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Abstract 
 
Fever in young children is taken seriously by healthcare professionals as it indicates an 

underlying infection which can be life-threatening. Core body temperature can be accurately 

measured using traditional techniques, but these are not suitable for non-invasive monitoring 

during normal life. This study investigates the possibility of fever monitoring in children 

under 2 years of age in a non-clinical setting based on various local skin temperatures. 

Various system designs are presented, i.e. single vs multi-sensor systems, and a set of sensors 

either localized or distributed across the body. The probability of positive fever identification 

on feverish children ranges from ~40% to 77% using 1 and 5 sensors respectively, while the 

detected false positives are a 10%. We conclude that a continuous and non-invasive fever 

monitoring in children under 2 years is possible by the propose method, providing a suitable 

solution for early fever detection and alert. 
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1 Introduction 

 

Fever in young children usually indicates an underlying infection, caused either by a self-

limiting virus or a more dangerous bacterium, such as meningitis or pneumonia which can be 

life-threatening as pointed-out by the National Collaborating Centre for Women’s and 

Children’s Health [1]. In fact, infections remain the leading cause of death in children under 

the age of 5 years. Fever is very common in young children, with between 20 and 40% of 

parents reporting it each year, probably the commonest reason for a child to be taken to the 

doctor, and the second most common reason for a child being admitted to hospital. Even 

when the fever is reported by the parents or carers, fever ought to be taken seriously by 

healthcare professionals. The NICE Clinical Guideline 160 (CG160) applies to children under 

5 years old [1]. CG160 states that healthcare professionals are required to set a face-to-face 

visit when the children have any features belonging to the amber / intermediate risk category 

(e.g. pallor on skin, lips o tongue; no smile or decrease activity; nasal flaring; poor feeding in 

infants; etc.) though the urgency can be determined remotely. However, in the case of 

children presenting features within the red / high risk category (e.g. pale colour of skin, lips 

or tongue; weak, high-pitched or continuous cry; grunting; etc.), the healthcare professional 

needs to see the children within 2 hours even if they are not considered to have an 

immediately life-threatening illness [1].  
 

Core body temperature can be accurately measured by using a range of traditional ‘gold 

standard’ techniques such as pulmonary artery temperature, oesophageal temperature, intra-

abdominal temperature and rectal temperature in clinical settings, or oral temperature, axilla 

temperature or tympanic temperature when a practical and less-invasive option is required 

and sufficient. In particular, in non-clinical settings the ear temperature measured with an 

infrared device is the most popular alternative to the ‘gold standards’, as it is easy to apply, 

fast, safe and highly tolerable by the patient [2,3], while it has been found accurate both 

during febrile and non-febrile periods [4], and valid to assesses the presence of fever [5], and 

it is one of the recommended methods to be used with children between 4 weeks and 5 years 

of age. However, all these methods are typically used either in clinical settings or at home 

when other signs suggest the presence of fever, and are not suitable for long-term monitoring 

in normal-life situations. This is not sufficient to monitor babies and children for fever 

occurrence, especially in schools or nurseries where the ratio of children to adult is 

considerable as children depend on their carer to identify such condition. Therefore, the study 

and development of a non-intrusive indicator that provides reliable means for fever detection 

in children is of practical importance.   

 

The advances of technology, sensors, smartphones and smart watches, and communication 

systems such as connectivity with The Internet of Things have supported the development of 

monitoring systems to improve health-care in our daily-life. These systems are being 

developed for the monitoring of a variety of physiological signals to inform doctors or to 

raise an alarm in case of abnormalities or danger, e.g. body posture and falls monitoring [6,7], 



cardiovascular related signals [6,8], respiratory problems [6], thermal comfort [9], temporal 

pattern of perspiration [10], skin temperature [11], or mental stress via skin conductance [12].  

 

Literature also shows that there is a need for non-invasive core temperature and fever 

monitoring systems that can be used in non-clinical environments. These current systems are 

typically based on temperature measurements of the skin, and can be used in a variety of 

circumstances, e.g. providing core temperature measurements in real-time during remote 

consultations with doctors [8], detecting moisture and core temperature of bedridden patients 

via sensors embedded in their garments [13], fever detection at the entrance of a class during 

infectious outbreaks [14], or a wrist-band for all purposes fever alarm [15]. The accuracy is 

obviously limited as skin temperature depends on many factors [16,17] and only provides an 

approximation of the core temperature. Despite all those shortcomings, some authors have 

successfully used skin temperature at the forehead to determine core temperature within 

±0.5°C of distal oesophageal temperature for intensive care patients [18], demonstrating the 

potential of the method to substitute the more accurate invasive procedures.  

 

However, typically sensors that measure and monitor core temperature via skin temperature 

involve electronics and may require considerable power supply so while alternatives to AC 

power are currently sought [19], and have benefits especially for infants. Furthermore, 

compounded data for children are limited, with just a few studies providing significant data 

related to the skin and core temperature of children [20] and babies below two years of age 

while the characteristic skin temperature mapping is different than that of adults [17].  

 

The aim of this study is to investigate if skin temperature can be used to monitor fever in a 

continuous fashion on children under 2 years of age in a non-clinical setting, and if 

affirmative, describe the suitable system. As current fever and thermal comfort monitoring 

devices are developed for adults, the work directly addresses the existing gap in the acquired 

data and methodologies used to develop a system relevant for infants. Early detection of fever 

could potentially save youngster’s life to conditions such as meningitis, pneumonia and other 

life threatening conditions.  

 

2 Study design  

2.1 Sensor requirements and system design 

 

A novel non-clinical fever monitoring method for children under 2 years of age is sought 

based on skin temperatures at different locations on the body surface. The criteria 

measurement strategy for this specific type of population needs to be proposed based on 

extensive experimental studies. The system should offer a suitable non-invasive solution for 

early detection and alert. 

