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Abstract 

Importance: There are very few options to treat multidrug resistant bacterial infections in children. 

A major barrier is the duration and complexity of regulatory trials of new antibiotics. Extrapolation of 

safety data from adult trials could facilitate drug development for children. 

Objective: We performed a systematic review on safety of antibiotic clinical trials (CTs) in children 

(0-18 years) to evaluate the overall quality of safety trials conducted in children and to determine if 

age-specific adverse events (AEs) could be identified for specific antibiotic classes. 

Data Sources: We searched MEDLINE, Cochrane CENTRAL, and ClinicalTrials.gov for trials conducted 

between 2000-2016.  

Study Selection: All trials in which safety was declared as a primary or secondary endpoint were 

included. Exclusion criteria were (i) topical or inhalational route of administration, (ii) non-infectious 

conditions, (iii) administration for prophylaxis rather than treatment, (iv) selected population (i.e. 

cystic fibrosis, malignancies, HIV and tuberculosis) and (v) design other than randomized-controlled 

trials. Trials reporting data on both adults and children have been included only if paediatric results 

were reported separately.  

Data Extraction and Synthesis: Two authors independently extracted the data. To assess the quality 

of published trials, the Extension for harms for Consolidated Standards of Reporting Trials 

(CONSORT) Statement 2004 was used. 

Main Outcome and Measure: In order to quantitatively assess the rate of developing AEs by drug-

class, the numbers of overall and body-system-specific AEs were collected for each study arm. 

Overall and body-system-specific AEs were collected and calculated per single drug class as median 

and interquartile range (IQR) of the proportions across CTs. The AEs most frequently reported were 

compared in the meta-analysis by selecting the CTs on the most represented drug classes. 

Results: 83 CTs were included, accounting for 27,693 children. Overall, 69.7% of CONSORT items 

were fully reported. The median proportion of children with any AE was 22.5%, but did not exceed 

8% in any single body-system. Serious drug-related AEs and drug-related discontinuation were very 
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rare (median 0.3% and 0.9%, respectively). Limitations included inability to stratify by age-group, 

particularly neonates.  

Conclusions and Relevance: Overall AEs in paediatric antibiotic CTs were predictable and class-

specific; no unexpected (age-specific) side effects were identified. Smaller open-label dose-finding 

high-quality single-arm pharmacokinetic trials seem potentially sufficent for certain common 

antibiotic classes, extrapolatimg well-established safety profiles determined from large adult efficacy 

trials. This approach could reduce duration and enhance subsequent registration of urgently needed 

new antibiotics. This will need to be combined with enhanced methods of pharmacovigilance for 

monitoring of emerging AEs in routine clinical practice. 

 

Key points 

 Data reported for the antibiotic classes most commonly used in children showed that adverse 

events in paediatrics were class-specific and broadly predictable. 

 Within the limitations of the lack of neonatal data, no age-specific or unexpected toxicity has 

been identified. 

 For common antibiotic classes, with well-established safety profiles in adults, it is potentially 

possible to simplify the safety assessments if combined with enhanced post-marketing approval 

pharmacovigilance for monitoring emerging adverse events in routine clinical practice.  
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1 Introduction 

Drug development for children remains challenging, with nearly half of paediatric medicines in 

Europe prescribed off-label [1, 2]. The introduction of new antibiotics to routine paediatric care is a 

particularly urgent issue due to the global challenge of antimicrobial resistance. The barriers to 

conducting clinical trials (CTs) of antibiotics in children have been previously reported [3]. Several 

initiatives have been put in place to bridge this gap to improve the efficiency and feasibility of 

paediatric CTs [4-6]. 

Recruiting children into antibiotic CTs is challenging and trials need to be made as efficient as 

possible. The European Medicines Agency (EMA) and the Food and Drug Administration (FDA) 

encourage modelling and simulation for dose finding and to extrapolate data on efficacy from adult 

studies [7, 8].  Although the concept of extrapolation of efficacy endpoints in paediatric trials is well 

established, the extrapolation of safety has not been accepted generally by regulators. The overall 

aim is to improve the efficiency of trials in children and maximise the amount of information 

extracted from adults, without compromising the quality of evidence for regulatory decisions [8]. 

However, age stratification showed that some safety signals may be detected only in specific age 

groups [9]. Therefore, the collection of safety data to identify unexpected (age-specific) adverse 

events (AEs) may be required in the target population when a drug use is age-specific or an age-

specific risk is expected [10]. On the other hand, the reporting of pharmacovigilance data on 

antibiotics in neonates and children is currently limited. Pharmaceutical companies conduct a 

comprehensive assessment of drug safety following marketing approval and then submit this data to 

the drug regulatory authority. However, this process requires a significant amount of resources, with 

the result that AEs are often under-reported, especially in case of uncomplicated non-serious events 

[11].  

