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AN UNFITTED HYBRID HIGH-ORDER METHOD
FOR ELLIPTIC INTERFACE PROBLEMS∗

ERIK BURMAN† AND ALEXANDRE ERN‡

Abstract. We design and analyze a hybrid high-order (HHO) method on unfitted meshes to
approximate elliptic interface problems. The curved interface can cut through the mesh cells in a
very general fashion. As in classical HHO methods, the present unfitted method introduces cell and
face unknowns in uncut cells but doubles the unknowns in the cut cells and on the cut faces. The
main difference with classical HHO methods is that a Nitsche-type formulation is used to devise the
local reconstruction operator. As in classical HHO methods, cell unknowns can be eliminated locally
leading to a global problem coupling only the face unknowns by means of a compact stencil. We prove
stability estimates and optimal error estimates in the H1-norm. Robustness with respect to cuts is
achieved by a local cell-agglomeration procedure taking full advantage of the fact that HHO methods
support polyhedral meshes. Robustness with respect to the contrast in the material properties from
both sides of the interface is achieved by using material-dependent weights in Nitsche’s formulation.

Key words. interface problem, hybrid high-order method, unfitted mesh, Nitsche’s method

AMS subject classifications. 65N15, 65N30, 35J15

DOI. 10.1137/17M1154266

1. Introduction. The hybrid high-order (HHO) method has been recently in-
troduced in [15] for linear elasticity problems and in [16] for diffusion problems. The
HHO method is formulated in terms of cell and face unknowns. The cell unknowns
can be eliminated locally by using a Schur complement technique (also known as
static condensation), leading to a global transmission problem coupling only the face
unknowns by means of a compact stencil. The HHO method is devised locally from
two ingredients: a reconstruction operator and a stabilization operator. This leads
to a discretization method that supports general meshes (with possible polyhedral
cells and nonmatching interfaces), is locally conservative, and delivers energy-norm
error estimates of order (k + 1) (and L2-norm error estimates of order (k + 2) under
full elliptic regularity) if polynomials of order k ≥ 0 are used for the face unknowns.
As shown in [12], the HHO method can be fitted into the family of hybridizable dis-
continuous Galerkin (HDG) methods introduced in [13] and is closely related to the
nonconforming virtual element method studied in [1].

The use of polyhedral meshes can greatly simplify the meshing of complicated
geometries. Nevertheless, in some situations, it is still convenient to avoid the meshing
of boundaries and internal interfaces. This is the case when the boundary changes
during the computation, such as in free-boundary and optimization problems, and
when the boundary or the internal interface is curved. In this paper, we are interested
in devising a high-order approximation method for elliptic interface problems. To
handle difficulties with curved interfaces in classical finite element methods, boundary-
penalty methods [2, 3] have been proposed, where the computational mesh does not
need to respect the interface. In order to improve the accuracy, unfitted finite element
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1526 ERIK BURMAN AND ALEXANDRE ERN

methods were introduced in [23] drawing on the seminal ideas of Nitsche [29] for
the weak imposition of boundary conditions. The key idea is to design the finite
element space so that singularities over the interface can be represented by a pair of
polynomials in the cut cells. Similar approaches were then proposed in the context of
discontinuous Galerkin methods in [4, 28, 25].

A well-known difficulty for unfitted finite element methods is that the conditioning
of the resulting linear system has a strong dependence on how the interface cuts
the mesh cells. This means that for unfavorable cuts, Nitsche’s formulation can be
severely ill-conditioned. This difficulty has been solved in [23] by using weighted
coupling terms with cut-dependent weights. However, there is a lack of robustness
when the material properties (e.g., the diffusivities on each side of the interface)
are highly contrasted. Robustness with respect to the contrast can be achieved by
using material-dependent weights, as proposed in different contexts in [10, 19, 8],
and in this case, a different mechanism is needed to handle unfavorable cuts. In the
case of H1-conforming methods, this problem can be overcome by adding a penalty
term that weakly couples the polynomial approximation in adjacent cells as proposed
in [5]. When using a discontinuous Galerkin approximation, another approach was
proposed in [25] for fictitious domain problems where mesh cells with unfavorable
cuts are merged with neighboring elements having a favorable cut. This idea is also
explored in [24] for interface problems approximated by conforming finite elements on
quadrilateral meshes whereby cells with an unfavorable cut are merged with adjacent
quadrilateral cells (thus creating hanging nodes).

The so-called cutFEM framework was developed recently in [6] so as to couple
different physical models over unfitted interfaces and to discretize PDEs over unfit-
ted embedded submanifolds. The high-order approximation of the geometry of the
interface was considered recently in [9] using a boundary correction based on local
Taylor expansions and in [26] using an iso-parametric technique, the common objec-
tive being to simplify the numerical integration on domains with curved boundaries
by allowing a piecewise affine representation of the interface. The cutFEM paradigm
has also been applied to a variety of complex flow problems; see, e.g., [27], the recent
Ph.D. thesis [30], and references therein. A conforming finite element method with
local remeshing in subcells, effectively fitting the mesh to the interface, followed by
elimination of the local degrees of freedom, was introduced in [20].

The goal of the present work is to devise and analyze an HHO method using
unfitted meshes. The approach consists of doubling the unknowns in the cut cells and
the cut faces, in a spirit similar to unfitted finite element methods. For brevity, we only
consider elliptic interface problems, but the material can be readily adapted to treat
the (simpler) case of fictitious domain problems; such an adaptation is briefly reported
in [7]. Our approach combines the ideas of HHO methods (and more broadly HDG
methods) with those from [23] concerning Nitsche’s formulation, but with material-
dependent weights rather than cut-dependent weights, and those from [25] to handle
unfavorable cuts by a local cell-agglomeration procedure. The cell-agglomeration
procedure takes full advantage of the fact that the HHO method supports general
meshes with polyhedral cells. The resulting unfitted HHO method is robust with
respect to the cuts and to the material properties. Our stability and error analysis
of the unfitted HHO method sheds some novel light in the analysis of HHO methods.
On the one hand, the local reconstruction operator is based on Nitsche’s formulation
and cannot be related, as in classical HHO methods, to a local elliptic projector. On
the other hand, the error is measured by using some projector that is somewhat more
elaborate than the local L2-orthogonal projector used in classical HHO methods. Our
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AN UNFITTED HHO METHOD 1527

main result is an H1-error estimate of order (k + 1) if polynomials of order k ≥ 0
are used for the face unknowns and polynomials of order (k + 1) are used for the
cell unknowns. We observe that we do not consider here cell unknowns of order k
as in classical HHO methods. The overhead induced by this modification is marginal
since, as usual, all the cell unknowns can be eliminated locally. Finally, we mention
the recent numerical work combining the HDG method with the X-FEM technique
for fictitious domain [22] and elliptic interface [21] problems. The main differences
with the present unfitted HHO method are that we do not introduce unknowns at
the interface (but rather double the unknowns at the mesh faces cut by the interface)
and that we provide a thorough analysis including robustness with respect to cuts
and contrast.

This paper is organized as follows. In section 2, we introduce the elliptic inter-
face problem we want to approximate. In section 3, we present the discrete setting,
including our main notation for the cut cells and the two assumptions we require
on the mesh, and we prove two key trace inequalities under these assumptions. In
section 4, we present the unfitted HHO method. In section 5, we present our sta-
bility and error analysis; our main result is Theorem 5.9. Finally, in section 6 we
show how the two mesh properties introduced in section 3 can be satisfied by us-
ing a local cell-agglomeration procedure (under the assumption that the mesh is fine
enough to resolve the interface). Computational results will be reported in a separate
publication.

2. Model problem. Let Ω be a domain in Rd (open, bounded, connected, Lip-
schitz subset) and consider a partition of Ω into two disjoint subdomains so that
Ω = Ω1 ∪ Ω2 with the interface Γ = ∂Ω1 ∩ ∂Ω2. The unit normal vector nΓ to Γ
conventionally points from Ω1 to Ω2. For a smooth enough function defined on Ω, we
define its jump across Γ as [[v]]Γ := v|Ω1 − v|Ω2 . We consider the following interface
problem:

−∇·(κ∇u) = f in Ω1 ∪ Ω2,(2.1a)

[[u]]Γ = gD on Γ,(2.1b)

[[κ∇u]]Γ·nΓ = gN on Γ,(2.1c)

u = 0 on ∂Ω,(2.1d)

with f ∈ L2(Ω), gD ∈ H
1
2 (Γ), gN ∈ L2(Γ). For simplicity we consider a homogeneous

Dirichlet condition on ∂Ω. To avoid technicalities, we assume that the diffusion coef-
ficient κ is scalar-valued and that κi := κ|Ωi is constant for each i ∈ {1, 2}. Without
loss of generality, we assume that the numbering of the two subdomains is such that
κ1 < κ2. In the rest of the paper, we assume that the interface Γ is a smooth (d− 1)-
dimensional manifold of class C2 that is not self-intersecting. This assumption can
be relaxed at the price of additional technical issues that are not explored herein.