 

For practical and safety reasons, the designed system/sensor should be embedded in the 

clothing (Figure 1), and should not use wires or batteries. A binary output would be 



sufficient, indicating presence of fever or no-fever (Figure 2). A thermochromic pigment 

applied over a selected area of the fabric could be used. Identification of the suitable skin 

locations and skin temperature threshold value matching with the onset of fever is 

investigated and reported in this study. 

 

 

 

 
Figure 1: Skin temperature sensor applied over the skin 

 
 

 
Figure 2: Possible location and outputs of the fever sensor on the garment 

 
Various methods to ascertain core temperature were considered. However, working with this 

particularly vulnerable subject group strongly limits the measurement techniques that could 

be used, with typical ‘gold standards’ being not allowed. On the one hand, the “NICE 

Clinical Guideline 160- Fever in under 5s: assessment and initial management –” 

recommends the use of an electronic thermometer in the axilla, a chemical dot thermometer 

in the axilla, or an IR ear thermometer to obtain an approximate core temperature value in 

children aged 4 weeks to 5 years [1]. The first two alternatives (axilla thermometers) were 

deemed less practical and of lower performance than the IR ear thermometer [21]. On the 

other hand, there are concerns in the literature with the use of IR ear thermometers in clinical 

settings or as a substitution of a ‘gold standard’ [22,23], while others believe it correlates well 

with ‘gold-standards’ such as pulmonary artery temperature [21] and rectal temperature 

[2,4,5,24-26]. However, this disagreement mainly focuses on the use of tympanic temperature 

as a substitute of a ‘gold standards’ or in clinical and intensive care situations. Instead, the 

core

body

skin

skin

temperature
sensor

clothing

temperature
flow

core

body

skin

skin

temperature
sensor

clothing

temperature
flow

Feverish 
child 



suitability of IR ear thermometers in non-clinical settings is much more popular and 

recommended, particularly in studies with children [4,5,24,26]. Finally, it is necessary to 

ascertain the core temperature fairly for the design of this system, but precision was not 

critical as it is in clinical settings. This is because our system only aims to work as a fever 

alert and not as a fever diagnostic method; and also the largest inherent error from our system 

comes from the skin temperature variability. Considering all these aspects, it was decided that 

an IR ear thermometer will be used as to get an approximation of the core temperature, and 

that it is a sufficient and valid option.  

2.2 Data collection 

 

The children cohort was recruited and tested following a study protocol approved by the 

University of London Ethical Committee (QMREC2008/72). A brief description of the 

experimental protocol is given here, but full details were reported by Garcia-Souto and 

Dabnichki previously [17] along with the group stratification. 

 

A total of 138 subjects participated in the study. They were gender-balanced, 3 to 24 months 

of age, and with BMI between 14.4 and 21.8 kg/m2. Core temperature and 16 local skin 

temperatures (the 14 points recommended in ISO 9886 [27] plus lateral neck and left wrist) 

(Figure 3) were measured in 540 occasions, deeming a total of 9180 samples. Volunteers’ 

gender, age, Body Mass Index (BMI), clothing and their status (awake or asleep) were 

recorded.  

 

All measurements were taken indoors at the nurseries after a minimum of 15 minutes 

allowing to reach stable skin temperature levels [28]. Room temperature and humidity was 

maintained within a narrow range (23.7°C (SD=1.7°C) and 55.1% (SD=6.8%)) with no 

significant air velocity or radiant temperature from either direct exposure to the sun and/or 

heating elements.  

 

Tympanic temperature, used as core temperature in this study, was measured using infrared 

sensor (OMRON Healthcare Co., Ltd., model MC-510-E2, accuracy of 0.1˚C). The sensor is 

specially designed for babies as it has a smaller head. It provides consistent measurements of 

the tympanic temperature by recording the maximum value in 10 seconds as established in 

clinical practice (the tympanic temperature is higher than the rest of the inner ear 

temperature). Furthermore, in order to improve the accuracy of the obtained value, 2 

consecutive measurements were taken and averaged. Infrared sensor (Medscope Ltd., model 

TH03F, specifically used on “surface mode”, accuracy 0.3˚C) was used to measure the skin 

temperatures. Three consecutive measurements for each skin and clothing location were 

taken and averaged in order to improve the accuracy of the obtained values. Skin temperature 

values were very consistent for each set, typically varying only 0.0-0.2 ˚C. Both sensors 

(OMRON and Medscope) are approved and commonly used in the UK’s National Health 

System (NHS).  

 

 



 

 

Figure 3: Studied local skin locations and expected temperatures in clothed infants [taken from 

Garcia-Souto 2016] 

 

3 Data analysis 

3.1 Identification of suitable locations 

 

Suitable and non-suitable locations for the monitoring of core temperature were selected 

according to 3 conditions.  

(1) Skin temperature should be characterized by a normal distribution.  

(2) Correlation of core and skin temperatures needs to be significant.  

(3) In addition to the above it should not depend on many secondary factors to avoid the 

need for large number of skin temperature threshold values (one per combination of 

parameters).  

 

The normality of the distribution of core temperature and each local skin temperature, as well 

as the relevant factors for each of these body temperatures (i.e. conditions 1 and 2) were 

comprehensively studied and reported by Garcia-Souto and Dabnichki [17]. 

 

The relevance of “fever” on each of the local skin temperatures (i.e. condition 3) was 

investigated and reported in this paper. Fever was defined as core temperature over 37.3 ºC 

and subjects were separated into 2 cohorts according to this Tclimit. The potential 

‘relationship’ between the skin temperature and fever was studied using two methods. 