The overall aim of this systematic review was to provide a summary overview on the 

appropriateness of safety data reported in CTs of antibacterial agents in children and neonates. The 
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specific objectives were (i) to evaluate the overall quality of safety trials conducted in children and 

(ii) to determine if age-specific AEs could be identified for different antibiotic classes. 

 

2 Methods 

Medline (Ovid MEDLINE® without Revisions 1996) and Cochrane CENTRAL (Issue 6 of 12, June 2016) 

databases were systematically searched on 2 June 2016, using a strategy combining MeSH and free-

text terms that included “antibiotic” AND “randomized controlled trial” AND “safety” in children (0–

18 years). The search was limited to CTs published after 2000. Clinicaltrial.gov register was 

systematically searched on the 2 June 2016 for registered CTs using the same strategy. The search 

was limited to ongoing trials and trials closed in the last 5 years (2011-2016) in order to cover the 

publication gap. No language restriction was applied. The full strategy is available in the Online 

resource.  

All trials in which safety was declared as a primary or secondary endpoint were included. Exclusion 

criteria were (i) topical or inhalational route of administration, (ii) non-infectious conditions, (iii) 

administration for prophylaxis rather than treatment, (iv) selected population (i.e. cystic fibrosis, 

malignancies, immunodeficiencies, HIV and tuberculosis) and (v) study design different from 

randomized controlled trial (RCTs). Trials reporting data on both adults and children have been 

included only if paediatric results were reported separately.  

Two authors (PP and LF) independently reviewed and extracted the data. Disagreements were 

resolved by discussion with a third author (JB). Data on trial design, population, inclusion and 

exclusion criteria, primary and secondary endpoints, intervention, safety parameters (clinical, 

laboratory or hearing test), and timing of safety assessment were extracted. For each randomized 

arm, the number of overall and body-system-specific AEs (classified according to DAIDS (Division of 

AIDS) recommendations [12]), treatment discontinuations due to AEs and mortality, were also 

collected. We collected serious AEs (SAEs) [13] and serious drug-related AEs (SDR-AEs) as defined by 
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the authors. Laboratory-related AEs were included if assessed as a measure of safety evaluation in 

the trial design or if defined as pathological by the investigators. 

To assess the quality of published trials, the Extension for harms for Consolidated Standards of 

Reporting Trials (CONSORT) Statement 2004 was used [14]. The proportion of CONSORT items 

adequately reported was calculated for each CT.  

This review complies with the PRISMA guidelines [15]. 

 

Statistical analysis 

Proportions have been calculated based on the total number of trials or patients reported as the 

safety population. Overall and body-system-specific AEs were calculated per single drug class as 

median and interquartile range (IQR) of the proportions across CTs. AEs reported in less than three 

CTs in single drug classes were summarised by means. Pooled odds ratios (ORs) and 95% confidence 

intervals (CIs) for overall and body-system-specific AEs were calculated. To determine statistical 

differences between groups the Chi-square (χ2) test was used.  

The two-tailed Mann-Whitney U-test for two independent samples was used to compare the 

CONSORT score among CTs having safety as a primary vs secondary endpoint, published before or 

after the publication of the CONSORT statement (2000-2004 vs 2005-2016), and to compare the 

proportions of reported AEs between non-profit and industry-funded trials. A p-value of less than 

0.05 was considered statistically significant. Statistical analyses were carried out using STATA version 

14.0 (StataCorp).  

The meta-analysis included CTs investigating those drug classes that were most represented in our 

sample (i.e. involving the great majority of children) and whose arms had different antibiotics to be 

compared. Among them, we compared the AEs that were most frequently reported. The meta-

analyses were performed with Review Manager (RevMan) version 5.3 (Copenhagen: The Nordic 

Cochrane Centre, The Cochrane Collaboration, 2014). We used a random effect model because of 

the high potential heterogeneity across trials (different conditions, different comparators), which 
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was assessed with the I2 measure of inconsistency. Publication bias was assessed with funnel plots. 

