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Abstract 18 
 19 
The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the 20 
very first interaction step. Detailed understanding of this step is in part hampered by the large 21 
heterogeneity in physicochemical properties of lipid nanoparticles, such as liposomes, making 22 
conventional ensemble-averaging methods too blunt tools to address details of this complex 23 
process. Here we contribute a new means to explore whether individual liposomes become 24 
deformed upon binding to fluid cell-membrane mimics. This was accomplished by using 25 
hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a 26 
supported lipid bilayer (SLB). In this way, the size of individual liposomes could be determined by 27 
simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a 28 
radius of  ≈ 45 nm, a close agreement with dynamic light scattering data was observed, while larger 29 
liposomes (radius ≈ 75 nm) displayed a significant deformation unless composed of a gel-phase 30 
lipid. The relevance of being able to extract this type of information is discussed in the context of 31 
membrane fusion and cellular uptake.  32 
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Introduction 50 

Liposomes (lipid vesicles) are self-closed spherically assembled lipid bilayers, that can be prepared 51 

in a size range from around 20 nm up to several µm.1, 2 Morphologically they resemble cell 52 

membranes and other naturally occurring particles such as transport secretory vesicles3, 4 and cell-53 

derived extracellular vesicles,5 as well as lipid enveloped viruses. Artificial liposomes are widely 54 

used as model systems to study membrane-related processes6 and are more and more frequently 55 

used as nano-containers in drug-delivery applications.7-9 Many studies reveal a critical influence of 56 

liposome size on biological functions, such as enzymatic reaction kinetics,10, 11 protein binding12-14 57 

and membrane-protein diffusivity in membranes.15 The size dependence of the above mentioned 58 

phenomena has been primarily attributed to the stress in a curved membrane, which is related to the 59 

area difference of the inner and the outer membrane leaflet, as well as to the mismatch between the 60 

physical and spontaneous curvatures.16, 17 As the liposome size is reduced, the curvature 61 

increasingly affects the conformations of the molecules that constitute the membrane, leading to 62 

changes in both chemical and mechanical properties of the membrane.12, 18-20 It is therefore not 63 

surprising that also drug encapsulation into liposomes21 as well as their uptake into cells have been 64 

observed to depend on liposome size.22-26   65 

Studying the aforementioned size-dependent phenomena is not trivial, though, and requires 66 

methods that can independently determine both liposome size and biomolecular content with high 67 

accuracy. When freely floating in a liquid, the size can be determined by measuring the diffusivity 68 

D, which is equivalent, through Einstein’s relation µ = kBT/D, to the friction coefficient µ, where 69 

kBT is the Boltzmann energy, and then by applying the Stokes’ drag law: µ = 6πηa, one can translate 70 

the diffusivity D into the radius a, via the celebrated Stokes - Einstein relation: a = kBT/6πηD. 71 

However, when liposomes are in a complex medium, e.g. porous27, 28 or non-Newtonian29 or when 72 

they are immobilized or move in a film or on a two-dimensional (2D) interface such as a cellular 73 

membrane,30-34 then Stokes’ drag law does not hold and measuring the diffusivity is insufficient to 74 
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determine the size. In such cases one needs to rely on indirect measures of liposome size, by e.g. 75 

correlating lipid content with size,35 while additional information is required to directly determine 76 

the size or changes in size induced upon interactions occurring in complex matrices, e.g., upon 77 

binding to a cellular membrane. 78 

We here propose that by combining the above mentioned diffusion-based determination of 79 

the friction coefficient with an independent measurement of the very same parameter, both the 80 

absolute size and interaction-induced changes in size of membrane-adhering liposomes can be 81 

determined. By applying a force F to a particle and measuring the induced drift velocity U, which is 82 

the steady motion in a fixed direction, as opposed to random diffusive motion, the friction 83 

coefficient, µ, can be determined using µ = F/U. If the applied force is a known function of the 84 

operating conditions, e.g., radius a, drift velocity U, etc., then the radius can be obtained by solving:  85 

𝐹 𝑎, 𝑈,… = ()*+
,

.             (1) 86 

Alternatively, when the radius is known, then other properties may be extracted from Eq. (1), such 87 

as shape or electric charge. For instance Yoshina-Ishii et al.36 determined the electrophoretic 88 

mobility by measuring the electro-osmotically induced drift velocity and diffusivity of individual 89 

negatively charged liposomes, that were tethered using DNA strands to a negatively charged lipid 90 

bilayer. Jönsson et al.37 determined the shape of proteins, by measuring the shear-induced drift and 91 

diffusivity of fluorescently labeled membrane-adhering proteins, while Block et al. recently 92 

demonstrated that both liposome size and fluorescence emission intensity can be independently 93 

determined by using Eq. (1) in combination with measurements of both U and D 38 and that the 94 

number of linkers between a liposome and a membrane can be extracted form D alone.39 95 