 



On the one hand, the individual skin temperature distributions were statistically compared to 

identify if the presence of fever was relevant at each given location. The statistical test used 

in each case was carefully chosen:  

• Standard ANOVA test (named test 1A): if the whole dataset and each sub-cohort 

distributions are normal and the variances equivalent (assessed with the Levene test); 

• Welch and Brown-Forsythe tests, a robust test of equality of means (named test 1B): 

if the whole dataset and each sub-cohort distributions are normal but the variances are 

not equivalent (variances assessed with the Levene test); 

• Non-parametric tests, i.e. Mann-Whitney U test (named test 2): used when normal 

distributions were not guaranteed, i.e. do not assume normality or equal variances 

among the cohorts. 

 

On the other hand, Receiver Operator Characteristics (ROC) analysis was performed for the 
skin temperature at each location following the analysis described by Metz [29]. This was 
also previously used by Hogan et al for fever identification based on forehead temperature 
[30]. This analysis generates a sensitivity vs specificity curve that permits to assess if the 
studied parameter would be a good marker for a classifying system, and how it would 
perform using different thresholds. Characterization of the ROC is given, i.e. area under the 
curve and its standard error (SE), the asymptotic significance, and the lower and upper 
boundaries for the 95% Confidence Interval (95%CI). 
 
  

3.2 Characterization of suitable locations  
 

Once the potentially suitable locations for the detection of fever have been identified, we 

characterize them. Ideally one would be able to measure the local skin temperature of an 

infant and decide if that value belongs to the skin temperature distributions characteristic of 

febrile or the no-febrile children, and therefore identify if the child has a fever. Unfortunately 

this is not straight forward as the two distributions partially overlap causing a degree of 

uncertainty in the categorization.  

 

In practice, a new skin temperature measurement Xi that falls in the region between the no-

febrile (H0) and febrile (Ha) temperature distributions is compared with a threshold value (k) 

and categorized accordingly (Figure 4). Two standard types of errors could potentially occur: 

(i) type I or α error:  decide in favour of Ha when H0 is true hence creating a false positive; 

(ii) type II or β error: decide in favour of H0 when Ha is true hence missing a true positive. 

Alpha and beta errors are ‘inversely’ related, such that the decrease of one causes the increase 

of the other. 

 

The selection of the threshold value (k) is therefore very important as it defines the alpha and 

beta errors. For each potentially suitable location a wide range of k values was studied and 

presented in the alpha-beta curves. These curves were obtained for various sub-cohorts, e.g. 

based on the infants’ age or status, as relevant for the skin location. The optimal k value is 

obtained by selecting a desirable alpha (or beta) error value and then identifying the 



corresponding skin temperature. Figure 5 features an example with 2 sub-cohorts and a 

selected alpha error of 20%, leading to beta errors of 65 and 55% and k values of 32.0 and 

32.8°C for sub-cohorts 1 and 2 respectively.  

 

Alpha-beta curves contain similar information to the ROCs, with the added benefit that it 

already presents a measure of the ‘sensitivity’ or ‘true positive rate’ and ‘specificity’ or ‘false 

positive rate’  for all possible values of the threshold k. The main difference is that for the 

alpha-beta curves the two cohort distributions are first characterized and values obtained 

looking at the overlap between these two ‘normalized’ distributions. Instead, the ROCs are 

directly constructed with the original data set. For completeness, ROC analysis was also 

included.  

 

Each location was then characterized according to the following features: 

• Number of cofounding factors for the local skin temperature 

• Mean value of the skin temperature distribution. 

• Standard deviation of the skin temperature distribution. 

• Average k value at α =10% for all the studied sub-cohorts. 

• Range of k values at α =10%, i.e. maximum difference across the studied cohorts. 

• Amplitude of the error curve: k(α ~ 0%) - k(α = 90%). 

• Area under the ROC curve with its standard error (SE) 
• Lower and upper boundaries for the 95%CI for areas under the ROC. 

 
 

A rank of the more suitable locations was derived attending to the following criteria: 

• Statistical correlation with core temperature (must). 

• Small number of factors for the skin temperature value at that location (+1 point). 

• High amplitude in the error curves was preferred as a small change of k value will not 

affect the percentage of error so strongly (+ 1 point).  

• Small range of k values among the studied sub-cohorts was preferred as then the average 

k value could be used without generating substantial α and β errors (+ 1 point). 

• High area under the ROC curve as average (+1 point) and within the 95%CI (+1 point).  

 

 



 
Figure 4: Representation of 2 overlapping distributions and corresponding alpha and beta errors 

for a given threshold k. 

 

 

Figure 5: Example of k value selection on a skin location with 2 different studied subgroups of babies 

 

3.3 Sensor/system design and characterization 
 

Various monitoring system designs were studied, those were: (i) a single sensor at various 

skin locations; and (ii) various multi-sensor system designs, within a (a) single or (b) multiple 

locations. These designs assume a basic binary sensor located over the skin. The sensor is ON 
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when the skin temperature is greater than a threshold value (k) indicating high probability of 

“fever”, and it is OFF when the skin temperature is below the threshold, indicating high 

probability of “no fever”. The four possible cases are presented in Table 1, with the 

associated probability of occurrence. Alpha and beta errors are expressed in terms of 

percentages, while pF is the probability of a random child having fever also known as 

prevalence, and therefore 1- pF is the probability of the child being healthy (no-fever).  

 

 Children with fever 

pF 

Children with no fever 

1- pF 

Sensor ON pF . (1 - β) (1-pF) . α 

Sensor OFF pF . β (1-pF) . (1 - α) 

Table 1: Possible cases of fever assessment by a single binary sensor. Values normalized to the total 

number of cases, hence addition of all values in the table is equals to 1.  

 
 

3.3.1 Single sensor 

The simplest design option is to use of a single sensor in one of the appropriate skin areas. 

The most suitable locations were studied. The characterization of the sensors (as described 

below) was obtained for two fixed alpha error values, 10 and 20%.  

