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A neuroprotective astrocyte state is induced by
neuronal signal EphB1 but fails in ALS models
Giulia E. Tyzack1,2, Claire E. Hall2, Christopher R. Sibley3, Tomasz Cymes1, Serhiy Forostyak4, Giulia Carlino2,

Ione F. Meyer5, Giampietro Schiavo 5,6, Su-Chun Zhang7, George M. Gibbons1, Jia Newcombe8,

Rickie Patani2,9 & András Lakatos1,10

Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery,

but the mechanisms that determine these different responses are poorly understood. Here

we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which

in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer

and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces

a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3

network. This is distinct from the response evoked by interleukin (IL)-6 that is known to

induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that

the EphB1–ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse

models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me

signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore

represents an attractive therapeutic target.
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Activated astroctyes can support motor neuron survival and
recovery of their synaptic input following moderate
neuronal damage1. Astrocyte inflammatory signalling

through STAT3 plays a crucial role in these repair mechanisms,
and is a hallmark of the protective astrocyte phenotye1–4. Eluci-
dating mechanisms underlying this beneficial motor neuron-to-
astrocyte signalling may therefore provide novel therapeutic
targets for neuroprotection. This is of important relevance to
amyotrophic lateral sclerosis (ALS), a devastating and invariably
fatal disease leading to progressive degeneration of motor
neurons in particular. Specifically, the breakdown of neuron-glia
communication or a toxic gain of function have been demon-
strated to play pivotal roles in neuronal dysfunction and death5–7.

Canonical astrocyte activation involves a cascade of cytokine
signalling and inflammation following somal or axonal damage
to neurons8, 9. Putative triggers include the release of various
cytokines, such as IL-6, by injured motor neurons and inflam-
matory cells or, at later stages, cellular debris10–14. These
responses shift the position of astrocytes along an inflammatory
spectrum8, 15, determining if the astrocyte is in a protective or
deleterious reactive state. The early signalling events responsible
for regulating astrocyte reactivity in this manner remain poorly
understood. A group of Ephrin receptors (Ephs) and their ephrin
ligands are possible mediators of this regulation, given that
they are crucial in bidirectional neuron-glia communication
and undergo expression changes following injury, during
plasticity16–20 and in neurodegeneration21, 22.

Astrocyte reactivity with a proinflammatory transcriptional and
translational profile characterises superoxide dismutase1 (SOD1)-
mutant mouse ALS models23–25. This is a relevant pathological
aspect as glial inflammatory processes may exacerbate motor
neuron dysfunction in ALS15, 26–28. However, astrocyte-mediated
restorative STAT3-dependent mechanisms have also been
demonstrated to occur in the context of traumatic motor neuron
injury-associated inflammation1. Whether this restorative STAT3-
mediated astrocytic activity is suppressed in ALS has not been
directly addressed. There is some evidence of astrocytic STAT3
activation in the SOD1 ALS mouse model29. However, the degree
to which this reflects a compensatory protective profile remains
unclear. The detailed investigation of astrocyte-mediated pathol-
ogy to directly address this issue has been hampered by the lack of
appropriate human ALS model systems30.

Here, we have addressed whether Eph–ephrin signalling could
serve as a primary neuronal injury cue invoking a potential pro-
tective astrocyte phenotype, and whether this response is altered in
human ALS patient-specific astrocytes. Our study focussed on
EphB1 evoked response, because this particular Eph is strongly
upregulated in injured neurones17. We also investigated IL-6-
induced signalling, which has been associated in a context-specific
manner with both a deleterious proinflammatory and protective
anti-inflammatory profile31. By integrating mouse in vivo and
in vitro models with human iPSC-derived astrocytes, we provide
direct evidence that EphB1 can induce early astrocytic STAT3
activation via ephrin-B1 signalling. This signal transduction
pathway promotes a protective transcriptional profile, distinct
from that seen for IL-6. Using patient-specific iPSC-derived
astrocytes we show that this EphB1-induced pathway is impaired
in SOD1-mutant astrocytes compared to their control counter-
parts. This study reveals a failure of astrocyte plasticity, reflecting a
novel and potentially therapeutically targetable non-cell autono-
mous disease mechanism in ALS.

Results
EphB1 is upregulated in axotomised motor neurons in vivo.
We tested whether selectively injured motor neurons upregulate

the expression of EphB1, a potential signalling partner for
astrocytic ephrin-B1. First, we analysed EphB1 immunoreactivity
(IR) in the facial motor nuclei (FMN) of wild type (WT) mice
at 1, 7, 14 and 28 days following unilateral facial axotomy in
comparison to the unlesioned side (Fig. 1a, b). Neurons in
the FMN were identified by NeuN immunostaining32, of which
98% represent motor neurons displaying a large soma and
distinct large nucleus33, 34. Cells showing this nuclear morphol-
ogy were also ChAT positive, displayed cytoplasmic (Fig. 1b,c)
and also surface EphB1 IR as indicated by pre-permeabilisation
immunolabelling (Fig. 1d). As early as day 1, there was a
2.57± 0.39-fold increase in the number of EphB1/NeuN positive
neurons in the ipsilateral (IL) FMN over that of the contralateral
(CL) unlesioned side (p< 0.01; Fig. 1e, Supplementary Fig. 1).
These fold changes in EphB1 IR neurons further increased at
day 7 (4.53± 0.40-fold, p= 0.016; Fig. 1e) and remained
significantly raised until day 14 (p= 0.045; 2.16± 0.14-fold;
Fig. 1e) when compared to day 1. In contrast, on the CL side, the
number of EphB1-positive neurons remained constant over time
(Supplementary Fig. 1). The proportion of EphB1-expressing
neurons was also analysed to address the potentially confounding
effect of axotomy-induced neuronal loss at later time points.
A total of 61.27± 4.60% of neurons expressed EphB1 at day 1,
and this proportion further increased by day 7 to 93.31± 2.48%
(p< 0.05) before decreasing (day 14: 84.92± 3.41%; Supplemen-
tary Fig. 1).

Ephrin-B1 and pSTAT3 levels increase post-axotomy in vivo.
We analysed whether astrocytes express ephrin-B1 ligand, a
binding partner for EphB1, following facial axotomy-induced
motor neuron damage in the FMN, providing a theoretical basis
for EphB1 evoked neuron-to-astrocyte signalling. We observed
that ephrin-B1 is expressed in glial fibrillary acidic protein
(GFAP)-positive reactive astrocyte processes (Fig. 1c,d). We
quantified this response by analysing EphB1 and ephrin-B1
protein levels in axotomised FMN tissue homogenates by western
blotting (Fig. 1f; Supplementary Fig. 8). Both EphB1 and ephrin-
B1 levels were significantly raised to 1.98± 0.09-fold (p= 0.006)
and 1.64± 0.06-fold (p= 0.0004), respectively, compared to the
non-axotomised CL side (Fig. 1g). Western blot (WB) analysis
using the same samples also revealed that this coincides with a
threefold increased (p= 0.034) level of phosphorylated STAT3
(pSTAT3), a key regulator of early astrocyte activation1, 35

(Fig. 1f, g). These findings raise the hypothesis that neuronal
EphB1 interacts with astrocytic ephrin-B1 to trigger astrocyte
reactivity through STAT3 activation.

EphB1 induces astrocytic STAT3 signalling. To examine
whether EphB1 induces astrocyte activation through STAT3
phosphorylation and nuclear translocation, we initially used
purified mouse cortical astrocyte cultures. Astrocytes were treated
with pre-clustered EphB1-Fc in Sato’s serum-free medium to
mimic the membrane bound dimerisation of EphB1 receptors on
the neuronal surface. First we defined the optimal time point for
this treatment in order to avoid a masking effect on STAT3
phosphorylation induced by serum-free conditions. We analysed
whole-cell lysates by WBs using antibodies recognising STAT3
phosphorylated at Tyr705 (Supplementary Fig. 2). Increased
pSTAT3 band density was apparent after 6 h in serum-free Sato’s
media (Supplementary Figs. 2a, c and 10), defining the maximum
duration of the EphB1 treatment. Within this time window we
have examined the optimal duration of treatment by incubating
astrocytes in EphB1 at a recommended dose of 10 μg ml−1 for 0.5,
1 or 5 h (R&D Systems). At 5 h, a significant 3.4± 0.37-fold
increase was observed in pSTAT3 band density levels when
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compared to non-treated astrocytes, which was comparable to
that seen for the canonical STAT3 activator IL-6 (Supplementary
Figs. 2b,d and 10). Dose–response analysis within a range of
0.0001 to 10 μg ml−1 of EphB1 revealed dose-dependent