 

3 Results 

3.1 Trial selection and description 

Our search generated a total of 4,044 records of which 1,157 were registered trials. 290 papers were 

assessed on full-text, 207 (71.4%) of which were excluded, as shown in Figure 1. The main reasons 

for exclusion were trials conducted only in adults or conducted in adults and children with safety 

assessment not reported by age group, non-randomized design, topic different from safety, 

administration for prophylaxis purpose, and excluded languages (Chinese, Japanese, Russian, 

Serbian). Overall, 83 RCTs were included in the final analysis, with 62 published trials and 21 trials 

registered in clinicaltrials.gov. All the included trials accounted for 29,134 children. Trial 

characteristics are reported in eTable 1. Due to the lack of available results, the 21 trials registered 

in clinicaltrials.gov were only analysed in a descriptive way and for quantitative information on trial 

design (e.g. sample size per investigated drug class). Different levels of performed analyses are show 

in Figure 2. 17 (21%) of the included trials assessed safety as a primary endpoint [16-32], 64 (77%) as 

a secondary endpoint [33-96], and two (2%) as both primary and secondary endpoint [97, 98]. Two 

trials were placebo-controlled [92, 94]. 45 (53%) trials were open-label [16-20, 23, 24, 29, 30, 33, 34, 

39-41, 44-50, 55, 56, 60-65, 67, 68, 70, 72, 75-78, 80, 81, 83, 88, 89, 93, 95, 96], 28 (34%) were 

double-blind [21, 22, 35-38, 42, 43, 51, 52, 54, 58, 59, 69, 71, 73, 74, 79, 82, 84-87, 90-92, 94, 98], 

and ten (13%) were single-blind [25-28, 31, 32, 53, 57, 66, 97]. Overall, 34 (41%) of the 83 trials were 

funded by pharmaceutical companies [18, 26-32, 34-38, 42, 43, 45, 51-53, 57, 58, 62, 63, 65, 66, 68, 

71, 72, 82, 84, 86, 89, 90, 98]. The included CTs investigated various infectious conditions, with 

respiratory tract infections assessed most frequently (Table 1). Five CTs (6%) did not restrict the 

study population to paediatric age but included adult patients as well [47, 48, 67, 70, 83]. 

1,441/29,134 children (4.9%) were not included in the quantitative analyses because it was not 
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possible to define the administered drug (i.e. only defined as standard of care, or different 

comparator per different age group). Overall, 27,693/29,134 children were included and stratified by 

drug class according to the assigned treatment (eTable 2). Penicillins were the most frequently 

studied drug-class (11,408 children), followed by aminoglycosides and cephalosporins (eTable 2). A 

single antibiotic was administered to 18,398 children, with a combination of two or more antibiotics 

used in 9,295 children. Among the latter, 77.3% (7,186 children) were treated with a combination of 

penicillin and aminoglycoside. 

 

3.2 Quality assessment 

The 62 published RCTs were assessed for quality, according to the number of CONSORT Statement’s 

items adequately reported. An overall mean of 69.7% items was reported (range 33.3-100) properly. 

There was no evidence of difference between trials reporting safety as a primary (77.4%) or 

secondary (68.2%) endpoint (p=0.05). The most frequent recommendation that trials did not report 

on (45/62, 72.6%) was item number three (“List addressed AEs with definition for each”), that should 

be reported in the methods section. Only 20 (32%) of 62 trials clearly defined their safety 

parameters in the publication providing details about expected vs unexpected AEs, mode of data 

collection (spontaneously reported or assessed by investigator), pathologic values defining toxicity 

(e.g. “nephrotoxicity was defined as doubling in serum creatinine concentration compared with 

baseline”), grading and timing of evaluation of each AE [19-23, 33-36, 42, 46, 54, 55, 60, 62-66, 80]. 

Just six trials provided a reference for the definitions of AEs (two DAIDS [63, 82], two COSTART 

(Coding Symbols for a Thesaurus of Adverse Reaction Terms) [66, 84], and two WHO (World Health 

Organization) coding system [35, 53]). The justification for sample size and definition of safety 

population were provided only by two of the ten published trials including safety as a primary 

endpoint [24, 98]. 

 

3.3 Quantitative analysis of reported AEs 
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Published RCTs in which the number of body-system-specific AEs was recorded were included in the 

quantitative analysis (Table 2, eTable 3). Only 33 trials reported the number of children experiencing 

at least one AE [20, 24, 34-40, 42, 44, 45, 52, 53, 57, 60, 62, 63, 66, 68, 69, 71, 73, 75-79, 81-84, 98]. 

Statistical analyses were performed on those randomized arms with a single drug intervention, 

including a total of 15,716 children. The combination penicillin/aminoglycoside was considered as 

aminoglycoside single drug when well-recognised class specific AEs (nephrotoxicity and ototoxicity) 

were reported [99].  