 

The total error (εεεεT) associated to a single fever sensor is given by equation 1, which is based 

on Table 1. The probability that the sensor correctly identifies fever (p) is given by 1-εεεεT, and 
this corresponds to the accuracy (equation 2). The probability of a child having fever when 
the sensor is ON and when it is OFF is given by equation 3 and 4 respectively. ROC 
analysis was also used to calculate the accuracy, defined as the number of correct 
assessments divided by the total number of cases (equation 5); this is based on the raw data. 
This was performed for completeness and to allow for comparison.  
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where sensitivity = 1 - β  

specificity = 1 - α 
 

 



 

3.3.2 Multi-sensor system: single sensors at various locations  

Two system designs formed by 3 and 5 sensors located at various places were studied, aiming 

to increase the probability of correctly identifying fever in children. Odd numbers of sensors 

were used to aid the interpretation of the readings, e.g. the sets of 3 or 5 sensors would 

indicate high probability of fever if 2+ or 3+ sensors are ON respectively. The probability 

that the system gives a correct assessment of fever (pT) for a 3-sensors and a 5-sensors set is 

given by the equations 6 and 7 respectively, based on the p values for individual sensors. 

Equivalent equations were used to estimate the total alpha and beta errors.    
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3.3.3 Multi-sensor system: multiple sensors at single location  
 

A system design formed by 5 sensors located at a single skin area was studied, aiming to 

increase system’s reliability and adaptation to user. Each individual sensor has a different 

temperature threshold value, allowing for different levels of alert to which the user chooses to 

respond based on experience. Sensors are placed in a line (forming an array), ordered based 

on their temperature threshold with the lowest at the bottom. There are only 6 possible 

readings (see Figure 6) as in all cases when sensor i is ON, sensors j with j<i are necessarily 

ON as well. The probability of a child having fever when the i-th sensor is ON was calculated 

by equation 3. Thresholds and accuracy of each sensor were identified by means of the 

alpha-beta curves for the specific location, and selected to cover a wide range. 
 

 
Figure 6: Six possible readings of a 5-sensors set (blue = sensor is OFF; red = sensor is ON) 
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4 Results 

4.1 Relevance of fever on local skin temperatures 

 

Characterization of local skin temperature distributions for babies with core temperature 

under and over 37.3ºC (threshold defining fever) is given in Table 2. As example, Figure 7 

shows the two normalized skin temperature distributions at T5. Results of the statistical 

analysis investigating the relevance of fever is given in Table 3 for each location, along with 

information about their specific ROC that indicates how suitable the location is for fever 

identification. Both analyses gave the same results. As example, Figure 8 shows the ROC 

curve corresponding to local skin temperature T5 as individual indicators of ‘fever’. All ROC 

curves can be seen in Appendix A. 

 

 

 Tc < 37.3°C Tc >= 37.3°C 

 N Mean SD N Mean SD 

T1 518 33.76 0.72 21 34.74 0.85 

T2 517 34.51 0.87 21 35.1 1.3 

T3 517 34.55 0.83 21 35.50 0.74 

T4 510 33.95 0.98 21 34.1 1.5 

T5 501 32.80 0.98 21 33.9 1.1 

T6 230 31.1 1.3 10 31.3 1.3 

T7 516 32.0 1.8 21 32.9 1.9 

T8 509 34.48 0.91 21 35.1 1.2 

T9 508 33.9 1.0 21 34.9 1.0 

T10 510 31.7 1.4 21 32.3 1.5 

T11 510 32.5 1.2 21 33.3 1.1 

T12 502 31.6 1.4 21 32.5 1.5 

T13 500 31.3 1.5 21 31.6 1.4 

T14 345 33.0 1.8 16 33.4 1.9 

T15 408 35.13 0.77 17 35.65 0.56 

T16 415 31.0 1.5 17 31.7 1.6 

Table 2: Characterization of local skin temperature distributions for babies with Tc under and over 
37.3ºC. (Values for locations T5-6 and T12-14 only represent the cases where the location was 

covered with clothing) 

 
 

 

 

 

 

 

 

 



Temperature distribution on the right arm in upper location for two ranges of core 

temperature 

  

(a) (b) 
Figure 7: Normalized temperature distribution on the right arm in upper location for two 
cohorts. a) Tc< 37.3°C. b) Tc≥ 37.3°C. 

 

 

Location Fever 
ROC Area 

(SE) 

ROC 
Asymptotic 

Sig. 

95%CI 
boundaries 

T1 1A 0.817 (0.058) 0.000 0.70 - 0.93 

T2 2 0.727 (0.065) 0.000 0.60 -0.85 

T3 1A 0.804 (0.048) 0.000 0.71 -0.90 

T4 1B 0.548 (0.080) 0.454 0.39 -0.71 

T5 1A 0.766 (0.059) 0.000 0.65 -0.88 

T6 1A 0.523 (0.094) 0.802 0.34 -0.71 

T7 1A 0.630 (0.064) 0.043 0.50 -0.76 

T8 1A 0.656 (0.069) 0.015 0.52 -0.79 

T9 1A 0.770 (0.057) 0.000 0.66 -0.88 

T10 1A 0.615 (0.061) 0.073 0.50 -0.73 

T11 1A 0.662 (0.056) 0.012 0.55 -0.77 

T12 2 0.605 (0.063) 0.132 0.48 -0.73 

T13 1A 0.523 (0.064) 0.737 0.40 -0.65 

T14 1A 0.574 (0.074) 0.316 0.43 -0.72 

T15 2 0.702 (0.063) 0.005 0.58 -0.83 

T16 2 0.670 (0.064) 0.018 0.54 -0.79 
 

Table 3: Summary of the local skin temperature dependency on the presence of fever and its capacity 
for fever identification according to ROC analysis. Statistical tests used were: (1A) ANOVA with 
homogeneous variance, (1B) ANOVA with different variances, (2) Mann-Whitney U test. Results are: 
(Black) Distributions are equivalent, and (Red) Distributions are statistically different hence fever is 
relevant. (Values for locations T5-6 and T12-14 only represent the cases where the location was 
covered with clothing) 

 



 

Figure 8: ROC curves for local skin temperature T5 as predictors of ‘fever’. 