The above mentioned studies demonstrate the potential of combined diffusivity and drift 96 

velocity measurements to extract properties of particles that are confined to a mobile interface, but 97 

did not specifically address that liposomes may deform in response to interfacial interactions, as 98 

previously observed at solid interfaces.40-46  Inspired by the design of lipid nanoparticles that has 99 
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been proven efficient in various drug delivery applications, we here apply this approach to 100 

determine both the size and conformational changes of individual membrane-adhering liposomes 101 

induced by direct membrane-membrane interactions controlled by electrostatic attraction between 102 

oppositely charged lipid bilayers in close contact.47, 48 The observed dependence of liposome 103 

deformation on size and membrane rigidity is discussed in the context of understanding how to 104 

optimize lipid nanoparticle formulations. 105 

Results and Discussion 106 

A positively charged supported lipid bilayer (SLB) [PC:EPC (90:10)] was formed using the vesicle 107 

fusion method in a fluidic chamber, with width W = 3.8 mm, height H = 0.4 mm and length of L = 108 

17 mm. Negatively charged liposomes (radius a ≈ 45 nm) [PC:PS (95:5)] were fabricated by the 109 

extrusion method. After injection into the flow chamber, the liposomes spontaneously adhered 110 

electrostatically onto the SLB, where they were observed to diffuse in 2D (see Supporting Video 111 

S1). Prior to injection, the liposome radius distribution was measured using dynamic light scattering 112 

(DLS). In Figure 1a, we visualize the diffusive motions of the liposomes by superimposing 350 113 

images taken by fluorescence microscopy, which correspond to a time lapse of 17.5 s. We used 114 

particle tracking to reconstruct the liposome trajectories. An example trajectory is displayed in the 115 

inset of Figure 1a. To quantify the diffusion the mean squared displacement (MSD) between all 116 

point-pairs on the trajectory as a function of the time separation between the paired points was 117 

calculated. The (MSD) in Figure 1b was fitted by Eq. (5) (see Experimental Section), which gives a 118 

diffusivity of: D = 0.25 µm2 s-1. Since the trajectory in the inset of Figure 1a, is relatively long, the 119 

uncertainty in the fitted D is small (<1%), i.e. the MSD follows Eq. (5) within 1%. For relatively 120 

short trajectories on the other hand, the uncertainty may be larger, and we exclude short trajectories 121 

with an uncertainty in the fitted D above 3%.  122 

 123 

 124 
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 125 

Figure 1. Liposome motion visualized by the superposition of 350 fluorescence images without 126 
applied flow (a) and with applied flow, corresponding to a shear rate of γ = 227 s-1 (flow rate: Φ = 127 
23 µL/s) (c). For each case a reconstructed trajectory is shown as an inset (the scale bar in the insets 128 
corresponds to 5 µm) and the corresponding mean squared displacements (MSDs) are shown as a 129 
function of the elapsed time t in (b) and (d). Without applied flow, the liposome motion is purely 130 
diffusive and the MSD is linear (shaded red). With applied flow, the liposome motion includes a 131 
substantial drift, reflected by the quadratic part of the MSD (shaded blue). (e) Mean and standard 132 
deviation of the diffusivity D as functions of the shear rate γ.  (f) Mean and standard deviation of 133 
the drift velocity U as functions of γ. Please note that the data in (e) and (f) are ensemble averaged 134 
over all detected trajectories, while the data in (b) and (d) correspond to a single trajectory only.  135 

 136 
Next aqueous buffer solution was injected into the chamber (see Supporting Video S2). 137 

Figure 1c, shows the resulting motion of the membrane-adhering liposomes (volumetric flow 138 

velocity: Φ = 23 µL/s). The liposome motion was again visualized by overlaying 350 fluorescence 139 

images, covering a total time lapse of 17.5 s. The figure shows that in addition to diffusive motion, 140 

the particles show a horizontally directed motion (drift). The inset of Figure 1c shows a 141 

reconstructed liposome trajectory, and the corresponding mean squared displacement is shown in 142 
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Figure 1d. In comparison to the MSD without shear (Figure 1b), the MSD in Figure 1d has an 143 

additional, quadratic component, which corresponds to the drift velocity. By fitting Eqs. (4) and (5) 144 

to the data in Figure 1d, the drift velocity and diffusivity were determined to be U = 0.8 µm·s-1 and 145 