phosphorylation with a plateau between 5–10 μg ml−1 (Supple-
mentary Figs. 2e, g and 10). Guided by these findings in our
following experiments we used 10 μg ml−1 of EphB1 for 5 h to
induce astrocyte responses after 1 h of serum starvation if not
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Fig. 1 EphB1 is upregulated in axotomised neurons, where astrocytes display ephrin-B1 IR. a Schematic diagram demonstrating right-sided unilateral
facial nerve (Fn) axotomy (Ax) and the associated ipsilateral (IL) facial motor nucleus (FMN) in which immunofluorescence was analysed in comparison
with the non-axotomised contralateral (CL) FMN. b Representative immunofluorescence images showing abundant EphB1 IR 14 days after axotomy in the
IL FMN in which 98% of neurons are defined as motor neurons34. c Images showing EphB1 and NeuN labelling and also ephrin-B1 and GFAP IR in
corresponding neurons or astrocytes (ACs), respectively. d High magnification images demonstrate cell surface labelling for EphB1 in sections
immunostained before permeabilisation and also cytoplasmic EphB1 IR post-permeabilisation in a ChAT-positive motor neuron (MN) (see also
Supplementary Fig. 1) and NeuN positive neurons with motor neuron morphology32 in the middle panel. In the lower panel ephrin-B1 positivity is
demonstrated in GFAP-labelled astrocyte soma and processes (see also Supplementary Fig. 1). e Graph showing the mean of fold changes in the proportion
of EphB1-positive neurons in the IL FMN normalised to the CL FMN following axotomy (1, 7, 14, 28 days; n= 3 per time point, respectively, and 3–4
brainstem sections in each group; *p= 0.016, *p= 0.046 compared to values at day 1, F= 9.431; one-way ANOVA with Dunnett’s post hoc test; see also
Supplementary Fig. 1). fWestern blot (WB) showing EphB1, ephrin-B1 and pSTAT3 protein levels (both 79 and 86 kDa isoforms) in tissue lysates from both
the IL and CL FMN of three WT mice at day 14 post-axotomy (see also Supplementary Fig. 8). g Bar graph represent relative WB band densities of EphB1,
ephrin-B1 and pSTAT3 in the IL FMN and is expressed as fold increase over the band density levels for the CL FMN after normalisation to β-actin (n= 3
mice, unpaired t-test, **p= 0.006, ***p= 0.0004, *p= 0.034). Data presented as mean± SEM. Scale bars: 50 μm for (b), 20 μm for (c) and 10 μm for (d)
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stated otherwise (Supplementary Fig. 2a–d). We then assessed
whether this also affects the degree of nuclear translocation of
STAT3. Cultured astrocytes were immunolabelled for the pan-
astrocytic marker aldehyde dehydrogenase 1 family member L1
(ALDH1L1) and astrocytes displaying nuclear IR for pSTAT3
(nSTAT3) were counted (Fig. 2a). EphB1 treatment significantly
increased the proportion of ALDH1L1-positive astrocytes
containing nSTAT3, which rose from 12.37± 1.79% in untreated

astrocytes to 70.24± 2.49% (p≤ 0.0001) after treatment (Fig. 2b).
The positive control, IL-6 induced a comparable increase (80.26
± 1.25%). Taken together, these data suggest that EphB1 is a
potent alternative STAT3 activator.

To explore whether EphB1-induced astrocytic STAT3
activation is specifically mediated via ephrin-B1 signalling,
we first transfected astrocytes with ephrin-B1 siRNAs. We found
that ~68% lower ephrin-B1 levels assessed by immunoblotting

pSTAT3DAPI

C
on

tr
ol

S
at

o
C

on
tr

ol
E

ph
B

1
ep

hr
in

-B
1-

si
R

N
A

E
ph

B
1

c

pSTAT3/ALDH1L1f g

β-actin

ephrin-B1

pSTAT3

STAT3

Control
siRNA

(ephrin-B1) 

Sato EphB1 IL-6 Sato EphB1 IL-6

86 kDa 

86 kDa 

42 kDa 

38 kDa

i

h

%
 o

f t
ot

al
 A

ld
h1

L1
+

 A
C

s 

b nSTAT3+ ACs

****

0

20

40

60

80

100

****

Sat
o

Eph
B1

IL
-6

 

**

***
***

%
 o

f t
ot

al
 

A
LD

H
1L

1+
 A

C
s

0
20
40
60
80

100

siRNA
(ephrin-B1)

Control

Sat
o

Eph
B1 Sat

o

Eph
B1

nSTAT3+ ACs

Relative STAT3 transcriptional
activity in ACs

**

Sat
o

Eph
B1

IL
-6

0

1

2

3

4

***
**

F
ol

d 
ch

an
ge

pSTAT3/ALDH1L1pSTAT3

S
at

o
E

ph
B

1
IL

-6

a DAPI

siRNA
(ephrin-B1) 

****

*

**
* *

Control

0

1

2

3

4

0

1

2

3

d e

Sat
o

Eph
B1

IL
-6 Sat

o

Eph
B1

IL
-6

siRNA
(ephrin-B1) 

Control

Sat
o

Eph
B1

IL
-6

Sat
o

IL
-6

* *

Relative ephrin-B1
band density

Relative pSTAT3
band density

F
ol

d 
ch

an
ge

R
el

at
iv

e 
ba

nd
 d

en
si

ty
to

 β
-a

ct
in

 

Eph
B1

Sato’s medium

EphB1-Fc (Non-clustered)
EphB1-Fc (Clustered)
EphB1-Fc (Clustered)
EphB1-Fc (Clustered)

No 
siR

NA

siR
NA-e

ph
rin

-B
1

Non
-ta

rg
et

 R
NA

No 
siR

NA

Treatment of SC ACs

0

20

40

60
** **

nSTAT3+ SC ACs

%
 o

f t
ot

al
 

A
LD

H
1L

1+
A

C
s

No 
siR

NA

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01283-z

4 NATURE COMMUNICATIONS |8:  1164 |DOI: 10.1038/s41467-017-01283-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


when compared to non-transfected controls (Fig. 2c, d;
Supplementary Fig. 9). We then evaluated whether reduction in
ephrin-B1 levels prevents EphB1-induced STAT3 activation by
assessing pSTAT3, total STAT3 immunoreactive WB bands and
nSTAT3 IR by immunocytochemistry. Levels of pSTAT3
measured by quantitative WB from samples of ephrin-B1-
silenced astrocytes dropped down to comparable values seen
for non-transfected controls (p= 0.99; Fig. 2e). Ephrin-B1
silencing also resulted in almost a two-fold decrease in the
proportion of EphB1-induced astrocytes displaying nSTAT3 from
80.14± 1.06% to 45.23± 6.57% (p< 0.001; Fig. 2f, g). We then
tested the EphB1-induced effect on nSTAT3 IR in spinal cord
astrocytes to further explore the relevance of this motor neuron-
astrocyte signalling pathway (Supplementary Fig. 3). Like cortical
astrocytes, spinal cord astrocytes showed a similar response to
clustered EphB1 treatment by a 2.2-fold increase in the
proportion of nSTAT3-positive astrocytes (p= 0.002), but non-
clustered EphB1 had no effect (p= 0.539). While pre-treatment
with ephrin-B1 siRNA prevented this effect (p= 0.437), non-
targeting scrambled RNA allowed a significant 2.07-fold increase
induced by EphB1 (p= 0.004; Fig. 2h, Supplementary Fig. 3a).
Taken together, these results confirm that EphB1-induced STAT3
activation in astrocytes is mediated, at least in part, through
ephrin-B1-induced reverse signalling. Next we sought to
demonstrate whether EphB1 treatment results in STAT3-
mediated transcription by performing a dual luciferase assay.
We found that EphB1 treatment markedly enhanced STAT3
reporter activity when compared with vehicle-treated astrocytes,
showing a 1.89± 0.13-fold increase in bioluminescence (p< 0.01;
Fig. 2i). The positive control, IL-6 also induced a significant
response (p< 0.001). These findings suggest that EphB1 is a
potent alternative activator of astrocytes via STAT3-mediated
transcription.

EphB1 and IL-6 both induce a reactive astrocyte phenotype.
We assessed whether EphB1-induced signalling triggers reactive
cytoskeletal changes commonly observed following astrocytic
STAT3 activation1, 36. We visualised the distribution of F-actin
by phalloidin labelling and quantified cortical F-actin ring
formation, an in vitro phenomenon characterising activated
astrocytes37, 38. During serum starvation, most astrocytes
displayed a flat morphology with parallel actin fibres (Supple-
mentary Fig. 3b). In contrast, the majority of astrocytes stimu-
lated with EphB1 or IL-6 (76.04± 2.18% and 72.30± 5.48%,
respectively) showed thick cortical actin bands, and radial actin
filaments extending towards the cell periphery, indicative of a
reactive morphology (Supplementary Fig. 3c).

To confirm changes in cytoskeletal protein levels associated
with EphB1 or IL-6 induced during astrocyte activation, we
assessed GFAP levels39 by quantifying WBs (Supplementary
Fig. 3d). Both EphB1-induced and IL-6-induced GFAP levels by a
2.38± 0.35 and 2.29± 0.21-fold level when compared to controls,
respectively (Supplementary Fig. 3e). Moreover, we confirmed
that EphB1-mediated upregulation of GFAP is STAT3-dependent
by using protein lysates of astrocytes cultured from Gfap-Stat3-
conditional knock-out (CKO) mice. Specifically, CKO astrocytes
showed negligible levels of total STAT3, no pSTAT3 IR and
GFAP protein levels failed to rise on EphB1 or IL-6 stimulation
(Supplementary Fig. 3d,e). Taken together, these results suggest
that in vitro EphB1 induces a morphological astrocyte transfor-
mation accompanied by increased GFAP expression in a STAT3-
dependent manner, resembling IL-6 triggered reactive phenotypic
changes.

