8900124851 -1.6807697765 -0.0034702875 

b0 1.0729820159 -0.0479669569 0.5269880492 0.4324463116 -0.4187732684 -12.5499752187 -3.6163840643 -0.0000593525 

y4 

b5 0 0 -0.0014093235 -0.0000116922 0 0 0 0.0067977883 

b4 0 0 -0.1165209181 0.7575281282 0.0007740098 0 0 -0.0025527132 

b3 0 0.5351739296 0.3163992407 3.3189244621 0.1273603186 0.1280274375 330.7636535001 -0.0457772012 

b2 2.6421893073 -0.1371362948 0.1646189750 4.6100959103 0.6845088906 0.8322515018 379.6819497745 -0.0005222381 

b1 4.4165018718 -0.1306128933 0.0075591955 1.5666867430 -0.7769205868 -1.1016578108 -1029.7347565748 -0.0196991917 

b0 0.9612782594 -0.0016481139 0.0001466214 0.1715775790 -0.6867056662 -0.4602403714 -76.3813793547 -0.0002068662 

y5 

b5 0 0 0 0 0 0 0 0.0063662791 

b4 0 -0.0016245740 -0.1860813615 0 0.0000237138 0 0 -0.0346477925 

b3 0.0053895371 0.0483617033 0.2140502433 0 0.2389612908 0 0 0.0040165453 

b2 -0.8376299223 0.1526180904 0.1505437602 864.9228577558 -0.3497851651 0 -0.1792667512 -0.0103420215 

b1 2.0313675005 -0.0978635515 0.0023302227 538.6023498569 -0.0000512058 -0.9029434218 -0.2581992596 -0.0003131471 

b0 0.7146459775 -0.0032493318 0.0000080778 33.2321870313 -0.0000042460 -0.0124842603 -0.0456436148 -0.0000346203 

y6 

b5 0 0 0 0 0 -0.0000378755 0 0 

b4 -0.0023199932 0 0.0001513809 0 -0.0147384266 0.1525516448 0 0 

b3 0.3083462785 0.3604294067 0.1280724574 -0.0004423233 1.6638619913 1.6391517611 1.2095534113 0 

b2 -0.0498637629 0.3249959981 0.1188537356 0.5079953789 -0.5572261664 -0.2339821176 -0.7101241574 -0.0008121933 

b1 7.0275456640 -0.2098827211 0.1892933991 0.9604068347 -1.4067286888 -1.3697314009 -0.8339964915 -0.0000421838 

b0 4.6456963606 -0.0361146598 0.0343235710 1.5900767538 -1.0237564982 -0.8606980441 -0.7551138863 -0.0000011240 

y7 

b5 -0.0090660443 0 0 0 0 0 0 0 

b4 0.1361154939 0 0 0.0001145976 0 0 0 0.0007311580 

b3 0.0022618497 0.1332832943 0 0.2100079488 0 0.3988102577 0.2078353239 2.1279349046 

b2 0.0003617123 -0.0798180321 -4.1525012819 0.4952729480 0.6536951406 -0.2925474588 -0.1455037857 0.2462434441 

b1 0.0000061067 -0.0029373397 -5.4899970700 0.8227220641 0.0720564407 -0.0527760191 -0.0108792681 0.0132675641 

b0 0.0000000244 -0.0000698705 -0.4665294065 0.1110047450 -0.4805551391 -0.0004983488 -0.0000340141 0.0003645931 

y8 

b5 0 0 0.0000597834 0.0007357677 0 0 0 -0.0018952202 

b4 0 0 0.0379109711 -0.0096537698 0 0 0 -0.0209951969 

b3 17.9085383789 0.0502573669 -0.0281694100 0.0030610460 0 0 0.0550107877 0.0150684643 

b2 14.2989020973 -0.0378907289 0.0190454649 -0.0003417507 2.4344135378 4.5893289523 -0.1856982552 0.0137340047 

b1 0.0413756694 -0.0401359615 -0.0065323388 -0.0000026770 -6.8225717849 -11.9956767385 -0.0055775454 0.0014356325 

b0 0.0353942091 -0.0003006556 -0.0001084591 -0.0000000649 -1.1151799933 -2.1266618392 -0.0000327975 0.0000295554 

y9 

b5 0 0 0.0000153605 0 0 0 0 -0.0016968762 

b4 0 0 0.0433638547 0 0 0 0 -0.0523684977 

b3 0 0.1216246751 -0.0315856378 -0.0208308522 -0.1258832777 -0.0004202275 -0.0155618198 0.0230860542 

b2 0 -0.1731245054 0.0228995092 0.0061303242 -0.0471205992 1.4952302455 -0.0085044686 0.0251735267 

b1 5.8587166577 -0.1040261685 -0.0107070135 -0.0006162257 -0.0040961430 -2.1842165275 -0.0007288477 0.0001947329 

b0 1.2572294049 -0.0042478468 0.0000639651 -0.0000083170 -0.0000162427 -0.1852276197 -0.0000000692 0.0000114825 

y10 

b5 0 0 0.0001623035 0 0 0 0 -0.0018353810 

b4 0 0 0.0673089495 -0.0000705401 0 0 0 -0.0511717960 

b3 0 0 -0.0478286314 0.0364262148 -0.0006138581 0 0 0.0566271846 

b2 67.3228702090 0 0.0354885129 -0.0568154112 4.8151792017 7.2711146122 -0.1444461821 0.0265605461 

b1 65.1898780482 -0.3766336028 -0.0149266589 0.0251602309 -5.0707628558 -23.3401941305 -0.0943238049 0.0001725883 

b0 6.1194779458 -0.0295829676 0.0000269414 -0.0002475046 -0.2711509269 -1.0229894540 -0.0080360579 0.0000098536 

y11 

b5 0 0 0.0000729156 0 0 -0.0001046413 0.0000790164 -0.0007400098 

b4 0 0.0009572892 0.0335610378 0 0 0.0420177578 -0.0089247789 -0.0458348978 

b3 34.7328738569 0.0360991818 -0.0204032260 -0.0123940750 0 0.0061682197 -0.0056313028 0.0217620767 