3. Discrete setting. We assume that the domain Ω is a polyhedron with planar
faces in Rd. Let (Th)h>0 be a shape-regular family of matching meshes covering Ω
exactly. The meshes can have cells that are polyhedra with planar faces in Rd, and
hanging nodes are also possible. The mesh cells are considered to be open subsets of
Rd. For a subset S ⊂ Rd, hS denotes the diameter of S, and for a mesh Th, the index
h refers to the maximal diameter of the mesh cells. The shape-regularity criterion
for polyhedral meshes is that they admit a matching simplicial submesh that satisfies
the usual shape-regularity criterion in the sense of Ciarlet and such that each subcell
(resp., subface) belongs to only one mesh cell (resp., at most one mesh face). The
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1528 ERIK BURMAN AND ALEXANDRE ERN

shape-regularity of the mesh sequence is quantified by a parameter ρ ∈ (0, 1) (see
section 6 for further insight). In what follows, B(y, a) denotes the open ball with
center y and radius a, d(y, A) denotes the distance of the point y to the set A, and
d(A,A′) denotes the Hausdorff distance between the two sets A,A′.

3.1. Main notation for unfitted meshes. Since the meshes are not fitted to
the subsets Ω1 and Ω2, there are mesh cells in Th that are cut by the interface Γ. Let
us define the partition Th = T 1

h ∪ T Γ
h ∪ T 2

h , where the subsets

T ih := {T ∈ Th | T ⊂ Ωi} ∀i ∈ {1, 2},(3.1a)

T Γ
h := {T ∈ Th | measd−1(T ∩ Γ) > 0},(3.1b)

collect, respectively, the mesh cells inside the subdomain Ωi, i ∈ {1, 2}, and the mesh
cells cut by the interface Γ. For any mesh cell T ∈ T Γ

h cut by the interface, we define

(3.2) T i := T ∩ Ωi, TΓ := T ∩ Γ.

The boundary of the subcell T i is decomposed as follows:

(3.3) ∂T i = (∂T )i ∪ TΓ,

with the notation (∂T )i = ∂T ∩ Ωi. For any mesh cell T ∈ Th, the set F∂T collects
the mesh faces located at the boundary ∂T of T . Whenever T ∈ T Γ

h , we consider the
set

(3.4) F(∂T )i = {F i = F ∩ Ωi | F ∈ F∂T , measd−1(F i) > 0}.

The subfaces in F(∂T )i form a partition of (∂T )i (but not of ∂T i since TΓ is not
included in F(∂T )i). The notation is illustrated in Figure 3.1. Since the interface Γ is
not self-intersecting and smooth, there exists a length scale `0 so that, for all s ∈ Γ,
the subset Γ∩B(s, `0) has only one connected component. In what follows, we assume
that the mesh is fine enough so that h ≤ `0. This assumption implies that TΓ has a
single connected component and that the subcells T 1 and T 2 are connected. We also
assume that d(Γ, ∂Ω) ≥ 2h.

Let l ∈ N be a polynomial degree and let S be an m-dimensional affine manifold
in Ω (m ≤ d); typically, S is a mesh (sub-)cell (so that m = d) or a mesh (sub-)face
(so that m = d− 1). Then Pl(S) denotes the space composed of the restriction to S
of d-variate polynomials of degree at most l.

3.2. Mesh properties. We make the following two assumptions on the mesh.
Assumption 3.1 means that the interface is properly described by the mesh; this as-
sumption is quantified by an interface regularity parameter γ ∈ (0, 1). Assumption 3.2

Fig. 3.1. Hexagonal cell T cut by the interface Γ. The subdomain Ω1 is located below Γ, and
the subdomain Ω2 is located above Γ. (∂T )1 is shown using solid lines and (∂T )2 using dashed lines;
the sets F(∂T )1 and F(∂T )2 consist each of four elements, two of which are original faces of T and
two of which are subfaces of the two faces of T cut by the interface.
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AN UNFITTED HHO METHOD 1529

Fig. 3.2. Illustration of Assumption 3.1 (left) and of Assumption 3.2 (right) for a hexagonal
cell T cut by the interface Γ.

means that all the mesh cells are cut favorably by the interface; this property is quan-
tified by a cut parameter δ ∈ (0, 1). We will show in section 6 how to produce a
shape-regular (polyhedral) mesh so that Assumptions 3.1 and 3.2 hold true. The idea
is that Assumption 3.1 can be satisfied by refining the mesh, whereas Assumption 3.2
can be satisfied by means of a local cell-agglomeration procedure (Figure 3.2).

Assumption 3.1 (resolving Γ). There is γ ∈ (0, 1) s.t. for all T ∈ T Γ
h , there is

a point x̂T ∈ Rd so that, for all s ∈ TΓ, ‖x̂T − s‖`2 ≤ γ−1hT and d(x̂T , TsΓ) ≥ γhT ,
where TsΓ is the tangent plane to Γ at the point s.

Assumption 3.2 (cut cells). There is δ ∈ (0, 1) such that, for all T ∈ T Γ
h and

all i ∈ {1, 2}, there is x̃T i ∈ T i so that

(3.5) B(x̃T i , δhT ) ⊂ T i.

3.3. Trace inequalities. The purpose of Assumption 3.1 is to prove a multi-
plicative trace inequality that is needed to establish optimal approximation properties
for the unfitted HHO method, whereas the purpose of Assumption 3.2 is to prove a
discrete trace inequality that is needed in the stability analysis of the unfitted HHO
method. Let us now prove these two trace inequalities.

Lemma 3.3 (multiplicative trace inequality). There are real numbers cmtr > 0
and θmtr ≥ 1, depending on the mesh regularity parameter ρ ∈ (0, 1) and the interface
regularity parameter γ ∈ (0, 1), such that, for all T ∈ T Γ

h , there is x̌T ∈ T so that,
for all i ∈ {1, 2} and all v ∈ H1(T †) with T † = B(x̌T , θmtrhT ),

(3.6) ‖v‖L2(∂T i) ≤ cmtr

(
h
− 1

2

T ‖v‖L2(T †) + ‖v‖
1
2

L2(T †)
‖∇v‖

1
2

L2(T †)

)
.

Proof. The proof is inspired by the ideas from, e.g., [31, section 6]. Let T ∈ T Γ
h

and i ∈ {1, 2}, and recall that ∂T i = (∂T )i ∪ TΓ. We prove (3.6) for v ∈ C1(T †)
and then extend this bound to H1(T †) by a density argument. Let us first bound
‖v‖L2(TΓ). Integrating, for all s ∈ TΓ, along the segment {p(s, t) := (1−t)x̂T+ts ∀t ∈
[0, 1]}, where the point x̂T is given by Assumption 3.1, we obtain

v2(s) =

∫ 1

0

∂

∂t

(
td v(p(s, t))2

)
dt ∀s ∈ TΓ.

Integrating over s ∈ TΓ and developing the derivative with respect to t, we infer that

‖v‖2L2(TΓ) =

∫
TΓ

∫ 1

0

(
dtd−1v(p(s, t))2 + tdv(p(s, t))∇v(p(s, t))·(s− x̂T )

)
dt ds.
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1530 ERIK BURMAN AND ALEXANDRE ERN

Let us introduce the cone C(T ) = {p(s, t), ∀t ∈ [0, 1], ∀s ∈ TΓ}. Since d(x̂T , TsΓ) ≥
γhT (see Assumption 3.1), the change of variable d(x̂T , TsΓ)td−1dtds = dp is legiti-
mate. We then obtain that

‖v‖2L2(TΓ) =

∫
C(T )

(
dv(p(s, t))2 + tv(p(s, t))∇v(p(s, t))·(s− x̂T )

)
d(x̂T , TsΓ)−1 dp.

Since Assumption 3.1 implies that C(T ) ⊂ T †0 := B(x̂T , γ
−1hT ), we conclude that

‖v‖2L2(TΓ) ≤ c0
(
h−1
T ‖v‖

2
L2(T †0 )

+ ‖v‖L2(T †0 )‖∇v‖L2(T †0 )

)
,

where c0 depends on the interface regularity parameter γ ∈ (0, 1). Let us now bound
‖v‖L2((∂T )i). Proceeding as in [14, Lemma 1.49] using mesh regularity, we infer that
there is a point x̌T ∈ T and positive real numbers c1, θ1 depending on the mesh-
regularity parameter ρ ∈ (0, 1) so that

‖v‖2L2(∂T ) ≤ c1
(
h−1
T ‖v‖

2
L2(T †1 )

+ ‖v‖L2(T †1 )‖∇v‖L2(T †1 )

)
with T †1 = B(x̌T , θ1hT ). To conclude, we combine the two above bounds using that

T †0 ∪ T
†
1 = B(x̂T , γ

−1hT ) ∪ B(x̌T , θ1hT ) ⊂ B(x̌T , θmtrhT ) =: T † with h−1
T ‖x̂T −

x̌T ‖`2 + max(γ−1, θ1) ≤ 1 + γ−1 + max(γ−1, θ1) =: θmtr (since ‖x̂T − x̌T ‖`2 ≤ ‖x̂T −
s‖`2 + ‖s− x̌T ‖`2 ≤ 1 + γ−1 for all s ∈ TΓ), and we set cmtr = max(c0, c1)

1
2 .

Lemma 3.4 (discrete trace inequality). Let l ∈ N, l ≥ 0. There is cdtr, depending
on the polynomial degree l, the mesh regularity parameter ρ ∈ (0, 1), and the cut
parameter δ ∈ (0, 1), such that, for all T ∈ T Γ

h , all i ∈ {1, 2}, and all v ∈ Pl(T i),

(3.7) ‖v‖L2(∂T i) ≤ cdtr h
− 1

2

T ‖v‖L2(T i).