EphB1 invokes a STAT3 target-linked astrocyte transcriptome.
We then assessed whether EphB1 to ephrin-B1 signalling resulted
in a characteristic transcriptomic signature in stimulated astro-
cytes, reflecting potentially beneficial or harmful aspects of
astrocyte reactivity. To do this, we examined EphB1-induced
STAT3-dependent or independent changes and compared these
to IL-6 (a canonical STAT3 activator) mediated pathways. We
explored changes in the astrocyte transcriptome using RNA-seq
at 24 h post-stimulation with either EphB1 or IL-6 (2 indepen-
dent cultures per condition of highly purified (>99%) astrocytes
collected from 6 mice). We analysed differentially expressed genes
between the responses induced by EphB1 and IL-6 (FDR< 0.1;
Fig. 3a). When compared to IL-6, EphB1-induced 68 and 17
non-overlapping in addition to 35 and 7 overlapping upregulated
and downregulated transcripts, respectively (Fig. 3b, c). Gene
ontology (GO) analysis indicated that the most significant
EphB1 specific enrichment was related to the upregulation of
intercellular signalling, stress and immune response pathways
(Fig. 3d). Meanwhile the largest proportions of IL-6-specific
changes represented cell adhesion and locomotion (Fig. 3d).
Analysis confirmed major differences between EphB1- and
IL-6-mediated gene expression profiles regulating astrocyte
reactivity/proinflammatory cascades and homeostatic pathways
(Fig. 3e, f; Supplementary Fig. 4). These represented 57 genes
among which only 7 transcripts belonged to common astrocyte
reactivity genes8, 40, 41. Among the 42 significantly upregulated
EphB1-induced transcripts with immune/inflammatory profile
30 genes were differentially changed from those seen for IL-6.
These included proinflammatory regulators Cebpd and Ptx3,
which were induced to lesser extent by EphB1 when compared to

Fig. 2 EphB1 acts via ephrin-B1 to induce astrocytic STAT3 activation, and increases transcriptional activity. a Immunofluorescence showing nuclear
localisation of pSTAT3 (nSTAT3) in ALDH1L1-positive astrocytes (ACs) untreated in Sato’s medium or stimulated with EphB1 or IL-6. b Graph shows the
percentage of astrocytes displaying nSTAT3 (n= 6 cultures from 6 mice; **** p≤ 0.0001, F= 370). c WBs of ephrin-B1, total STAT3, pSTAT3 and β-actin,
comparing protein levels following no treatment (Sato) and EphB1 or IL-6 treatments of non-transfected control astrocytes with ephrin-B1 siRNA silencing
(see also Supplementary Fig. 9). d, e Graphs show relative band densities of ephrin-B1 (d) and pSTAT3 (e) to values of non-transfected control astrocytes
in Sato’s medium. Data expressed as fold change after normalised to β-actin band density. N= 3 cultures from six mice; *p≤ 0.05; **p≤ 0.01;
***p= 0.0001, *p= 0.025, *p= 0.015, *p= 0.012, for ephrin-B1, F= 38.2 and *p= 0.013, **p= 0.0044, *p= 0.031 for pSTAT3, F= 9.914; Dunnett’s test.
f Images showing the extent of nSTAT3 IR in ALDH1L1-positive cortical astrocytes in Sato’s medium and after stimulation with EphB1 with/without ephrin-
B1 silencing. g Proportion of cortical astrocytes showing nSTAT3 IR 24 h after EphB1 treatment with/without ephrin-B1 silencing (n= 4, 5, 5, 4 cultures
from 6 mice, respectively; ***p≤ 0.001. **p≤ 0.01, F= 63.44). h Graph represents the proportion of nSTAT3 labelling in spinal cord (SC) astrocytes
following non-clustered or clustered EphB1 treatment alone, with ephrin-B1 siRNA or with non-targeting RNA (n= 4, 3, 3, 3 cultures from 6 mice;
**p= 0.002, **p= 0.004, respectively, F= 8.78; Dunnett’s comparisons to untreated astrocytes in Sato’s medium). i Dual Luciferase assay showing
STAT3-driven transcriptional activity in astrocytes following stimulation with EphB1 or IL-6. Graph shows the fold increase of relative luciferase-reporter
activity measured by bioluminescence in EphB1-induced or IL-6-induced astrocytes over untreated samples (n= 3 cultures from 6 mice; **p≤ 0.01,
***p≤ 0.001, F= 124). One-way ANOVA with Bonferroni correction was used if not stated otherwise. Data is expressed as mean± SEM. Scale bar:
15 μm for (a), 20 μm for (f)
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IL-6-induced changes (Fig. 3e). Importantly, EphB1 more sig-
nificantly induced transcripts with immune-modulatory roles,
such as Ifit3b, Ifit1, Ptma and Trim30a, Nfkbia with additional
cell defence profiles than IL-6 (Fig. 3e, f). In addition, 10 out of
15 significantly upregulated genes with homeostatic roles were
induced to higher levels by EphB1 than by IL-6, including Kcnn3,
Tpt1, Gstm1, Mt3 and Mt1 (Fig. 3f).

Next, we assessed whether EphB1 triggered inflammatory
signalling specifically enhances gene expression within the STAT3
transcriptional network that has been described to mediate
protective pathways2, 3, 36. Among the EphB1-induced transcrip-
tion factors we identified STAT3 inducers, Stat2 and JunB,
which were differentially expressed when compared to the IL-6-
mediated response (Fig. 3g). With regard to putative and known
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STAT3 targets, the highest EphB1-induced expression changes
included homeostatic genes (Kcnn3, Ptms) or immune-
modulatory transcripts (Icam) (Fig. 3h). A specific analysis of
the mouse STAT3 regulatory network identified by Ingenuity
Pathway Analysis (IPA) revealed six common transcripts induced
by both EphB1 and IL-6. Among these major inflammation
associated genes Cebpd, A2m and JunB were induced by EphB1 to
a lesser degree (Fig. 4a, b). In summary, although both EphB1 and
IL-6 activate STAT3 pathways, the transcriptional profile suggests
that EphB1 shifts STAT3-mediated processes from a deleterious
proinflammatory spectrum towards a more beneficial inflamma-
tory transcriptional profile.

We validated key differences found in the transcriptomic
networks which discriminate EphB1-induced from IL-6-induced
phenotypes using qPCR. For this we used samples from three
independent cultures of astrocytes with technical duplicates
deriving from six mice each. We selected 5 transcripts that
represent the most pronounced differences between EphB1-
induced and IL-6-induced profiles among the 15 homeostatic and
42 inflammatory genes, which have either published relevance to
astrocytes or are putatively regulated by STAT3 (Fig. 4c). The
most significant findings were a lower expression of a major
proinflammatory regulator, Cebpd and also a nearly two-fold
higher expression of Trim30a, a negative inflammatory element
in EphB1-induced astrocytes (Fig. 4d). These findings were
further supported by our immunocytochemical analysis, showing
decreased Cebpd activation by a 20.8% reduction in integrated
density (IntDen) of nuclear Cebpd IR in astrocytes when
compared to that observed from IL-6-induced astrocytes (p=
0.002; Fig. 4e, f). Unlike Trim30a mRNA expression levels,
Trim30 protein levels were not significantly changed, at least, 5 h
post-stimulation by EphB1 (Supplementary Figs. 5 and 10).

Having confirmed that EphB1 signalling specifically induces a
beneficial astrocyte phenotype defined by transcriptional and
immuncytochemical analysis, we then sought to establish if these
changes were functionally consequential. To do so, we evaluated
cleaved-caspase3/ChAT-positive spinal cord motor neurons
treated by astrocyte-conditioned media (ACM) in excitotoxicity
assays (Fig. 4g). Glutamate induced an increase in the proportion
of cleaved-caspase3-labelled motor neurons (58.8± 5.75%) in the
presence of ACM. This excitotoxic insult was partially rescued
by ACM collected from EphB1-treated astrocytes (35± 2.91;
p= 0.019; Fig. 4h), but not by ACM obtained from treated
astrocytes that were pre-transfected with ephrin-B1 siRNA
(53.28± 5.56%; p= 0.832; Fig. 4h). ACM from IL-6 treated
astrocytes had no preventative effect (p= 0.997). These results
support our transcriptomic data indicating a neuroprotective
phenotype of EphB1-treated astrocytes.

Neuronal EphB1 and astrocyte STAT3 responses fail in ALS
mice. Having established that EphB1 and STAT3 are important in

motor neuron-to-astrocyte communication, resulting in a protective
reactive astrocyte phenotype, we then hypothesised that such sig-
nalling is perturbed in ALS. Initially, we examined whether motor
neurons could potentially trigger this beneficial astrocyte response
in a mouse ALS model. Using tissue sections from lumbar spinal
cords of symptomatic SOD1G93A-ALS mice and age-matched WT
controls, we examined EphB1 IR in motor neurons identified by
ChAT labelling in the latero-ventral horn innervating the lower
limbs (Fig. 5a). Within the 100 μm of motor neuron nuclei, we also
analysed nSTAT3-/Aldh1L1-positive astrocytes (Fig. 5b). EphB1 IR
was negligible in naive mice in general. The proportion of EphB1
immunoreactive motor neurons and nSTAT3-positive astrocytes
did not increase in the symptomatic SOD1G93A-ALS mice and was
comparable to that seen in WT controls (Fig. 5c, d). We then
evaluated whether motor neurons and astrocytes would respond to
additional motor neuron injury in SOD1G93A-ALS mice induced by
unilateral sciatic nerve transection at days 1 and 7 when compared
to the unlesioned CL side (Fig. 5e–h). At day 1, the responses
were subtle and comparable between the groups (p= 0.227,
unpaired t-test; Fig. 5f, h). However, at day 7 in SOD1G93A-ALS
mice there was no further increase in the number of EphB1-positive
motor neurons and nSTAT3-labelled astrocytes, unlike in their WT
counterparts with a 1.69-fold and 1.58-fold increase of EphB1-
positive motor neurons and nSTAT3 immunoreactive astrocytes
post-axotomy (p= 0.011 and p= 0.010, respectively; Fig. 5f, h).
Collectively, our data suggest a failure of astrocytic STAT3
activation in response to neuronal injury in our ALS mouse model.
This raises the question of whether an intrinsic dysfunction in
astrocytes underlies this impaired astrocyte activation.

