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Animal movement impacts the spread of human and wildlife diseases, and

there is significant interest in understanding the role of migrations, biological

invasions and other wildlife movements in spatial infection dynamics.

However, the influence of processes acting on infections during transient

phases of host movement is poorly understood. We propose a conceptual

framework that explicitly considers infection dynamics during transient

phases of host movement to better predict infection spread through spatial

host networks. Accounting for host transient movement captures key pro-

cesses that occur while hosts move between locations, which together

determine the rate at which hosts spread infections through networks. We

review theoretical and empirical studies of host movement and infection

spread, highlighting the multiple factors that impact the infection status of

hosts. We then outline characteristics of hosts, parasites and the environment

that influence these dynamics. Recent technological advances provide disease

ecologists unprecedented ability to track the fine-scale movement of organ-

isms. These, in conjunction with experimental testing of the factors driving

infection dynamics during host movement, can inform models of infection

spread based on constituent biological processes.
1. Introduction
Understanding how infectious diseases spread through spatial networks of hosts

has been called a ‘holy grail’ of epidemiology [1]. Spatial host networks portray

host populations as a set of nodes in which hosts reside, and host movement

among those locations serves as the links (i.e. edges) connecting the network

[2,3]. As most disease-causing parasites cannot actively disperse, host movement

also provides critical links for parasite infections to spread [2]. Characterizing

these links is not straightforward, however. Multiple processes act on hosts

during movement across the landscape that potentially influence infections.

Dispersal ecologists refer to this period of movement after organisms depart a

discrete location (e.g. household, habitat patch), but before arriving to a different

location, as the transient phase [4]. Explicitly considering transient movement

phases has provided a deeper understanding of the causes and consequences

of wildlife movement [4], but this phase has largely been ignored in studies of

disease spread.

Moving hosts are subject to changes in biotic and abiotic conditions that alter

existing infections [5], cause mortality [6,7] or facilitate acquisition of new infec-

tions [8,9]. The infection status of individuals arriving into new locations may

therefore be indirectly or unrelated to their infection status when movement is
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initiated. Here, we review the limitations of current approaches

to studying infection spread and emphasize the benefits of

explicitly considering the processes that occur during transient

phases of host movement (hereafter referred to as ‘host transi-

ence’). First, we overview the existing methods examining the

link between host movement and infection spread. Second,

we propose a modelling framework that explicitly considers

host movement and infection dynamics during transient

phases, before developing testable hypotheses about the

importance of factors influencing infection dynamics during

host transience. We conclude by discussing how our frame-

work can guide future research testing the role of host

transience in the spatio-temporal dynamics of wildlife and

human disease.
oc.B
284:20171807
2. Current approaches for investigating the link
between host movement and infection spread

Most research has focused on seasonal host migrations [5,7], but

we broaden this perspective to consider any movement that

connects spatially discrete resident locations of hosts. This

includes large-scale seasonal migrations between breeding

and non-breeding habitats, but also routine, local movements

within populations (e.g. foraging between resource patches,

mate searching among subgroups) or more regionally between

different populations (e.g. dispersal). This definition of move-

ment aligns well with existing spatial network frameworks

and permits comparisons of infection dynamics during host

transience at various scales.

(a) Theoretical studies
Spatial network models specify the geographical locations of

hosts and their infections over time [3,10]. We define

four broad categories of models describing the spatial

dynamics of infection spread (figure 1), with some examples

of each type provided in electronic supplementary material,

table S1. Many existing spatial network models use meta-

population approaches [10], where the unit of measurement

is the resident location rather than the individual, each with

standard epidemiological states (e.g. susceptible, exposed,

infected and recovered). The simplest versions are phenomen-
ological metapopulation models (figure 1a) [11], which do not

explicitly parameterize host movement, but instead model

connectivity of groups, with rates of spread determined by

physical processes, such as gravitation [12], percolation [13]

and radiation [14]. Despite their simplicity, phenomeno-

logical models have accurately reproduced patterns of

disease spread in human and wildlife populations. For

example, the spread of plague in populations of great gerbils

(Rhombomys opimus) occurs between resident locations

(burrows) that are in closest proximity to one another [13],

while the spread of influenza in humans is explained by

the proximity and size of resident locations, with larger

locations experiencing increased host movement and higher

rates of infection [15]. Kernel-based metapopulation models
(figure 1b) extend these models by including an explicit par-

