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Though consistency across the population renders the extraordinarily complex functional anatomy of the human brain surveyable,

the inverse inference—from common functional maps to individual behaviour—is constrained by marked individual deviation from

the population mean. Such inference is fundamental to the evaluation of therapeutic interventions in focal brain injury, where the

impact of an induced structural change in the brain is quantified by its behavioural consequences, inevitably refracted through the

lens of lesion-outcome relations. Current therapeutic evaluations do not incorporate inferences to the individual outcome derived

from a detailed specification of the lesion anatomy, relying only on reductive parameters such as lesion volume and crudely

discretised location. Examining 1172 patients with anatomically registered focal brain lesions, here we show that such low-

dimensional models are highly insensitive to therapeutic effects. In contrast, high-dimensional models supported by machine

learning dramatically improve sensitivity by leveraging complex individuating patterns in the functional architecture of the

brain. The failure to replicate in humans positive interventional effects in experimental animals is thus revealed to have a remedi-

able inferential cause, forcing a radical re-evaluation of therapeutic inference in the human brain.
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Introduction
To establish a causal relation between a therapeutic inter-

vention and its outcome requires cognisance of all the bio-

logical factors on which the effect of the intervention

depends, and from which it must be isolated. In the context

of focal brain damage, this relation is determined by a wide

‘causal field’ (Mackie, 1974) of many biological factors, pre-

dominantly reflecting the interaction between two distinct,

complex anatomical patterns: the distribution of focal

damage (Mah et al., 2014a), and the distribution of the

underlying functional anatomy (Sporns, 2011; Glasser

et al., 2016). For example, a single focus of damage invol-

ving only inessential neural loci may lead to spontaneous

recovery, while at the other extreme, a multifocal pattern

involving all critical neural loci may lead to an irreversible

deficit. Such complexity inevitably requires many parameters

to describe: a ‘high-dimensional’, multivariate model of the

functional anatomy and its perturbation by brain injury.

Instead of modelling the full causal field, conventional

therapeutic studies commonly ignore it, treating the wide

variation in individual outcomes it introduces as noise.
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Using low-dimensional multivariate models with just a few

variables, they typically include only crude, global anatom-

ical factors such as the volume of damaged tissue, assuming

the mass of the brain to be anatomically interchangeable

(Kidwell et al., 2001). Such models are fundamentally under-

parameterized, only weakly capable of isolating an interven-

tion from the causal field in which it is embedded. The

surprisingly common failure to replicate in humans substan-

tial therapeutic effects observed in anatomically simpler ani-

mals (Gladstone et al., 2002) could thus be an artefact of

differences in functional–anatomical complexity, not neces-

sarily any real differences in physiology. Though the physical

limits of our clinical investigations will render some causal

factors inaccessible, the obstacles to modelling the wealth of

anatomical factors provided by routine neuroimaging—likely

to be causally the most important—are merely inferential.

Materials and methods
To quantify the impact of this problem we must evaluate a set
of hypothetical interventions against a set of real data, directly
comparing low- and high-dimensional inferential methods. The
intervention must be hypothetical because we cannot distin-
guish between an inadequate model and an insufficient effect
where the therapeutic effect is, by definition, unknown. We
must instead evaluate a comprehensive range of possible
effect sizes so as to determine the therapeutic threshold: the
minimal effect the inferential method is able confidently to
detect. By iteratively randomizing the data into ‘intervention’
and ‘control’ groups, and simulating interventions of varying
effect size, we can derive a continuous, empirical therapeutic
function describing the relation between the size of an inter-
ventional effect and the probability of detecting it with a given
inferential method (Fig. 1). The steeper and closer the function
is to the left, the more sensitive the method. Performing many
randomized evaluations per point—essentially simulating a
large scale meta-analysis of many studies—allows us to calcu-
late confidence intervals for each computed function, formaliz-
ing the comparison of inferential performance.