Pertubations in ALS patient-derived astrocyte reactivity.
We then examined potential alterations in astrocyte reactivity in
human ALS, focusing on the EphB1 and STAT3-regulated tran-
scriptome. We employed highly enriched (99%; Supplementary
Fig. 6a, b) cultures of patient-specific SOD1D90A hiPSC-astrocytes
generated by our previously published methods42. For RNA-seq
experiments we used three independently differentiated hiPSCs-
astrocyte cultures from two healthy controls and one SOD1D90A

ALS patients. For mRNA and functional validations of the gene
expression profiles, we then used 3–13 independently differ-
entiated hiPSCs-astrocyte cultures from three healthy controls
and two SOD1D90A ALS patients. Importantly, this included an
isogenic pair (Supplementary Table 1). Transcriptome-wide
profiling indicated exclusive enrichment of astrocyte-specific
genes vs. iPSC and motor neuron markers (Fig. 6a). Initial ana-
lysis revealed 1909 upregulated and 2513 downregulated tran-
scripts in the SOD1 lines vs. controls (Fig. 6b). GO terms and
individual gene analysis revealed that there was concordance in
the main upregulated proinflammatory transcripts between
SOD1-mutant hiPSC-astrocytes and the astrocyte-specific trans-
lational profile in SOD1-mutant ALS mice25 (Fig. 6c).

Fig. 3 Transcriptome-wide analyses of purified mouse astrocytes treated with EphB1 or IL-6. a Graphs show the total of changed transcripts induced by
EphB1 or IL-6 treatment. b Diagram demonstrating the number of treatment specific and commonly upregulated and downregulated genes (n= 2
independent cultures from 6 mice; FDR≤ 0.1). c Unsupervised hierarchical clustering of control astrocytes (ACs), IL-6 and EphB1-treated gene expression
profiles demonstrates separation of each experimental group. Heatmaps show the representation of top genes by contribution to Principal Component.
Vertical colour bar indicates groupings of genes according to patterns of change in response to EphB1 and IL-6. Gene expression data represent SD from
mean of variance stabilised values across rows. Upregulated genes are shown in red, downregulated genes are shown in blue. d GO term analysis of
significantly induced genes (FDR≤ 0.1) when comparing EphB1 to IL-6 treatment using the DAVID interface. e,f Significantly induced transcripts by EphB1
in comparison with IL-6-induced response, representing pro-inflammatory/immune-regulator genes (e) or homeostatic/cell defence (f) astrocyte
reactivity profiles. For IL-6 non-significant changes are represented by empty bars. Orange dots label commonly upregulated transcripts of reactive
astrocytes defined by published data8. g Significant EphB1-induced or IL-6-induced TFs in which STAT3 activators are labelled in red. h Heatmaps of STAT3
targets induced by either EPhB1 or IL-6 treatment of astrocytes. Stars represent significantly induced transcripts (p≤ 0.01) and data represent SD from
mean. For graphs data shows log2-fold changes in gene expression ± SEM
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Interestingly, 18% of reactive astrocyte genes identified in mouse
models8 were also similarly changed in SOD1-mutant hiPSC-
astrocytes and 8% of genes found altered in microdissected
astrocytes from SOD1 mice43 were also changed in hiPSC-
astrocytes. This reflects similarities existing between human and
mouse astrocyte responses despite differences in species and
experimental platforms. Specifically, a proportion of altered genes
in SOD1 astrocytes were identified as EphB1 response genes in
our mouse system (Fig. 6d). Among these, there were five major
significantly upregulated transcripts with detrimental or proin-
flammatory effect, which were more representative of IL-6-
induced genes than of those activated by EphB1 in mouse

astrocytes (PHLDA3, CEBPD, JUNB, STAT2, GBP5). Importantly,
5 EphB1-signalling associated transcripts with protective or
homeostatic effects had decreased expression in SOD1-mutant
astrocytes, including HSPB8, KCNN3, LRP2, FBXO2, SH3PXD2B
(Fig. 6d).

To investigate whether downregulated transcripts associated
with the EphB1 pathway also affect STAT3 signalling in SOD1-
mutant hiPSC-astrocytes, we compared transcriptomic changes
with the human STAT3 interactome. This showed that among
the five significantly changed STAT3 activators JAK3 and SRC
were downregulated, meanwhile LIF, PDGFRA, PRLR were
upregulated (Fig. 6e). We also identified nine significantly
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induced STAT3 targets while six were decreased (Fig. 6f).
Altogether, the RNA-seq data raised the hypothesis of a specific
dysregulation of EphB1-induced reactivity genes (Fig. 6d–f).

We validated five significantly altered transcripts belonging to
EphB1 and/or STAT3 networks by qPCR using eight and seven
independently differentiated hiPSCs-astrocyte cultures from three
healthy controls and two SOD1D90A ALS patients, respectively
(Fig. 7a; Supplementary Table 1 and 2). A 1.83-fold induction of
PHLDA3 (p= 0.003), a gene recently reported to be linked to
degenerative mechanisms, and a 10-fold downregulation of
HSPB8 with a protective profile (p< 0.0001; Fig. 7b) were found.

We next performed Tandem Mass Tag (TMT)-mass spectro-
metry (MS) on whole-cell lysates of six independently differ-
entiated hiPSCs-astrocyte cultures from three healthy controls
and two SOD1D90A ALS patients, including an isogenic pair
(Supplementary Table 1; Supplementary Data File). By focusing
on the most differentially expressed proteins (Fig. 7c, f), we
confirmed that PHLDA3 exhibited increased expression in
SOD1-mutant hiPSC-astrocytes (2.40-fold over controls, p=
0.039), corresponding with its higher transcriptional expression
analysed by RNA-seq and qPCR (Fig. 7c; Supplementary Fig. 7).
In addition to higher PHLDA3 protein levels, the reduction of
IntDen measurements of PHLDA3 nuclear IR in SOD1-mutant
hiPSC-astrocytes indicated a shift in intracellular distribution,
suggesting activation of degeneration pathways44, 45 (Fig. 7d, e).
Although the level of a mitochondrial protein CHCHD2 was
significantly high, over 30-fold in SOD1-mutant astrocytes, it did
not correlate with increased transcription, and may indicate
possible protein accumulation. The proteomic analysis focussed
on the STAT3 network members demonstrated a significantly
lower, 0.49-fold level of the STAT3 activator IL1RAP (p= 0.009;
Fig. 7f, Supplementary Fig. 7). These data raise the hypothesis
that EphB1-induced STAT3 activation and/or its downstream
pathways are dysregulated. We tested this hypothesis by assessing
nuclear translocation of STAT3 IR in ALS patient-specific GFAP
expressing hiPSC-derived SOD1D90A-astrocytes compared to
healthy control astrocytes in the presence or absence of EphB1,
again using IL-6 as a positive control. We used 9–13
independently differentiated hiPSCs-astrocyte cultures from three
healthy controls and two SOD1D90A ALS patients, including an
isogenic pair. We first identified the most effective concentration
of EphB1 in human astrocyte cultures (Supplementary Fig. 6).
We then demonstrated that EphB1-induced nSTAT3 transloca-
tion is impaired in SOD1 hiPSC-astrocytes when compared to
IL-6-triggered response (p= 0.003; Fig. 7g–i). Indeed the
proportion of nSTAT3 IR in SOD1-mutant astrocytes did not
differ from those in untreated control cultures (p= 0.398; Fig. 7i).
Conversely, significant 1.88-fold and 2.18-fold responses

were seen in healthy controls for EphB1 and IL-6, respectively,
(p= 0.002 and p= 0.029; Fig. 7h). Importantly, we also separately
validated these findings in SOD1-mutant hiPSC-astrocytes and
isogenic (genetically corrected) control hiPSC-astrocytes using
qPCR, MS and STAT3 activation assays (Fig. 7j, k, Supplementary
Fig. 7). These data cumulatively suggest an intrinsic failure of
the EphB1–ephrin-B1–STAT3 signal transduction pathway in
SOD1-mutant iPSC-astrocytes. In summary, we have demon-
strated that astrocyte cell autonomous mechanisms contribute to
diminished EphB1–ephrin-B1-mediated reverse signalling and
STAT3 activation in ALS astrocytes.

Discussion
It is a long-held view that astrocyte activation in injury involves
inflammatory responses and cytokine signalling, through a
cascade induced by microglial reactivity and immune cells4, 11, 46.
However, early injury cues that define an astrocyte phenotype
favourable for repair processes remain elusive. We provide both
in vivo and direct in vitro evidence that an early complementary
route exists for astrocyte activation by neuronal injury
cues through EphB1-induced signalling. Our in vitro paradigm
confirms that EphB1 that is expressed on motor neurons directly
triggers astrocyte transformation both at morphological and
transcriptional levels, resembling a reactive astrocyte phenotype.
Similar neuron-astrocyte signalling may also exist in other CNS
regions, such as the hippocampus, where upregulation of EphB1
expression in axotomised neurons is concomitant with the
increase in GFAP IR17. There may be several routes by which
motor neuron EphB-receptors could potentially induce reverse
signalling in astrocytes due to their promiscuous binding to
various ligands in different cell types47, 48. We confirmed that
EphB1 activates astrocytes by inducing ephrin-B1 dependent
STAT3 phosphorylation. This is supported by studies in non-
neural models, describing the direct recruitment of STAT3 to the
intracellular domain of ephrin-B1, resulting in phosphorylation
of STAT3 at Tyr 70549, 50. It is noteworthy that there are other
alternative pathways for reverse signalling through ephrin-B120,
potentially leading to a possible crosstalk with the
STAT3 signalling network.