Proof. Let T ∈ T Γ
h . Let i ∈ {1, 2}, and let v ∈ Pl(T i). Since ∂T i ⊂ B(x̃T i , hT )

and B(x̃T i , δhT ) ⊂ T i owing to (3.5), we observe that

‖v‖L2(∂T i) ≤ |∂T i|
1
2 ‖v‖L∞(∂T i) ≤ |∂T i|

1
2 ‖v‖L∞(B(x̃Ti ,hT ))

≤ ĉ |∂T i| 12 |B(x̃T i , δhT )|− 1
2 ‖v‖L2(B(x̃Ti ,δhT ))

≤ ĉ′ |∂T i| 12h−
d
2

T ‖v‖L2(B(x̃Ti ,δhT )) ≤ ĉ′ |∂T i|
1
2h
− d

2

T ‖v‖L2(T i),

where the factor ĉ results from the inverse inequality ‖v̂‖L∞(B(0,1)) ≤ ĉ ‖v̂‖L2(B(0,δ))

for all v̂ ∈ Pl(B(0, 1)) and the pullback using the bijective affine map from B(x̃T i , hT )
to B(0, 1). We conclude by observing that |∂T i| ≤ chd−1

T (with c depending on ρ).

Remark 3.1 (Lemma 3.4). For conforming finite elements on unfitted meshes, the
discrete trace inequality (3.7) is invoked only on TΓ. Here, this inequality needs also
to be invoked on (∂T )i since the HHO method involves unknowns attached to the
mesh faces; see the proofs of Lemmas 5.2 and 5.8 below.

4. The unfitted HHO method. In this section, we describe the unfitted HHO
method for the interface problem. Let k ≥ 0 be the polynomial degree.

4.1. Uncut cells. Let T \Γh := T 1
h ∪ T 2

h be the collection of the uncut cells. Let

T ∈ T \Γh and set κT = κi if T ∈ T ih , i ∈ {1, 2}. We define the following local bilinear
form for all v, w ∈ H1(T ):

(4.1) aT (v, w) =

∫
T

κT∇v·∇w.
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AN UNFITTED HHO METHOD 1531

Fig. 4.1. Uncut hexagonal cell. Left: k = 0; right: k = 1. Each dot attached to a geometric
entity (face or cell) symbolizes one degree of freedom (not necessarily a pointwise evaluation).

The classical HHO method is defined locally on each uncut cell T ∈ T \Γh from a
pair of local unknowns which consist of one polynomial of order (k + 1) in T and a
piecewise polynomial of order k on ∂T (that is, one polynomial of order k on each
face F ∈ F∂T ). The local unknowns are generically denoted

(4.2) v̂T = (vT , v∂T ) ∈ Pk+1(T )× Pk(F∂T ) =: X̂ \ΓT

with the piecewise polynomial space Pk(F∂T ) = "F∈F∂T
Pk(F ). The placement of the

discrete unknowns for the uncut cells is illustrated in Figure 4.1.
There are two key ingredients to devise the local HHO bilinear form. The first

one is a reconstruction operator. Let v̂T = (vT , v∂T ) ∈ X̂ \ΓT . Then, we reconstruct a

polynomial rk+1
T (v̂T ) ∈ Pk+1(T ) by requiring that, for all z ∈ Pk+1(T ), the following

holds true:

(4.3) aT (rk+1
T (v̂T ), z) = aT (vT , z)−

∫
∂T

κT∇z·nT (vT − v∂T ),

where nT is the unit outward-pointing normal to T . It is readily seen that rk+1
T (v̂T ) is

uniquely defined by (4.3) up to an additive constant; one way to fix the constant is to
prescribe

∫
T
rk+1
T (v̂T ) =

∫
T
vT (this choice is irrelevant in what follows). The second

ingredient is the stabilization bilinear form defined so that, for all v̂T , ŵT ∈ X̂ \ΓT ,

(4.4) sT (v̂T , ŵT ) = κTh
−1
T

∫
∂T

Πk
∂T (vT − v∂T )(wT − w∂T ),

where Πk
∂T denotes the L2-orthogonal projector onto the piecewise polynomial space

Pk(F∂T ). Finally, the local HHO bilinear and linear forms to be used when assembling

the global discrete problem (see section 4.3) are as follows: For all v̂T , ŵT ∈ X̂ \ΓT ,

â
\Γ
T (v̂T , ŵT ) = aT (rk+1

T (v̂T ), rk+1
T (ŵT )) + sT (v̂T , ŵT ),(4.5a)

ˆ̀\Γ
T (ŵT ) =

∫
T

fwT .(4.5b)

Remark 4.1 (cell unknowns). In the classical HHO method, there is some flexi-
bility in the choice of the cell unknowns since one can take them to be polynomials
of order l ∈ {k − 1, k, k + 1}. In the present context, we will need to work with poly-
nomials of order (k + 1) in the cut cells to achieve optimal approximation properties
(see section 5.2); for simplicity, we consider polynomials of order (k+ 1) in the uncut
cells as well. Taking polynomials of order l ∈ {k − 1, k} in the uncut cells leads to
slightly smaller matrices to be inverted when computing the reconstruction operator
from (4.3) but requires a somewhat more involved design of the stabilization operator
than in (4.4) (see [16, 15]).
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1532 ERIK BURMAN AND ALEXANDRE ERN

4.2. Cut cells. Let T ∈ T Γ
h . We use capital letters to denote a generic pair

V = (v1, v2) ∈ H1(T 1)×H1(T 2). We define the following Nitsche-mortaring bilinear
form for all V,W ∈ Hs(T 1)×H1(T 2), s > 3

2 :

nT (V,W ) =
∑

i∈{1,2}

∫
T i

κi∇vi·∇wi + nTΓ(V,W ),(4.6a)

nTΓ(V,W ) = −
∫
TΓ

(κ∇v)1·nΓ[[W ]]Γ + (κ∇w)1·nΓ[[V ]]Γ − η
κ1

hT
[[V ]]Γ[[W ]]Γ,(4.6b)

where the user-specified parameter η is such that η ≥ 4c2dtr, where cdtr results from
the discrete trace inequality (3.7) with polynomial degree l = k. Note also that the
jump-penalty term is weighted by the lowest value of the diffusion coefficient.

We consider a quadruple of discrete HHO unknowns, V̂T = (VT , V∂T ), where both
VT and V∂T are pairs associated with the partition Ω = Ω1 ∪ Ω2, so that

(4.7) VT = (vT 1 , vT 2) ∈ Pk+1(T 1)× Pk+1(T 2)

and

(4.8) V∂T = (v(∂T )1 , v(∂T )2) ∈ Pk(F(∂T )1)× Pk(F(∂T )2),

where Pk(F(∂T )i) := "F∈F(∂T )i
Pk(F ) is the piecewise polynomial space of order k on

(∂T )i based on the (sub-)faces in F(∂T )i . (Recall that, by definition, all the elements
F of F(∂T )i are subsets of (∂T )i = ∂T ∩ Ωi.) Note that we do not introduce any

discrete unknown on TΓ. We use the concise notation V̂T ∈ X̂Γ
T with

X̂Γ
T =

(
Pk+1(T 1)× Pk+1(T 2)

)
×
(
Pk(F(∂T )1)× Pk(F(∂T )2)

)
.(4.9)

The placement of the discrete HHO unknowns in the cut cells for the interface problem
is illustrated in Figure 4.2.

As above, there are two key ingredients to devise the local HHO bilinear form:
reconstruction and stabilization. Let V̂T ∈ X̂Γ

T . We reconstruct a pair of polynomials

Rk+1
T (V̂T ) ∈ Pk+1(T 1)×Pk+1(T 2) by requiring that, for all Z = (z1, z2) ∈ Pk+1(T 1)×

Pk+1(T 2), the following holds true:

nT (Rk+1
T (V̂T ), Z) = nT (VT , Z)−

∑
i∈{1,2}

∫
(∂T )i

κi∇zi·nT (vT i − v(∂T )i).(4.10)

It follows from Lemma 5.1 below that Rk+1
T (V̂T ) is uniquely defined by (4.10) up to

the same additive constant for both of its components; one way to fix the constant is

Fig. 4.2. Cut hexagonal cell for the interface problem. The subdomain Ω1 is located below
Γ with the corresponding HHO unknowns shown by filled circles, and the subdomain Ω2 is located
above Γ with the corresponding HHO unknowns shown by empty circles. Left: k = 0; right: k = 1.
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to prescribe
∑
i∈{1,2}

∫
T i(R

k+1
T (V̂T ))i =

∑
i∈{1,2}

∫
T i vT i (this choice is irrelevant in

what follows). Concerning stabilization, we set for all V̂T , ŴT ∈ X̂Γ
T ,

(4.11) sT (V̂T , ŴT ) =
∑

i∈{1,2}

κih−1
T

∫
(∂T )i

Πk
(∂T )i(vT i − v(∂T )i)(wT i − w(∂T )i),

where Πk
(∂T )i denotes the L2-orthogonal projector onto the piecewise polynomial space

Pk(F(∂T )i). Finally, the local HHO bilinear and linear forms are as follows: For all

V̂T , ŴT ∈ X̂Γ
T ,

âΓ
T (V̂T , ŴT ) = nT (Rk+1

T (V̂T ), Rk+1
T (ŴT )) + sT (V̂T , ŴT ),(4.12a)

ˆ̀Γ
T (ŴT ) =

∑
i∈{1,2}

∫
T i

fwT i +

∫
TΓ

(gNwT 2 + gDφT (WT ))(4.12b)

with φT (WT ) = −κ1∇wT 1 ·nΓ + ηκ1h−1
T [[WT ]]Γ (the definition of the integral over TΓ

follows from consistency arguments; see the proof of Lemma 5.8 below).