b2 149.7146353288 -0.0217138523 0.0177874122 0.0036153116 -0.1061529931 -0.0998908739 -0.0004151771 0.0061949148 

b1 211.9329117753 -0.0379328131 -0.0067663973 -0.0004301009 -0.0449717204 -0.1068282487 -0.0000038389 0.0059083117 

b0 7.9725150141 -0.0016385502 0.0000512682 0.0000001888 -0.0024735329 -0.0071522208 -0.0000000153 0.0002043971 
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Table 54 – Plant 4 – Sub-model 1 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 0 1 1 0 1 1 0 1 

a4 1 1.4310356657 1.5300342720 0 7.5664111867 6.7517748643 1 1.1968113695 

a3 1.5051111115 7.5700842960 1.0963742323 1 12.7208676101 12.0716958067 7.5024400032 3.3962490304 

a2 7.4169785709 5.8684641201 0.1409186049 2.9016356768 44.1303902649 39.0577980873 12.1557370115 1.9926054656 

a1 7.7931002049 4.1895987456 0.0018661321 1.1071529227 8.0526663279 8.1744919072 43.7226058855 0.1817518562 

a0 0.7434371304 0.6012698262 0.0002357837 0.0906439202 0.2635752321 0.3622728472 5.6493230391 0.0072951879 

y2 

a5 1 0 1 1 0 0 1 1 

a4 24.9192674822 1 1.4556148667 2.0640118257 1 1 9.6736345825 0.9444083596 

a3 39.0330191398 4.5616318581 7.4292535253 8.5341879776 2.9848768579 2.7533134574 16.8866948666 4.6431892700 

a2 170.4561979683 6.0458689893 5.7854794915 6.4780560205 8.7681958480 8.5748965244 61.6221913792 2.6698502243 

a1 135.1313777736 4.4245277880 4.3381063811 3.7353562555 16.4440816855 14.8825350401 24.9285950267 0.2794188537 

a0 11.6522745734 1.3548231433 0.4679873303 0.0030049472 1.9224797160 1.6806460932 1.8111710258 0.0089944397 

y3 

a5 0 1 1 1 1 0 1 1 

a4 1 2.2235090102 1.5893511178 2.9477449893 17.3650717970 1 3.9764398975 0.6696306549 

a3 1.9198606205 4.1445082185 9.8664684038 9.9602199460 29.8171970838 8.5546248222 13.5568590279 1.3957643639 

a2 7.6364848442 2.5444676306 8.3635074670 8.9028131896 112.4565817953 16.8347496654 26.5294376475 0.4030660559 

a1 9.6414558468 1.2321880609 4.7155359059 5.1896611052 61.0371653104 52.6562397855 30.2499309752 0.1150427621 

a0 1.0392233352 0.1216400926 0.8153013200 0.6679085620 1.0658437748 26.5303460717 11.4829845836 0.0019393849 

y4 

a5 1 1 1 1 0 0 1 1 

a4 2.0451027987 2.3869909926 1.5595698955 3.0931794755 1 1 1540.5467235021 1.0504385254 

a3 8.4148592758 2.0656313608 1.0638060472 8.2370461169 1.7717729840 1.3771657499 1692.8621395940 1.7257225360 

a2 11.5553478853 1.1132392951 0.1914516807 6.5540534108 7.3734374784 7.0621753652 9842.6140330749 0.7519770527 

a1 6.7932215235 0.1933147877 0.0078128713 1.8282749101 7.1975155934 4.8837683753 3173.3688805233 0.2381913576 

a0 0.7569482897 0.0023103117 0.0001390057 0.1616522463 1.2763815793 0.7068522318 173.6876366201 0.0023958705 

y5 

a5 0 0 1 0 0 1 1 1 

a4 1 1 1.6536260237 1 1 1.5200038855 1.0248247799 0.6105907366 

a3 1.2717583562 0.8247667431 0.9099498559 561.6705535950 3.4260892405 6.6818758076 5.7851659695 0.4929077323 

a2 7.6643313092 0.6116011208 0.1103990847 2116.3690068822 0.4909558345 7.8799568053 4.0837687143 0.0887919200 

a1 4.5480104264 0.1007742127 0.0015616005 465.2998285062 0.0000610418 1.1516158362 1.0467712581 0.0040572789 

a0 0.4417052223 0.0025655637 0.0000052608 21.5096342472 0.0000087122 0.0141489770 0.0778441036 0.0002478887 

y6 

a5 0 1 0 0 1 1 1 1 

a4 1 2.4722993181 1 0 5.5310082166 4.2915726868 5.1174385867 0.5455877402 

a3 4.8422964324 5.2838349997 2.5773991590 1 13.6855997346 11.7726089219 12.7690686626 0.4060343822 

a2 10.7849311103 3.8287974090 2.2889499243 3.2412553170 35.0939815038 25.8040893288 32.0646416746 0.1127666741 

a1 30.0232912374 2.0058289341 1.5437144273 7.3288534454 23.0308253221 17.2165748405 19.4851729110 0.0155963146 

a0 13.0157871611 0.3185325008 0.2054692391 6.0368993544 8.0518188585 5.5549924748 7.3843111007 0.0003694925 

y7 

a5 1 1 0 0 0 1 1 0 

a4 0.6876230199 1.6756014279 1 1 1 1.2351969108 0.8781266014 1 

a3 0.0144901228 1.5191109203 7.5004446872 2.5382487046 4.4741645112 7.6073840964 7.2235453449 52.5914111217 

a2 0.0016588350 0.6240684587 20.1860222632 6.5936670137 10.4438953587 4.9782043358 3.0632089524 15.5564218341 

a1 0.0000284225 0.0198395409 22.2301944851 5.1310146112 24.6285626282 0.5104835662 0.1636455799 0.6417332982 

a0 0.0000001178 0.0004464652 3.3288044173 0.5144525226 5.5131859016 0.0046414989 0.0005307659 0.0324638587 

y8 

a5 0 0 1 1 1 1 1 1 

a4 1 1 2.2834285098 0.7361934238 23.2917737232 32.9978236388 0.5227568859 1.0198573960 