Here, we demonstrate that EphB1 not only induces STAT3
phosphorylation in astrocytes but also its nuclear transfer
and transcriptional activity concomitant with reactive morpho-
logical astrocyte transformation. Transcriptome-wide analyses
confirmed and extended these results by demonstrating a
unique reactivity profile discriminating the EphB1 response from
canonical astrocyte activators, such as IL-6. Notably, this also
appears to differ when compared to microarray studies on the

Fig. 4 EphB1 induces a neuroprotective transcriptional programme in astrocytes which is distinct to IL-6 treatment. a,b Predictive EphB1/IL-6 signalling to
the STAT3 transcriptomic network. Connections are based on the provided evidence by Ingenuity Pathway Analysis. Red lines indicate connections of
STAT3 to inflammatory transcripts, which are overlapping between EphB1-induced and IL-6-induced networks. Both larger node size and darker orange
colour indicate increased transcript induction while smaller node size and darker blue colour codes decreased gene expression. c Diagram indicates
selection criteria for qPCR based validations. d Graph shows mean fold changes of transcripts in astrocytes (ACs) following EphB1 or IL-6 treatments
normalised to untreated controls (n= 3 cultures from 6 mice; **p= 0.003, F= 58.44 for Cebpd and **p= 0.009, F= 44.1 for Trim30a between EphB1 and
IL-6 treated groups; one-way ANOVA with Bonferroni post hoc test). e Fluorescence images demonstrate Cebpd IR in EphB1-induced or IL-6-induced
ALDH1L1-positive astrocytes. f Dot plot graph shows relative integrated density measurements of nuclear Cebpd IR to the mean of control values after
normalisation to background densities (n= 55 for EpHB1, n= 67 for IL-6 from three astrocyte cultures of six mice; **p= 0.002, unpaired t-test).
Percentages represent the proportion of astrocytes with higher values than the control threshold. g Immunofluorescence images of motor neurons (MNs)
displaying cleaved-caspase3 IR in glutamate toxicity assays, in which the effect of AC conditioned media (ACM) was examined. ACM derived from
astrocytes receiving various treatments: untreated or treated astrocytes by EphB1 with or without pre-incubation by ephrin-B1 siRNA and also by IL-6.
h Graph demonstrates the mean proportion of glutamate (100 μM) toxicity induced cleaved-caspase3 positive spinal cord motor neurons and the
influences imposed on this by various ACM (n= 6, 5, 4, 4, 5 motor neuron populations from six mice in two independent experiments; ****p≤ 0.0001,
nsp= 0.668, ***p= 0.0007 in comparison with non-glutamate treated negative controls or **p= 0.019, nsp= 0.832 and nsp= 0.997, F= 16.41 in
comparison with glutamate and ACM treated control, one-way ANOVA with Tukey’s post-test). Scale bar: 20 μm
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Fig. 5 EphB1 and STAT3 expression patterns in the ventral horn of wild type and SOD1G93A-ALS mice. a Schematic diagram and immunofluorescence
images showing very low levels of EphB1 immunolabelling in ChAT-positive motor neurons (MNs) in the ventral horn (VH) of unlesioned wild type (WT)
and SOD1-mutant mice. White boxes represent the corresponding cells magnified in the insets for each group. b Immunofluoresence demonstrating
ALDH1L1-positive astrocytes (ACs) with nuclear STAT3 (nSTAT3) immunostaining (arrows) in unlesioned WT and SOD1-mutant mice. c Graph
demonstrates the mean of the EphB1-labelled proportion of ChAT-positive motor neurons in the two groups (n= 4; p= 0.476, unpaired t-test).
d Graph demonstrates the mean of the nSTAT3-labelled proportion of ALDH1L1-positive astrocytes in the two groups (n= 4; p= 0.821, unpaired t-test).
e Schematic diagram and immunofluorescence images demonstrating EphB1 positivity (arrows) corresponding with ChAT-labelled motor neurons in the
ipsilateral (IL) and contralateral (CL) VH of mice following right-sided sciatic nerve (SN) transection. f Graph shows the mean values of fold changes in
the proportion of EphB1-labelled motor neurons in the IL VHs when normalised to the CL side (n= 4, p= 0.956 for day 1; n= 3, *p= 0.011 for day 7,
unpaired t-test). g Schematic diagram and immunostained tissue sections demonstrating ALDH1L1-positive astrocytes with nSTAT3 IR (arrows). h Graph
shows mean values of fold changes in the proportion of nSTAT3-positive astrocytes in the IL VHs normalised to the CL side (n= 3 controls, n= 4 SOD1,
p= 0.227 for day 1; n= 4, *p= 0.010 for day 7, unpaired t-test). Data is expressed as mean± SEM. Scale bar: 40 μm (20 μm for insets)
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profile of lipopolysaccharide and ischaemia-induced astrocyte
activation8, 51. Our finding prompts speculation on the specific
role of EphB1–STAT3-induced astrocyte reactivity and its
functional consequences.

STAT3-regulated pathways are emerging as central players
in astrocyte-mediated neuronal survival, axon regeneration
and synapse recovery in injury-associated inflammatory
environments1–3, 35. Its role in activating genes that suppress
deleterious proinflammatory processes has been also described52.
In neuronal injuries IL-6 can activate astrocytic STAT353 and
may exert a regenerative and anti-inflammatory effect through
its membrane bound gp130-linked receptor, IL-6R. However,
neuronal insults are also known to induce a significant deleterious
proinflammatory response via the IL-6 soluble receptor, sIL-6R31

and also by various cytokines such as tumour necrosis factor-
alpha (TNF-α) and interleukin(IL)-1β4. Thus cellular and
molecular determinants that orchestrate the balance between the
toxic and neuroprotective effects have remained unclear.
We propose that early neuronal EphB1 expression, in particular
through STAT3, has the potential to promote protective,
anti-inflammatory or immune-modulatory pathways via ephrin-
B1 reverse signalling. Although ephrin-B reverse signalling has
previously been reported to induce peripheral immune system
activation19, our data uncover its association with an
inflammation-modulatory transcriptional response, suggesting
another role for the Eph–ephrin interactions in the central
nervous system. Beyond some shared classical reactivity
genes8, 54, EphB1-induced unique transcriptional changes linked
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to regenerative profiles. In contrast to IL-6, EphB1 favoured
activation of transcripts and networks suggesting a shift from
proinflammatory activation towards an immune-modulatory or
anti-inflammatory arm of the STAT3 pathway. For IL-6 these
differences may be explained by the sIL-6-R-mediated proin-
flammatory effect despite protective STAT3 signalling activated
through the membrane bound IL-6R. The induction of other
pathways might have also modulated the astrocyte transcriptome

profiles, leading to a more favourable overall outcome for EphB1.
Overall, this EphB1 activated phenotype is characterised by
diminished Cebpd and increased Trim30a expression, and
induced a significantly less cleaved-caspase3 IR in motor neurons
when compared to the IL-6-induced astrocyte phenotype, sug-
gesting a protective role. Given recent discoveries of the favour-
able impact of astrocytic STAT3 signalling on neuronal function,
this novel astrocyte activation route is of relevance not only for
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neuroprotective effects but also for supporting synapse and axon
repair55. We speculate that EphB1-mediated responses serve to
counterbalance the neuronal injury response, including IL-6R or
Megf10 signalling, which themselves trigger initial synapse
elimination and debris clearance56, 57. In support of this notion,
the time course of the increased EphB1 IR in damaged motor
neurons corresponds with the restorative phase following motor
neuron axotomy in our paradigm58.

Our work suggests a rapid signal transduction via EphB1 from
neurons to astrocytic STAT3 activation, which appears to be a
hallmark of the protective astrocyte phenotype1, 3, 36. Despite
increasingly recognised astrocyte heterogeneity59, in our
paradigm the conserved response of astrocytes throughout their
cortical, brainstem and spinal cord origin indicates a unified
mechanism. This non-region specific response was also suggested
by the protective effect on spinal motor neurons by supernatants
of EphB1-induced and STAT3-activated cortical astrocytes. This
is also supported by observed STAT3 expression in various
regenerating CNS regions following neuronal insults1, 3, 60.

The elucidation of this default astrocyte response helped to
address whether astrocytic reactivity and its potential effects in
counterbalancing neuroinflammatory or neurotoxic events fail in
neurodegenerative disease. This is an increasingly relevant issue
in ALS, in which raised IL-6 levels61 and widespread inflamma-
tory activation has been thought to fuel non-cell autonomous
pathology, being ultimately detrimental to motor neurons26. So
far attempts have been limited to explore these issues due to the
lack of human models suitable to dissect astrocyte-specific
changes. We show for the first time that human SOD1 ALS
patient-derived iPSC-astrocytes have an altered transcriptome
specifically related to the machinery of astrocyte reactivity. This is
supported by a previous study in SOD1-mutant ALS mice,
demonstrating diminished GFAP expression in astrocytes
induced by motor neuron axotomy28. Our findings demonstrate
the power of integrated interspecies experimental models to
generate high confidence findings of altered astrocyte states. In
particular, we confirmed a partial intrinsic dysregulation of the
EphB1-mediated pathway and the loss of the protective astrocyte
phenotype relevant to one of the predominantly affected
anatomical regions in ALS, by a transcriptomic approach
combined with MS and/or immunolabelling across in vivo and
in vitro model systems.

In correlation with transcriptional changes, increased levels of
PHLDA3 and the impairment in STAT3 activation in ALS hiPSC-
astrocytes are important findings to further explore in future
studies. PHLDA3 is a recently discovered member of p53-
dependent signalling and is activated in endoplasmic reticulum
stress44, 62. However, whether this indicates a novel example of an

astrocyte-specific degeneration process in ALS has yet to be
confirmed. The failure of STAT3 activation in astrocytes is
a compelling finding. Although, unlike in mouse models,
proinflammatory regulators such as CEBPD did not feature
primarily in cultured human ALS iPSC-astrocytes, it is striking
that EphB1–STAT3-mediated protective inflammatory or anti-
inflammatory pathways are inadequately activated both in our
mouse and human ALS models. This may also allow an overall
proinflammatory profile with motor neuron vulnerability well
recognised in SOD1 ALS mice25, 63 and human ALS, and
could provide some answers as to why global suppression of
inflammation has failed in human clinical trials. Indeed, using
a combination of mouse models and human iPSC models, such
as demonstrated in our paradigm, is required to confidently
identify relevant astrocytic targets for inflammatory modulation as
a potential treatment strategy for neurodegenerative diseases64, 65.
Therapeutic options may include combined pathway-specific
approaches that augment the protective or anti-inflammatory
STAT3 downstream signalling in astrocytes1, 3, 36, 66 and inhibit
detrimental IL-1β or TNF-α induced NF-kB-dependent proin-
flammatory activation15, 63, 67, 68.