Though interventions deployed in the context of focal brain
damage are mechanistically diverse, they fall into two cardinal
classes: ‘lesion-altering interventions’ that change the charac-
teristics of the lesion itself, e.g. thrombolytic therapy in stroke
(Wardlaw et al., 1997); and ‘lesion non-altering interventions’
that change the brain’s response to it, e.g. neurorehabilitation
(Johansson, 2000). Interventions of the former kind reduce the
volume of the lesion, and can be hypothetically modelled by
artificially shrinking it. Interventions of the latter kind alter the
clinical outcome directly, and can be hypothetically modelled
by varying the proportion of treatment ‘responders’. Both
classes critically depend on the impact of the lesion on the
underlying functional anatomy, but the former is theoretically
more sensitive as it definitionally involves a therapeutically
induced anatomical change (Supplementary material).

We need a set of hypothetical interventions to traverse the
full range of therapeutic effect sizes, but we need real data, on
a scale large enough to make the underlying complexity tract-
able, to quantify the real-world benefit of adopting one infer-
ential method over another. Exploiting previously validated

automatic segmentation of clinical MRI for stroke, here we
assembled a large set of focal human brain lesion data
(n = 1172), non-linearly registered in standard stereotactic
space so as to allow direct comparisons across individuals
with high anatomical fidelity (Mah et al., 2014a, b). The pro-
cessed images indexed the presence or absence of acute
damage at each anatomical location across the entire brain
with a resolution of 6 mm3, yielding 5789 binary variables
per patient: a rich, high-resolution parameterization of both
lesion and brain anatomy. We chose acute stroke, imaged
with a diffusion-weighted MRI sequence reliably sensitive to
ischaemic injury, as the most prevalent cause of focal brain
dysfunction (Feigin et al., 2014) (Supplementary material).

The primary measure of therapy in the brain is the resultant
behaviour: the functional impact of the biological change the
therapy induces. Here we chose a key aspect of behaviour—the
preferred direction of gaze at rest—as this could be objectively
and contemporaneously determined from automated eye lens
segmentation of the brain imaging itself (Becker and Karnath,
2010). Deviations of gaze reflect disruption of fundamental
oculomotor and attentional neural circuits, often (but not
always) recover following brain injury, and are essential to
the description of the patient’s neurological state (Ramat
et al., 2007). By obtaining the direction of gaze at two time
points—on the admission CT scan, and on the subsequent
MRI scan typically 24 to 72 h later—we could identify dy-
namic changes in this specific behavioural parameter over
time, and its relationship to brain anatomy. Each high-dimen-
sional lesion pattern was thus coupled to an objectively quan-
tified degree of gaze deviation, at the precise point of imaging,
including the temporal trajectory of any recovery in the critical
early period of a stroke (Supplementary material).

This dataset now allowed us to quantify the impact of
underparameterization on therapeutic inference by comparing
the probability of detecting a hypothetical interventional effect
within low- and high-dimensional models of the same data,
iteratively resampled into randomized cohorts of ‘intervention’
and ‘control’ groups. In a conventional study, an intervention
is evaluated against the behavioural outcome, deconfounded
by a small set of demographic and disease-specific factors,
with the imaging appearances modelled by few global param-
eters such as lesion volume. In the high-dimensional approach
we explore here, an intervention is evaluated in exactly the
same way except that the imaging parameters are expanded
to the many we argue are necessary adequately to model the
interaction between lesion patterns and functional anatomy.

Results
The population distribution of gaze at each time point was

centred on the midline, but was strongly biased by the lesion,

demonstrating its dependence on the underlying anatomy and

its suitability for modelling therapeutic inference (Fig. 2).

First, we focused on modelling lesion non-altering inter-

ventions such as neurorehabilitation that hypothetically

increased the proportion of patients recovering from a

deviated to a normal gaze between the two time points

without altering the lesion itself. We evaluated a series of

models where a hypothetical intervention iteratively rando-

mized across a sample of 1172 patients led to ‘recovery’ of
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the gaze of a randomly-selected proportion of those treated,

varying from 10% to 90% recovery in separate models.