4.3. The global discrete problem. The mesh faces are collected in the set Fh
which is partitioned into Fh = F1

h ∪ FΓ
h ∪ F2

h, where F ih, i ∈ {1, 2}, collect the mesh
faces inside the subdomain Ωi and FΓ

h collects the mesh faces cut by the interface.
We also define for all i ∈ {1, 2},

T̂ ih := T ih ∪ {T i = T ∩ Ωi | T ∈ T Γ
h },(4.13a)

F̂ ih := F ih ∪ {F i = F ∩ Ωi | F ∈ FΓ
h },(4.13b)

i.e., T̂ ih (resp., F̂ ih) is the collection of all the mesh cells (resp., faces) inside Ωi plus
the collection of the subcells (resp., subfaces) of the cut cells (resp., cut faces) inside
Ωi. Let us set

(4.14) X̂ ih := "T∈T̂ i
h
Pk+1(T ) × "F∈F̂i

h
Pk(F ).

The global discrete space is X̂h := X̂ 1
h ×X̂ 2

h . Let F∂h be the collection of the mesh
faces located at the boundary ∂Ω (note that the faces in F∂h are in one and only one
of the subsets F ih but not in FΓ

h since the interface Γ is located in the interior of Ω).
We enforce the homogeneous Dirichlet condition on ∂Ω by zeroing out the discrete
HHO unknowns attached to the mesh faces in F∂h . Let i∂ ∈ {1, 2} be the index of the

subdomain touching the boundary ∂Ω. Let X̂ i∂h0 be the subspace of X̂ i∂h composed of
all the discrete HHO unknowns such that their component attached to a mesh face is
zero if this face lies on the boundary ∂Ω. If i∂ = 1, we set X̂h0 := X̂ 1

h0×X̂ 2
h ; otherwise,

we set X̂h0 := X̂ 1
h × X̂ 2

h0.

Let V̂h ∈ X̂h0. For all T ∈ T \Γh = T 1
h ∪ T 2

h , we denote v̂T = (vT , v(∂T )) ∈ X̂
\Γ
T

(see (4.2)) the components of V̂h attached to the cell T . For all T ∈ T Γ
h , we denote

V̂T = (VT , V∂T ) ∈ X̂Γ
T (see (4.9)) the components of V̂h attached to the cell T . The

discrete problem we want to solve reads as follows: Find Ûh ∈ X̂h0 s.t.

(4.15) âh(Ûh, Ŵh) = ˆ̀
h(Ŵh) ∀Ŵh ∈ X̂h0,
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1534 ERIK BURMAN AND ALEXANDRE ERN

with

âh(V̂h, Ŵh) =
∑

T∈T \Γh

â
\Γ
T (v̂T , ŵT ) +

∑
T∈T Γ

h

âΓ
T (V̂T , ŴT ),(4.16a)

ˆ̀
h(Ŵh) =

∑
T∈T \Γh

ˆ̀\Γ
T (wT ) +

∑
T∈T Γ

h

ˆ̀Γ
T (ŴT ),(4.16b)

where â
\Γ
T (·, ·) and ˆ̀\Γ

T (·) are defined by (4.5) for all T ∈ T \Γh and âΓ
T (·, ·) and ˆ̀Γ

T (·)
are defined by (4.12) for all T ∈ T Γ

h .
The discrete problem (4.15) can be solved efficiently by eliminating locally all

the cell unknowns using static condensation. This local elimination leads to a global
transmission problem on the mesh skeleton involving only the face unknowns with a
stencil that couples unknowns attached to neighboring faces (in the sense of cells).
Once this global transmission problem is solved, the cell unknowns are recovered by
local solves. We refer the reader, e.g., to [11] for more details in the case of classical
HHO methods.

5. Analysis. In this section we analyze the convergence of the unfitted HHO
method for the interface problem. The proof consists in establishing stability, consis-
tency, and boundedness properties for the discrete forms âh and ˆ̀

h and in devising
a local approximation operator related to the local reconstruction operators rk+1

T

(see (4.3)) and Rk+1
T (see (4.10)). The mesh Th is assumed to satisfy Assumptions 3.1

and 3.2 so as to invoke the trace inequalities from Lemmas 3.3 and 3.4.
In what follows, we often abbreviate A . B the inequality A ≤ CB for positive

real numbers A and B, where the constant C does not depend on κ nor on the way
the interface cuts the mesh cells but only depends on the polynomial degree k ≥ 0,
the mesh regularity parameter ρ ∈ (0, 1), the interface regularity parameter γ ∈ (0, 1)
from Assumption 3.1, and the cut parameter δ ∈ (0, 1) from Assumption 3.2.

5.1. Stability and well-posedness. We start with the following stability and
boundedness results on the Nitsche-mortaring bilinear form nT defined by (4.6) for all
T ∈ T Γ

h . We define the following stability seminorm for all V = (v1, v2) ∈ H1(T 1)×
H1(T 2):

(5.1) |V |2nT
:=

∑
i∈{1,2}

κi‖∇vi‖2T i + η
κ1

hT
‖[[V ]]Γ‖2TΓ .

Recall our assumption on the penalty parameter η ≥ 4c2dtr.

Lemma 5.1 (stability and boundedness of nT ). Let T ∈ T Γ
h . The following holds

true for all V ∈ Pk+1(T 1)× Pk+1(T 2):

(5.2) nT (V, V ) ≥ 1

2
|V |2nT

.

Moreover, the following holds true for all V,W ∈ Pk+1(T 1)× Pk+1(T 2):

(5.3) |nT (V,W )| . |V |nT
|W |nT

;

and for all V ∈ Hs(T 1)×H1(T 2), s > 3
2 , and all W ∈ Pk+1(T 1)× Pk+1(T 2),

(5.4) |nT (V,W )| . |V |nT ]|W |nT
, |V |2nT ] := |V |2nT

+ κ1hT ‖∇v1‖2TΓ .
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Proof. The proof is classical; we sketch it for completeness. Let V ∈ Pk+1(T 1)×
Pk+1(T 2), and let us set ξ = (

∑
i∈{1,2} κ

i‖∇vi‖2T i)
1
2 and ζ = (η κ

1

hT
‖[[V ]]Γ‖2TΓ)

1
2 so

that |V |2nT
= ξ2 + ζ2. The definition (4.6) of nT followed by the Cauchy–Schwarz

inequality and the discrete trace inequality (3.7) (applied on TΓ with l = k) yields

nT (V, V ) = ξ2 − 2

∫
TΓ

(κ∇v)1·nΓ[[V ]]Γ + ζ2 ≥ ξ2 − 2cdtrη
− 1

2 ξζ + ζ2,

so that nT (V, V ) ≥ 1
2 (ξ2 + ζ2) (i.e., (5.2)) follows from the assumption that η ≥ 4c2dtr.

Moreover, using the Cauchy–Schwarz inequality, we infer that

|nT (V,W )| ≤ |V |nT
|W |nT

+ κ1‖∇v1‖TΓ‖[[W ]]Γ‖TΓ + κ1‖∇w1‖TΓ‖[[V ]]Γ‖TΓ ,

so that (5.3) and (5.4) follow from the discrete trace inequality (3.7).

We can now address the stability of the local HHO bilinear forms â
\Γ
T and âΓ

T .

For all T ∈ T \Γh , we consider the local seminorm used in the analysis of classical HHO

methods: For all v̂T = (vT , v∂T ) ∈ X̂ \ΓT ,

|v̂T |2âT := κT ‖∇vT ‖2T + κTh
−1
T ‖Π

k
∂T (vT − v∂T )‖2∂T = |vT |2aT + sT (v̂T , v̂T ),(5.5)

where we have set |vT |2aT := κT ‖∇vT ‖2T . For all T ∈ T Γ
h , we define the following local

seminorm: For all V̂T = (VT , V∂T ) = ((vT 1 , vT 2), (v(∂T )1 , v(∂T )2)) ∈ X̂Γ
T :

|V̂T |2âT :=
∑

i∈{1,2}

κi‖∇vT i‖2T i + η
κ1

hT
‖[[VT ]]Γ‖2TΓ

+
∑

i∈{1,2}

κih−1
T ‖Π

k
(∂T )i(vT i − v(∂T )i)‖2(∂T )i = |VT |2nT

+ sT (V̂T , V̂T ).(5.6)

Lemma 5.2 (stability). The following holds true:

â
\Γ
T (v̂T , v̂T ) & |v̂T |2âT ∀T ∈ T \Γh , ∀v̂T ∈ X̂ \ΓT ,(5.7a)

âΓ
T (V̂T , V̂T ) & |V̂T |2âT ∀T ∈ T Γ

h , ∀V̂T ∈ X̂Γ
T .(5.7b)

Proof. The proof of (5.7a) follows from [16, Lemma 4]. Let us now prove (5.7b).
Let T ∈ T Γ

h and let V̂T ∈ X̂Γ
T . Taking Z = VT = (vT 1 , vT 2) in the definition (4.10) of

the reconstruction operator and using the stability of nT from Lemma 5.1, we infer
that

|VT |2nT
. nT (VT , VT )

= nT (Rk+1
T (V̂T ), VT ) +

∑
i∈{1,2}

∫
(∂T )i

κi∇vT i ·nT (vT i − v(∂T )i).