In conclusion, we identified EphB1 as a novel and important
trigger of early astrocyte response pathway partially through
activation of STAT3, which mediates restorative processes. We
provide the first evidence that in human ALS, astrocytes cell-
autonomously have impaired EphB1-mediated STAT3 activation.
This constitutes a novel example of astrocyte ‘loss of function’ in
ALS5, 6. Our study adds to the understanding of astrocyte
responses in injury and neurodegeneration, and potentially
highlights new neuroprotective therapeutic targets.

Methods
Surgical facial nerve axotomy. All experimental procedures were carried out
under the UK Home Office licence in accordance with the Animals (UK Scientific
Procedures) Act 1986 (Amendment Regulations 2012) following ethical review
by Animal Welfare and Ethical Review Body (AWERB) at the University of
Cambridge. All procedures were complied with guidelines set out by the Interna-
tional Association for the Study of Pain guidelines for the care and use of animals
and were in accordance with the European Community Council Directive of
24 November 1986 (86/609/EEC). The right facial nerve of 8-week-old to 10-week-
old male WT mice (C57BL/6, Harlan) was transected at its extracranial course
near the stylomastoid foramen under fluothane (2%) anaesthesia with oxygen
(1.5 l h−1). Before surgery, a subcutaneous injection of buprenorphine (Vetergesic;
0.1 mg kg−1) was administered to minimise pain and discomfort together with
antibiotics (penicillin and streptomycin) to minimise potential infection.

Sciatic nerve transection. All surgical procedures for sciatic nerve lesions were
carried out by SF in accordance with the European Communities Council Directive
of 22 September 2010 (2010/63/EU) regarding the use of animals in research, and
was approved by the Ethics Committee of the Institute of Experimental Medicine,
AS CR (Prague). Surgeries were performed on symptomatic 90 day old adult

Fig. 7 Validation of dysregulated transcripts within the EphB1–STAT3 network and the failure of STAT3 activation in human SOD1D90A iPSC-astrocytes.
a Diagram of selection criteria for validation of gene expression data. b Graph indicates mean fold changes of mRNA of top transcripts when normalised to
controls (n= 8 control and 7 SOD1-mutant independently converted hiPSC-astrocyte (AC) cultures, Supplementary Table 1; ****p≤ 0.0001, **p= 0.003;
unpaired t-test). c Graphs show mean fold changes of increased protein levels normalised to the mean of controls when measured by mass spectrometry
(MS) (n= 3 independent cultures of SOD1-mutant hiPSC-astrocytes vs. control astrocytes; **p= 0.003, *p= 0.039, **p= 0.0015, unpaired t-test).
d PHLDA3 IR pattern in ALDH1L1/DAPI-labelled control and SOD1-mutant hiPSC-astrocytes. e Dot plot graph shows integrated density measurements of
nuclear PHLDA3 IR in astrocytes after normalised to background. N= 378 cells from three SOD1 patient-derived hiPSC-astrocytes and 181 cells from two
control patients; ****p≤ 0.0001, unpaired t-test. f Graphs shows mean fold changes of decreased protein levels normalised to the mean of controls when
measured by MS (n= 3 independent cultures of SOD1-mutant hiPSC-astrocytes vs. control astrocytes, ***p= 0.0001, **p= 0.009, **p= 0.003, unpaired
t-test). g Panels demonstrate immunofluorescence images of GFAP-positive astrocytes with nSTAT3 IR in control and in SOD1 hiPSC-astrocytes. Adjacent
panels with DAPI staining illustrate nSTAT3 co-localisation (arrows). h–k Graphs represent the proportion of nSTAT3-positive cells among the total of
GFAP-positive astrocytes in control (h) or SOD1-mutant hiPSC-cultures (i), which is also independently analysed for the isogenic corrected control/SOD1-
mutant pair of hiPSC-astrocyte cultures (j, k). For h and i, n= 13 and 9 independently converted hiPSC-astrocyte cultures; **p= 0.002, *p= 0.029 for
controls, **p= 0.003 for SOD1 hiPSC-astrocytes, one-way ANOVA with Bonferroni test. For j and k, n= 2 independently converted astrocyte cultures for
the isogenic control and n= 3 for the SOD1-mutant pair; *p= 0.027 for IL-6 and *p= 0.038 for EphB1 in controls; *p= 0.025 for IL-6 and p= 0.777 for
EphB1 in SOD1 astrocytes; F= 21.95 and F= 7.8, respectively; one-way ANOVA with Bonferroni test. Data expressed as± SEM. Scale bar: 30 μm
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transgenic SOD1G93A mice (B6SJL-Tg(SOD1*G93A)1Gur/J, Jackson Laboratories)
and WT mice (B6SJLF1/J, Jackson Laboratories). Mice were anaesthetised with
isofluorane (2%) inhalation (Abbot Laboratories) and in aseptic conditions a
transversal cut was made on the skin 1 cm distal to the trochanter major in the
right hindlimb. After a careful retraction of the femoral muscles via septum biceps
femoris, a right sciatic nerve was exposed. A full sciatic nerve transection was
made at the most proximal part of the nerve. Perioperatively mice received a
subcutaneous injection of Rimadyl (Pfizer, 4.4 mg kg−1 in 0.1 ml of water for
injections).

Unlesioned mice. All procedures were carried out following the guidelines of the
UCL-Institute of Neurology genetic manipulation and Ethic Committees and in
accordance with the European Community Council Directive of 24 November
1986 (86/609/EEC). Animal work was carried out under license from the UK
Home Office in accordance with the Animals (Scientific Procedures) Act 1986
(Amended Regulations 2012). For the collection of naïve spinal cords samples,
94± 1 day old adult transgenic SOD1G93A mice (B6SJL-Tg(SOD1*G93A)1Gur/J,
Jackson Laboratories) and WT mice (C56BL/6-SJL mixed background, Jackson
Laboratories) were obtained and housed.

Tissue Collection. According to the local and international ethical guidelines
described above, the adult animals were killed by a lethal injection of phenobarbital
(300 mg kg−1) or pentobarbital (65–200 mg kg−1) in humane conditions following
brief anaesthesia by fluothane (2%) or isofluorane (2%) at different time points
post-facial nerve axotomy (1, 7, 14, 28 days) or post-sciatic nerve transection
(1 and 7 days) and at 94± 1 days of age for unlesioned mice. Axotomised or
unlesioned WT or SOD1G93A mice were either perfused with 4% PFA solution in
PBS or fresh frozen samples were collected. For immunohistochemical analysis
frozen lumbar spinal cord (L4–L6) or brainstem blocks were cut at 10 μm thickness
using a cryostat (Leica). For obtaining 0.8 × 0.8 mm needle-punch FMN samples,
a series of 300 μm thick coronal brainstem sections were cut. For cell culture
purposes P1 mice pups were killed by the schedule 1 protocol according to the UK
Home Office guidelines.

Mouse cell cultures and purification. Cerebral cortices of P1 C57BL/6 WT mice
(Harlan Olac & Charles River) or Gfap-Cre+/+/Stat3-loxP+/+mice (Gfap-Stat3-
CKO) and thoracolumbar spinal cords of P1 C57BL/6 WT mice (Harlan) were
prepared as described in previous studies1, 69. In general, this method establishes a
purity of over 95% for astrocytes with <1% microglia. For our in vitro experiments,
>98% pure astrocyte cultures were used. To obtain high purity astrocyte cultures
for RNA sequencing, primary astrocyte cultures were obtained as described and
then a further purification step was performed using Anti-GLAST (ACSA-1)
MicroBead Kit (Miltenyi Biotec) according to the manufacturer’s protocols.
Purified astrocytes were cultured for 6 weeks (mature astrocytes) in 10% fetal
bovine serum, 1 mM GlutaMAX in Dulbecco’s modified Eagle medium (DMEM,
Life Technologies) to provide cells for in vitro assays. Tissue for Gfap-Stat3-CKO
astrocyte cultures were kindly donated by C. Zhao and R.J.M. Franklin, and was
derived from mice originally generated by M. Sofroniew as described in Garcia
et al. 2004. In CKO astrocytes the Stat3 gene sequence encoding the tyrosine
residue (Tyr705) crucial for STAT3 activation has been deleted. Motor neuron
cultures from WT C57BL/6 E15 (Harlan) embryos were established and cultured
using published protocols70 (>92% purity for motor neurons) with only minor
modifications. Briefly, after isolation spinal cord dorsal roots and column were
pulled off by tweezers and the remaining ventral part of the spinal cord was kept in
HypernateE (Thermo Fisher Scientific) prior to dissociation, then Percoll (Sigma)
was used as gradient for neuronal separation from glia. Survival assays were
performed at 4 weeks after plating.