D = 0.25 µm2·s-1, respectively. For the case presented in Figure 1d the uncertainties in the fitted U 146 

and D are small (<1%), i.e. the mean displacement and the mean squared displacement are within 147 

1% of Eqs. (4) and (5), respectively. Again it is noted that only sufficiently long trajectories are 148 

considered in the analysis such that uncertainties in U and D are below 3%. Following this 149 

approach, we determined U and D for about 50 liposome trajectories, reconstructed from the 150 

fluorescence image sequence. To study the effect of the flow rate on the diffusivity and on the drift 151 

velocity, we repeated the experiment with different flow rates (Φ between 0 and 23 µL·s-1). 152 

The fluid velocity experienced by the liposomes equals γa where a is the liposome radius 153 

and γ is the fluid shear rate at the membrane surface, which is the increase of the fluid velocity per 154 

unit length when moving away from the surface. The shear rate is related to the flow rate by: γ = 6Φ 155 

/WH2 and has been varied between 0 and 227 s-1 in the present work. In Figure 1e we observe that 156 

changing the shear rate γ in this range has no marked effect on the liposome diffusivity, which 157 

remains at a constant value of: D = 0.30 ± 0.1 µm2·s-1. The drift velocity U on the other hand 158 

depends linearly on the shear rate γ (Figure 1f). These observations support the view that the 159 

friction coefficient between the liposome and the shear flow and the friction coefficient between the 160 

liposome and the underlying membrane are both insensitive to the applied shear rate, i.e. they are 161 

insensitive to the speed of the liposome.  162 

Now we will use Eq. (1) to determine the size (radius a) of individual membrane-adhering 163 

liposomes. To this end we use the following, generally valid expression, for the shear-induced 164 

friction force.  165 

𝐹 = 𝐶.6𝜋𝜂𝑎2𝛾.             (2) 166 

Here η is the solvent dynamic viscosity and CF is the solvent friction factor. For solid spheres: CF ≈ 167 
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1.7,49 while for other shapes or fluid-like particles, CF may take on other values. For instance, CF 168 

decreases when the liposome shape deforms from spherical to ellipsoidal, under constant area A = 169 

4πa2, i.e., with constant effective radius a.37 Therefore, CF is a measure for the shape of an object, a 170 

property that we will exploit later on. Inserting Eq. (2) into Eq. (1) results in: 171 

𝑎 = ()*+
456789,

.             (3) 172 

For the derivation of Eq. (3) it has been used that the liposomes move much faster than the SLB, 173 

which itself is also being pushed forward by the shear flow, while at the same time, the liposomes 174 

move much slower than the fluid, i.e. the friction between the liposomes and the SLB is much larger 175 

than the friction between the liposomes and the solvent. A full derivation and a discussion of these 176 

assumptions are presented in the Supporting Information, showing that the SLB moves 100 times 177 

slower than the liposomes, which in turn move 10 times slower than the local fluid.  Eq. (2) 178 

suggests that larger particles move faster, since they experience a larger hydrodynamic force from 179 

the shear flow (Figure 2a). To illustrate the size dependent dynamics, we have plotted in Figure 2b, 180 

the trajectories for three liposomes emitting markedly different fluorescence intensities. For each 181 

liposome, the measured diffusivity D and velocity U are given, and the radius a, as predicted by Eq. 182 

(3), is seen to correlate well with the observed fluorescence intensity, which is an alternative 183 

(control) size measurement, as discussed below. Figure 2b furthermore indicates that with 184 

increasing radius, the drift velocity increases and the diffusivity decreases, resulting in trajectories 185 

that are less random and more directed.  186 
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 187 
Figure 2.  Illustration of the size (radius a) dependent drift velocity. (a) Cartoon of the shear-188 
induced propulsion of differently sized liposomes. (b) Trajectories, measured with fluorescence 189 
microscopy, for three differently-sized liposomes. The trajectories are superpositions of diffusion 190 
and drift velocity. As the radius of the liposome increases, the drift component increases and the 191 
trajectories become less random and more directed.  192 
 193 

Using the measured drift velocity and diffusivity and assuming that CF ≈ 1.7 (solid sphere 194 

behavior), Eq. (3) predicts the radius a of the individual liposomes. We refer to this method as “two 195 

dimensional flow nanometry” (2D-FN). The corresponding radius distribution is shown in Figure 196 