a3 128.1096262889 0.8751229881 3.3655508539 0.6682385593 28.0097801648 35.8459226914 7.4915580779 1.6201772496 

a2 13.5265784174 0.5984408253 1.9815801894 0.1293683913 180.2463157736 248.0431429582 1.2235727340 0.2400528614 

a1 0.3135662275 0.1269642665 0.7018978009 0.0018210495 62.9416337527 95.4629104453 0.0316386306 0.0146339974 

a0 0.0331020382 0.0009331525 0.0556494005 0.0000137470 4.4360274053 6.9432224419 0.0001739910 0.0002517855 

y9 

a5 0 1 1 1 1 0 0 1 

a4 1 2.8774817779 1.9975628151 1.8196117710 4.9313265380 0 1 1.2301641696 

a3 3.5201045868 3.7468674675 4.3108201672 3.2190756211 3.1124754464 1 0.6121829692 2.6663573679 

a2 11.3523377538 2.1082986490 2.1957117712 1.7278428156 0.7998668610 38.2894970079 0.1961658126 0.1833966924 

a1 25.0589286693 0.6859999002 1.0858653720 0.8101479707 0.0429804975 29.8038380497 0.0099224608 0.0025313115 

a0 1.4576923813 0.0433312827 0.0680591883 0.0635245170 0.0001539894 1.4326232980 0 0.0000768671 

y10 

a5 1 1 1 0 0 1 1 1 

a4 41.2042469847 2.4807062576 2.1980315679 1 0 45.8230933608 0.8453182590 1.1850543188 

a3 63.8444072346 4.5163979514 4.1805006285 1.9839329158 1 46.1892874631 7.1370768490 2.1443668352 

a2 315.6983962985 3.2473817181 2.4893141183 5.3268249579 78.5738755642 337.7444740749 4.3791286011 0.2301741438 

a1 130.6710120510 1.5053378891 1.1305768600 2.2893753643 54.6137403074 186.6457409890 1.4793886529 0.0021791498 

a0 8.0034594481 0.2062010642 0.1290836933 1.6365915579 2.3555441659 6.8531784035 0.0946428037 0.0000843941 

y11 

a5 1 0 1 1 1 1 1 1 

a4 260.8351402455 1 2.5764525272 1.8237906488 0.9793158125 1.4720493588 0.6900284371 2.2385459695 

a3 393.1079848084 1.3496743573 4.7770743975 3.2916129883 7.1836393602 7.7188944322 0.2690712825 2.8832684043 

a2 1842.8222284170 1.1241107640 3.3773118116 1.9257851593 4.9083162804 6.3283392895 0.0253552301 1.2886171481 

a1 1219.8069608713 0.4305083699 1.4473429964 0.9518143485 1.6308112659 2.9145371304 0.0002421833 0.2808015387 

a0 56.5483776673 0.0704681441 0.2634815830 0.1329023561 0.1174621380 0.2686299870 0.0000011356 0.0112495218 
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Table 55 – Plant 4 – Sub-model 2 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0 0 0 0 0.000020134 0 

b4 0 0 0 0 0.000398466 0 -0.000253251 0 

b3 0 0 -0.016552550 0 0.028233280 0.038338952 0.021505330 0 

b2 0 0.017324224 0.001243825 -0.286556622 -0.021709531 -0.019850048 -0.024328851 0.005571739 

b1 0.187354964 -0.000615082 0.000001331 -0.279151750 -0.006362923 -0.005460434 -0.007417424 -0.009454404 

b0 0.117539195 -0.000033825 0.000000067 -0.026286594 -0.016748395 -0.023513438 -0.012496691 -0.000058000 

y2 

b5 0 0 -0.000992203 0 0 0 0 0 

b4 0 0 -0.044847668 -0.000650215 0 0 0 0 

b3 0 0 0.230055145 -0.087834093 3.365738095 3.840124179 0 0 

b2 -2.721084069 0.865450417 0.128942070 -0.280526177 -0.075041139 0.232888468 5.280777808 1.106749294 

b1 28.228443970 0.734234202 0.225632437 -0.355028683 -3.037570876 -3.414341381 -5.918539823 -2.439108668 

b0 9.380630893 -0.087626109 0.031206352 -0.137135776 -0.531898708 -0.568287580 -2.975087155 -0.942868497 

y3 

b5 -0.000288070 0 -0.000708641 0 0 0 0 0 

b4 -8.404214968 0 0.344635989 -0.632772900 0 0 0 0 

b3 -2.201790633 0 0.201747030 -1.591418165 0 8.997036494 0 0 

b2 -18.619039587 2.493145331 0.163903268 -2.905762632 6.636939676 3.886581081 5.467507154 8.799422737 

b1 42.666357426 0.653827569 0.025912555 -1.229162998 0.611751935 -13.351718221 -2.946356692 -7.588377190 

b0 4.988559096 -0.742737930 0.000010826 -0.163368405 -8.712412784 -0.672290136 -10.620238264 -11.247295234 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0 -0.005075221 0 0 0 0 0.158245263 0 

b3 0 0.135902136 0.342530255 -2.286229542 2.374566997 0 0.433503171 38.802114210 

b2 -3.640525174 0.378274122 0.172379711 -1.003089457 2.817821496 1.200868568 -0.727727973 34.565391161 

b1 11.778151454 -0.210310766 0.002206556 -0.000377990 -6.851112672 -0.888637215 -0.046948568 -81.852410727 

b0 6.012223086 -0.003649170 0.000024255 -0.000016897 -0.182734989 -0.883163630 0.000000373 -4.184882375 

y5 

b5 0 0 0 0 -0.013220103 0 -0.000124625 0 

b4 0 0 0 -0.017288467 -0.052489913 0 0.322091884 0.063592690 

b3 -1.481769722 0.080811039 0 -1.807610924 0.517819136 0 -0.172292828 0.451915138 

b2 3.952607982 0.252226840 -3.594827720 -1.010538566 -0.336570009 3.160829218 -0.015876245 -0.225946188 

b1 2.264843382 -0.158864805 8.187266069 -0.003043626 -0.270145255 -3.735341903 -0.228937292 -0.364031011 