The median proportion of children with reported AEs across the trials was 22.5% (IQR 7.7–44.6), 

while the median rate of discontinuation of therapy due to AEs was less than 1% (0.9 %, IQR 0–3). 

There was no evidence of difference in the proportion of reported AEs between trials funded by 

industry and non-profit CTs (p=0.05).  

 

3.3.1 Clinical AEs 

Systemic AEs, including fever, allergic reactions and Red Man Syndrome, were most frequently 

reported in children on glycopeptides (glycopeptides vs others: OR 14.3; 95% CI 10.0-20.2; 

p<0.0001). Among them, 40/48 (83%) were clearly class-specific (e.g. Red Man Syndrome) [100]. 

Anaphylaxis was only reported in children on amoxicillin (3/1,261; 0.002%). 

Ten trials reported mortality during the study period, with a rate of 66/15,716 children (0.4%), none 

of which was attributed to the intervention drug by the investigator [16, 20, 24, 35, 44, 45, 53, 55, 

63, 84]. 

19 trials reported SAEs separately from AEs, in 1.8% of children (137/7,760) [20, 24, 35-37, 44, 45, 

53, 59, 60, 65, 68, 69, 71, 74, 79, 82-84]. Among them, eight trials further specified how many SAEs 

were considered drug-related (11 SDR-AEs/4,171 children; 0.3%) [20, 24, 35, 37, 45, 59, 71, 79]. All 

the reported SDR-AEs occurred in five drug classes (fluoroquinolones, penicillins+beta-lactamase 

inhibitors, penicillins, carbapenems, glycopeptides) with the highest rate reported in children 

treated with glycopeptides (1/19 children reported abnormal kidney function; 6%) and carbapenems 
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(1/81 children experienced severe diarrhoea; 1%). None of the trials conducted on macrolides 

investigated or reported cardiotoxicity. 

Nearly half of the reported AEs (2,254/5,189) involved the gastrointestinal (GI) system (7.7%; IQR 

0.0–20.5). Among them, diarrhoea and vomiting accounted respectively for 49.0% and 22.3% (1,104 

and 502 of 2,254 children, respectively). Children on amoxicillin had a significantly higher risk of 

developing antibiotic-associated diarrhoea than children on macrolides (OR 2.3; 95% CI 1.6–3.1; 

p<0.0001), a lower but not statistically significant risk compared with cephalosporins (OR 0.8; 95% CI 

0.6–1.0; p=0.06) and significantly lower risk compared to penicillin+beta-lactamase inhibitors (BLI) 

(OR 0.3; 95% CI 0.3–0.4; p<0.0001). Two studies further specified how many diarrhoea adverse 

events were diagnosed as Clostridium difficile-associated diarrhoea [24, 56]. Specifically, only one 

child out of 13 (7.7%) treated with a low-dose course of cefuroxime axetil experienced Clostridium 

difficile-associated diarrhoea after completing the treatment [56].  

Among neurological AEs, 42 of 47 (89%) were reported as headache and five of 47 (11%) as 

convulsions. The latter were all reported in the same trial and were classified by authors as SAEs 

[60]. Musculoskeletal AEs were reported only for fluoroquinolones (56/78; 72%) and penicillins+BLI 

(22/78; 28%). Among them, 39/78 (50%) were arthralgia and 28/78 (36%) were myalgia. 

 

3.3.2 Laboratory AEs 

Laboratory AEs, including biochemical and haematological parameters, were evaluated in 15 trials 

[20, 24, 42, 44, 45, 60, 63, 70-72, 76, 82-84, 98]. The highest proportions were reported in children 

on linezolid (linezolid vs others OR 8.1; 95% CI 6.5-10.0; p<0.0001) and glycopeptides (glycopeptides 

vs others OR 5.6; 4.2–7.5; p<0.0001). For both classes, most laboratory AEs were haematological 

(linezolid 169/215 (78.6%), glycopeptides 63/84 (75%)). Comparing these two antibiotics, the risk of 

developing laboratory AEs was not statistically different (p=0.948). However, the risk of overall AEs 

was higher with glycopeptides than linezolid (OR 1.9; 95% CI 1.4–2.6; p=0.0001).  
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3.4 Meta-analysis 

26 RCTs (7,305 children) were included in the meta-analysis. The most frequently reported AEs were 

compared through forest plots. The risk of antibiotic-associated diarrhoea was significantly higher 

with penicillins+BLI (Risk ratio (RR) 2.4; 95% CI 1.8–3.2) and lower in cephalosporins (RR 0.6; 95% CI 

0.4–1.0) compared to other beta-lactams. There was no evidence of differences between penicillins 

and other beta-lactams (RR 1.1; 95% CI 0.9–1.2) (Figure 3). 