 

4.2 Non suitable locations 

 

Several locations had to be withdrawn as they do not satisfy one or several of the required 

conditions for serving as a good estimator of core temperature, as defined in section 3.1. 

Locations T2 and T15 (back of the neck and lateral) had temperature distributions more 

pointed than normal distribution [17]. Skin temperature at T10, T12 and T14 depend on a 

high number of factors [17], making them impractical for the estimation of core temperature. 

Skin temperature at locations T4, T6, T12, T13 and T14 (left upper chest, left arm, right shin, 

left calf and right instep) were not significantly different with the presence of fever (Table 3).  

 

4.3 Characterization of suitable locations  
 

Alpha and beta curves were obtained for those potentially suitable locations. As example, the 

specific case of T5 is given in Figure 9; curves for all the locations can be seen in Appendix 

B. These locations were then characterized and ranked as described in section 3.2 (Table 4). 

Only samples of temperature in covered skin have been taken into account for T5. All others 

were typically covered or exposed. 

 



 
Figure 9: Alpha (detected false positives) and beta (missed true positives) errors for different 
skin temperature thresholds at right arm in upper location. Nomenclature: (A) awake; (SWB) 
sleeping with a blanket; (SWOB) sleeping without a blanket.  

 

 

 T1 T3 T5 T7 T8 T9 T11 T16 

N sub-cohorts 6 2 2 9 2 6 4 9 

Mean temperature ( °C ) 33.8 34.6 32.8 32.0 34.5 33.9 32.6 31.1 

Standard deviation (°C) 0.75 0.84 1.05 1.83 0.93 1.02 1.24 1.48 

Temperature at αααα  =10% 
(°C) 

34.3 35.0 33.7 34.2 35.8 35.5 34.3 33.3 

Amplitude of error 
curve (°C) 

3.0 3.1 4.0 8.0 3.3 4.6 4.7 6.7 

Range of T limit values 

at αααα =10% (°C) 
1.1 0.7 0.8 2.8 0.4 1.5 1.1 2.1 

ROC Area (and stand. 
Error) 

0.82 
(0.06) 

0.80 
(0.05) 

0.77 
(0.06) 

0.63 
(0.06) 

0.66 
(0.02) 

0.77 
(0.06) 

0.66 
(0.06) 

0.67 
(0.06) 

95%CI boundaries 
0.70 -
0.93 

0.71 - 
0.90 

0.65 - 
0.88 

0.50 - 
0.76 

0.52 - 
0.79 

0.66 - 
0.88 

0.55 - 
0.77 

0.54 - 
0.79 

Added points 2 4 5 1 2 3 2 1 

Ranking 4 2 1 5 4 3 4 5 

Table 4: Characterization of suitable locations for core temperature monitoring attending to 
temperature distribution, alpha and beta error curves, and ROC curves. (Bold represents good 

characteristics, counting towards the added points) 
 

 

4.4 Examples of sensor/system design and characterization 

We studied the efficiency of several sensors/system designs for the correct identification of 

fever in children. These are intended to be used for any child regardless of age (provided it is 

up to 2 years old), gender, BMI or activity level. The only restriction applied is that all data 

used corresponds to local skin measurements taken when the location was covered.  
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Choosing to design a ‘generic’ system was a practical decision taken at the expense of 

providing a more accurate system for a particular cohort. For example, one could design a 

system adapted to awake children aged between 8 and 16 months and with BMI in the range 

of 16.53 to 19.25 kg/m2 corresponding to the normal healthy category, or any other group of 

children for that matter. However a generic system provides a wider usability. Benefits and 

limitations will be discussed later on. 

 

4.4.1 Single sensor 

From the ranking of suitable locations T3, T5, T8, T9, T11 and T16 were selected for further 

evaluation for two fixed values of alpha error, those were 10 and 20% (Table 5) following 

the procedure described in 3.3.1. T1 and T7 were not selected as they are typically exposed 

areas. The probability of a random child having fever (pF or prevalence) was taken as 0.15. 

 

Accuracy values are very similar across the different sensors, and consistently higher when 

calculated with the ROC analysis. Probability of the sensor being ON when the child has a 

fever is more indicative in this case, discriminating among the locations. The best single 

sensors seem to be T3, T5, and T9 for either of the alpha values, and T8 when alpha is 0.1. 

Corresponding thresholds can be seen in Table 5. 

 

αααα 
Location 

ββββ  εεεεT Accuracy 
p(ON+ 
fever) 

p(OFF+ 
fever) 

ROC based 
accuracy 

Threshold  

k (°°°°C) 

0.1 

T3 0.56 0.17 0.83 0.44 0.10 0.92 33.4 
T5 0.56 0.17 0.83 0.44 0.10 0.92 31.6 
T8 0.69 0.19 0.81 0.35 0.12 0.91 33.3 
T9 0.61 0.18 0.82 0.41 0.11 0.92 32.5 

T11 0.77 0.20 0.80 0.29 0.13 0.91 30.8 

T16 0.77 0.20 0.80 0.29 0.13 0.91 29.2 

0.2 

T3 0.37 0.23 0.77 0.36 0.075 0.83 34.0 
T5 0.41 0.23 0.77 0.34 0.083 0.82 32.1 
T8 0.56 0.25 0.75 0.28 0.11 0.82 33.8 
T9 0.44 0.24 0.76 0.33 0.088 0.82 33.2 

T11 0.61 0.26 0.74 0.26 0.12 0.82 31.5 
T16 0.63 0.26 0.74 0.25 0.12 0.81 30.0 

Table 5: Characterization of single fever sensors 

 

4.4.2 Multiple-sensor system: single sensors at various locations 

A 3-sensors set and a 5-sensors set were studied for two fixed values of single-sensors alpha 

error (10 and 20%) following the procedure described in 3.3.2 (Table 6), i.e. defining 2+ or 

3+ sensors ON as a sign of fever. The best performing individual sensors were selected (T3, 

T5, T9 and T8 in that order). T11 and T16 are almost identical in terms of performance. T11 

was selected for the 5-sensors system so it covers both areas on the upper body and lower 

body. Alternative, T16 could be selected so all the sensors can be placed in an upper-body 

garment and the performance of the system would be very similar. 