3a, where, for the sake of having sufficient statistics, data for all flow rates have been combined. 197 

We will discuss the effect of the flow rate on the accuracy of the method below. In Figure 3a we 198 

also plot the radius distribution obtained from dynamic light scattering (DLS). There is nearly 199 

perfect agreement between both distributions, which validates that the hydrodynamic interaction 200 

between the liposomes and the shear flow resembles that of solid spheres: CF ≈ 1.7.  201 

This remarkable observation supports the notions that the small (fluid phase) liposomes 202 

(radius ≈ 45 nm) (i) experience a negligible amount of flow in the lipid membrane, i.e. they impose 203 

a no-slip boundary condition to the surrounding fluid, similar as for solid particles and (ii) they do 204 

not deform significantly upon adsorption on the membrane surface and remain spherical. The 205 

condition of negligible membrane flow is in line with the (successful) use of Stokes’ relation (valid 206 

for solid spheres) when determining liposome size by measuring the diffusivity.50 The apparent 207 

spherical shape of the adsorbed liposomes implies that the bending energy dominates the substrate-208 

induced adhesion energy.51 In the literature liposome deformation has been observed on solid 209 
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surfaces, suggesting a large substrate-induced adhesion energy (compared to the bending energy).41, 210 

52 Our result of a negligible deformation of small liposomes (radius ≈ 45 nm) on a fluid membrane 211 

interface (Figure 3a) suggests that the inter-membrane adhesion energy for these liposomes is small 212 

compared to the bending energy.  213 

 214 

Figure 3.  Radius distribution of membrane-adhering liposomes obtained from 2D flow nanometry 215 
[2D-FN, Eq. (3)] (red; bars) and obtained from dynamic light scattering (DLS, blue) (a) for small 216 
liposomes (extruded through 100 nm pores) and (b) for large liposomes (extruded through 200 nm 217 
pores). The legends indicate the mode and the standard deviation of the respective distributions. 218 

 219 
However with increasing liposome radius a the adhesion energy is expected to increase in 220 

proportion to the liposome contact area ~ a2, while the bending energy is independent of a.51, 53 221 

Therefore larger membrane-adhering liposomes are expected to be more prone to shape 222 

deformation.54, 55 Such shape deformation would affect the hydrodynamic coupling between the 223 

shear flow and the liposome,37 and to explore this effect, we studied a second batch of larger 224 

liposomes (radius a ≈ 75 nm). Henceforth we refer to these liposomes (a ≈ 75 nm), as the “large 225 

liposomes”, while the ones with a ≈ 45 nm are referred to as the “small liposomes”. Similar to the 226 

case of the small liposomes, we measured the drift velocity and the diffusivity of the large 227 

liposomes at various shear rates and computed the radii of the individual liposomes using Eq. (3). 228 

The resulting radius distribution together with the corresponding DLS data is shown in Figure 3b. It 229 

is seen that the radius of the large liposomes on the membrane surface (measured by 2D-FN) is 230 

smaller than the corresponding values in bulk (measured by DLS). This result indicates that the 231 
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large liposomes are flattened, resulting in a reduced shear-induced propulsion force, as compared to 232 

spherical liposomes (with the same surface area). As an effect the flattened liposomes move slower 233 

than the spherical liposomes and appear to be smaller than their actual size in the “eyes” of 2D-FN.  234 

 235 

Figure 4.  (a) The radius distribution obtained from the square root of the fluorescence intensity 236 
(FI; bars) and obtained from dynamic light scattering (DLS; lines) for small (extruded through 100 237 
nm pores; blue) and large (extruded through 200 nm pores; red) liposomes. (b)  Radius distribution 238 
for large membrane-adhering, gel phase liposomes, obtained from particle tracking on the 239 
membrane interface [Eq. (3)] (red bars) and obtained from DLS (blue). The legends indicate the 240 
mode and the standard deviation of the respective distributions. (c) Liposome diffusivity as a 241 
function of the shear rate for small liposomes (extruded through 100 nm pores; red squares) and 242 
large liposomes (extruded through 200 nm pores; blue diamonds). (d) Schematic representation 243 
illustrating that the large fluid-phase liposomes deform and therefore move slower than their 244 
undeformed, gel-phase counterparts.   245 