Abnormal gaze was defined as a leftward deviation

of412� at the first time-point, ‘recovery’, as a deviation

within 3� of the midline at the second time point.

Following standard practice in interventional studies, we

fitted low-dimensional multivariate linear regression models

to the data that incorporated the factors of intervention,

age, sex, and lesion volume, predicting recovery as the de-

pendent variable. The significance value for the factor of

intervention, set at P5 0.05, determined if the ‘trial’ was

considered positive or negative. Iterating over 600 random-

izations for each of nine effect sizes ranging from 10% to

90% response, this analysis yielded a monotonic thera-

peutic function with a therapeutic threshold corresponding

to 62.9% [confidence interval (CI) = 61.5–63.4%] of those

treated responding to the intervention (Fig. 3A, in black).

The conventional approach to evaluating an intervention,

examined as a large scale meta-analysis does, is thus shown

to be remarkably insensitive.

A high-dimensional model where the pattern of focal

damage is adequately parameterized should detect an interven-

tion effect more accurately by taking into account those who

would naturally recover without any treatment. To quantify

the impact of this theoretical advantage, we ran a set of

modelled interventions with exactly the same parameters as

before except that to the standard linear regression model

was added an additional covariate factor predicting whether

or not the patient would recover regardless of any interven-

tion. This factor was estimated from a multivariate classifier,

here a transductive linear support vector machine, trained to

relate the high-dimensional anatomical pattern of damage to

the gaze outcome (Fig. 4) (Sindhwani and Keerthi, 2006).

Crucially, this classifier was trained on wholly independent

samples of the data, and received no information whatsoever

on the randomization of the intervention in each model. Its

contribution was thus limited to accounting for a proportion

of the natural outcome variance explained by the pattern of

damage that would otherwise contaminate the critical contrast

of intervention. The classifier’s performance on test data

[78.33%, standard error (SE) = 1.70% sensitivity and

82.78% (SE = 0.56%) specificity] reflected substantial power

to capture this. This dimensionality enhancement substantially

improved therapeutic inference, significantly shifting the thera-

peutic function leftward to 56.0% (CI = 54.65–57.35%)

(Fig. 3A, in red). As predicted, reanalysing the same data

within a high-dimensional framework potentially enables us

to detect the value of interventions that would otherwise be

erroneously discounted as ineffective.

Where the lesion does not change, knowledge of the rela-

tion between the pattern of injury and the outcome increases

sensitivity by identifying the patients who would recover

anyway. But with a lesion-altering intervention such as

thrombolysis, the value of such knowledge is amplified be-

cause the impact of a change in the anatomy of the lesion can

now be directly linked to the outcome. To take extreme cases,

a large lesion centred on a small, discrete critical neural locus

must shrink a great deal for the outcome to improve; a small

lesion close to the edge of more diffuse critical neural focus

need only shrink minimally to produce the same effect. A

lesion-altering intervention that produces exactly the same

change in lesion volume can thus have a diversity of behav-

ioural consequences, entirely dependent on the intersection of

lesion and functional anatomy only a high-dimensional

method can plausibly capture. If volume of brain saved—

the defining action of the intervention—is the physiological

effect but behavioural outcome the measure, low-dimensional

therapeutic inference will be only poorly sensitive.