The first term on the right-hand side is controlled using the boundedness prop-
erty (5.3) of nT and Young’s inequality to hide |VT |nT

on the left-hand side. For the
second term, we use the Cauchy–Schwarz inequality, the fact that (κi∇vT i ·nT )|(∂T )i ∈
Pk(F(∂T )i), and the definition (4.11) of sT (·, ·) to obtain∫

(∂T )i
κi∇vT i ·nT (vT i − v(∂T )i) ≤ (κi)

1
2h

1
2

T ‖∇vT i‖(∂T )isT (V̂T , V̂T )
1
2 .
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1536 ERIK BURMAN AND ALEXANDRE ERN

Then, we invoke the discrete trace inequality (3.7) on (∂T )i ⊂ ∂T i for all i ∈ {1, 2} and

Young’s inequality to hide (κi)
1
2 ‖∇vT i‖T i on the left-hand side. Putting everything

together, we infer that

|VT |2nT
. |Rk+1

T (V̂T )|2nT
+ sT (V̂T , V̂T ),

so that using (5.6) and the stability of nT from Lemma 5.1, we conclude that

|V̂T |2âT = |VT |2nT
+ sT (V̂T , V̂T )

. |Rk+1
T (V̂T )|2nT

+ sT (V̂T , V̂T )

. nT (Rk+1
T (V̂T ), Rk+1

T (V̂T )) + sT (V̂T , V̂T ) = âT (V̂T , V̂T ),

which is the expected estimate.

Summing the local seminorms over the mesh cells, we define, for all V̂h ∈ X̂h,

(5.8) |V̂h|2âh :=
∑

T∈T \Γh

|v̂T |2âT +
∑
T∈T Γ

h

|V̂T |2âT .

Note that | · |âh defines a norm on the subspace X̂h0. Indeed, assume that |V̂h|âh = 0

for some V̂h ∈ X̂h0. Then, for all T ∈ T Γ
h , we have |VT |nT

= 0 and sT (V̂T , V̂T ) = 0.
The nullity of the first term implies that vT 1 and vT 2 are constant functions that take
the same value, and the nullity of the second term implies that v(∂T )1 and v(∂T )2 are
also constant functions that take the same value as vT 1 and vT 2 . Moreover, for all

T ∈ T \Γh , |v̂T |âT = 0 implies that vT and v∂T take the same constant value. We can
then propagate this constant value up to the boundary ∂Ω where the components of
V̂h attached to the boundary faces vanish. Thus, all the components of V̂h are zero.

Corollary 5.3 (well-posedness). The discrete problem (4.15) is well-posed.

Proof. We apply the Lax–Milgram lemma.

5.2. Approximation. Let u be the exact solution with ui := u|Ωi for all i ∈
{1, 2}. We set U ex = (u1, u2) ∈ H1(Ω1)×H1(Ω2).

5.2.1. Uncut cells. Let T ∈ T \Γh . We set uex
T = ui|T , where i ∈ {1, 2} is

s.t. T ∈ T ih , and we consider the approximation of uex
T in T defined by

(5.9) jk+1
T (uex

T ) = Πk+1
T (uex

T ),

where Πk+1
T stands for the L2-orthogonal projector onto Pk+1(T ) (we use a specific

notation jk+1
T for similarity with cut cells; see below). We introduce the following

local norm: For all v ∈ Hs(T ), s > 3
2 ,

(5.10) ‖v‖2∗T = κT
(
‖∇v‖2T + hT ‖∇v‖2∂T + h−1

T ‖v‖
2
∂T

)
.

Lemma 5.4 (approximation by jk+1
T ). Assume U ex ∈ Hk+2(Ω1) × Hk+2(Ω2).

The following holds true for all T ∈ T \Γh :

(5.11) ‖jk+1
T (uex

T )− uex
T ‖∗T . κ

1
2

Th
k+1
T |uex

T |Hk+2(T ).
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Proof. The approximation properties of the L2-orthogonal projector are classi-
cal on meshes where all the cells can be mapped to a reference cell; see, e.g., [17].
On meshes with polyhedral cells which can be split into a finite number of shape-
regular simplices, one can proceed as in the proof of [18, Lemma 5.4] by combin-
ing the Poincaré–Steklov inequality in each subsimplex and the multiplicative trace
inequality.

Let us now define

(5.12) pk+1
T (uex

T ) = rk+1
T (̂k+1

T (uex
T )) ∈ Pk+1(T ),

where rk+1
T is the reconstruction operator defined by (4.3) and

(5.13) ̂k+1
T (uex

T ) = (jk+1
T (uex

T ),Πk
∂T (uex

T )) = (Πk+1
T (uex

T ),Πk
∂T (uex

T )) ∈ X̂ \ΓT ,

where Πk
∂T stands for the L2-orthogonal projector onto the piecewise polynomial space

Pk(F∂T ).

Lemma 5.5 (approximation). Assume that U ex ∈ Hs(Ω1)×Hs(Ω2), s > 3
2 . The

following holds true for all T ∈ T \Γh :

(5.14) |pk+1
T (uex

T )− uex
T |aT + sT (̂k+1

T (uex
T ), ̂k+1

T (uex
T ))

1
2 . ‖jk+1

T (uex
T )− uex

T ‖∗T .

Proof. It is shown in [16, Lemma 3] that pk+1
T (uex

T ) is the elliptic projector of

uex
T onto Pk+1(T ), so that aT (pk+1

T (uex
T ) − uex

T , w) = 0 for all w ∈ Pk+1(T ), and

|pk+1
T (uex

T ) − uex
T |aT ≤ |j

k+1
T (uex

T ) − uex
T |aT . The bound on |pk+1

T (uex
T ) − uex

T |aT then

follows from | · |aT ≤ ‖ · ‖∗T . To bound sT (̂k+1
T (uex

T ), ̂k+1
T (uex

T )), we proceed as in the
proof of (5.23) below.

5.2.2. Cut cells. For all T ∈ T Γ
h , let us define the pair

(5.15) U ex
T = (u1

|T 1 , u2
|T 2) ∈ H1(T 1)×H1(T 2).

Let Ei : H1(Ωi) → H1(Rd), for all i ∈ {1, 2}, be stable extension operators. Recall
the ball T † introduced in Lemma 3.3 and observe that T ⊂ T † since θmtr ≥ 1. We
construct an approximation of the pair U ex

T in T by setting

(5.16) Jk+1
T (U ex) := (Πk+1

T †
(E1(u1))|T 1 ,Πk+1

T †
(E2(u2))|T 2) ∈ Pk+1(T 1)× Pk+1(T 2),

where Πk+1
T †

stands for the L2-orthogonal projector onto Pk+1(T †) (we do not project

using the set T i but use the larger set T †, to avoid dealing with approximation
properties on T i). We introduce the following local norm: For all V = (v1, v2) ∈
Hs(T 1)×Hs(T 2), s > 3

2 ,

‖V ‖2∗T =
∑

i∈{1,2}

κi
(
‖∇vi‖2T i + hT ‖∇vi‖2(∂T )i + h−1

T ‖v
i‖2(∂T )i

)
+ κ1

(
hT ‖∇v1‖2TΓ + h−1

T ‖[[V ]]Γ‖2TΓ

)
+ κ2hT ‖∇v2‖2TΓ .(5.17)

Note that |V |nT
≤ |V |nT ] ≤ ‖V ‖∗T .

Lemma 5.6 (approximation by Jk+1
T ). Assume U ex ∈ Hk+2(Ω1) × Hk+2(Ω2).

The following holds true for all T ∈ T Γ
h :

(5.18) ‖Jk+1
T (U ex)− U ex

T ‖∗T .
∑

i∈{1,2}

(κi)
1
2hk+1

T |Ei(ui)|Hk+2(T †).
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1538 ERIK BURMAN AND ALEXANDRE ERN

Proof. We need to bound the six terms on the right-hand side of (5.17). The
bound on the norm on T i is straightforward since this norm can be bounded by the
norm on T † where we can use the classical approximation properties of Πk+1

T †
(recall

that T ⊂ T †). To bound the three norms on (∂T )i and the two norms on TΓ, we use
the multiplicative trace inequality from Lemma 3.3 and the approximation properties
of Πk+1

T †
on T †.

Let us now define

(5.19) P k+1
T (U ex) = Rk+1

T (Ĵk+1
T (U ex)) ∈ Pk+1(T 1)× Pk+1(T 2),

where Rk+1
T is the reconstruction operator defined by (4.10) and

(5.20) Ĵk+1
T (U ex) := (Jk+1

T (U ex), (Πk
(∂T )1(u1),Πk

(∂T )2(u2))) ∈ X̂Γ
T ,

so that Ĵk+1
T (U ex) = ((Πk+1

T †
(E1(u1))|T 1 ,Πk+1

T †
(E2(u2))|T 2), (Πk

(∂T )1(u1),Πk
(∂T )2(u2))).

Lemma 5.7 (approximation). Assume that U ex ∈ Hs(Ω1)×Hs(Ω2), s > 3
2 . The

following holds true for all T ∈ T Γ
h :

(i) For all WT ∈ Pk+1(T 1)× Pk+1(T 2),

(5.21) nT (P k+1
T (U ex)− U ex

T ,WT ) . ‖Jk+1
T (U ex)− U ex

T ‖∗T |WT |nT
.