ameter for host movement (the mobility kernel, m [16]) that

specifies a proportion of hosts that change locations between

time steps. The rate at which infections spread to susceptible

nodes (S) is a function of the mobility kernel, the number of

infected nodes (I ) and the probability that each movement
successfully spreads the infection (b*):

dS
dt
¼ �mb�IS ð2:1Þ

and

dI
dt
¼ þmb�IS: ð2:2Þ

Kernel-based metapopulation models have seen wide-

spread application in disease ecology and have been extended

to consider effects of habitat quality in resident locations

[17,18], host phenotypic variation [19] and the presence of

alternative hosts [20]. Simpler models assume a fixed rate

of movement between locations [11], or in proportion to the

density of hosts in source locations [21]. However, Levy or

random walks that characterize heterogeneities in movement

trajectories of individuals are increasingly applied [22]. Coupled
metapopulation models (figure 1c) incorporate within-location

infection dynamics (e.g. transmission, recovery, births and

deaths), and link these to the between-location dynamics of

host movement (m) and infection spread (b*IS) [23]. Finally,

while kernel-based and coupled metapopulation models

track cohorts of hosts that move over time, individual-based (or
agent-based) metapopulation models (figure 1d) have nodes that

represent individuals, permitting tracking of the movement

and transmission of each individual host [24]. Individual-

based metapopulation models may uphold assumptions of

homogeneous mixing within locations [25], though some

agent-based models explicitly account for heterogeneous

contact rates within locations [26].

While many models do explicitly account for host move-

ment, infection spread per se is generally described in much

simpler terms, typically as a constant probability of infected

hosts spreading infection (b*). This simplification overlooks

the potential for infections to be acquired [1,12] or lost

[11,21], or for hosts to die [27] while moving. Although

models may accurately reproduce spatial patterns of infection,

ignoring the underlying mechanisms driving those patterns

does not allow extrapolation to predict disease spread under

novel environmental scenarios. In subsequent sections, we

consider the consequences of relaxing these constraints.

(b) Empirical studies
Owing to the difficulty in determining the location and infec-

tion status of moving hosts, many empirical approaches, such

as mark–recapture (MR) surveys and genetic analyses (elec-

tronic supplementary material, table S2), infer movement and

infection spread from data collected at resident locations. Ulti-

mately, the lack of information on host transience poses

limitations that cannot be overcome without additio-

nal approaches. For example, MR surveys of cliff swallows

(Petrochelidon pyrrhonota) showed that prevalence of parasites

in swallow colonies rose with increased arrivals by non-

residents. However, colonies with the highest prevalence

were also those with the most nests [28], highlighting how

the contribution of movement to infection spread is difficult

to disentangle from within-location factors solely through

MR. Correlations between host arrival rates and prevalence

may also reflect increases in susceptible hosts if many hosts

are uninfected upon arrival [29]. Studies have also found

weak [9] and even negative associations between host arrival

and infection prevalence, for example after fish migrations [30].
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Figure 1. Metapopulation-based spatial disease models track locations of hosts and either (a) simulate infection spread based on connectivity measures without
explicitly considering host movement or (b) define proportion of hosts that change locations between time steps (white arrow) with infection spread occurring from
a proportion of hosts that change from infected locations to susceptible locations (striped arrow). (c) Coupled metapopulation models link local processes such as
transmission (thin black arrow) to the between-location processes of host movement and infection spread. (d) Individual-based network models track movements of
each host (denoted by subscripts i,j ).
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Population genetics has revealed congruent patterns of

gene flow between hosts and parasites. These overlaps,

which have been found for parasites of both humans [31,32]

and wildlife (reviewed by Mazé-Guilmo et al. [33]), are con-

sidered as evidence of the link between infection spread and

host movement. Sampling of rapidly evolving RNA viruses,

which have short generation times relative to the rate of host

movement [34,35], has improved the temporal scale at which

genetic analyses can focus. Streicker et al. [35] used this

approach to reconstruct the recent spread of rabies in popu-

lations of vampire bats (Desmodus rotundus), and higher rates

of viral gene flow than maternally inherited bat genes

suggested male biases in spread. Whereas the above techniques

cannot distinguish individual movements, Bayesian assign-

ment tests, which use host and parasite genotypes, allow for
individual-based assessments of host movement between resi-

dent locations [36]. Assignment tests have also proved useful

for determining how landscape features affect infection

spread by impeding host movement [36], but this technique

is error prone [37]. Any genetic approach cannot reconstruct

the path travelled by, and infection status of, hosts during

transience.