b0 0.040528344 -0.000030858 1.727094588 -0.001242047 -0.080725222 -0.015407947 -0.035522311 -0.019985269 

y6 

b5 0.000036940 0 -0.001449310 0 0 0.000484671 0 0 

b4 -2.604864330 0 -0.062398768 0 0 -0.033523762 0 0 

b3 -0.303295663 -0.094776080 0.256759991 -759.659696318 2.001165157 2.399680445 1.415256942 0 

b2 -4.834292297 1.196258859 0.164628817 -1923.836572512 -0.030360071 -0.283507337 -0.246597522 2.837830699 

b1 13.504113372 0.348560145 0.385646965 -4170.655896022 -1.152253231 -1.123757395 -0.730834621 -2.890640310 

b0 1.050338099 -0.294299778 0.055726739 -3233.361033751 -1.306927760 -1.343330355 -1.151170219 -3.346119749 

y7 

b5 0 0 0 0.000067535 0 0 0 0 

b4 -0.007896849 0 0 -0.157239196 0 0 0 0 

b3 -0.013725628 0 -0.003744419 -0.392445952 1.811977317 1.376070441 19.587758301 150.059910434 

b2 -1.882524837 0.123266508 -1.045284110 -0.565424589 1.918348392 1.331058074 23.116935986 110.209136021 

b1 4.333998709 -0.055880291 -0.320476857 -0.074653627 -1.817935398 -1.427606894 -18.388019412 -91.844473398 

b0 1.493673276 -0.001530425 -0.013988412 -0.002501885 -0.176023772 -0.152423594 -1.557455026 -7.369667139 

y8 

b5 0 0 -0.000428915 -0.000028577 0 0 0 0 

b4 0.003913878 0.045940768 0.025060668 0.008665487 0 0.004493123 0 0.043332970 

b3 0.851827750 -0.014504984 -0.012304510 -0.031069765 0 0.059106312 0.000348493 0.020428109 

b2 0.398792899 -0.041282418 0.007126912 0.047387631 0 0.065580814 2.054366923 -0.121658832 

b1 0.000895513 -0.002459604 -0.003049851 -0.016290545 -1.342656433 -0.167984245 -0.182365016 -0.018365256 

b0 0.000285409 -0.000082596 -0.000165065 0.003336871 -0.156209515 -0.023576287 -0.413165641 -0.000152034 

y9 

b5 0 0 -0.006859859 0.001638864 0 0 0 0 

b4 0 0.002676969 0.003973951 -0.040680559 0 0 0 0 

b3 0.051253706 0.138678474 0.054254234 0.042974061 326.991042408 0 141.049515193 0 

b2 2.738075235 -0.079582091 -0.030788232 -0.018242320 -56.664784351 -0.387838936 -42.870578290 -0.671622415 

b1 0.683826683 -0.061156419 -0.002638117 0.003895792 -499.485142786 -0.029742435 -189.526441720 -0.488930380 

b0 0.000796265 -0.002280053 0.000007710 0.000039884 -27.770727946 -0.000511909 -8.776884638 -0.034666712 

y10 

b5 0 0 -0.006732359 0.000910821 0 0 0 0 

b4 0 0 0.018792610 -0.039032741 0 0 0 0 

b3 0 0.255528325 0.026313518 0.039624143 177.506870197 264.668137945 164.708034361 0 

b2 1.942284664 -0.156057225 -0.015596000 -0.015924758 15.918746076 43.259711996 20.932624930 0 

b1 1.381763247 -0.209529624 -0.002359208 0.002966423 -268.569945534 -446.903410912 -229.275929849 0.122426515 

b0 0.131628415 -0.014868771 -0.000028744 0.000121203 -5.775022774 -12.201842980 -14.778815772 -0.307239978 

y11 

b5 0 0 -0.002964140 0.001180279 0 0 0 0.000900129 

b4 0 0 0.020153004 -0.020010414 0 0 0.204262018 0.153827858 

b3 0 0 0.002735912 0.020599348 0 0 0.262111201 0.172951116 

b2 1.154000686 0.150186624 -0.002623776 -0.008345722 0.243644898 0.293257062 0.223318123 -0.026204126 

b1 0.723818592 -0.284093499 -0.001834165 0.001527119 -0.519365631 -0.621770998 -0.435800972 -0.419744912 

b0 0.046646092 -0.014998994 -0.000003053 0.000032351 -0.034543414 -0.045025430 -0.076908403 -0.067006412 
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Table 56 – Plant 4 – Sub-model 2 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 0 0 0 0 1 1 1 0 

a4 1 1 1 1 2.155622771 2.292045623 2.194396518 1 

a3 3.112705714 1.211797550 1.166153784 3.216797448 7.033246742 7.355976303 6.915465744 0.234923141 

a2 5.513634274 0.910077825 0.229252356 9.015220505 9.602672884 10.324520267 9.741888632 4.890341142 

a1 14.083221322 0.153418179 0.000026048 5.119065197 9.007117007 10.342623082 8.387834685 0.684647662 

a0 1.475016439 0.003949474 0.000002862 0.414118977 1.052011364 1.212912491 0.973417887 0.004016623 

y2 

a5 1 1 1 0 1 1 1 1 

a4 2.003156025 1.945718104 1.104274519 1 13.741847373 12.557777680 4.985178161 1.672233538 

a3 24.662804449 6.667920737 5.406778048 1.230573675 15.366329137 14.320925790 37.897862673 15.437903561 

a2 15.783969597 8.545869734 4.192370891 5.083401860 64.869613555 59.059294283 34.759068582 10.584322806 

a1 93.309507046 5.441361100 2.669133657 4.072815283 34.152310665 30.682401815 149.491873992 48.705481256 

a0 10.767272048 1.695931378 0.276905656 1.225848685 3.124382278 2.708199824 22.047387802 6.322521099 

y3 

a5 1 1 1 1 0 1 1 1 

a4 4.955870468 1.986572197 1.068593216 1.616379951 1 10.920796114 2.806612229 2.679222531 

a3 13.336046546 6.196011709 0.689438394 5.423780968 9.607579631 13.143976953 21.094812254 23.204028129 