To examine this second scenario, we constructed a series

of randomized models where a hypothetical intervention

induced a range of 10% to 90% lesion volume reduction,

simulated through iterative surface erosion of the ‘treated’

lesion maps. The critical outcome remained the behav-

iour—resolution or persistence of the deviation of gaze. If

the relation between the pattern of damage and outcome is

predictable across individuals—as clearly demonstrated by

our gaze-trained classifier—then it must be at least as pre-

dictable in the same individual where the lesion pattern

changes. The outcome following the intervention in each

modelled case was thus determined by the voxel-wise

weights of the previously trained classifier—now applied

to each changed lesion—as the best evidence for what

Figure 1 Therapeutic functions. The relation between a given

therapeutic effect size and the probability of correctly detecting it in a

set of trials of the intervention is described by a continuous monotonic

function across the range of 0 (no effect) to 1 (all treated patients

respond). The midpoint of this function is the point where half of all

trials yield a positive result, i.e. where a meta-analysis will only just

identify the intervention as successful. The corresponding point on the

abscissa is the threshold: the minimum effect size required to identify

the intervention as successful. This threshold—a synoptic index of the

detectability of the intervention—will be shifted to the right if the

inferential model is less able to remove variability that obscures the

therapeutic effect (in blue), and to the left it is more able (in red). See

Supplementary material.
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would have happened had the lesion changed in reality

(Fig. 4). As before, we then fitted standard linear regression

models to the outcome data that incorporated factors of

intervention, age, sex, and pre-intervention lesion volume,

labelling the ‘trial’ as positive if the P-value for the inter-

vention was50.05. Iterating over 600 sets of randomiza-

tions for each of nine effect sizes ranging from 10% to

90% volume reduction, this analysis yielded a therapeutic

function with a threshold at an effect size of 78.4%

(CI = 75.75–81.05%) lesion volume saved (Fig. 3B, in

black). Even more prominently than with lesion non-alter-

ing interventions, a very substantial effect size was neces-

sary reliably to identify the intervention as successful.

To quantify the benefit of high-dimensional modelling here,

we re-ran the same models with an additional covariate factor

capturing the relation between the pre-intervention lesion pat-

tern and gaze outcome with a transductive linear support

vector machine. As before, this factor contained no informa-

tion about the intervention itself. The therapeutic function

shifted leftward to 55.0% (CI = 53.1–56.9%): as predicted,

a greater gain than for lesion non-altering interventions, and

even stronger motivation for adopting the high-dimensional

approach (Fig. 3B, in red).

Discussion
These analyses demonstrate empirically an analytic truth:

where a multiplicity of interacting factors—a causal field—

determine an outcome, isolating the contribution of any

A

B

Figure 2 Distribution of patient gaze on admission. (A) Polar plot of the histogram (blue) and kernel density estimate (black) of the

distribution of patient gaze on admission as determined by semi-automated segmentation of the intraocular lenses visualized on the CT scan.

Note the circular mean (red) is within51� of the midline (0.93�). (B) Relation between the admission direction of gaze and the laterality of brain

damage. For each of seven bins of gaze angle, the mean ratio of the volume of right hemisphere damage to the overall volume of damage is plotted

(blue), with a general linear model maximum likelihood fit of the relation across gaze (red). The remarkably strong dependence of gaze on damage

laterality shows the variation in gaze shown in A is unlikely to be dominated by noise. See Supplementary material.
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single factor, such as an intervention, leans heavily on our

knowledge of all the others. Where such collateral factors

are numerous and complex in their interactions, i.e. the

system is high-dimensional, as has been abundantly demon-

strated of the human brain, it may be tempting to treat

them as the noise they superficially resemble. Indeed, with-

out the recent rise in the inferential power of machine

learning, we had no other practicable option, and the con-

sequent critical underparameterization was impossible

either to prove or disprove. But now that the complexity

has been shown to be tractable, therapeutic inference in the

brain may be dramatically enhanced, given data of suffi-

cient scale to constrain the vast space of possible solutions

high dimensionality inevitably opens, and an inferential

framework tailored to its demands.