Biologging techniques, such as radio telemetry and GPS

tags, can overcome these issues by providing a more complete

picture of host movement [38]. Craft et al. [19] used GPS devices

on nomadic and territorial lions (Panthera leo) in a spatial

network of prides in the Serengeti, which provided data for dis-

ease simulations that explicitly included host transience. Other

biologging studies linked GPS locations to environmental data

to assess effects of elevation [39] and landscape structure [26]
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on infection spread. A key challenge of biologging is acquiring

infection data from hosts in transience. Capturing hosts to

obtain samples may be dangerous and disrupt natural move-

ment behaviours. As a result, remote tracking has provided

detailed empirical data for modelling host movement in host

networks, but infection spread must be inferred [19]. In

addition, remote tracking is feasible for relatively few wildlife

host-parasite systems, and remains costly.

The long distances travelled by many migratory hosts

allow researchers to survey infections in hosts along different

points in the migratory route, which perhaps has provided

the most insight into infection dynamics during host transience

(electronic supplementary material, table S2). Positive associ-

ations between host migration and spatial expansion of

infections have been reported [40]. However, reduced infection

prevalence among migrating animals has also been widely

observed [7,30] (electronic supplementary material, table S2),

possibly due to increased mortality of infected hosts [7], avoid-

ance of infection through ‘migratory escape’ [7] or recovery

from infection while moving [5]) (see §4 for further discussion).

Direct quantification of any of these processes in the wild is

currently lacking.
3. Framework for integrating host transience into
spatial network models of infection spread

To better understand how transient phases of host movement

factor into spatial infection dynamics, we propose a framework

that integrates concepts from dispersal ecology and spatial dis-

ease modelling (figure 2a). We conceptualize our framework as

an individual-based metapopulation, but it could be applied to

any of the spatial network models shown in figure 1. Briefly,

host movement between spatially discrete locations is broken

into three phases: departure, transience and arrival. While in

transience, hosts can acquire infections (transmission) or

recover from infections (recovery), and all hosts are subject

to mortality, potentially at different rates for infected and

uninfected hosts.

To illustrate mathematically the effect of these processes

on host and infection dynamics, and the factors affecting

them, we describe the dynamics of a cohort of moving

hosts of size M, comprising I infected hosts and S uninfected

hosts (M ¼ S þ I). Here, we used a simple host–microparasite

framework [46], which ignores the infection load of hosts, for

ease of illustration. More complex, tailored models could be

developed as required. Host and infection dynamics during

the transient phase can be described by

dM
dt
¼ �M dþ I

M
aþ y

� �
ð3:1Þ

and

dI
dt
¼ LðM� IÞ � Iðdþ aþ yþ sÞ, ð3:2Þ

where d is the background host mortality rate, a is the parasite-

induced host mortality rate, y is the host arrival rate at the

recipient location (i.e. 1/duration spent moving) and s is

the host recovery rate from infection (for simplicity here, we

assumed infected hosts recover to be susceptible to reinfection,

but this could be relaxed). Finally, L represents the force of

infection on susceptible individuals during the transient

phase, and can take different forms depending on the
transmission mode of the parasite. For example, for a parasite

that undergoes direct transmission within the cohort of hosts,

L ¼ bI (where b is the standard per capita transmission rate).

However, for a parasite that infects from a pre-existing environ-

mental reservoir, L will simply be a constant, reflecting the

number of infectious stages in the environment encountered

per unit time. Given this framework, the dynamics of hosts

that successfully arrive at the recipient location (total: A;

infected: AI) is given by

dA
dt
¼ yM

dAI

dt
¼ vI,

9>>=
>>;

ð3:3Þ

such that the total number of individuals arriving ðAð1ÞÞ and

number of infected individuals arriving ðAIð1ÞÞ is

dAð1Þ
dt
¼ y

ð1

0

MðtÞ dt

dAIð1Þ
dt

¼ y

ð1

0

IðtÞ dt:

9>>>=
>>>;

ð3:4Þ

Example dynamics for this model are shown in figure 3.

Using this general framework, models can be developed

that are tailored to the dynamics of specific host-parasite sys-

tems while meeting logistical constraints or data limitations.

We emphasize that we do not aim here to provide a compre-

hensive analysis of the dynamical properties of this model,

which is beyond the scope of this review. Instead, we present

this framework to clarify the occurrence and connection of

the various processes that affect infection spread during

host transience.