ALS and control patient-derived iPSC-astrocytes. Human samples were
obtained and handled according to the UK Home Office regulations and local
guidelines in the laboratories. In this study, either three or four iPSC lines from
healthy controls and two lines from patients carrying the SOD1D90A mutation were
used. This also included an isogenic pair of control and SOD1-mutant hiPSC-
astrocyte lines (collaboratively provided by Dr S-C Zhang). Details of the iPSC lines
used in this study can be found in Supplementary Table 1. For assays using hiPSC-
astrocytes, at least three independent astrocyte cultures (n> 3) were used per
group. Spinal astrocyte derivation from hiPSCs was adapted from our published
protocol42. Briefly, after neural conversion (7 days in a chemically defined medium
containing 1 μM Dorsomorphin (Millipore), 2 μM SB431542 (Tocris Bioscience)
and 3 μM CHIR99021 (Miltenyi Biotec)) neural precursors were patterned for
7 days with 0.5 μM retinoic acid and 1 μM purmorphamine, followed by a 4-day
treatment with 0.1 μM purmorphamine. After a propagation phase (>60 days) with
10 ng ml−1 FGF-2 (Peprotech) and were terminally differentiated to astrocytes in
presence of BMP4 (10 ng ml−1, R&D) and LIF (10 ng ml−1, Sigma-Aldrich).
Phenotypic characterisation of astrocytes included immunolabelling for GFAP,
Aldh1L1, EAAT1 and EAAT2. Cultures used for in vitro assays were over 99% pure
(Supplementary Fig. 6). For each iPSC line, astrocytes derived from a minimum of
three independent neural conversions were analysed. All cell cultures were tested a

minimum of fortnightly for mycoplasma using a PCR-based assay and there were
no positive results throughout this experimental period.

EphB1 and IL-6 treatment. As serum is known to induce astrocyte activation,
before treatment primary mouse astrocytes were washed once with HBSS and
subsequently serum-starved for a variable time (1–24 h) in Sato’s serum-free
medium (Insulin 10 μg ml−1, transferrin 100 μg ml−1, bovine serum albumin
300 μg ml−1, putrescine 16 μg ml−1, thyroxine 400 ng ml−1, tri-iodo-thyronine
300 ng ml−1, progesterone 60 ng ml−1, sodium selenite 40 ng ml−1, 1 mM Glutamax
in DMEM, low glucose, pyruvate, Life Technologies). After serum starvation,
astrocytes were treated with either pre-clustered rat recombinant EphB1-Fc
(1, 5, 10 µg ml−1, R&D Systems) or IL-6 (50 ng ml−1, R&D systems) in Sato’s
medium. For all experiments clustered EphB1-Fc was used unless stated otherwise
and was referred to as ‘EphB1’ in the text. Before treatment hiPSC-derived
astrocytes were cultured for 72 h in absence of BMP4 and LIF and then treated with
either human recombinant EphB1-Fc (10 µg ml−1, Gentaur) or IL-6 (50 ng ml−1,
R&D systems). Clustering of EphB1-Fc was obtained by incubating EphB1 with a
clustering antibody (goat anti-human IgG, Fc fragment specific, 1:10, Jackson
ImmunoResearch) for 30 min at RT. At the appropriate time point after the
stimulation, cells were further processed for immunocytochemistry, WB or RNA
extraction.

Cell transfection and knock-down by siRNA. Astrocytes were seeded on 24-well
plates (104 astrocytes per well) or 6-well plates (2.5 × 105 astrocytes per well) or
glass coverslips coated with poly-D-lysine (13 mm diameter, 104 astrocytes per
coverslip). The transfecting agent used was Lipofectamine 2000 (Life Technolo-
gies), using 0.5 µg of plasmid DNA for the luciferase assay or 50 pmol of ephrin-B1
siRNA or non-targeting RNA per well in a 24-well plate. For cortical astrocyte
experiments ephrin-B1 siRNA-sequences were 5ʹ-AGGGUGACUCU-
GACGGCAA-3ʹ, 5ʹ-GGUUGGACACUGACGGACU-3ʹ, 5ʹ-CGCACUAUGAA-
GAUCGUUA-3ʹ, 5ʹ-GUGGAGAUCUUAAGCGGGU-3ʹ (Thermo Scientific
Dharmacon, ON-TARGETplus SMARTpool, L-051210-01-0005) and for spinal
cord astrocytes assays the siRNA sequence was 5ʹ-CGAUUACUACAUUA-
CAUCA-3ʹ (Ambion Silencer Select). Non-targeting ‘scrambled’ RNA was used
as control to reveal possible non-specific effects (Thermo Scientific Dharmacon,
Non-targeting SMARTpool, D-001810-10-05, gift from Dr Jonathan Giley). After
overnight incubation with the transfecting agent, the medium was replaced with
fresh medium. Cells were analysed 1–3 days after transfection, depending on the
downstream application.

Immunolabelling. Frozen sections of mouse brainstems and mouse spinal cords
were blocked in 10% normal goat serum (NGS) or 10% normal donkey serum as
appropriate and permeabilised in 0.3% Triton X-100 (Sigma-Aldrich; in PBS) at RT
for 30 min. They were then stained with primary antibodies in NGS (3%) and
Triton X-100 (0.1% in PBS) at 4 °C overnight followed by species-specific
secondary antibodies in PBS for 1 h and DAPI/Hoechst (100 ng ml−1) for 5–10 min
at RT. For immunocytochemistry, cells on coverslips were fixed in 4% PFA (Sigma-
Aldrich), then were blocked in 5% NGS or NDS in PBS, 0.1% Triton X-100. For
STAT3 and pSTAT3 immunostaining, permeabilisation in cold methanol (−20 °C,
10 min) was performed. Primary antibody incubation was performed for 2 h at RT
or overnight at 4°C in 2% NGS, 0.1% Triton X-100 in PBS and were diluted
as follows: rabbit anti-Aldh1l1, 1:200 (Abcam), mouse anti-Aldh1l1, 1:100
(Millipore), rabbit anti-Cebpd, 1:200 (Abcam), goat anti-ChAT, 1:100 (Millipore),
rabbit anti-EAAT1 1:200 (Antibodies online), rabbit anti-EAAT2 (Abcam), rabbit
anti-EphB1, 1:100 (Santa Cruz), rabbit anti-ephrin-B1, 1:100 (Santa Cruz), rabbit
anti-GFAP, 1:500 (DAKO), mouse monoclonal anti-GFAP, Cy3-conjugated, 1:500
(Sigma-Aldrich), mouse monoclonal anti-GFAP (Sigma-Aldrich), chicken anti-
GFAP, 1:500 (Abcam), mouse monoclonal anti-NeuN, 1:200 (Millipore), rabbit
anti-Phlda3, 1:200, (Lifespan Biosciences), rabbit monoclonal and mouse mono-
clonal anti-STAT3, 1:200 (Cell Signalling), rabbit monoclonal anti-pSTAT3
(Tyr705), 1:100 (Cell Signalling), rabbit anti-Trim30, 1:200 (Novus). This was
followed by incubation with species-specific secondary antibodies for 1 h at RT. For
F-actin staining, incubation with Alexa Fluor® 488 Phalloidin (Life Technologies,
1:300) was performed during secondary antibody incubation.

Image analysis and processing. Images were taken either by fluorescent
(Leica DM6000, ×20–63 objectives) or confocal microscopes (Leica TCS SPE,
z-stack step: 1 μm, ×63 objective). Automated imaging of iPSC-derived astrocytes
was carried out using the Opera Phenix High Content Screening system (Perkin
Elmer, ×20 objective). Chemiluminescence on membranes was detected and
imaged with the Alliance 4.7 CCD Image System (UVITEC). Camera exposure and
gain has been kept the same while collecting images from each experiment. Cell
counts were performed manually. All analysis was performed using unmodified
images. For semi-automated analysis, either the Leica Application Suite software
(Leica), Fiji (ImageJ) or Colombus (Perkin Elmer) software were used, which was
also manually verified. To analyse intensity of nuclear STAT3, Cebpd and
PHLDA3 IR IntDen measurements were carried out using a standard plugin in Fiji.
For unbiased comparison across different experiments IntDen measurements were
normalised to the cell-free background. For immunohistochemical analysis of
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tissue sections an internal control (e.g. unlesioned CL side) was used within the
sample to normalise between replicate samples or experimental groups for
unbiased comparison for manual cell counts. For illustration purposes we have
followed the recommended guidelines. Images were minimally processed in Adobe
Photoshop, which had been applied equally to samples that were directly compared
(e.g. to internal controls) without affecting data presentation. This included
changes in exposure and/or gamma parameters when clear views were compro-
mised by interference with remaining excessive DAPI staining and PBS crystals on
coverslips and histological slides. Pseudo-colours were obtained for images in Fiji
for immunofluorescent staining using a far-red tagged secondary antibody to label
ChAT-positive motor neuron in sections (cyan) or for DAPI staining (white) for
better contrast. For illustration of WB images exposure was equally increased for
the whole membrane at the original exposure. In cases where signal was low to
embed into Adobe Illustrator without obscuration of visual data exposure/gamma
parameters were adjusted equally across the image. WBs were cropped for focussed
visualisation leaving a 6-band width. Lines were inserted to separate experimental
samples that were either not loaded on gels exactly next to each other or were cut
separately (Fig. 1f).

Western blots. Immunoblotting was performed according to standard protocols
(Life Technologies). Electrophoresis was run in 4–12% gradient NuPAGE Novex
Bis-Tris Pre-Cast Gels (Life Technologies) and followed by protein transfer to a
PDVF or nitrocellulose membrane (Life Technologies) according to standard
protocols. Blocking was performed in PBS 1×, 0.2% Tween, 5% dry milk powder
(Marvel). Membranes were stained with the primary and secondary antibodies
diluted in the same blocking solution. Primary antibodies used were as follows:
mouse monoclonal anti-β-actin, 1:20,000 (Abcam), rabbit anti-EphB1, 1:500
(Santa Cruz), rabbit anti-ephrin-B1, 1:1000 (Santa Cruz), mouse monoclonal anti-
GFAP, 1:500 (Sigma-Aldrich), rabbit monoclonal anti-STAT3, 1:1000 (Cell Sig-
nalling), rabbit monoclonal anti-pSTAT3 (Tyr705), 1:1000 (Cell Signalling), rabbit
anti-Trim30, 1:1000, (Novus). Detection was performed by exposing the membrane
to the Amersham ECL Prime WB Detection Reagents (GE Healthcare).