(ii) We have

(5.22) |P k+1
T (U ex)− U ex

T |nT
. ‖Jk+1

T (U ex)− U ex
T ‖∗T .

(iii) We have

(5.23) sT (Ĵk+1
T (U ex), Ĵk+1

T (U ex))
1
2 . ‖Jk+1

T (U ex)− U ex
T ‖∗T .

Proof. Let us first prove (5.21). Let WT ∈ Pk+1(T 1) × Pk+1(T 2). Using the
definition (4.10) of the reconstruction operator, we infer that

nT (P k+1
T (U ex),WT ) = nT (Rk+1

T (Ĵk+1
T (U ex)),WT )

= nT (Jk+1
T (U ex),WT )

−
∑

i∈{1,2}

∫
(∂T )i

κi∇wiT ·nT ((Jk+1
T (U ex))i −Πk

(∂T )i(u
i))

= nT (Jk+1
T (U ex),WT )

−
∑

i∈{1,2}

∫
(∂T )i

κi∇wiT ·nT ((Jk+1
T (U ex))i − ui),

where we have exploited the choice for the face polynomials in the definition (5.20)
of Ĵk+1

T (U ex) and the fact that κi∇wiT ·nT ∈ Pk(F(∂T )i). Since (U ex
T )i|(∂T )i = ui|(∂T )i ,

we obtain

nT (P k+1
T (U ex)− U ex

T ,WT ) = nT (Jk+1
T (U ex)− U ex

T ,WT )

−
∑

i∈{1,2}

∫
(∂T )i

κi∇wiT ·nT (Jk+1
T (U ex)− U ex

T )i.
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To bound the first term on the right-hand side, we use the boundedness property (5.4)
of nT (·, ·) from Lemma 5.1 and | · |nT ] ≤ ‖·‖∗T . To bound the second term, we use the
Cauchy–Schwarz inequality followed by the discrete trace inequality (3.7) to bound
‖∇wiT ‖(∂T )i .

Let us now prove (5.22). Let us set ZT = P k+1
T (U ex)− Jk+1

T (U ex) ∈ Pk+1(T 1)×
Pk+1(T 2). Using the stability of nT from Lemma 5.1, we have

|ZT |2nT
. nT (ZT , ZT )

= nT (P k+1
T (U ex)− U ex

T , ZT ) + nT (U ex
T − Jk+1

T (U ex), ZT ).

Using (5.21), we can estimate the first term on the right-hand side as follows:

nT (P k+1
T (U ex)− U ex

T , ZT ) . ‖Jk+1
T (U ex)− U ex

T ‖∗T |ZT |nT
.

Concerning the second term, we invoke the boundedness property (5.4) of nT (·, ·)
from Lemma 5.1 and | · |nT ] ≤ ‖ · ‖∗T to infer that

nT (U ex
T − Jk+1

T (U ex), ZT ) . |Jk+1
T (U ex)− U ex

T |nT ]|ZT |nT

≤ ‖Jk+1
T (U ex)− U ex

T ‖∗T |ZT |nT
.

Combining these two bounds, we infer that

|ZT |nT
. ‖Jk+1

T (U ex)− U ex
T ‖∗T .

Finally, using a triangle inequality leads to

|P k+1
T (U ex)− U ex

T |nT
≤ |ZT |nT

+ |Jk+1
T (U ex)− U ex

T |nT
,

which leads to the expected estimate since | · |nT
≤ ‖ · ‖∗T .

Finally, let us prove (5.23). We have

sT (Ĵk+1
T (U ex), Ĵk+1

T (U ex)) =
∑

i∈{1,2}

κih−1
T ‖Π

k
(∂T )i((J

k+1
T (U ex))i −Πk

(∂T )i(u
i))‖2(∂T )i ,

and observing that

‖Πk
(∂T )i((J

k+1
T (U ex))i −Πk

(∂T )i(u
i))‖(∂T )i = ‖Πk

(∂T )i((J
k+1
T (U ex))i − ui)‖(∂T )i

= ‖Πk
(∂T )i((J

k+1
T (U ex)− U ex

T )i)‖(∂T )i

≤ ‖(Jk+1
T (U ex)− U ex

T )i‖(∂T )i ,

we infer the expected estimate.

5.3. Consistency and boundedness. We can now derive our key estimate
regarding the consistency of the discrete problem (4.15).

Lemma 5.8 (consistency and boundedness). Assume that U ex ∈ Hs(Ω1) ×
Hs(Ω2), s > 3

2 . Let Ûh ∈ X̂h0 solve (4.15). For all Ŵh ∈ X̂h0, let us define

F(Ŵh) =
∑

T∈T \Γh

â
\Γ
T (̂k+1

T (uex
T )− ûT , ŵT ) +

∑
T∈T Γ

h

âΓ
T (Ĵk+1

T (U ex)− ÛT , ŴT ).

Recall that | · |âh is defined by (5.8). The following holds true:

|F(Ŵh)| .

 ∑
T∈T \Γh

‖jk+1
T (uex

T )− uex
T ‖2∗T +

∑
T∈T Γ

h

‖Jk+1
T (U ex)− U ex

T ‖2∗T


1
2

|Ŵh|âh .
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1540 ERIK BURMAN AND ALEXANDRE ERN

Proof. We first observe that, for all T ∈ T \Γh ,

â
\Γ
T (̂k+1

T (uex
T ), ŵT ) = aT (pk+1

T (uex
T ), rk+1

T (ŵT )) + sT (̂k+1
T (uex

T ), ŵT )

= aT (pk+1
T (uex

T ), wT ) + sT (̂k+1
T (uex

T ), ŵT )

−
∫
∂T

κT∇pk+1
T (uex

T )·nT (wT − w∂T ),

and for all T ∈ T Γ
h ,

âΓ
T (Ĵk+1

T (U ex), ŴT ) = nT (P k+1
T (U ex), Rk+1

T (ŴT )) + sT (Ĵk+1
T (U ex), ŴT )

= nT (P k+1
T (U ex),WT ) + sT (Ĵk+1

T (U ex), ŴT )

−
∑

i∈{1,2}

∫
(∂T )i

(κ∇P k+1
T (U ex))i·nT (wT i − w(∂T )i),

where we have used the definitions (5.12) and (5.19) of pk+1
T and P k+1

T and the defi-

nitions (4.3) and (4.10) of the reconstruction operators for rk+1
T (ŵT ) and Rk+1

T (ŴT )
(and the symmetry of the bilinear forms aT and nT ). Moreover, using the fact that
the discrete solution solves (4.15), we infer that∑

T∈T \Γh

â
\Γ
T (ûT , ŵT ) +

∑
T∈T Γ

h

âΓ
T (ÛT , ŴT ) =: Ψ\Γ + ΨΓ,

where

Ψ\Γ =
∑

T∈T \Γh

∫
T

fwT =
∑

T∈T \Γh

(∫
T

κT∇uex
T ·∇wT −

∫
∂T

κT∇uex
T ·nTwT

)
,

and

ΨΓ =
∑
T∈T Γ

h

 ∑
i∈{1,2}

∫
T i

fwT i +

∫
TΓ

(gNwT 2 + gDφT (WT ))


=
∑
T∈T Γ

h

 ∑
i∈{1,2}

∫
T i

−∇·(κi∇ui)wT i +

∫
TΓ

(gNwT 2 + gDφT (WT ))


=
∑
T∈T Γ

h

 ∑
i∈{1,2}

(∫
T i

κi∇ui·∇wT i −
∫

(∂T )i
(κ∇u)i·nTwT i

)
+ nTΓ(U ex

T ,WT )

 ,

where we have used the identity

−
∑

i∈{1,2}

∫
TΓ

κi∇ui·nT iwT i +

∫
TΓ

(gNwT 2 + gDφT (WT ))

= −
∫
TΓ

κ1∇u1·nΓ[[WT ]]Γ +

∫
TΓ

gDφT (WT ) = nTΓ(U ex
T ,WT ),

recalling that [[κ∇u]]Γ·nΓ = gN and [[u]]Γ = gD. Therefore, we have

ΨΓ =
∑
T∈T Γ

h

nT (U ex
T ,WT )−

∑
i∈{1,2}

∫
(∂T )i

(κ∇U ex
T )i·nTwT i

 .
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Putting the above identities together leads to F(Ŵh) = F\Γ(Ŵh) + FΓ(Ŵh) with

F\Γ(Ŵh) =
∑

T∈T \Γh

(
aT (pk+1

T (uex
T )− uex

T , wT ) + sT (̂k+1
T (uex

T ), ŵT )

−
∫
∂T

κT∇(pk+1
T (uex

T )− uex
T )·nT (wT − w∂T )

)
,

FΓ(Ŵh) =
∑
T∈T Γ

h

nT (P k+1
T (U ex)− U ex

T ,WT ) + sT (Ĵk+1
T (U ex), ŴT )

−
∑

i∈{1,2}

∫
(∂T )i

(κ∇(P k+1
T (U ex)− U ex

T ))i·nT (wT i − w(∂T )i)

 ,

where we have used the continuity of the exact fluxes across ∂T for all T ∈ T \Γh
and across (∂T )i for all i ∈ {1, 2} and T ∈ T Γ

h to add/subtract w∂T and w(∂T )i in
the integrals over ∂T and (∂T )i, respectively. It remains to bound the three terms
composing F\Γ(Ŵh) and FΓ(Ŵh) using Lemma 5.5 and Lemma 5.7, respectively.
We only detail the bound on the three terms composing FΓ(Ŵh) since the bound
on F\Γ(Ŵh) uses similar arguments. To bound the first term, we use (5.21), and
to bound the second term, we use (5.23). For the third term, we use the Cauchy–

Schwarz inequality so that we need to bound (κi)
1
2h

1
2

T ‖∇(P k+1
T (U ex)−U ex

T )i‖(∂T )i for

all i ∈ {1, 2}. We can then add/subtract (Jk+1
T (U ex))i and use the triangle inequality

to obtain

(κi)
1
2h

1
2

T ‖∇(P k+1
T (U ex)− U ex

T )i‖(∂T )i ≤ (κi)
1
2h

1
2

T ‖∇(P k+1
T (U ex)− Jk+1

T (U ex))i‖(∂T )i

+ (κi)
1
2h

1
2

T ‖∇(Jk+1
T (U ex)− U ex

T )i‖(∂T )i .