 246 

We verified that the DLS radius distribution, which was measured for suspended liposomes, 247 

is representative for the liposome radius distribution on the membrane surface. To this end we 248 

compared the DLS radius distribution to that of the square root of the fluorescence intensity I1/2, 249 
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emitted by individual membrane-adhering liposomes. This quantity is converted to radius, where 250 

the conversion factor is found, by matching the peak of the I1/2 distribution to that of the DLS.35, 56 251 

Figure 4a shows the resulting distributions, where we have used the same conversion factor, for 252 

both small and large liposomes. The observation that both resulting distributions closely follow the 253 

DLS data strongly supports that DLS is representative for the liposomes on the membrane surface, 254 

and therefore suitable to validate the radius distributions obtained using 2D-FN (Figures 3a and 3b).  255 

We therefore hypothesize that the deviation with regards to radius determination using 2D-256 

FN flow nanometry and DLS observed for large liposomes (Figure 3b) is due to liposome 257 

deformation. To confirm this hypothesis, we conducted a control 2D-FN experiment, using large 258 

liposomes (radius ≈ 82 nm) composed of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), 259 

with a gel to liquid transition temperature of ≈ 40○C,57 and 5 mol% negatively charged DOPS 260 

lipids. The bending energy at room temperature of DPPC (≈ 250 kBT)58 is an order of magnitude 261 

larger than that of DOPC (≈ 25 kBT)59, and the gel phase DPPC liposomes are therefore expected to 262 

be less prone to deformation. The resulting 2D-FN radius distribution is compared to the 263 

corresponding radius distribution obtained from DLS in Figure 4b, which shows a good agreement 264 

between both distributions. The peaks of the distributions are within 10 nm of each other. The 265 

improved agreement between 2D-FN and DLS when going from fluid-phase (Figure 3b) to gel-266 

phase (Figure 4b) liposomes strongly supports the hypothesis that the deviation between the radius 267 

determination made from 2D-FN and DLS (Figure 3b) is due to deformed shapes of the large fluid-268 

phase liposomes.   269 

Deformation of the large liposomes is further supported by the observation that their 270 

diffusivity increase with the applied shear-rate, as shown in Figure 4c. This observation implies that 271 

with increasing liposome velocity, there is a reduced friction coefficient between the liposomes and 272 

the membrane surface. This effect may be caused by an increase of the inter-membrane separation, 273 

due to a shear-induced lift force. The shear-induced lift force requires a non-spherical liposome 274 
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shape,60 i.e. it vanishes (relative to the drag force) for spheres at small Reynolds numbers Re = a2γ/ν 275 

~ 10-6,61 where ν is the solvent kinematic viscosity. In the supporting information, we analyze the 276 

relation between the inter-membrane separation and the diffusivity of the membrane-adhering 277 

liposomes. The analysis shows, that a very small increase in the separation (~ 0.4 nm) causes a very 278 

large increase in the diffusivity (~ 50 %). This sensitivity towards the inter-membrane spacing 279 

supports the notion that a shear-induced lift force acts on the large liposomes, resulting in the 280 

observed increase in the diffusivity with increasing shear rate (Figure 4c). This in turn supports our 281 

hypothesis that the large liposomes are deformed since non-sphericity is required to generate a 282 

shear-induced lift force. For the small liposomes on the other hand, the observed diffusivity is 283 

independent of the shear rate (Figure 1e), which is consistent with a spherical liposome shape. 284 

Figure 4d presents a cartoon to illustrate that the deformation of large, fluid-phase vesicles results in 285 

a smaller drift velocity as that of their gel-phase counterparts.  286 

 To further study the relation between the inter-membrane friction and the adhesion force we 287 

changed the latter by adding 500 mM glucose to the solvent, which is non-permeable to the 288 

membrane. Due to their relatively large size (1.5 nm), the glucose molecules are expected to be (at 289 

least partly) depleted from the (1 nm) inter-membrane hydration layer and thereby enhance the 290 

inter-membrane friction due to a depletion force.36, 62 In addition to the depletion force, the glucose 291 

molecules also exert an osmotic pressure, which may deform the liposomes. This would also result 292 

in an enhanced inter-membrane friction, through an extended contact area. We used the 2D-FN 293 

method to shed light on these processes by probing not only the inter-membrane friction, but also 294 

liposome deformation, via the change in the hydrodynamic radius. For this experiment we used the 295 

small liposomes, which are non-deformed in the absence of glucose (see Figure 3a). Figure 5a 296 

shows that in the presence of glucose, the small liposomes have a 50 % smaller diffusivity: D = 297 