 



Location ααααi =  0.1 ααααi = 0.2 

 pT(right) αααα ββββ 
p(ON+ 
fever) 

p(OFF+ 
fever) 

pT(right) αααα ββββ 
p(ON+ 
fever) 

p(OFF+ 
fever) 

T3-T5-T9 0.92 0.028 0.61 0.71 0.10 0.86 0.10 0.36 0.52 0.066 

T3-T5-T9-T8-T16 0.96 0.013 0.75 0.77 0.12 0.90 0.058 0.47 0.61 0.080 

Table 6: Performance characterization for systems of several fever sensors 

 

 

4.4.3 Multiple-sensor system: multiple sensors at single location 

The use of 5 sensors on the upper arm (T5) was investigated following section 3.3.3. 

Characteristic values for those sensors are presented in Table 7. A 3-set sensors could also be 

used by choosing 3 out of the 5 presented sensors. This location was selected for its 

convenience, while the performance is not compromised according to Table 5. 

 

Sensor S1 S2 S3 S4 S5 

Tthreshold 32.6 33.4 34.1 34.8 35.3 

αααα 0.60 0.30 0.1 0.025 0.005 

ββββ 0.12 0.31 0.56 0.77 0.90 

p(ON,fever) 0.21 0.29 0.44 0.62 0.78 

p display 20% 30% 45% 60% 80% 

Table 7: Characterization of array of sensors located at upper arm (T5) 
 

 

5 Discussion 

5.1 What makes a skin location to be good for fever occurrence 
monitoring?  

First of all, the skin temperature needs to be significantly related with the core temperature. 

Various locations were found where the skin temperature significantly increases with the 

occurrence of fever (defined by a 37.3°C threshold). This dependency is observed mainly at 

the trunk locations (except upper chest), neck and forehead, and at some limb locations 

(hands, upper arm and thigh). However it is not observed at the most peripheral areas of the 

lower limbs (T12, T13 and T14) or the lower arm (T6). These observations are to be expected 

as, due to thermoregulation mechanism, the temperature at central locations is kept more 

stable and close to the core temperature, while those at the periphery of the body vary more 

significantly with the room temperature [16]. The current study was conducted at mild room 

temperatures, which explains why this effect seems to be restricted only to the most 

peripheral areas of the legs. A small overlap between the local skin temperature distribution 

for febrile and non-febrile cohorts is also desirable and would make the specific skin area 

better suited for fever recognition. This translates into broader alpha and beta error curves 

for the specific location, larger areas under the ROC curves and smaller error values for a 

given k threshold.  

 



Besides, in a good location the skin temperature should not depend on many other personal 

factors other than ‘fever’, such as age, status or BMI, otherwise it is difficult to set the 

baseline temperature for healthy children and corresponding thresholds for fever detection. 

The factors for each skin temperature for toddlers were comprehensively reported previously 

[17] and are used in the current work.  

 

Finally, having skin temperature distributions that are close to a normal distribution also 

makes the probabilistic analysis simpler (with the alpha and beta curves), although this is not 

strictly necessary. This was used as one of our selection criteria so a better estimate of the 

system performance could be calculated. 

5.2 System design  

There are three main aspects to consider in the system design. 

a) Type of error that is most critical/suitable, with options being:  

i. Minimize alpha errors: More children with a fever will not be detected by the 

system but the number of false alarms will be reduced. 

ii. Minimize beta errors: Most of the children with a fever will be detected by the 

system although it will also diagnose many healthy children as having a fever. 

iii. Compromise: Choose a limit temperature which corresponds with no extreme 

values for both alpha and beta errors. 

b) Type of sensors to be used in the system: 

i. Generic sensors and thresholds that relate to children of a range of 

characteristics (age, BMI): The performance will vary from group to group but 

it simplifies the ‘product selection’ and production cost. 

ii. Specific sensors for each group: Sensors will perform better as far as it is used 

in the cohort for which they were adapted. 

c) Complexity of the system: One-sensor system vs. multiple-sensor system, which 

affects performance, robustness, and cost. 

 

The selection of the k value (or threshold temperature) is highly dependent of the system aim 

and its design criteria point (a) and (b). This paper not only presents some examples, but also 

provides relevant information (full alpha-beta curves and ROC curves) for other designers to 

set their own criteria and design the fever detection system accordingly. Various cases of 

one-sensor and multiple-sensor system (design criteria (c)) are also reported and discussed. 

 

5.2.1 Selection of k value 

According to design aspect (a), k can be chosen to minimize either the percentage of alpha or 

beta errors, or alternatively used the common medical approach of finding a compromise 

between the two. Alpha and beta errors are expressed in terms of percentages, but their 

calculation is based on different groups of children, i.e. healthy children and children with 

a fever respectively. Therefore at equal values of alpha and beta errors, alpha deems a larger 

number of ‘mistakes’ in normal circumstances as the prevalence of fever is low. This paper 

considers that a reasonable assumption is that a fever identification device should minimize 



the alpha error, i.e. reducing the occurrences where the childminders are falsely alerted, or 

otherwise the childminders would stop using the device. Childminders would trust more a 

device that gives a right diagnosis of a fever despite it overlooking some fever cases. Hence, 

the imposition of a maximum alpha error of 10-20% was considered appropriate. 