Importantly, the parameters in this framework are likely

to be influenced in different ways by host (H ), parasite (P)

and environmental (E) factors, and any interactions between

them. As such, these parameters should be considered as

functions, depending on H, P and E; for example,

d ¼ fdðH, EÞ, a ¼ faðH, PÞ, y ¼ fyðH, EÞ,
s ¼ fsðH, P, EÞ, L ¼ fLðH, P, EÞ: ð3:5Þ

We argue that closer attention to each of these functions and,

ideally, parameterizing (at least some of) the host, parasite

and environmental dependencies within them will lead to a

clearer and more mechanistic understanding of spatial host

and infection dynamics than currently exists. In the following

sections, we consider existing empirical evidence for these

dependencies, and highlight gaps where further information

is required.
4. Factors influencing transient phase infection
dynamics

(a) Recovery (s) and relation to host arrival rate (y)
Recovery from infections during host transience acts to decou-

ple infection spread from host movement. As a consequence,

so-called ‘structural delay effects’ [47], whereby parasite circu-

lation predominantly occurs within resident locations, may

occur even in host networks highly connected by movement.

As a given time period (on average 1/s time units in our

framework) is required before recovery occurs [11], rates of

recovery during transience depend fundamentally on the

amount of time the hosts spend in transience (on average,
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Figure 2. (a) Framework for capturing transient phase infection dynamics. The movement path of hosts and their infections (intensity/probability represented by
darker shading of the arrow being higher intensity/probability) are categorized into three phases: departure, transience and arrival. During transience, infections are
lost/reduced through background or disease-induced mortality of infected hosts, or as conditions during transience decrease exposure and/or cause deterioration of
infections (i.e. recovery). Mechanisms that drive recovery include: (b – c) movement through habitats unsuitable for infections, which may occur with protozoal
infections during monarch butterfly migrations [6] and with tick infections during ranging movements of livestock [41]; (d ) enhancement of immune function
during periods of movement, which may occur in migratory red knots [42]; and (e) dispersion of hosts that reduces contact, as evidenced by sea lice infections
in migratory pink salmon [43]. Mechanisms that increase the force of infection during transience include: (g – f ) movement through habitats with viable infective
stages, which occurs with parasitic nematodes in migratory saiga [8] and dispersing pygmy blue tongue lizards [9]; (h) immunosuppression, such as the proliferation
of latent bacterial infections in migratory redwing thrushes [44]; and (i) host aggregation, which occurs with avian influenza virus (AIV) infections during stopovers
by migrating sandpipers [45]. (Online version in colour.)
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1/y time units). The duration of transience is, at least in part,

related to the linear distance travelled, and so simpler models

may account for variation in recovery rates by considering

differences in movement distances. Growing empirical evi-

dence of infection recovery during long-distance seasonal

migrations (electronic supplementary material, table S2) [7]

suggests that decoupling effects of host recovery are particu-

larly pronounced with longer linear distances. Substantial

variation in the direction and velocity of intergroup movements

can also occur within populations [49], so in many cases the

time that hosts spend in transience may not correspond to the

linear distance travelled. Characterizing variation in movement

trajectories may therefore be important for parameterizing

recovery rates. Even if the time that hosts spend in transience
is, on average, longer than the infectious period, outlying

cases of rapid movement or longer persistence of infection

may sustain infection spread between resident locations.

Thus, the degree of overlap in the variation in transient phase

duration and infectious period should more accurately estimate

rates of spread throughout spatial host networks.

Factors related to hosts and the environment that affect

the time that hosts spend in transience may influence rates

of spread. For example, behavioural responses to mitigate

risks and costs of infection are well documented in wildlife,

and can be manifested through changes in host movement

patterns [48]. Landscape structure can also influence the dur-

ation of host transience with implications for infection spread

[49]. Behavioural and landscape effects on host movement
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can be captured in our framework by allowing arrival rates

(y ) to vary with infection loads and/or the presence of

habitat features in the movement path.