0.16 ± 0.18 µm2·s-1 as compared to the case without glucose, where: D = 0.30 ± 0.18 µm2·s-1. This 298 

decrease in diffusivity corresponds to a doubling of the inter-membrane friction force, while 299 
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changes in bulk viscosity (10 %) are of minor importance.63 The larger inter-membrane friction is 300 

furthermore reflected by a smaller drift velocity, shown in Figure 5b. Despite the substantially 301 

larger inter-membrane friction, the radius distribution obtained from 2D-FN [Eq. (3)] is still in good 302 

agreement with the DLS data (Figure 5c), which means that the liposomes remain spherical upon 303 

adding 500 mM glucose, and that the observed reduced diffusivity is most likely the effect of an 304 

enhanced inter-membrane friction due to a depletion force. While large liposomes (radius ~ 100 305 

nm) are known to shrink upon exposure to a hyperosmotic solution, 64, 65 we do not observe osmotic 306 

volume change for small liposomes (radius  ≈ 45 nm), nor has this been reported in the literature.66  307 

 308 

Figure 5. Effect of glucose on the hydrodynamic propulsion of the small liposomes. (a) Mean 309 
(markers) and standard deviation (error bars) of the liposome diffusivity D as functions of the shear 310 
rate γ with 500 mM glucose in solution (blue diamond) and without glucose in solution (red square). 311 
(b) Mean and standard deviation of the liposome drift velocity U as functions of the shear rate γ 312 
with 500 mM glucose in solution (blue diamond) and without glucose in solution (red square). (c) 313 
Radius distribution of membrane-adhering liposomes in 500 mM glucose solution, obtained from 314 
particle tracking on the supported lipid membrane [Eq. (3)] (red; bars) and obtained from DLS 315 
(blue). 316 

 317 

Finally we discuss the accuracy of the method. Figure 6a shows (for the small liposomes) 318 

that the relative spread in the measured drift velocity ΔU/U depends inversely on the applied shear 319 

rate γ for small γ < 100 s-1, while for large γ > 100 s-1, ΔU/U approaches a plateau value that is 320 

independent of γ. This observation indicates that ΔU/U is composed of a stochastic component, 321 

which decreases with increasing drift velocity and a material component that is independent of the 322 

drift velocity. The material component reflects variations in the liposome radius, i.e., large 323 

liposomes move faster than small liposomes, as well as variations in the liposome shape and 324 
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composition, such as charge or multilamellarity.  325 

 326 

 327 
Figure 6. Accuracy of the 2D flow nanometry (2D-FN)method, to determine the radius of the small 328 
lipsomes. (a) Relative standard deviation of the liposome drift velocity U as a function of the 329 
applied shear rate γ. The inset shows the liposome drift velocity as a function of the applied shear 330 
rate γ.  (b) Distribution of the solvent friction factor: CF = kBTU/(6πa2ηγD). The vertical, dashed 331 
line corresponds to the theoretical value for solid spheres: CF = 1.7. (c) Scatter plot of CF versus the 332 
trajectory quality: Q = U(t/D)1/2. Each dot corresponds to one trajectory. The large markers 333 
represent the mean of CF as a function of Q. The inset shows the relative standard deviation of CF 334 
versus Q.  335 

 336 

To study the accuracy of the method, we compute the solvent friction factor CF for each individual 337 

liposome, by inserting the measured values for radius (obtained from fluorescence intensity), 338 

diffusivity and drift velocity into Eq. (3). While, perfect accuracy correspond to all liposomes 339 

giving exactly: CF = 1.7, we find a distribution with: CF = 2.1 ± 3.9. Figure 6b shows the 340 
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corresponding histogram. Despite the large spread, the mean value is surprisingly close to the 341 

theoretical value for solid spheres: CF = 1.7. The observed spread is the accumulation of the spread 342 

of the depending variables, i.e. liposome radius, diffusivity and drift velocity U. In the Supporting 343 