The meta-analyses of nephrotoxicity and ototoxicity in aminoglycosides did not find any evidence of 

differences between one daily dose (OD) and multiple doses (MD) (nephrotoxicity RR 0.8; 95% CI 

0.4–1.6; ototoxicity RR 1.5; 95% CI 0.3–6.6) (eFigure 1). Overall, there was no evidence of differences 

in the proportions of reported AEs with macrolides vs penicillins (RR 0.9; 95% CI 0.8–1.2) (eFigure 2). 

There was some suggestion of publication bias based on funnel plots (eFigure 3). 

 

4 Discussion 

This systematic review included 83 paediatric RCTs on the safety of antibiotics, with the majority of 

the trials conducted on three antibiotic drug classes (beta-lactams, macrolides, aminoglycosides). 

Although 21 of the selected CTs included neonates, only 3 were specifically designed to study the 

neonatal population. The quality of reporting AEs was suboptimal in the great majority of CTs, due to 

the frequent lack of a detailed definition of both expected and unexpected AEs. Although 10/62 

published CTs were designed with safety as the primary endpoint, only two trials provided the 

justification for the sample size specifically for the safety population. Overall, data reported for 

those drug classes most commonly used in children demonstrated clearly that AEs in the paediatric 

antibiotic CTs were both class-specific and predictable. Within the limitations of the lack of neonatal 

data, we did not identify age-specific or unexpected toxicity, with virtually all AEs graded as non-

severe. Discontinuation of treatment due to AEs, including both drug-related and unrelated, was 

notably low. However, only one of the 83 CTs investigated a new antibiotic (solithromycin), which is 

included in the Pew Charitable Trusts list [60, 101]. 
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This study represents the first systematic review of the key components of safety in paediatric 

antibiotic CTs across all clinical infectious syndromes. The aim was to provide a summary overview 

on both the qualitative and quantitative reporting of AEs. We could identify no similar data available 

for the adult population, since most reviews on safety in adults have been conducted on patients 

with specific infectious diseases or on specific antibiotic classes [102-104]. A study conducted on 

antiretroviral drugs comparing safety between adults and children, based on data provided by the 

FDA, showed that adult AEs can preliminary inform the safety profile in children, even if specific 

types and rates in paediatrics cannot exclusively be extrapolated from adults [105].  

Similarly to our study, papers targeting the safety of specific drugs in children demonstrated that 

most of the AEs were classified as non-serious and were generally scarcely reported [106-109]. The 

poor quality of safety reporting has also been noted in other studies investigating non-infectious 

conditions in children (e.g. epilepsy) or, collectively, all paediatric drugs [109-110]. In a review 

evaluating the quality of reporting adverse drug reactions in RCTs performed in children over a 4-

year period, only 19 out of 83 CTs had a CONSORT score considered as sufficient by the authors (≥6, 

range 1–10) [110]. Although our CONSORT assessment noted that 45/83 trials had ≥60% of items 

adequately reported, this is relatively low considering that we selected only CTs having safety as 

primary or secondary endpoints. Conversely to one previous study, our overall AE rates did not differ 

between non-profit and industry-funded CTs [110]. Together, these findings suggest that more 

emphasis should be placed on the complete reporting of AE methods and definitions in 

supplementary material, particularly when trial protocols are not available online.  

Several initiatives in both the US and the EU aim to improve and facilitate the enrolment of children 

in antibiotic CTs [4,5]. Paediatric antibiotic safety trials have traditionally included a standard-of-care 

comparator arm. Variation in the choice of comparator agent internationally and the subsequent 

complexity of trial design and conduct has led to a high burden on limited paediatric research staff 

with consequent recruitment difficulties. Other initiatives, such as the Pediatric Health Information 

System (PHIS) in the US, have been currently put in place to improve the reporting of 
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pharmacovigilance data on antibiotics in neonates and children following marketing approval [111]. 

However, these large databases have high costs and require high-level electronic infrastructures to 

collect the data throughout different centres. A different approach could be the establishment of a 

network of different stakeholders (academics, physicians, regulators and governments) who share 

common interests in paediatric pharmacovigilance. The GAIA project represents a good example of 

how a voluntary network can improve the quality of safety data in a specific population [112]. In an 

attempt to gather more evidence on efficacy and safety data for antimicrobial drugs in children, 

some web-based disease-specific drug registries have been put in place in Europe in the last decades 

to enhance the exchange of information and expertise between centres [113, 114]. Among the other 

information, these registries prospectively collect toxicity data in children, are generally open access 

and relatively cheap to maintain.  