As most local movements between nearby resident

locations are probably too brief for infection recovery to

occur, infection spread may be better predicted by trans-

mission during host transience or by characteristics of

resident locations (e.g. infection status [21], population size

[1], spatial arrangement [13]). Recovery should not be comple-

tely disregarded for local dynamics, however. Abrupt changes

in abiotic conditions that often occur when entering transience

could result in rapid recovery events, for example, when fish

move through saline waters [30,50]. Livestock lose ectopara-

sites during daily ranging movements between woodlands

(favourable for ticks) and pasture (unfavourable for ticks),

which modelling suggests can modulate infection prevalence

in the broader population (figure 2c) [41].
(b) Host mortality (background, d, or
parasite-induced, a)

Mortality of hosts during transience clearly will affect the

number of hosts that arrive (A). However, if infected hosts

are differentially affected (via, for example, increased patho-

genic effects (a) during movement) host mortality during

transience will also affect the proportion of immigrants that

carry infections to the destination (AI/A). This process may

therefore inhibit parasite persistence through reductions in

infection spread and reductions in susceptible hosts available

for infection in recipient locations. Experimental work sup-

ports the hypothesis that infection-induced mortality is a

mechanism underlying observed decreases in protozoal infec-

tions with distance migrated by monarch butterflies (Danaus
plexippus, figure 2b) [51]. Immunological factors should play

a role in this process. Some species balance the energetic

costs of prolonged movement with immunosuppression [52],

which clearly increases infection risk, and probably mortality,

during host transience. Alternatively, adaptations that enhance

immune function during periods of travel, particularly toler-

ance responses that aid host survival without resulting in
parasite clearance [53], could facilitate infection spread. Such

adaptations are evidenced by migratory birds that experience

immune activation when preparing to migrate (figure 2d )

[42] and by larger immune defence organs of migratory

versus non-migratory bird species [54].

In addition to host-related factors, both parasite-related fac-

tors (rate of host exploitation) and environmental conditions

may also affect infection-induced (a) and background (d ) mor-

tality rates of moving hosts at both local and regional scales.

Traversing habitats with unfavourable conditions (e.g. extreme

temperatures) or high densities of predators could drive host

deaths during transience, irrespective of the distance travelled.

Similarly, infections from highly virulent parasites acquired

within source locations could conceivably compromise host

health to an extent that even modest energy expenditures

during local movement could cause death in transit.
(c) Force of infection (L)
In contrast with recovery and mortality, transmission during

host transience (either among moving hosts, at per capita rate

b, or from the environment, at rate L) generally facilitates

infection spread among host networks. This process therefore

strengthens the link between infection spread and host move-

ment, but weakens the link between spread and prevalence in

source resident locations. As gains in infection are contingent

on susceptible hosts encountering infective stages, either

from other infected hosts or in the environment, we expect

that the rate of acquisition of new infections during host tran-

sience is most dependent on parasite transmission mode, the

habitats traversed in the transient phase, and the grouping

patterns of moving hosts. For environmentally transmitted

parasites, acquisition of infection during host transience results

when moving hosts traverse habitats supporting infective

stages. Primates typically acquire helminth infections during

daily ranging [55], and modelling suggests that transmis-

sion during local ranging of primate individuals can allow

parasites to invade and expand in their populations [56]. Acqui-

sition of infection during host transience may also explain the

apparent importance of inter-burrow movement of pygmy
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blue-tongued lizards (Tiliqua adelaidensis) for local infection

spread (figure 2g) [9].

At broader scales, the epidemiological relevance of trans-

mission during host transience is well illustrated by seasonal

migrations of saiga (Saiga tatarica) [8]. Saiga acquire infections

while moving through pastures with sheep faecal matter that

harbour infective nematode stages (figure 2f ). For nematodes

therefore, spatial spread is contingent on transmission in

saiga during the transient phase rather than transmission

within resident locations [8], emphasizing again how habitats

traversed during host transience can factor into spatial infec-

tion dynamics. Energy expenditure and immunosuppression

during regional movements may amplify transmission by acti-

vating infections from dormant parasite stages. Outbreaks of

latent bacterial (Borrelia garinii) infections occurred in redwing

thrushes (Turdus iliacus) when migratory restlessness was

induced (figure 2h) [44]. Activation of latent fungal infections

has also been reported in natterjack toads (Epidalea calamita)

when moving from terrestrial to aquatic habitats [57].

For vector-borne infections, transmission during host

transience depends on moving hosts encountering habitats

favourable for vectors as well as the parasites they harbour.

Daily movements of humans can increase time in habitats har-

bouring mosquito-borne dengue virus [58] and result in spatial

patterns of infection risk that diverge from those predicted by

abundance of mosquitoes in households [58]. These findings

support the hypothesis that exposure during host transience

(captured by the force of infection parameter, L, in our frame-

work) may decrease the influence of resident locations on

patterns of infection spread.