TMT labelling for mass spectometry. TMT labelling for MS (6 plex) was carried
out according to the company’s protocol (ThermoScientific). For protein samples
1–2 × 106 astrocytes were harvested in 8M urea, 0.1% SDS in 50 mM TEAB
(Triethyl ammonium bicarbonate) buffer supplemented with HALT protease
and phosphatase inhibitors (ThermoFisher Scientific) and benzonase nuclease
(Novagen). 100 μg protein samples at 1 μg μl−1 concentration in ultrapure water
were reduced with 5 μl of 200 mM TCEP(Tris(2-carboxyethyl)phosphine) as per
the manufacture’s instruction for the TMT kit (ThermoScientific). Samples were
incubated for 1 h at RT to prevent urea derived carbamylation of lysine side chains,
then were alkylated by addition of iodoacetamide (375 mM) in TEAB for 30 min
before precipitation with 1 ml cold (−20°C) acetone and kept at −20°C overnight.
Next, samples were centrifuged at 10,000 × g, at 10°C for 10 minutes and the pellet
was briefly dried after the removing the supernatant before the digestion step in
trypsin (2.5% in 100 mM TEAB). Labelling reaction was carried out by adding
0.8 mg of each TMT tag was dissolved in 41 μl acetonitrile and incubated on a
shaker for 1 h at RT. The reaction was stopped by the addition of 8 μl 5%
hydroxylamine and incubated at RT for 15 min. Samples were dried using
refrigerated freeze-drier and then dissolved in 200 μl of 20 mM ammonium
formate before loading 100 μl volume on to a reverse phase chromatography
column (C18, Waters) for separating it into 32 fractions first. Finally, these were
combined into 16 fractions and were freeze-dried before MS analysis.

Proteomic analysis and data processing. Proteomic analysis has been carried out
using an Orbitrap™ Fusion™ Lumos™ Tribrid™ mass spectrometer (Thermo Fisher
Scientific) at the Cambridge Centre for Proteomics, using previously published
parameters and methods71 employing synchronous precursor selection (SPS)–MS3.
Briefly, TMT labelled and fractionated samples (~1 µg) were loaded onto Liquid
chromatography-MS/MS analysis, using Orbitrap Fusion Lumos Mass Spectro-
meter coupled with a Dionex Ultimate 3000 nano-LC pump. An SPS–MS3 method
was employed for the fragmentation of labelled peptide ions and subsequent
fragment ions. Proteome Discoverer v2.1 (Thermo Fisher Scientific) and Mascot
v2.6 (Matrix Science) were used to process raw data files. Data was aligned with the
UniProt sequence database for Homo sapiens, in addition to using the common
repository of proteins that typically contaminate shot proteomics experiments.
Protein identification has allowed a tolerance of ±10 ppm and ±0.8 Da along with
permission of up to two missed tryptic cleavages. Peptide-spectrum matches were
re-scored for both ‘forward’ and ‘decoy’ searches by Mascot and the findings
were filtered by peptide score of 20 and peptide confidence ‘high’. For accurate
comparison data from control and SOD1-mutant hiPSC-astrocytes were normal-
ised to the median of protein abundance values. Then candidate proteins were
selected for data validation based on the RNA-seq and qPCR analysis, and the
protein levels were presented as fold change (Supplementary Data File).

Luciferase assay. To demonstrate STAT3-driven transcription activation
astrocytes were transiently co-transfected with two reporter plasmids. The first
one carried the cDNA for the Firefly Luciferase under the control of a STAT3-

responsive promoter, and a second one included the Renilla Luciferase cDNA
under a constitutively active promoter to normalise for the transfection efficiency.
The following plasmids were used: pGL4.47[luc2P/SIE/Hygro] Vector (Promega)
carrying five copies of the STAT3-inducible element (SIE) that drives transcription
of the luciferase-reporter gene luc2P (Photinus pyralis, 2) pGL4.74[hRluc TK]
Vector (Promega) that contains the hRluc luciferase-reporter gene under the
control of a constitutive promoter (HSV-TK). Astrocytes (104 cells per well in a
MW24) were transfected with 500 ng of pGL4.47[luc2P/SIE/Hygro] and 50 ng of
pGL4.74[hRluc TK]. After overnight incubation with the Lipofectamine-DNA
complexes, the medium was replaced with fresh Sato’s medium for 24 h. Subse-
quently, cells were treated with either IL-6 or clustered EphB1 for further 24 h. At
the end of the stimulation cells were rinsed in PBS and lysed in Glo Lysis Buffer
(Promega). Subsequently Dual-Glo® Luciferase Reagent (Promega) and Dual-Glo®
Stop & Glo® Reagent (Promega) were added to each sample, acting as substrate for
the luc2P and Renilla luciferase, respectively. Luminescence was detected using the
FLUOstar Omega plate reader (BMG Labtech).

RNA extraction. For gene expression profiling mouse astrocytes were purified
using the GLAST1 Microbead Kit (Miltenyi Biotec) as described above. Stimulation
was performed as described above with the following modifications: one hour
serum starvation in Sato’s medium, followed by 11 h of stimulation with either IL-6
(50 ng ml−1) or clustered EphB1 (5 μg ml−1). Non-treated astrocytes were kept in
Sato’s medium. At the end of the treatment cells were washed with cold sterile PBS,
collected and snap frozen. Total RNA was extracted using the RNeasy Plus Mini
Kit (Qiagen) according to the manufacturer’s protocol.

Reverse transcription and qPCR. Reverse transcription was performed using the
Revert Aid First Strand cDNA Synthesis Kit (ThermoFisher Scientific) using 0.1–1
μg of total RNA. qPCR was performed using the Power SYBR Green Master
Mix (ThermoFisher Scientific). Primers were chosen from the primePCR library
(Bio-Rad) with a preference for intron-spanning primers, when available. A list of
the primers used can be found in Supplementary Table 2. Gene expression data
were analysed using the ddCt method using GAPDH as housekeeping gene.

RNA sequencing. Library preparation was performed according to the Illumina
TruSeq RNA Access library preparation kit as per the manufacturers instructions.
Briefly, 100ng total RNA was first fragmented, cDNA is next generated using
random priming during first and second strand synthesis and sequencing adaptors
are ligated to the resulting double-stranded cDNA fragments. The coding regions
of the transcriptome are then captured from this library using sequence-specific
probes, then a final round of PCR amplification and second strand digestion
occurs to create the final library. This strand-specific protocol was used for library
preparation and samples were barcoded and multiplexed before sequencing on a
HiSeq platform.

RNA-seq and interactome analysis. A bioinformatic pipeline was constructed
whereby the following steps were employed; fastQC, pre-processing, read
alignment using Tophat2, htseq-count file generation and DESeq2 analysis.
At least 80% of all reads aligned to the genome across all samples, of which a
minimum of 60% were exonic. Approximately 90% strand specificity was
confirmed. Counts were normalised using the DESeq2 variance stabilising
transformation command prior to further analysis of differential expression and
visualisation of results. Significance thresholds were set at FDR< 0.1 unless
otherwise stated, and was determined using the procedure of Benjamini and
Hochberg. Scatterplots and mean-centred heatmaps were generated in R. GO term
analysis was performed using the GOSeq R package72. Transcription factors were
defined by published recommendations73. Mouse and human STAT3 interactomes
used to explore transcriptional signatures were generated in PathwayCommons
(http://pathwaycommons.org), Biobase and IPA (Qiagen) platforms. Significantly
induced mouse transcripts were analysed for their regulation by STAT3 using IPA,
provided by Qiagen through the Hutchison/MRC Research Centre, Cambridge
(www.ingenuity.com, 2017) and by the GO–Panther pathway analysis tool
(http://pantherdb.org, 2017). Illustrations for STAT3 interactomes were generated
in the Cytoscape platform, in which both the intensity of colour and the size of
nodes representing different genes correlate with the degree of expression values.

Statistical analysis. For in vivo experiments, the mouse subjects were not spe-
cifically randomised but were blinded for the observers. All quantified experiments
for in vivo mouse models included both biological (n= 4 mice) and technical
replicates (3–4 histological sections each at least). In vitro experiments using mouse
astrocytes included three independent cultures from six different mice with tech-
nical replicates (coverslip cultures) for assays and for validation of gene expression
profiles unless stated otherwise. The sample size was estimated from pilot and
previously performed experiments1. For assays using hiPSC-astrocytes, at least
three independent astrocyte cultures (n > 3) were used per group, which were
converted from three healthy control or two ALS patients with the SOD1D90A

mutation (Supplementary Table 1). Data and graphs are presented as mean± SEM,
and ‘n’ values refer to the number of cells, cultures, tissue samples or animals
analysed per group. GraphPad Prism 5, 6 and 7 (GraphPad Software) were used to
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generate graphs and to perform tests for distribution and statistical significance.
Data were analysed using two-tailed, unpaired t-test for comparison of two groups,
which was referred to as ‘t-test’ in the text. One-way or two-way analysis of
variance was applied for comparison of multiple groups with Tukey’s post hoc test.
Dunnett’s test was applied for comparison of means to the control group mean.
Bonferroni correction was applied to examine apriori hypotheses for comparisons
of specific pairs. The type of statistical tests with p and F values are also
indicated in the figure legends. Statistical significance was accepted at p-values of
< 0.05. *p,**p, ***p indicate < 0.05, < 0.01,< 0.001, respectively. Non-significant
p-values were labelled as “ns” in the text or in figures where relevant.

Data availability. All transcriptomic data have been deposited in the GEO
repository. The accession codes for new data on mouse and human iPSC-astrocytes
presented are GSE102902, GSE102903. For further comparison of human iPSC,
motor neuron and astrocyte differentiation states we also used our previously
deposited data with accession numbers GSE98288, GSE99843. Experimental data
relevant to the focused proteomic analysis is included in a supplementary file. Data
is also available from the corresponding authors at request.
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