a2 24.609944494 7.817324311 0.301645075 5.041534199 11.057458044 50.842015624 21.862232836 21.915211090 

a1 34.757560236 4.154535691 0.034333286 1.855368213 44.168669867 26.923231545 74.783447623 85.062021864 

a0 3.054959883 1.583872961 0.000014361 0.216239693 18.722049159 1.190655137 27.905461667 27.748094370 

y4 

a5 0 0 1 0 1 0 1 1 

a4 1 1 1.166908627 1 8.020087686 1 0.536539666 109.396988728 

a3 3.391412434 1.173679795 0.767850052 2.774069274 8.558611223 1.318882274 4.699888356 63.531957760 

a2 6.394509612 0.883613792 0.126241304 0.690722852 36.400510456 5.174995389 1.486276610 512.287623715 

a1 15.294699004 0.233412280 0.001571749 0.000181582 9.863035616 5.240532329 0.072743633 149.846918994 

a0 2.555749677 0.003636940 0.000016934 0.000016456 0.235461334 0.934549234 0.000001080 6.097566993 

y5 

a5 1 0 0 0 1 1 1 1 

a4 1.301016207 1 1 1 0.724354657 3.798394618 2.496986046 0.826629819 

a3 5.296408464 0.692935628 18.866376620 2.315255356 4.905712923 6.123238315 3.070811636 4.825295716 

a2 5.140829659 0.477194755 23.335580512 0.387508363 2.481300331 17.182339615 2.068160772 2.960376220 

a1 0.696868021 0.065991634 8.022723762 0.003152861 0.740635696 2.653335174 0.511714037 0.497405241 

a0 0.010817876 0.000010386 0.668105426 0.000472305 0.067064380 0.010194783 0.036444460 0.018980043 

y6 

a5 1 1 1 1 1 1 1 1 

a4 4.202775359 2.503292548 1.131162455 2716.306866191 6.980724350 6.608011208 6.290525186 2.443932869 

a3 12.523267258 6.687401559 5.534033024 6350.688468002 12.134868173 10.948043960 11.955749212 21.202119164 

a2 20.700137867 10.892444935 4.413139037 16938.621416734 34.765151769 32.399661240 31.800453182 20.674047777 

a1 31.905728429 5.229271418 3.117830420 24306.474970682 27.151362591 21.999757377 27.123803031 76.236225975 

a0 2.132306688 2.563354644 0.345760873 12286.834591147 10.139655632 8.617958846 10.973854991 29.534373292 

y7 

a5 0 0 0 1 1 1 1 1 

a4 1 1 0 1.525212775 15.646184152 9.598950584 210.905985574 1087.225533277 

a3 5.303443402 1.238099881 1 4.925099060 13.809641105 10.396536529 124.225111871 607.830038956 

a2 7.135499723 1.154373051 3.461369891 2.983126397 72.686084063 44.158168840 992.182692469 5184.142638539 

a1 24.692130052 0.337458356 1.640723174 0.327587308 25.190845122 16.220695882 317.118821845 1534.185374406 

a0 3.725851691 0.007332189 0.137333984 0.009971212 1.538606432 1.066943676 17.481477999 81.668982358 

y8 

a5 0 1 1 1 1 0 0 1 

a4 1 1.037804735 1.150751366 1.078926319 10.620238728 1 0 0.580672059 

a3 3.441571832 0.688836837 2.643104137 5.393704063 9.298893802 0.621872764 1 5.082205607 

a2 0.369885444 0.186403497 0.986804334 4.144072173 50.716211192 4.944957786 13.245044440 1.650342701 

a1 0.002404366 0.010100098 0.366145103 2.898745582 15.255611538 1.672380787 26.620598537 0.124406748 

a0 0.000257916 0.000296204 0.019747089 0.555018068 0.954170552 0.115265617 3.290234465 0.000974310 

y9 

a5 0 0 1 1 1 1 1 1 

a4 0 1 0.574841581 0.874926421 2081.858566417 0.893071051 1154.852101751 3.099113873 

a3 1 1.332626820 4.669464364 3.811312319 1533.809723062 5.129771122 783.027362888 6.169419589 

a2 5.546797964 0.803273968 1.911749873 1.201724913 10397.960302253 2.820770453 5769.870189961 14.097644959 

a1 0.464500696 0.266577209 0.247826520 0.806155964 4553.865240577 0.175659851 2228.040392591 4.651629793 

a0 0.000337547 0.018576602 0.008903303 0.038780140 194.568471961 0.002756182 82.374301497 0.228184832 

y10 

a5 0 1 1 1 1 1 1 0 

a4 1 2.940893902 0.471556527 1.019301986 1196.164677118 1454.086360598 1440.221265216 0 

a3 0.941133137 4.296061125 4.318490735 3.660794680 891.279795141 1139.879068232 1079.918394636 1 

a2 5.310158870 2.582248497 1.351856713 1.271797525 5979.952511618 7247.742733599 7296.571249305 0.698463212 

a1 2.041619389 0.971022250 0.269092432 0.873529212 2586.734072764 3399.874212893 3258.174704069 5.540629292 

a0 0.135227419 0.107055050 0.012041953 0.052488754 50.888398675 83.761975500 179.726397389 2.866195599 

y11 

a5 0 1 1 1 0 0 1 1 

a4 1 1.820863098 0.537477653 0.775483477 1 1 6.035273542 4.817942895 

a3 1.025735249 5.724347585 4.016679105 4.026136496 2.792897121 2.609759253 9.202477395 8.121960570 

a2 5.422368081 4.470465139 1.142169181 1.234131858 5.968829790 5.911468106 28.146375803 22.605706207 

a1 2.338294367 2.273860728 0.372022602 1.103640421 12.498103080 11.563514825 13.615677999 10.457931488 

a0 0.159404936 0.413831050 0.030938263 0.076727245 0.984338095 1.005931680 2.864070074 1.941511649 
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Table 57 – Plant 4 – Sub-model 3 – Transfer Function Numerator Parameters. 
P1 N u1 u2 u3 u4 u5 u6 u7 d1 