Grouped travel probably enhances transmission of directly

transmitted parasites among moving hosts. Studies of shoaling

movements in fish demonstrate that parasitic infections can be

transmitted in travelling groups [59]. Documentation of avian

influenza virus transmission during stopovers along bird

migration routes lends further support for the potential of

grouped travel to promote transmission during host transience

(figure 2i) [45]. Alternatively, assortative grouping patterns

could inhibit transmission among transient hosts (i.e. migratory

allopatry). Migration by juvenile pink salmon (Oncorhynchus
gorbuscha) prevents acquisition of infection through separation

from infective adults (figure 2e) [43]. This case is represented

in our framework through a b parameter equal to zero and

would result in structural trapping of infection to locations

occupied by adult hosts.
5. Future direction
This review highlights that obtaining field data on infection

dynamics during the transient phase of movement present a

key challenge to understanding the mechanistic links of

host movement and infection spread. Owing to the recent inno-

vations of tracking and computational technology that permit

detailed individual-based tracking of wildlife systems [38], we

argue that collection of such data is now feasible for some wild-

life systems. Utilization of automated image-based tracking

methods [60] allows ecologists to characterize at high resol-

utions the behavioural patterns of infected and uninfected

hosts in controlled environments that mimic transient phases.

These approaches also provide the opportunity to quantify

effects of host grouping on transmission during transient

phases. A key advantage of these experimental approaches is
the feasibility of monitoring changes in infections in individual

hosts at fine temporal scales, which can be directly linked to

environmental conditions and host behaviours. Nevertheless,

owing to costs and logistical constraints, image-based tracking

is typically performed in small experimental units. Distinguish-

ing departure, transience and arrival in small units can be

problematic. Future effort can be made to develop larger

experimental tracking systems, such as mesocosms, capable of

capturing all phases of host movement and infection spread.

The radio-tracking and GPS studies highlighted above

[19,39,61] are strong initial attempts at directly quantifying tran-

sient phase host movements in the wild. Future work can

improve on these approaches by combining movement paths

with individual infection data at multiple points during transi-

ence. Doing so can better identify factors that decouple rates

of infection spread from linear host movement assumed in

conventional models, which might resolve unexpected and

inconsistent findings of prior work [9,19]. For organisms that

cannot be feasibly surveyed for infection during transient

phases, biologging devices may be developed that remotely

assay infection status of moving hosts in the wild. This could

also be done indirectly. For example, as immune function in

ectothermic animals is strongly linked to body temperature,

fitting migratory ectotherms such as amphibians and snakes

with temperature sensors may provide insights into how

host susceptibility varies during periods of movement. For

larger-bodied mammals, GPS devices combined with acceler-

ometers can identify critical periods of movement during

which increased energy expenditure poses heightened infection

risk [38].

Considering the importance of the structure and abiotic con-

ditions of the habitat matrix surrounding resident locations for

transient phase infection dynamics, approaches used by land-

scape epidemiologists can benefit spatial network models of

infection spread. Landscape epidemiologists apply environ-

mental data from satellite imagery to identify the habitats in

which diseases proliferate. Integration of habitat data into meta-

population models has been carried out extensively [49,62,63],

but models have typically only considered effects of habitat on

host movement. Future work can advance by considering realis-

tic effects that differential quality of habitats in the matrix has on

transmission and host recovery during periods of movement

[17,18]. Additionally, the coarse resolution of much envi-

ronmental data used in landscape epidemiological studies

limits the utility of these data to regional movements such as

migrations and dispersal. Local scale heterogeneities in external

conditions (e.g. moisture levels [64], vegetation cover [65], temp-

erature [64,66], predation risk [67]) are known to affect infection

risk and prevalence and may also affect host infections during

local movements. Experiments that manipulate habitat can

complement landscape ecological approaches by testing how

movement through the habitat matrix alters courses of infection

within hosts. In addition, field and experimental data on the

abundance and persistence of parasite infective stages and/or

infection vectors in the habitat matrix can inform parameteriza-

tion of rates of environmental transmission in transient

hosts. Theoretical work has begun to use these types of data

to explore infection dynamics in single locations [68], and our

framework can guide spatially explicit extensions of these

models that distinguish environmental transmission rates at

each phase of host movement. Finally, human alteration of habi-

tats comprising host networks, while posing various potentially

detrimental consequences for population viability, may afford
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natural experiments for testing the abiotic factors involved in