Information, we argue that the measurement uncertainty in the drift velocity U, due to the stochastic 344 

nature of the diffusion process, is given by: ΔU/U ~ (D/U2t)1/2, which means that the accuracy of 345 

the method improves for large values of the so-called trajectory quality Q: 346 

𝑄 = +;<
,

.              (4) 347 

Here t refers to the total time of the trajectory. We verify this in Figure 6c, by showing CF as a 348 

function of Q, where each marker corresponds to one trajectory. This figure compiles data for all 349 

the different shear rates. The large markers correspond to the mean CF, as a function of Q. This 350 

figure shows that for small trajectory quality: 𝑄 ≲ 1, the solvent friction factor CF is distributed 351 

around zero, in contrast to the theoretical value of 1.7, while for large trajectory quality: 𝑄 ≳ 1, the 352 

mean of CF approaches the theoretical value of 1.7. The inset of Figure 5c shows the relative 353 

standard deviation ΔCF/CF, which is a measure for the uncertainty of the present size determination 354 

method. The data show that with increasing Q, the uncertainty decreases and reaches a plateau 355 

value, which supports the notion that for 𝑄 ≳ 1, the uncertainty of the method is no longer 356 

governed by the stochastic nature of the diffusion process, but rather by deviations in liposome size, 357 

shape and chemical composition. In summary the successful application of the 2D-FN method 358 

requires a sufficiently large flow rate, 𝑄 ≳ 1, to allow an accurate determination of the drift 359 

velocity. This requirement must be met under the restrictions of having sufficient (	≳ 100) samples 360 

per trajectory, to allow tracking of the particle and to ensure an accurate determination of the 361 

diffusivity. Additionally, the liposome surface coverage must be sufficiently small, such that 362 

individual liposomes can be tracked over the full width of microscopy image. With regard to 363 

accuracy it is further noted that the method is limited to sufficiently large particles, since their 364 

velocity must be much larger than the shear-induced velocity of the membrane, such that the latter 365 
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can be ignored in the analysis. We have shown in the Supporting Information, that this condition is 366 

met in the current system. For smaller particles however, like, say proteins, [Ref. Jönsson, P.; 367 

Jönsson, B. Langmuir 2015, 31, 12708-12718] this condition will be violated. This problem could 368 

be remedied by using anchored lipid bilayers [references] or lipid monolayers on hydrophobic 369 

supports. [references] 370 

Conclusions 371 

In summary, we have measured the shear-induced drift velocity U and diffusivity D of membrane-372 

adhering liposomes. The radii of the liposomes were determined by combining U and D with the 373 

Einstein relation for diffusion, under the assumption that the hydrodynamic propulsion force 374 

resembles that on solid spheres. For small liposomes (effective radius of ≈ 45 nm) the resulting 375 

radius distribution agrees well with DLS measurements, confirming liposome sphericity, while 376 

deviations for large fluid phase liposomes (effective radius of ≈ 75 nm) suggest liposome 377 

deformation at the membrane interface. The method thus offers a means to measure liposome 378 

deformation at a mobile interface, which is particularly relevant in the context of understanding the 379 

interaction between liposomes and cellular membranes.  In this context, computer simulations of the 380 

translocation of nanoparticles across lipid bilayers predicted a better penetrability for elongated 381 

particle shapes.67 In addition, a higher membrane association as well as a faster cellular uptake have 382 

been reported for elongated particles in comparison to their spherical counterparts.68, 69 Thus if we 383 

solely consider the shape effects, deformation of large liposomes at the membrane interface could 384 

promote their cellular entry. On the other hand, lipid exchange and membrane fusion may occur 385 

during liposome-cell interactions.70, 71 These processes have been shown to be promoted by 386 

increased membrane curvature72 due to a lowering of the free energy barrier of fusion intermediate 387 

structures.73, 74 Thus, liposome deformation at the membrane interface may hinder fusion and inter 388 

membrane lipid exchange, which may rather hamper cellular uptake. We thus envision that the 389 

approach presented in this work will contribute crucial information, that will help unraveling the 390 
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details of these complex processes, that determine the fate of cellular uptake of nanoparticles in 391 

general and lipid nanoparticles in particular. Specifically, since nanometer scale deformations of 392 

liposomes and variations in their interaction strength with cellular membranes can be determined 393 

for individual liposomes, future studies on cellular uptake of liposomes of different size and rigidity 394 

and their interfacial interactions with cell membrane should provide entirely new information 395 

regarding the importance of shape deformations at the membrane interface for these very often 396 

highly heterogeneous systems. This information could thereby serve as design principle for 397 

developing more effective liposomal nanocarriers for drug delivery applications. It is also 398 

worthwhile to note, that although hitherto unique as tool to explore deformation of individual 399 

vesicles, AFM will inevitably push the laterally mobile vesicles, which thus risk becoming 400 