y1 

b5 0 0 0.0003078410 0 0 0 0 0 

b4 0 0 -0.0027553646 0 0 0 0 0 

b3 -7.8813901300 0.0078812927 -0.0001749214 0 0.0596137512 0.0723026009 0.0606960333 0 

b2 4.9541328914 0.0000624732 -0.0000086551 0.0218501740 -0.1062614552 -0.1204673414 -0.0809391419 0.0598309539 

b1 12.3178130244 0.0000231634 -0.0000005514 -0.0002644975 -0.0554224031 -0.0322675066 -0.2136456849 -0.2964347494 

b0 2.7433177944 0.0000001944 -04 0.0000548358 -0.0043030076 -0.0023148852 -0.0245464575 -0.0530336587 

y2 

b5 0 0 0.0025735342 0 0 0 -0.0001739439 0.0001820523 

b4 0 0 0.0006428653 0 0 0 0.0161939753 0.0652812839 

b3 -3.7259103435 0.2982538677 -0.0000044088 0 0.1452709981 0.3039379449 -0.0042641417 0.0959530254 

b2 6.4027315976 0.2661949832 0.0000064794 0 -0.4146535925 -0.3886443174 -0.3247159901 -0.3406375149 

b1 14.7385191563 0.0036803698 -0.0000000901 -0.0032970027 -0.7453754043 -0.9007970270 -0.5660436256 -0.6020060776 

b0 2.9664130199 0.0001614490 0.0000000039 0.5969388827 -0.1812132559 -0.2226720378 -0.1273590702 -0.1374126410 

y3 

b5 0 0 0 0.2148379355 0 0 -0.0004022472 0 

b4 0 0 -0.0002274839 0.0455407838 0 0 0.1397452217 0 

b3 -7.2753955570 0 0.0567334501 0.0010508947 0.7260791905 1.3044547285 -0.0708552625 0 

b2 22.5162003030 0.0415266836 0.0002489750 0.0002443561 -1.7792689222 -1.8991308802 -0.6947026796 0.8062354068 

b1 24.7371142009 1.4667212491 0.0000831687 0.0000028039 -3.2460030814 -3.5168314433 -2.5361131097 -2.6345320116 

b0 3.1066433413 0.0934791171 0.0000004437 0.0000002505 -0.4826128679 -0.5534360120 -0.3852472905 -2.1009419485 

y4 

b5 0 0 0 0 0 0 0 0 

b4 0 0.0578205476 0 0 0 0 0 0 

b3 -3.5374611605 0.3958542231 0 1.6057105067 1.0371295427 1.4716173222 0.6303762003 2.6292978387 

b2 18.3850803360 0.0062010162 0.0779134627 0.2578369604 -2.0558604152 -2.0905761374 -2.1607916820 -2.9160987990 

b1 15.5197100247 0.0034799171 -0.0001658711 0.0001858585 -3.9886381413 -3.9116724679 -4.0820321347 -8.0222565668 

b0 3.7189101007 0.0000221356 0.0000204785 0.0005729095 -0.4358631948 -0.3866020962 -0.4915071372 -0.9101977831 

y5 

b5 0 0.0168763667 0 0 0 0 -0.0002019120 0 

b4 0 0.7138329887 0 0.6297708807 0.0043678842 0.0049621034 0.2414631185 0.0127874532 

b3 -2.3912330893 0.0896270025 0.0918977124 0.0016066214 0.1188198121 0.1576053729 0.1010573980 -0.1001860790 

b2 19.1918862637 0.6424556650 0.0011669429 0.0119001517 0.2279822084 0.5063255249 -0.6900756684 0.8830177020 

b1 12.8274346528 -0.0017544871 0.0000523001 -0.0001396960 -1.4187740071 -1.7790433460 -2.6598370573 -3.1916821448 

b0 3.9573114461 0.0009800918 0.0000005973 0.0000213813 -0.0086490951 0.0388360880 -0.0951124650 -0.0492664494 

y6 

b5 0 0 0 0.0706733612 0 0 0 0 

b4 0 0 0 0.0207584516 0 0 0 0 

b3 0 1.1422873934 0 0.0003050577 0 0 0 0 

b2 -3.6793826383 0.2089576785 -0.0000017571 0.0001239599 0.5884360208 2.9370625725 -0.1395774466 0.2533465661 

b1 9.5841412199 0.1015553508 0.0000000923 0.0000007729 -2.7643235579 -7.1870654159 -1.7390703202 -2.6686161234 

b0 12.8287734424 0.0002450712 -0.0000000059 0.0000001551 -2.9266581400 -1.5511477030 -1.2772386764 -1.1216775777 

y7 

b5 0 0 0 0 0 0 0 0 

b4 0 0 0.0013207961 0 0 0 0 0 

b3 -4.7369986868 1.5226125518 -5.4907178795 0.4342480658 1.5165193172 1.8952107035 1.1115668572 1.6515426592 

b2 27.2943342986 0.3971392293 0.3539705973 0.0050559156 -1.6550793034 -1.5428689075 -1.6544466951 -1.8591646953 

b1 19.8943984548 -1.0060839887 0.0037242815 0.0003102355 0.5430445077 0.3695229902 0.7206037151 0.1295402550 

b0 4.1049546164 -0.0195030845 0.0005297982 0.0000013332 -2.9919447908 -4.0657177262 -2.1374718336 -2.7249294431 

y8 

b5 0 0 0 -0.0049913910 0 0 0 0 

b4 -0.2700879067 0 0.0004720191 0.0003199634 0.0400323534 0 0.0342744355 0 

b3 0.9082320035 0 -0.0001422605 -0.0000297072 0.0477446649 0 0.0204463981 0 

b2 0.3162546063 0.1193010041 -0.0000592973 -0.0000021678 -0.0181810912 187.2644745804 -0.0063905770 0.2616489506 

b1 0.0021617371 -0.1360649405 -0.0000002589 0.0000000069 -0.0839258531 -248.8398577541 -0.0527751717 -0.2986450039 

b0 0.0002243505 -0.0053275442 -0.0000000134 -0.0000000037 -0.0180215969 -48.7561413701 -0.0158245099 -0.0421932408 