Since the second term on the right-hand side is bounded by ‖Jk+1
T (U ex)−U ex

T ‖∗T , we
can focus on the first term. Using the discrete trace inequality (3.7) followed by the
triangle inequality where we add/subtract (U ex

T )i, we infer that

(κi)
1
2h

1
2

T ‖∇(P k+1
T (U ex)− Jk+1

T (U ex))i‖(∂T )i . (κi)
1
2 ‖∇(P k+1

T (U ex)− U ex
T )i‖T i

+ (κi)
1
2 ‖∇(U ex

T − Jk+1
T (U ex))i‖T i .

To conclude, we bound the first term using (5.22), whereas the second term is readily
bounded by ‖Jk+1

T (U ex)− U ex
T ‖∗T .

5.4. Main result. We can now state our main result on the error analysis.

Theorem 5.9 (Error estimate). Assume that U ex ∈ Hs(Ω1) ×Hs(Ω2), s > 3
2 .

Let Ûh ∈ X̂h0 solve (4.15). Then, the following bound holds true:

E :=
∑

T∈T \Γh

κT ‖∇(uex
T − uT )‖2T +

∑
T∈T Γ

h

∑
i∈{1,2}

κi‖∇(U ex
T − UT )i‖2T i

+
∑
T∈T Γ

h

κ1h−1
T ‖gD − [[UT ]]Γ‖2TΓ +

∑
T∈T Γ

h

(κ2)−1hT ‖gN − [[κ∇UT ]]Γ·nΓ‖2TΓ

.
∑

T∈T \Γh

‖jk+1
T (uex

T )− uex
T ‖2∗T +

∑
T∈T Γ

h

‖Jk+1
T (U ex)− U ex

T ‖2∗T =: B.(5.24)
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Moreover, if U ex ∈ Hk+2(Ω1)×Hk+2(Ω2), the following bounds hold true:

E .
∑

T∈T \Γh

κTh
2(k+1)
T |uex

T |2Hk+2(T ) +
∑
T∈T Γ

h

∑
i∈{1,2}

κih
2(k+1)
T |Ei(ui)|2Hk+2(T †)

.
∑

i∈{1,2}

κih2(k+1)|ui|2Hk+2(Ωi).(5.25)

Proof. Let Ĵh ∈ X̂h0 be such that its local components attached to the cells T ∈
T \Γh are ̂T := ̂k+1

T (uex
T ) and those attached to the cells T ∈ T Γ

h are ĴT := Ĵk+1
T (U ex)

(the face components of Ĵh are indeed well defined). Using stability (Lemma 5.2
and (5.8)), consistency/boundedness (Lemma 5.8), and the Cauchy–Schwarz inequal-
ity, we infer that

|Ĵh − Ûh|2âh =
∑

T∈T \Γh

|̂T − ûT |2âT +
∑
T∈T Γ

h

|ĴT − ÛT |2âT

.
∑

T∈T \Γh

â
\Γ
T (̂T − ûT , ̂T − ûT ) +

∑
T∈T Γ

h

âΓ
T (ĴT − ÛT , ĴT − ÛT )

= F(Ĵh − Ûh) . B 1
2 |Ĵh − Ûh|âh .

This implies that ∑
T∈T \Γh

|̂T − ûT |2âT +
∑
T∈T Γ

h

|ĴT − ÛT |2âT . B.

Recalling the definitions (5.5) and (5.6) of | · |âT , we infer that

(5.26)
∑

T∈T \Γh

|jk+1
T (uex

T )− uT |2aT +
∑
T∈T Γ

h

|Jk+1
T (U ex)− UT |2nT

. B,

and using the discrete trace inequality (3.7), we also infer that

(5.27)
∑

i∈{1,2}

κihT ‖∇(Jk+1
T (U ex)− UT )i‖2TΓ . B.

For all T ∈ T \Γh , we add/subtract uex
T in (5.26) and we use that | · |aT ≤ ‖ · ‖∗T ;

for all T ∈ T Γ
h , we add/subtract U ex

T in (5.26)–(5.27) and we use that | · |2nT
+∑

i∈{1,2} κ
ihT ‖∇(·)‖2TΓ ≤ ‖ · ‖2∗T , [[U ex

T ]]Γ = gD, and

(κ2)−
1
2h

1
2

T ‖gN − [[κ∇UT ]]Γ·nΓ‖TΓ ≤
∑

i∈{1,2}

(κihT )
1
2 ‖∇(U ex

T − UT )i‖TΓ ,

since [[κ∇U ex
T ]]Γ·nΓ = gN and κ1 < κ2. This leads to (5.24). Finally, the esti-

mate (5.25) follows by combining (5.24) with Lemmas 5.4 and 5.6.

6. Building the mesh. In this section, we show how to build a mesh satisfying
Assumptions 3.1 and 3.2. Our goal is not to propose an optimized construction but
simply to show that both assumptions can be satisfied. A more practically oriented
discussion on algorithmic aspects is postponed to future work. We assume that we
are initially given a shape-regular (polyhedral) mesh. Our goal is to show that we can
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satisfy Assumption 3.1 by refining the mesh and then Assumption 3.2 by means of a
local cell-agglomeration procedure.

The shape-regularity of the mesh sequence implies that there is ρ ∈ (0, 1) so
that the following geometric properties hold true for all T ∈ Th: (i) there is xT ∈ T
so that B(xT , ρhT ) ⊂ T ; (ii) Tρ := {x ∈ Rd, d(x, T ) ≤ ρhT } ⊂ ∆(T ), where
∆(T ) := {T ′ ∈ Th | T ∩ T ′ 6= ∅} is the collection of the mesh cells touching T ; (iii)
ρmaxT ′∈∆(T ) hT ′ ≤ minT ′′∈∆(T ) hT ′′ ; (iv) for all x ∈ Ω with d(x, ∂Ω) ≥ h, and all
α ∈ (0, 1), letting T1 ∈ Th be s.t. x ∈ T1, there is T2 ∈ Th s.t. T2 ∩ B(x, αhT1

) has
positive d-measure and there is xT2 ∈ T2 so that B(xT2 , ραhT2) ⊂ T2 ∩ B(x, αhT1).
This last property means that for any open ball (not too close to the boundary), there
is at least one mesh cell s.t. its intersection with this ball contains a smaller ball with
equivalent diameter.

6.1. Assumption 3.1: Mesh refinement. Let us show that Assumption 3.1
can be satisfied if the mesh is fine enough.

Lemma 6.1 (Assumption 3.1). Assumption 3.1 holds true with γ = 1
4 provided

hM ≤ 1, where M is an upper bound on the curvature of Γ.

Proof. Let T ∈ T Γ
h . Fix a point s0 ∈ TΓ and introduce the local coordinates

ξ = (ξ′, ξd), with zero at s0, where ξ′ ∈ Rd−1 are the coordinates in the tangent plane
Ts0Γ and ξd is the coordinate in the normal direction to the tangent plane at s0.
Owing to the assumption hM ≤ 1, we can write TΓ = {s := (ξ′, ψ(ξ′)), ξ′ ∈ V (0)},
where V (0) is a neighborhood of 0 in Rd−1 and ψ : V (0)→ R is a smooth map. Note
that ψ(0) = 0, ∇ξ′ψ(0) = 0, and that a normal vector to the tangent plane TsΓ is
n(ξ′) = (−∇ξ′ψ(ξ′), 1). Let us set x̂T = (0,−2hT ) and consider the function

f(ξ′) = (s− x̂T ) · nΓ(ξ′) = −ξ′ · ∇ξ′ψ(ξ′) + ψ(ξ′) + 2hT .

Then f(0) = 2hT , and since ∇ξ′f(ξ′) = −ξ′ · D2
ξ′ξ′ψ(ξ′) and ‖ξ′‖`2 ≤ hT , we infer

that
f(ξ′) ≥ f(0)− hT ‖∇ξ′f‖L∞(V (0)) ≥ 2hT − h2

TM ≥ hT .
Since ‖n(ξ′)‖`2 ≤ 1 + ‖∇ξ′ψ(ξ′)‖`2 ≤ 1 + hM ≤ 2, we infer that

d(x̂T , TsΓ) = ‖n(ξ′)‖−1
`2 f(ξ′) ≥ 1

2
hT ∀s ∈ TΓ.

In addition, we have ‖x̂T − s‖`2 ≤ ‖ξ′‖`2 + |ψ(ξ′) + 2hT | ≤ 3hT + |ψ(ξ′)| ≤ 4hT since
ψ(0) = 0, ∇ξ′ψ(0) = 0 and hM ≤ 1.