“invisible”. These limitations were here overcome by applying a shear flow, which from optical 401 

imaging and single particle tracking made it possible to quantify binding-induced deformation of 402 

individual vesicles with sub 10 nm resolution. We thus expect the 2D flow nanometry concept to 403 

contribute novel insights regarding both nanoparticle deformation and to map the adhesion and 404 

binding energies of nanoparticles on mobile interfaces. 405 

Experimental Section 406 

Liposome preparation. Small unilamellar liposomes are fabricated from 1 % fluorescently labeled 407 

1,2-dioleoylsn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (rhodamine-408 

PE) lipids, 5 % negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium 409 

salt) (DOPS) lipids and either 94 % zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 410 

(DOPC) lipids or 94 % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine  (DPPC) lipids by extrusion 411 

above the gel to liquid-crystal transition temperature through membranes with either 100 nm or 200 412 

nm pores. Liposomes are formed in aqueous buffer solution (10 mM Tris [pH 7.5] with 150 mM 413 

NaCl).   414 

SLB formation and liposome adsorption. Supported lipid bilayers (SLBs) are produced from 10 415 
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% positively charged 1,2-distearoyl-sn-glycero-3-ethylphosphocholine (chloride salt) (DOEPC) 416 

lipids and 90 % zwitterionic DOPC lipids by the vesicle fusion method on the inner glass wall of a 417 

micro-fluidic channel, with a length, width W and height H of 17, 3.8 and 0.4 mm, respectively. 418 

After bilayer formation, liposomes are injected into the channel, which electrostatically adhere to 419 

the positively charged supported lipid bilayer, resulting in a relatively low coverage of 420 

approximately one liposome per 400 µm2, allowing the tracking of individual liposomes.  After 421 

liposome deposition, the channel is rinsed with buffer solution to eliminate liposomes in the bulk 422 

obscuring the subsequent imaging. A hydrodynamic flow is applied to induce drift velocity of the 423 

membrane-adhering liposomes. The flow rate is varied from Φ = 0.84 mm3·s-1 up to 23 mm3·s-1, 424 

which corresponds to a shear rate from γ = 6Φ/H2W = 8.3 s-1 up to 227 s-1.  425 

Fluorescence microscopy. The motion of liposomes on SLBs were observed using a fluorescence 426 

microscope with an inverted Eclipse TE 2000 microscope (Nikon) equipped with a high-pressure 427 

mercury lamp, a 60× oil objective (NA 1.49) and an Andor iXon+ EMCCD camera (Andor 428 

Technology, Belfast, Northern Ireland). The acquired images consisted of 512 × 512 pixels with a 429 

pixel size of 0.267 × 0.267 µm, which is equivalent to an image size of 137 × 137µm. During flow, 430 

a total of 350 fluorescence images are taken over a period of 17.5 s with a frame rate of 20 s-1.   431 

Liposome tracking. In the fluorescence images, liposomes are identified as clusters of more than 432 

three and less than 100 pixels, whose fluorescence intensities exceeds two times the intensity noise 433 

level. Assuming a constant surface number density of the fluorescence molecules within the 434 

liposome membranes, the radius of an individual liposome can be estimated from the square root of 435 

the fluorescence I1/2 emitted by the liposome. The proportionality constant between liposome radius 436 

and I1/2 is determined by matching the peak of the resulting radius distribution to that obtained from 437 

dynamic light scattering (DLS) experiments (Malvern Instruments, UK). Liposome positions in 438 

subsequent frames are matched to construct liposome trajectories. A trajectory is terminated when 439 

the liposome displacement exceeds five pixels or when the liposome comes within five pixels of 440 
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another liposome. In order to determine liposome diffusivity and drift velocity from the trajectory, 441 

we compute for each trajectory the horizontal (flow direction) mean displacement 𝛥𝑥 and the 442 

horizontal plus vertical mean squared displacement  𝛥𝑟2 = 𝛥𝑥2 + 𝛥𝑦2 as functions of the elapsed 443 

time t. For particles moving on a plane, with (horizontal) drift U and diffusivity D, these quantities 444 

evolve as: 445 

𝛥𝑥 = 𝑈𝑡,              (4) 446 

and: 447 

𝛥𝑥2 + 𝛥𝑦2 = 4𝐷𝑡 + 𝑈2𝑡2.            (5) 448 

Measured mean displacement and mean squared displacement are fitted to Eqs. (4) and (5), which 449 

provides the liposome velocity U and diffusivity D. In the analysis we only consider trajectories that 450 

are within 3% of the theoretical predictions [Eqs. (4) and (5)]. We also ignore liposomes that are 451 

stagnant, i.e. when the diffusivity or the velocity is less than 100th of the respective mean value. 452 
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