y9 

b5 0 0 0 0.0046545298 0 0 0 0 

b4 0 0 0.0080896454 -0.0092309452 0 0 0 0 

b3 -0.0796596767 0 0.0293368128 0.0014494796 -0.1097502565 0 28.0651836004 0 

b2 -0.4691883298 4.0346612533 -0.0100402948 -0.0000972361 -0.0013398234 0 -15.6285868917 -0.6161125285 

b1 3.1559813145 -4.3477479498 -0.0009828369 0.0000099379 -0.0000171260 -0.1523553064 -0.9176168419 -0.4609611627 

b0 0.4521325467 -0.1872372600 0.0000000784 -0.0000003611 -0.0000001877 -0.0071834667 -0.0000681906 -0.0238351651 

y10 

b5 0 -0.0021910236 0 0.0022362523 0 0 0 0 

b4 0 -0.3223348117 -0.0004705139 -0.0103374293 0 0 0 0 

b3 0 0.8015688802 -1.4997430261 0.0007161044 0.4278241411 0 0 0 

b2 14.0470914044 -0.1805404152 -0.3886000768 -0.0000591954 -0.5096854962 0.6933844728 -0.2132064054 0.8640926443 

b1 17.2729521233 -0.6816666187 -1.3476226948 0.0000008382 -0.1182214281 -0.4783611514 -0.0850120317 -1.2478573533 

b0 2.4406479625 -0.0508723970 -0.0371398115 -0.0000003245 -0.0490667508 -0.7888206341 -0.0036959423 -2.6133627232 

y11 

b5 0 0 -0.0015501843 0.0046944234 0 0 0.0001082916 0 

b4 0 0 0.0001870485 -0.0086720126 0 0 0.1553330975 0 

b3 0.2197181967 0.2921456187 0.0147135768 0.0013896454 193.3966314454 1.9846473991 0.3012837925 0.5720421718 

b2 7.9222512861 0.0975208248 -0.0058357207 -0.0000953928 97.5252492772 0.7142287131 0.1755985547 -0.3680282601 

b1 7.9048070491 -0.4004037227 -0.0002973473 0.0000083817 -284.2048200838 -3.1999825886 -0.4413844782 -0.9312461437 

b0 0.5098634519 -0.0191079371 -0.0000017146 -0.0000002380 -44.7447313267 -0.4709133226 -0.0719020770 -0.0542867495 
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Table 58 – Plant 4 – Sub-model 3 – Transfer Function Denominator Parameters. 
P1 D u1 u2 u3 u4 u5 u6 u7 d1 

y1 

a5 1 0 1 0 1 1 1 1 

a4 37.668665745 0 0.563383387 0 4.455178287 3.688049610 7.749396274 2.336725830 

a3 134.204557841 1 0.024366163 1 8.534806442 7.556484148 15.693451990 16.871751274 

a2 279.702759619 0.022939333 0.002100357 0.455190671 22.952452702 18.387657446 43.320117501 16.212893712 

a1 643.913018172 0.002268946 0.000068558 0.002362961 8.004184520 3.887523362 39.876372645 58.451079053 

a0 73.419836351 0.000006760 0.000000426 0.001075598 0.506847132 0.227912390 3.509234987 7.010083536 

y2 

a5 1 0 1 0 1 1 1 1 

a4 4.286621273 1 0.200976094 0 2.215338018 2.553324469 1.652427756 1.773432579 

a3 18.248501259 1.084668650 0.003532616 0 9.284081522 9.557856027 8.607355844 8.926285541 

a2 28.300127310 1.188123275 0.000687536 0 11.680736930 13.590339667 8.373988678 9.142441481 

a1 62.103420186 0.016096996 0.000001408 1 16.663449663 17.336737175 14.481107520 15.439404610 

a0 6.703565218 0.000717179 0.000000214 7.089618027 2.136584910 2.166548703 1.846136570 1.815114772 

y3 

a5 1 0 0 1 1 1 1 0 

a4 3.402838222 0 1 0.062568677 3.283402112 3.482171523 2.047856039 1 

a3 16.184455468 0 0.625646622 0.007389174 10.407865492 10.335989214 9.433209394 2.759999778 

a2 22.200459702 1 0.001821821 0.000307773 18.038936011 19.113096212 11.029109315 9.972044635 

a1 52.416909394 2.343336600 0.000875953 0.000013227 20.591696654 19.720259454 18.200658731 14.621090363 

a0 5.966357252 0.114723121 0 0.000000357 3.706768374 3.711866802 3.389041116 18.488733643 

y4 

a5 1 0 0 0 1 1 1 1 

a4 3.112517695 1 0 1 5.137619210 4.729366203 5.658405059 9.008899475 

a3 15.293459965 0.317809049 1 2.722601143 11.747680948 11.155861328 12.436312132 18.707307325 

a2 20.925458136 0.011876291 0.271517952 0.256859718 28.990779645 26.491224660 32.166832963 54.560751607 

a1 48.377320501 0.002776032 0.000217752 0.006737287 23.728583964 21.242393345 26.518527379 53.889790971 

a0 10.322528464 0.000013466 0.000059100 0.000629496 5.941111555 5.257763214 6.697151675 13.310593853 

y5 

a5 1 1 1 1 0 0 1 0 

a4 3.096154531 1.543703170 0.967679843 0.348247728 1 1 3.405054086 1 

a3 14.558056605 1.371783393 0.171439966 0.037056660 1.292766412 1.449631574 8.840812629 2.698078259 

a2 20.691449649 0.360381693 0.002732196 0.005491505 6.272892912 6.387721851 18.117970711 7.264406920 

a1 44.320367796 0.001931615 0.000101306 0.000083638 5.552822059 6.430535897 12.175877320 14.290741602 

a0 11.329793932 0.000504910 0.000000959 0.000011228 1.378852587 1.591558724 2.836083777 3.041126321 

y6 

a5 0 1 0 1 1 1 1 1 

a4 1 2.010202963 1 0.072771252 4.029819640 5.736085753 2.921012209 2.459827501 

a3 3.461511441 4.424298577 0.008840450 0.006873718 17.249503405 24.579073280 13.208387368 14.551588136 