One of the main limitations of this review is the high heterogeneity in terms of trial design, 

population, and data reporting that might reduce the strength of our conclusion. The evaluation of 

overall instead of drug-related AEs was due to the limited number of trials clearly defining the 

attribution method to assess the causality between the studied drug and the AE (such as including 

AEs secondary to the infectious condition rather than the drug itself, possibly leading to an 

overestimation). Another limitation is that other possible determinants, such as route of 

administration and dosage, have not been taken into account because of the lack of specific 

information provided by the investigators. The exclusion criteria applied in the search limit the 

conclusions of this review to children with an acute infectious disease but otherwise apparently 

healthy. Immunocompromised children may require longer courses of treatment and/or higher 

doses of treatment and therefore safety may differ. Rare AEs were essentially not reported, raising 

concerns about reporting bias and limitations of sample size, considering that most of the included 

studies were unpowered to detect infrequent AEs.  Lastly, it was not possible to stratify safety data 

by different paediatric age groups because AEs were not reported separately by the authors. 

Because of the lack of historical data published before than 2000, AEs previously recognised in 
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literature as specific to children were not detected in this systematic review (e.g. no 

chloramphenicol-related grey baby syndrome was reported and only one trial on amphenicols 

including 25 children aged less than 8 years was included) [115].  

The implications of this review are that for certain common antibiotic classes, with well-established 

safety profiles (e.g. beta-lactams, macrolides) determined from large adult efficacy trials, it may be 

possible to simplify the safety assessments in parallel paediatric trials when drug exposure is similar 

in children and adults. Smaller open-label dose-finding high-quality single-arm pharmacokenetic 

trials collecting safety data to confirm no unanticipated child-specific toxicities may be more 

feasible, enhance recruitment and subsequent registration of needed new drugs. It has been usually 

considered that extrapolation of safety from adults to children was not possible due to the growth 

and development characteristics of children and due to the impact that organ maturation has 

throughout the different stages of childhood (particularly applicable to neonates and young 

children). Antibacterial agents usually target components of the bacterial cell or selected cellular 

processes essential for the survival of pathogenic bacteria rather than interacting with human 

targets. Therefore, extrapolation of safety may be considered as a potential approach to decrease 

the burden on paediatric patients, i.e., to take advantage of the prior knowledge in adult trials that 

can be used to streamline the paediatric clinical development. Most of the agreed (between the 

Paediatric Committee at EMA and Applicants) Paediatric Investigation Plans (PIPs) include, as part of 

the clinical development, PK studies across all age subsets of the paediatric population (unless safety 

issues preclude the use in some age group, e.g., the case of tetracycline class of antibiotics and 

children under 8 years of age) followed by a safety and efficacy study which usually is a randomised, 

active comparator study in a substantial number of children evenly distributed across the different 

age groups. This has resulted in a delayed (of around 5 to 7 years) availability of antibacterial agents 

for the paediatric population when compared to their availability (i.e. regulatory approval) for adult 

subjects. Once the antibacterial agent is in the market, nothing prevents its off-label use which also 

makes it difficult the conduct of randomised trials. There is therefore a clear need to speed the 



 

15 
 

paediatric clinical development. The challenge is to identify in which circumstances the conduct of 

smaller open-label dose-finding high-quality single-arm pharmacokinetic trials may not be sufficient 

for regulatory purposes (approval). In this respect, it has been discussed that toxicity data in juvenile 

animals can inform this decision. Safety concerns that have limited the use of certain antibacterial 

agents in the paediatric population have been primarily identified in animal studies, such as the case 

of the quinolone-induced articular toxicity or the permanent dental defects and the delay in 

ossification processes in foetuses occurring with tetracyclines. A safety study may be unavoidable in 

the presence of off-target effects identified in the non-clinical setting that are shown (e.g. in adult 

subjects) thought to have clinical relevance particularly for the paediatric population as a whole or 

for some age subsets. This can be the case of antibiotics such as fluoroquinolones, linezolid or 

daptomycin, or for antibacterial agents with new mechanisms of action. Safety studies usually 

require very large sample sizes and it is questionable whether this can be achieved in the frame of 

standard clinical trials, particularly when the number of subjects is limited as it is the case of the 

paediatric population. On the other side, the proposal of a simplified strategy will need to be 

combined with enhanced methods of pharmacovigilance for monitoring of emerging AEs in routine 

clinical practice. The institution of a European electronic registry using the well-established PENTA 

network (www.pentatrials.org) would be a potential option to collect safety and outcome data on 

both new and old off-patent key antibiotics in children and neonates, including all those 

antibacterials currently used off-label. The European Pregnancy and Paediatric HIV Cohort 