It is crucial to recognize that high-dimensional modelling

does not merely identify a small minority of idiosyncratic

cases for whom the intervention exceptionally works: this is

not ‘subgroup analysis’. Rather, it properly accounts for the

numerous anatomical factors that influence the outcome in

each and every case, exactly as a set of conventionally mod-

elled confounds does, but vastly expanded, so that the spe-

cific effect of the intervention can be properly isolated. Our

data and simulations suggest that this accounting for differ-

ent anatomical factors is critically important to evaluating

the effect of an intervention with high sensitivity. Just as

age—a near-universal confound—is always modelled, so

should the full causal field of material factors, however

complex it might be. And we know for certain that the

functional anatomy of the brain is both complex and ma-

terial to the outcome where injury to the brain is focal.

Equally, our approach does not overpower materially in-

significant effects into statistical significance, for we have

seen that conventional therapeutic inference is insensitive to

effects of substantial size, as is suggested by the transla-

tional failure of so many agents potent in experimental

A B

Figure 3 Empirical therapeutic inference functions. (A) Lesion non-altering interventions. For a set of hypothetical lesion non-altering

interventions that normalized gaze in a proportion of those treated varying from 0.1 to 0.9, the mean probability of detecting an intervention was

determined from 600 iterative randomizations per treatment level with two different kinds of models. For the low-dimensional approach (black),

linear regression models of the data incorporated only the factors of intervention, age, sex, and lesion volume, labelling each ‘trial’ as positive if the

P-value for the intervention was50.05. The error bars correspond to 95% CI of the means. A continuous function was fitted to the mean data

using a robust spline fit, with estimates of 95% CI given in dotted lines. For the high-dimensional approach (red), linear regression models of the

data and subsequent analysis were identical except for adding a high-dimensional predictor of the gaze outcome regardless of any treatment. Note

that the high-dimensional approach substantially shifts the threshold of the therapeutic function to the left, reflecting enhanced sensitivity for

detecting a therapeutic effect. (B) Therapeutic inference for lesion-altering interventions: For a set of hypothetical lesion-altering interventions

that reduced the volume of the lesion by 0.1 to 0.9, the mean probability of detecting an intervention was determined from 600 iterative

randomizations per treatment level with two different kinds of models. For the low-dimensional approach (black), linear regression models of the

data incorporated only the factors of intervention, age, sex, and pretreatment lesion volume, labelling each ‘trial’ as positive if the P-value for the

intervention was50.05. The error bars correspond to 95% CI of the means. A continuous function was fitted to the mean data using a robust

spline fit, with estimates of 95% CI given in dotted lines. For the high-dimensional approach (red), the linear regression models of the data and

subsequent analysis were identical except for adding a high-dimensional predictor of the gaze outcome regardless of any treatment. Note that the

high-dimensional approach substantially shifts the threshold of the therapeutic function to the left, reflecting enhanced sensitivity for detecting a

therapeutic effect, even more so than for lesion non-altering interventions. See Supplementary material.
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animals. Nor is the functional visibility of an interventional

effect critical here: if a behavioural measure is poorly

related to volume of brain saved, the measure is more

likely to be weak than the brain truly unnecessary. That

we do not, for example, have any routine measures for the

function of the frontal pole—arguably the most distinct-

ively human part of the brain—does not mean its integrity

is inconsequential (Burgess et al., 2007).

Though the benefit from high-dimensional modelling is

bound to vary with the behavioural outcome studied, it

can only be greater the more distributed the underlying

critical functional architecture. Since the complexity of

neural systems controlling gaze will likely be exceeded by

many others, our estimates are likely to be conservative.

Indeed, the deepening appreciation of the fundamentally

interconnected nature of the brain points decisively towards

a need for greater, not lesser, complexity in our explana-

tory models, not just of functional anatomy (Bzdok and

Yeo, 2017; Eickhoff et al., 2017), but of behaviour itself

(Krakauer et al., 2017). Therapeutic inference must inevit-

ably reflect this; moreover, the payoff is not only a greater

understanding of the brain but potentially the correct ap-

preciation of many treatments hitherto erroneously thought

to be ineffective.
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