a2 16.144929161 2.676601443 0.002208356 0.000448261 32.961443596 39.911145372 21.304178515 18.654346786 

a1 21.479348031 0.695241749 0.000017033 0.000011176 59.784249723 94.028144081 38.257906583 46.145302920 

a0 51.498646681 0 0.000000351 0.000000660 46.125727091 20.629605804 24.302745557 19.869711489 

y7 

a5 1 1 0 1 1 1 1 1 

a4 3.361337463 1.747618431 1 13.972265975 3.655227730 3.589278046 3.633681923 3.585929911 

a3 14.900058698 5.516573169 208.067182511 2.038111149 11.324550062 11.591648429 10.976552001 12.770029337 

a2 22.028171701 4.037013357 55.504973213 0.031998263 23.478447776 23.526669971 23.015607979 24.234966675 

a1 45.446306970 2.474302120 0.913625214 0.001388982 25.562163263 27.309462885 23.638587815 33.601060352 

a0 9.221996153 0.047748225 0.057112469 0.000005479 19.122341631 20.710596164 17.654451564 21.317209892 

y8 

a5 1 0 0 1 1 1 1 0 

a4 0.591213350 1 1 0.030394949 1.334456921 1659.969306617 1.223727258 0 

a3 5.603612589 1.849337696 0.297193806 0.013766139 6.136414478 1274.231409122 6.069977721 1 

a2 0.605796879 2.039899839 0.016581068 0.000063239 5.366157677 10222.324781857 4.723322908 16.627553321 

a1 0.006974788 0.697031648 0.000172939 0.000022751 1.864606163 4108.245551552 1.900667250 5.688014674 

a0 0.000415511 0.023252701 0.000002404 0.000000009 0.164084472 351.206066600 0.188019140 0.408291969 

y9 

a5 0 1 1 1 1 0 0 1 

a4 0 7.326833344 0.803043921 0.265601101 1.696614366 0 1 2.311595354 

a3 1 18.241407367 4.379219787 0.133083650 0.852736611 1 184.243709888 6.581257273 

a2 0.422443672 22.135597617 2.429657416 0.004765020 0.009474567 1.710834717 188.718615281 11.723631983 

a1 5.584832416 12.844787639 0.300944446 0.001080910 0.000136546 1.002052730 8.979331762 3.978532262 

a0 0.405006451 1.388699473 0.012747927 0.000021351 0.000001470 0.039889655 0.000680401 0.163340474 

y10 

a5 1 1 0 1 1 0 1 1 

a4 3.371889803 2.619358216 1 0.271291792 1.324955297 1 0.753506290 1.819314737 

a3 12.262307765 5.817827676 94.332872781 0.148615774 6.714073100 2.343479393 5.746548727 16.572745570 

a2 19.797144812 4.735189973 31.497626044 0.005688355 6.261194826 7.464494189 3.473570145 15.999312093 

a1 29.816743283 2.118478838 443.842622607 0.001188766 1.620592913 11.937326612 0.951857263 59.570839744 

a0 2.879553244 0.264912374 31.598793352 0 0.374857714 4.683826889 0.037119523 20.607526588 

y11 

a5 1 1 1 1 1 1 1 1 

a4 3.156430497 2.322305418 1.000881395 0.509508418 1716.418109299 14.357112277 4.494295702 5.599683512 

a3 11.748316358 5.262510809 4.708795418 0.215475737 1593.147203104 19.145725936 9.010398336 11.412691571 

a2 18.215314651 4.683659685 3.569641698 0.012935528 10039.840046057 81.907369740 23.474111206 31.473773761 

a1 27.332045731 2.415123661 0.511523727 0.001574812 5025.628356411 43.947829464 10.759617008 22.531573106 

a0 1.976657761 0.415034344 0.015604028 0.000068750 1095.282711487 9.026746219 2.331043983 1.429690492 
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Table 59 – Crude oil distillation – Plant 1 – Positive Uncertainty Parameters for the 
MVs. â6| y�  y�  yW  yv  y�  y®  y¯  y´  y¸  y�B  y��  

u� 0.6607 0.3192 0.2963 0.5641 0.4278 0 0.0587 0.0134 0.6541 0.7849 0.5214 

u� 0 0.6799 0 0 0 0 0 0 0 0 0 

uW 0.3342 0.2225 0 0.1849 0.2351 0 0 0 0 0 0 

uv 0 0.2636 0.4556 0.4316 0.4755 0.5524 0.5927 0 0 0 0 

u� 0 0 0 0 0 0 0 0 0 0 0 

u® 0 0 0 0 0 0 0 0 0 0 0 

u¯ 0 0 0 0 0 0 0 0 0 0 0 

 

Table 60 – Crude oil distillation – Plant 1 – Negative Uncertainty Parameters for the 
MVs. â6. y�  y�  yW  yv  y�  y®  y¯  y´  y¸  y�B  y��  

u� 0 -0.2492 -0.4951 -0.4412 -0.5007 -0.4597 -0.5825 -0.844 -0.3716 0 -0.7136 

u� 0 -0.7134 0 0 0 0 0 0 0 0 0 

uW -0.3784 -0.2794 -0.3786 -0.1749 -0.1959 -0.2899 0 0 0 0 0 

uv 0 -0.3154 -0.7255 -0.7252 -0.7771 -0.7661 -0.2611 0 0 0 0 

u� 0 0 0 0 0 0 0 0 0 0 0 

u® 0 0 0 0 0 0 0 0 0 0 0 

u¯ 0 0 0 0 0 0 0 0 0 0 0 

Table 61 – Crude oil distillation – Plant 1 – Positive Uncertainty Parameters for the DV. 

��| w�  w�  wW  wv  w�  w®  w¯  w´  w¸  w�B  w��  

ë� 0 0 0 0 0 0 0 0 0 0 0 

Table 62 – Crude oil distillation – Plant 1 – Negative Uncertainty Parameters for the 
DV. 

��. w�  w�  wW  wv  w�  w®  w¯  w´  w¸  w�B  w��  

ë� 0 0 0 0 0 0 0 0 0 0 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