transience phase infection dynamics. Satterfield et al. [69] were

able to use human-mediated amplification of exotic milkweed

(Asclepias curassavica) in the USA, a preferred breeding and

nutrient resource of monarch butterflies, to model how

loss of migratory behaviour in monarch populations caused

by year-round resource availability altered population-level

infection dynamics. Human activities that alter the habitats

spanning spatial host networks may allow ecologists to measure

the effects of habitat structure, temperature, moisture and other

abiotic variables on infection in transient hosts. Such data would

enhance the ability to predict patterns of disease spread amid

environmental change.
R.Soc.B
284:20171807
6. Conclusion
Identification of relevant biological processes is the first step in

building mechanistic models of ecological dynamics. With an

explicit transient phase, our conceptual framework unpacks

infection spread into its constituent biological processes: trans-

mission, infection recovery and infection-induced mortality. In

so doing, our framework links patterns of infection spread

described by existing spatial models to specific mechanisms

that otherwise are hidden in their assumptions. While our

framework can be simplified as needed, evidence of these
processes from the empirical studies reviewed here provides

a strong rationale for building this added complexity into

disease models. Owing to technological developments, move-

ment ecology is experiencing an exciting renaissance of big

data that is affording new insights in the mechanisms driving

animal movements as well as their ecological consequences.

These developments provide equally exciting opportunities

for disease ecologists to advance our understanding of the con-

sequences of host movement for infection spread, the factors

that determine those consequences, and how to model spatial

infection dynamics.
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Vespignani A. 2009 Multiscale mobility networks
and the spatial spreading of infectious diseases.
Proc. Natl Acad. Sci. USA 106, 21 484 – 21 489.
(doi:10.1073/pnas.0906910106)

13. Davis S, Trapman P, Leirs H, Begon M, Heesterbeek
JAP. 2008 The abundance threshold for plague
as a critical percolation phenomenon. Nature 454,
634 – 637. (doi:10.1038/nature07053)

14. Dalziel BD, Pourbohloul B, Ellner SP. 2013 Human
mobility patterns predict divergent epidemic
dynamics among cities. Proc. R. Soc. B 280,
20130763. (doi:10.1098/rspb.2013.0763)

15. Charu V, Zeger S, Gog J, Bjørnstad ON, Kissler S,
Simonsen L, Grenfell BT, Viboud C. 2017 Human
mobility and the spatial transmission of influenza in
the United States. PLOS Comput. Biol. 13, e1005382.
(doi:10.1371/journal.pcbi.1005382)
16. Riley S, Eames K, Isham V, Mollison D, Trapman P.
2015 Five challenges for spatial epidemic models.
Epidemics 10, 68 – 71. (doi:10.1016/j.epidem.2014.
07.001)

17. Becker DJ, Hall RJ. 2016 Heterogeneity in patch
quality buffers metapopulations from pathogen
impacts. Theor. Ecol. 9, 197 – 205. (doi:10.1007/
s12080-015-0284-6)

18. Leach CB, Webb CT, Cross PC. 2016 When
environmentally persistent pathogens transform
good habitat into ecological traps. R. Soc. open sci.
3, 160051. (doi:10.1098/rsos.160051)

19. Craft ME, Volz E, Packer C, Meyers LA. 2011 Disease
transmission in territorial populations: the small-
world network of Serengeti lions. J. R. Soc. Interface
8, 776 – 786. (doi:10.1098/rsif.2010.0511)

20. Gog J, Woodroffe R, Swinton J. 2002 Disease in
endangered metapopulations: the importance of
alternative hosts. Proc. R. Soc. Lond. B 269,
671 – 676. (doi:10.1098/rspb.2001.1667)

21. Hess G. 1996 Disease in metapopulation models:
implications for conservation. Ecology 77, 1617.
(doi:10.2307/2265556)

22. Fofana AM, Hurford A. 2017 Mechanistic movement
models to understand epidemic spread. Phil.
Trans. R. Soc. B 372, 20160086. (doi:10.1098/rstb.
2016.0086)

23. Jesse M, Heesterbeek H. 2011 Divide and conquer?
Persistence of infectious agents in spatial
metapopulations of hosts. J. Theor. Biol. 275,
12 – 20. (doi:10.1016/j.jtbi.2011.01.032)
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