Collaboration (EPPICC) is an international network of cohort studies coordinated by PENTA 

conducting epidemiological research on HIV-infected pregnant women, children and children 

exposed to HIV in utero, with a programme of work including individual patient data meta-analyses, 

pharmacovigilance projects and other observational studies. Of note, the EMA launched in 

September 2015 an initiative which explores ways of expanding the use of patient registries by 

introducing and supporting a more systematic and standardised approach to their contribution to 

the benefit-risk evaluation of medicines within the European Economic Area [116]. Such approach 

http://www.pentatrials.org/
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could potentially allow data to be collected and easily pooled out at a relatively low cost, and help 

gathering evidence to improve the design and conduct of paediatric CTs. Given the highly concerning 

rates of antimicrobial resistance that are a rapidly emerging threat to global child health, optimal 

trial designs to most efficiently bring both new and older re-entry antibiotics into routine clinical 

care are urgently required.  
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FIGURE LEGENDS 

Fig. 1 Flowchart and study selection 

Fig. 2 Inclusion criteria and patients assessed per different level of analysis  

Fig. 3 Diarrhoea in β-lactams: Meta-analysis 

eFig. 1 Toxicity in Aminoglycosides: one daily dose (OD) versus multiple daily doses (MD) Meta-

analysis (A: nephrotoxicity, B: ototoxicity) 

eFig. 2 Macrolides vs Penicillins (overall AEs): Meta-analysis 

eFig. 3 Funnel plot of: A-B-C: diarrhoea in β-lactams (A: penicillins vs other beta-lactams; B: 

penicillins+beta lactamase inhibitor vs other beta-lactams; C: Cephalosporins vs other beta-lactams); 

D-E: Toxicity in one daily vs multiple doses of aminoglycosides (D: Nephrotoxicity; E: Ototoxicity); F: 

overall AEs in macrolides vs penicillins 
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Table 1 Basic characteristics of included trials 

 Number (%)a 

Total trials 83 

Total patients 29,134 

Study design  

Double blind 28 (34) 

Single blind 10 (12) 

Open label 45 (54) 

Sponsor  

Pharmaceutical company 34 (41) 

Not for profit 49 (59) 

Ongoing trials 13 (16) 

Incomeb  

HIC 36 (43) 

LMIC 22 (27) 

Both 25 (30) 

Conditionc  

Upper respiratory tract infections 25 (30) 

Lower respiratory tract infections 17 (21) 

Gastrointestinal infections 11 (13) 

Unspecified bacterial infections 10 (12) 

Sepsis 8 (10) 

Other bacterial infections 8 (10) 

Urinary tract infections 6 (7) 

Skin and soft tissue infections 5 (6) 

CNS infections 1 (1) 

Safety outcome  

Primary 19 (23) 

Secondary 66 (80) 

Age groups  

Neonate (0-28 d) 21 (25) 

Infant (29 d-24 mo) 60 (72) 

Child (2-12 yr) 67 (81) 

Adolescent (12-18 yr) 30 (36) 

Study drugs  

Single drug 74 (89) 

Multiple drugs 12 (15) 

 

aCalculated on 83 included studies; bHIC: High-income countries, LMIC: Low and middle-income 

countries; cUpper respiratory tract infections included otitis media; Gastrointestinal infections 

included complicated intraabdominal infections 
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Table 2 Median and IQR of overall and body-system-specific reported Adverse Events (AEs) per drug class 

 

Data are expressed as median proportion and IQR range. *Expressed as mean because reported in < 3 studies; aincluding fever, anaphylaxis and Red Man 

Syndrome; nr: not reported. Patients on combination of Aminoglycosides/Penicillin were included in Aminoglycosides only when class specific AEs 

(nephrotoxicity and ototoxicity) were reported. Sum of specific AEs has been calculated as median proportion of the sum of all reported AEs per each RCTs 

(Nephrotoxicity, Ototoxicity, Gastrointestinal, Systemic, Neurological, Respiratory, Dermatologic, Muscolo-skeletal Infusional and Laboratory-reported AEs). 