 

On the other hand, according to design aspect (b), a general k value or threshold can be 

selected for a given location (based on the average alpha-beta curves or generic ROC curves), 

or rather given for individual sub-cohorts to be more precise, reflecting the dependencies of 

the skin temperature distribution at that location. However, here the increase on the system 

accuracy has the downside of making the product more complex to use, as a specific 

‘product’ needs to be matched with a specific type of child or otherwise it would not deem 

relevant assessment of the core temperature, and/or would not perform as expected. This 

makes parents and carers less likely to use the product confidently, and with time it falls into 

disuse. The use of various k values depending on the children cohort also makes the product 

more expensive, as various types of sensors need to be produced. The sensors also need to be 

matched with specific children’s clothes, increasing the amount of stock needed. One could 

argue that as the growth of the children is fast at those ages, it is feasible to have different k 

values depending of age. Greater variety of garments increases the cost but also potentially 

increases the number of sales. In conclusion, there is not right or wrong answer. The design 

criteria would typically define the required system accuracy and simplicity, and therefore will 

dictate which option should be used.  

 

In the examples reported in this paper, one single k value per location is used for all children 

with the only condition that they are up to 2 years old, i.e. the scope of this study.  The age, 

gender, BMI and activity of the child, e.g. if s/he is sleeping or awake, are not noted. This 

provides a practical option in terms of easiness-to-use and maintaining cost production low. 

Because the system is generic, it will perform better for certain groups than what it was 

reported.   

5.2.2 Selection of the system complexity 

The use of one single sensor was compared with the use of a multi-sensor system, either (i) 

distributed across various body locations or (ii) at the same location but with different k-

thresholds. Garments with single sensors are simpler and more economical to produce; cost 

might increase proportionally to the number of sensors. However, multi-sensor systems of 

either type offer an increase on reliability and allow for some degree of personalization based 

on the carer’s observations of the system response to a specific child. They are therefore 

recommended.   

 

Individual generic sensors (from Table 5) have accuracy of 80-83 or 91-92% at α=10% 

depending of the analysis method (alpha-beta curves or ROC curves), but with low 

probability of being ON during fever (ranging 29-44%). Sensors adapted to a specific group 

of children would perform better. However, the use of a combination of sensors increases the 

detection performance. One example of (i) is the set of generic sensors located at T3-T5-T9-

T8-T16. This combination has an accuracy of 96% and increases the probability of the 



system being ON when the child has a fever by a factor of ~2with respect to a single average 

sensor (up to 77%), while still keeping the probability of missing a ‘fever’ case low (12%). 

This is highly advisable to promote long-term use of the system and trust by the carers. It also 

allows the carers to identify which of these locations might be more reliable for their child, 

hence improving the efficiency of the system further. A 3-sensor set also performs well 

(accuracy = 92%, probability of the sensor being ON during fever = 71%, sensor OFF during 

fever = 10%) and it would be more economical. 

 

One example of (ii) is the 5-sensor-set at T5. Here, each sensor requires a higher skin 

temperature than the previous ones to get activated, but also represents a higher probability of 

fever occurrence. Therefore, such system provides various degrees of fever alarm, depending 

on the number of sensors that become ON. Based on experience, the carer might be able to 

identify the most suitable alarm threshold for a given child. For example, a parent would 

disregard the system if only 1, 2 or 3 sensors are ON out of the available 5 sensors, but would 

consider a real alarm if 4 or 5 were activated. 

5.3 System limitations  

Local skin temperature inherently depends on a range of factors, and present large variability 

even for seemingly similar cases. This will always remain a limiting factor for the accuracy 

of any fever detection system based on the skin temperature readings. However, such systems 

are still valuable as it provides an indication of potential fever, therefore triggering a follow 

up by a more traditional core temperature method. 

 

Due to the young age of the subjects, the present study was only allowed to be undertaken 

under a ‘narrow’ range of room temperatures as set up in the nurseries. Large variations in 

the room temperature will have an effect in the skin temperatures and therefore the efficiency 

of the system, and might be studied in the future if ethical approval can be obtained. 

However, recommended locations are not at the most peripheral areas of the limbs, which 

helps the skin temperatures to be more independent of the environmental temperature, 

reducing the impact of this limitation.  

 

Similarly, working with this subject group strongly limited the measurement techniques that 

we could use to ascertain the core temperature, with typical ‘gold standards’ being not 

allowed. Following the recommendations within the “Fever in under 5s: assessment and 

initial management – NICE Clinical Guideline 160” [1] and practical reasons, an IR ear 

thermometer was used as to obtain an approximate core temperature value. This means that 

the system has been designed to identify an elevated tympanic temperature rather than core 

temperature, but it is still suitable to screen for fever. Also, even if a ‘gold standard’ was used 

to obtained more accurate core temperature values to inform the development, the fever 

detection systems would probably have improved just marginally, as local skin temperature 

variability presents the largest source of error.  

 



Only children with marginal fever (<38.1ºC) were present at the nurseries. This leads to an 

overestimation of the beta errors, which would be advantageously lower in a not biased group 

of children, as individuals with high fever are more likely to be detected.  

 

In any case the sensor should be embedded in the babies clothing and not in an extra band or 

garment, as this would change the heat transfer at that particular skin location and it would 

induce to error [31] unless the extra insolation is compensated. 

 

5.4 Future work 

The priority for future work would be to acquire further skin temperature data in children 

with higher fever than those present in the nurseries. This would probably need to be 

performed at hospitals, walk-in-centres or general health practices. This would allow us to 

reassess the temperature distributions, and more accurately estimate the system performance. 

Most likely, the k values to detect fever would increase, therefore decreasing the probability 

of false positives even further. In addition, it might allow for the locations at the neck (T2 and 

T15) to be used; these were discarded because they had a large Kurtosis but were otherwise 

potentially good indicators of the core temperature.  