6.2. Assumption 3.2: Local cell-agglomeration. Assume that we are given
an initial shape-regular (polyhedral) mesh Th (with parameter ρ) that satisfies As-
sumption 3.1 (with parameter γ) but that does not satisfy Assumption 3.2. We now
describe a simple local cell-agglomeration procedure to produce a new mesh that is
still shape-regular and that satisfies Assumptions 3.1 and 3.2. The main idea is that
we eliminate any mesh cell in Th that is cut unfavorably by the interface by merging
this cell with a neighboring one. An illustration is provided in Figure 6.1.

We consider the partition Th = T 1
h ∪ T Γ

h ∪ T 2
h , and picking a value δ ∈ (0, 1) (the

precise value of δ is determined below), we further partition T Γ
h into

(6.1) T Γ
h = T ok

h ∪ T ko,1
h ∪ T ko,2

h ,

where T ∈ T ok
h iff the condition (3.5) from Assumption 3.2 holds true for all i ∈ {1, 2},

whereas T ∈ T ko,i
h if the condition fails for i ∈ {1, 2}. Let us first give two useful

lemmas underpinning our local cell-agglomeration procedure.
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Fig. 6.1. Triangular mesh cell T (filled by dashes) cut unfavorably by the interface. The
companion cell in the agglomeration procedure is shown in gray for two generic situations: on the
left, both cells share a face, and on the right, they only share a vertex; in both cases, the companion
cell is in ∆(T ), and the two balls in the agglomerated cell for Assumption 3.2 are shown.

Lemma 6.2 (partition of T Γ
h ). The subsets T ko,1

h and T ko,2
h are disjoint if the

mesh-size h is small enough and if δ ≤ 1
3ρ.

Proof. For s ∈ Γ and positive real numbers α, β, we define the strip of length α
and aspect ratio β centered at the point s and aligned with the tangent plane TsΓ as

SΓ(s, α, β) := s+ {t+ n, t ∈ TsΓ, 2‖t‖`2 ≤ α, n ∈ (TsΓ)⊥, 2‖n‖`2 ≤ αβ}.

The regularity of Γ implies that, for all λ ∈ (0, 1], there is δ(λ) > 0, so that, for all
s ∈ Γ and all α ∈ (0, δ(λ)],

(6.2) Γ ∩B(s, α) ⊂ SΓ(s, 2α, λ).

(Note that the diameter of B(s, α) is 2α.) Let T ∈ T Γ
h and let s ∈ TΓ. Recall from

mesh regularity (property (i)) that B(xT , ρhT ) ⊂ T . Let us apply (6.2) with λ = 1
3ρ.

Assume that h ≤ δ( 1
3ρ). Then TΓ ⊂ Γ ∩ B(s, hT ) ⊂ SΓ(s, 2hT ,

1
3ρ). Elementary

geometric considerations show that there is a point ỹT ∈ T so that B(ỹT ,
1
3ρhT ) ⊂

B(xT , ρhT ) \ SΓ(s, 2hT ,
1
3ρ), which implies, in particular, that B(ỹT ,

1
3ρhT ) ∩ Γ = ∅.

Therefore, B(ỹT ,
1
3ρhT ) is a subset of either T 1 or T 2.

Lemma 6.3 (finding a suitable neighbor). Assume that the mesh-size is small
enough and take δ = 1

4ρ
3. Let i ∈ {1, 2}. For all T ∈ T ko,i

h , there is a mesh
cell in ∆(T ) such that the condition (3.5) holds true for i, i.e., this mesh cell is in

(T ih ∪ T ok
h ∪ T ko,ı

h ) ∩∆(T ), where ı = 3− i (so that ı = 2 if i = 1 and ı = 1 if i = 2).

Proof. Fix i ∈ {1, 2} and let T ∈ T ko,i
h . Owing to mesh regularity (property (ii)),

we have Tρ := {x ∈ Rd, d(x, T ) ≤ ρhT } ⊂ ∆(T ). Let s ∈ TΓ. Assume that h ≤ δ( 1
4ρ)

(see (6.2)), so that Γ ∩ B(s, hT ) ⊂ SΓ(s, 2hT ,
1
4ρ). Since the width of SΓ is smaller

than or equal to 1
2ρhT , there is a ball B(s′, 1

4ρhT ) ⊂ Tρ∩Ωi\SΓ(s, 2hT ,
1
4ρ). Note that

d(s′, ∂Ω) ≥ d(s, ∂Ω) − h ≥ h since d(Γ, ∂Ω) ≥ 2h and s ∈ Γ. Since s′ ∈ Tρ, there is
T1 ∈ ∆(T ) s.t. s′ ∈ T1. Using mesh regularity (property (iv) with α = 1

4ρhTh
−1
T1
≤ 1

4

owing to property (iii)), we infer that there is T2 ∈ Th so that T2 ∩ B(s′, 1
4ρhT )

has positive d-measure and there is a ball B(xT2 , ραhT2) ⊂ T2 ∩ B(s′, 1
4ρhT ). Since

ρα = 1
4ρ

2hTh
−1
T1
≥ 1

4ρ
3 = δ (using again property (iii)), we infer that the mesh cell

T2 satisfies the condition (3.5) for i. Moreover, T2 ∩ Tρ has positive d-dimensional
measure, so that T2 ∈ ∆(T ). This concludes the proof.

We can now present our local cell-agglomeration procedure. We consider the
partition (6.1) with δ := 1

4ρ
3 and assume that the mesh-size is small enough so that

Lemmas 6.2 and 6.3 hold true (note that δ ≤ 1
3ρ). The procedure is as follows: (1) For

all T ∈ T ko,1
h , we choose a neighboring mesh cell N1(T ) ∈ (T ok

h ∪ T 1
h ∪ T

ko,2
h )∩∆(T )

(this is possible owing to Lemma 6.3). We denote the collection of the cells in T ko,2
h
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chosen in the above step as the subset T̂ ko,2
h ⊂ T ko,2

h . (2) For all T ∈ T ko,2
h \ T̂ ko,2

h ,

we choose a neighboring mesh cell N2(T ) ∈ (T ok
h ∪ T 2

h ∪ T
ko,1
h ) ∩ ∆(T ). (3) For all

i ∈ {1, 2}, let Ni be the collection of all the cells in T ok
h ∪ T ih ∪ T

ko,ı
h that have been

selected at least once in one of the two previous steps. For all T ] ∈ N1∪N2, we define
the agglomerated cell

(6.3) T ∗ := T ] ∪ {T ∈ T ko,1
h , N1(T ) = T ]} ∪ {T ∈ T ko,2

h \ T̂ ko,2
h , N2(T ) = T ]},

and we observe that T ∗ ⊂ ∆(T ]). We collect all the agglomerated cells in T agglo
h , and

we define the new mesh

(6.4) T ∗h :=
(
(T ok
h ∪ T 1

h ∪ T 2
h ) \ (N1 ∪N2)

)
∪ T agglo

h .

Remark 6.1 (choice of Ni(T )). In steps 1 and 2, we do not require that T and
Ni(T ) share a face; it is sufficient that they share a point (actually, it is just sufficient
that the set T ∪Ni(T ) has a diameter of order hT , but we do not explore this further
here). Thus, there is some freedom in the choice of Ni(T ). In practice, one can choose
Ni(T ) sharing a face with T whenever possible.

It is easy to see that the newly created mesh T ∗h is still shape-regular and satisfies
Assumption 3.1. Shape-regularity follows since the agglomeration of a finite number of
shape-regular neighbors remains shape-regular, but with a possibly smaller parameter
ρ∗ < ρ. Assumption 3.1 is satisfied since each cell in the original mesh satisfies the
assumption and any finite union of cells satisfying this assumption must also satisfy
it, but once again with a possibly smaller parameter γ∗ < γ. Let us finally verify that
T ∗h also satisfies Assumption 3.2.

Lemma 6.4 (Assumption 3.2). Assume that the mesh-size is small enough and
that the cell-agglomeration procedure uses the cut parameter δ = 1

4ρ
3. Then Assump-

tion 3.2 holds true for the mesh T ∗h with δ∗ = 1
3ρδ = 1

12ρ
4.

Proof. Let T ∗ ∈ T ∗h be s.t. measd−1(T ∩ Γ) > 0. Then, T ∗ ∈ T ok
h \ (N1 ∪ N2)

or T ∗ ∈ T agglo
h . In the first case, T ∗ is also a mesh cell from the original mesh

Th, and the definition of T ok
h implies that the condition (3.5) is satisfied with the

cut parameter δ and therefore also with the cut parameter δ∗ ≤ δ. In the second
case where T ∗ ∈ T agglo

h , let us assume to fix the ideas that the associated cell T ]

(see (6.3)) is in N1, so that T ] = N1(T ]0) with T ]0 ∈ T
ko,1
h . Owing to Lemma 6.2, the

condition (3.5) is satisfied in T ]0 with parameter δ and i = 2, and by construction,
this condition is satisfied in T ] with parameter δ and i = 1. Since hT∗ ≤ h∆(T ]) ≤
3 maxT ′∈∆(T ]) hT ′ ≤ 3ρ−1 min(hT ] , hT ]

0
) owing to mesh regularity (property (iii)), we

infer that the condition (3.5) is satisfied in T ∗ with parameter δ∗ and all i ∈ {1, 2}.
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