 

Drug class 
N 
patients 

Overall AEs 
Sum of specific 
AEs 

Discontinuation 
due to AEs 

Systemica 
Nephro-
toxicity 

Oto-
toxicity 

Gastro 
intestinal 

Neurological Respiratory Dermatologic 
Muscolo-
skeletal 

Infusional 
Laboratory 
total 

Penicillins 3,019 
12.8 
(9.4–29.7) 

9.1 
(3.1–29.7) 

1.1 
(0.0–2.7) 

0.0 
(0–0.8) 

0.6* nr 
4.2 
(2.3-8.3) 

0.0 
(0.0–0.0) 

nr 
0.7 
(0.0 – 5.3) 

nr 
0.0 
(0.0–0.0) 

17.7* 

Aminoglycosides 1,308 
3.3 
(1.1–15.8) 

2.3 
(0.6–15.8) 

0.0* nr 
1.8 
(1.1–20.0) 

1 
(0–1.1) 

nr 
0.0 
(0.0–0.0) 

nr nr nr nr nr 

Cephalosporins 2,462 
16.5 
(4.5–42.1) 

14.8 
(4.5–42.1) 

0.3 
(0.0–3.0) 

0.0 
(0.0–0.0) 

nr nr 
12.1 
(3.6–20.5) 

0.0 
(0.0–0.0) 

0.0 
(0.0–0.0) 

0.0 
(0.0–4.2) 

nr nr 
0.0 
(0.0-5.2) 

Macrolides 2,931 
21.8 
(7.7–35.9) 

18.8 
(6.0–31.6) 

0.0 
(0.0–3.3) 

0.0 
(0.0–0.0) 

nr nr 
8.6 
(3.4–23.3) 

nr 
0.0 
(0.0–0.0) 

0.0 
(0.0–2.2) 

nr nr 9.8* 

Penicillins+β-
lactamase inhib 

2,566 
43.0 
(26.6–65.7) 

43.0 
(19.6–63.0) 

1.0 
(0.0–2.8) 

0.0 
(0.0–2.0) 

nr nr 
32.6 
(13.1–42.8) 

nr 
0.0 
(0.0–0.0) 

6.9 
(3.8–11.9) 

0.0 
(0.0–0.0) 

nr 
0.0 
(0.0–0.0) 

Fluoroquinolones 1,920 
35.7 
(24.2–66.7) 

31.2 
(23.4–61.1) 

0.8 
(0.0–2.2) 

1.1 
(0.0–7.5) 

nr nr 
17.1 
(2.4–23.7) 

nr 
0.0 
(0.0–11.4) 

0.0 
(0.0–6.2) 

3.1 
(1.2–3.2) 

nr 
6.1 
(0.4–18.7) 

Carbapenems 385 32.7* 25.9* 1.9* nr nr nr 5.8* nr nr nr nr 10.5* 9.6* 

Linezolid 683 
60.7 
(44.5–70.4) 

58.2 
(43.7–64.3) 

2.0 
(0.9–7.0) 

0.5 
(0.0–1.3) 

nr nr 
9.8 
(7.6–12.6) 

0.0 
(0.0–3.9) 

0.0 
(0.0–2.3) 

1.3 
(0.0–1.4) 

nr 
0.0 
(0.0–0.0) 

45.6 
(5.7–52.6) 

Glycopeptides 265 
75.4 
(37.5–90.9) 

75.4 
(27.6–87.9) 

4.3 
(1.7–5.7) 

18.6 
(5.3–27.5) 

8.4* nr 
9.3 
(0–12.5) 

0.0 
(0.0–0.0) 

nr 
6.4 
(5.3–9.1) 

nr nr 
41.0 
(15.8–72.0) 

Sulfonamides+ 
trimethoprim 

152 4.6* 4.6* 2.6* 1.3* nr nr 2.6* nr nr 0.7* nr nr nr 

Amphenicols 25 4.0* 4.0* 0.0* nr nr nr 4.0* nr nr nr nr nr nr 

Total 15,716 
22.5 
(7.7–44.6) 

19.2 
(4.6–42.5) 

0.9 
(0.0–3.0) 

0.0 
(0.0–0.5) 

1.8 
(0.8–15.8) 

1.0 
(0.2–1.1) 

7.7 
(0.0–20.5) 

0.0 
(0.0–0.0) 

0.0 
(0.0–0.0) 

0.0 
(0.0–4.0) 

0.0 
(0.0–0.0) 

0.0 
(0.0–0.0) 

6.1 
(0.0–20.3) 