  

The next step would be to run field tests with the developed system and experimentally 

establish the system performance. 

 

The methodology presented in this paper is applicable to detect fever regardless the 

temperature sensor used. Hence, another area to explore could be the combination of this 

methodology with temperature sensors capable of communicating with the Internet of Things 

or smart phones, allowing for remote fever monitoring. This would also allow to adapt to a 

given child in terms of age, gender, BMI, etc., perhaps via a mobile app. 

 

6 Conclusions 
Monitoring systems for the identification of fever in young children is highly desirable. 

Clinical accuracy is not required, but they should be non-intrusive and practical for everyday 

life, at home, nurseries, etc. Also, these systems need to be built on data collected from 

toddlers rather than adults, as they present different physiological characteristics. Several 

system designs for the continuous non-invasive identification of fever based on skin 

temperature measurements were studied, various single sensor and multi-sensor systems. 

These were designed for a generic child regardless gender, BMI, activity or age as long as 

they are below 2 years old. Identical analysis can be made for any group of children, for 

example something adapted to the particular case of awake children aged between 8 and 16 

months and with BMI in the range of 16.53 to 19.25 kg/m2. In that regard, the current paper 

provides all the necessary data so other members of the community can design their own 

sensors and system based on their own criteria. 

 



For the studied cohort, single sensor systems have a probability of positive identification of 

fever on feverish children of ~30-44%, using an α (detected false positives) of 10%. Multi-

sensor systems of sensors distributed among different locations increase the probability of 

positive identification of fever to 71% (set of 3 sensors) and 77% (set of 5 sensors) without 

significantly increasing the probability of false positives. The use of several sensors of 

different characteristics at the same location is also beneficial, as it displays different levels 

of probability of the child having fever, up to 80%. It is important to note that this type of 

systems will probably detect earlier than a human observer when the temperature rises 

sufficiently; so in this sense even if not completely successful, could still deliver positive 

results. 

 

We conclude that the non-intrusive and continuous monitoring of fever in children under 2 

years is possible by using the technology described in this study. This is of great importance 

as it would allow the detection of a greater number of feverish cases in early stages without 

having to measure the core temperature continuously. This might also help to detect 

underlying infections that can be life-threatening, and perhaps avoid spread among other 

children, e.g. in schools or nurseries. The fever monitoring system we would recommend is 

the multi-sensor system with a set of 5 sensors distributed among locations T3, T5, T8, T9 

and T16, each sensor with an independent αi = 10%. For this system, the child is likely to 

have fever in 77% of the cases in which the system alerts the childminder; and 12% of the 

children will have fever when the system is OFF. Missing 12% of the children with fever is 

reasonably taking in consideration that this is not a clinical system but an indicator. This 

wearable system provides a non-invasive solution to continuously monitoring for fever; 

hence it provides an early alert system for the career. This is particularly useful when the 

ratio children-to-careers is high such as in nurseries. However, when carers suspect that the 

child have a fever either because this system has alert them or otherwise, more traditional 

core temperature measurement should be used for confirmation such as an ear thermometer. 
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Appendix A 

Receiver Operator Characteristics (ROC) curves obtained for all the potentially suitable 

locations for fever monitoring and detection (Figure A1). 

 

 

 



 

 



 

 



 



 
 

 
 



 

 



 



 



 
 

 
 



 
 

 
 



 



 

 



Figure A1. ROC curves for all the studied local skin temperatures as individual markers of 

fever. 

 

 

  



Appendix B 

 

Alpha and beta curves obtained for potentially suitable locations for fever monitoring and 

detection (Figure B1). 
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(c) 

 
(d) 

Alpha and beta errors

Right arm in upper location (T5)

0

10

20

30

40

50

60

70

80

90

100

31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5

T threshold (ºC)

E
rr

o
r 

(%
)

Alpha: A or SWB Beta: A or SWB

Alpha: SWOB Beta: SWOB

Alpha and beta errors

Left hand (T7)

0

10

20

30

40

50

60

70

80

90

100

29 30 31 32 33 34 35 36 37 38

T threshold (ºC)

E
rr

o
r 

(%
)

Alpha: Age C2, A Beta: Age C2, A

Alpha: Age C3, A Beta: Age C3, A

Alpha: Age C2, SWB Beta: Age C2, SWB



 
(e) 

 
(f) 

Alpha and beta errors

Right abdomen (T8)

0

10

20

30

40

50

60

70

80

90

100

33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5

T threshold (ºC)

E
rr

o
r 

(%
)

Alpha: A or SWOB Beta: A or SWOB

Alpha: SWB Beta: SWB

Alpha and beta errors

Left paravertebral (T9)

0

10

20

30

40

50

60

70

80

90

100

32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5

T threshold (ºC)

E
rr

o
r 

(%
)

Alpha: BMI C1, A or SWOB Beta: BMI C1, A or SWOB

Alpha: BMI C2, A or SWOB Beta: BMI C2, A or SWOB

Alpha: BMI C2, SWB Beta: BMI C2, SWB



 
(g) 

 
(h) 

Figure B1: Alpha (detected false positives) and beta (missed true positives) errors for 
different skin temperature thresholds at (a) forehead for 3/6 relevant sub-cohorts; (b) right 
scapula; (c) right arm in upper location; (d) left hand for 3/9 relevant sub-cohorts; (e) right 
abdomen; (f) left paravertebral for 3/6 relevant sub-cohorts; (g) left posterior thigh for 3/4 
relevant sub-cohorts; and (h) left wrist for 3/9 relevant sub-cohorts. 
Nomenclature: (A) awake; (SWB) sleeping with a blanket; (SWOB) sleeping without a blanket; 
(Age C1) 0 – 8 months; (Age C2) 8 – 16 months; (Age C3) 8 – 16 months; (BMI C1) 
Underweight; (BMI C2) Normal healthy.  
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