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A multi-component discrete 
Boltzmann model for 
nonequilibrium reactive flows
Chuandong Lin1, Kai Hong Luo   1,2, Linlin Fei1 & Sauro Succi3

We propose a multi-component discrete Boltzmann model (DBM) for premixed, nonpremixed, 
or partially premixed nonequilibrium reactive flows. This model is suitable for both subsonic and 
supersonic flows with or without chemical reaction and/or external force. A two-dimensional sixteen-
velocity model is constructed for the DBM. In the hydrodynamic limit, the DBM recovers the modified 
Navier-Stokes equations for reacting species in a force field. Compared to standard lattice Boltzmann 
models, the DBM presents not only more accurate hydrodynamic quantities, but also detailed 
nonequilibrium effects that are essential yet long-neglected by traditional fluid dynamics. Apart from 
nonequilibrium terms (viscous stress and heat flux) in conventional models, specific hydrodynamic 
and thermodynamic nonequilibrium quantities (high order kinetic moments and their departure from 
equilibrium) are dynamically obtained from the DBM in a straightforward way. Due to its generality, the 
developed methodology is applicable to a wide range of phenomena across many energy technologies, 
emissions reduction, environmental protection, mining accident prevention, chemical and process 
industry.

Reactive flows are ubiquitous in nature and paramount to the sustainable development of society and ecological 
environment all over the world. For example, chemical energy released from fossil fuel in combustion comprises 
over 80% the world’s energy utilization1. As the main human’s threats, atmospheric pollution, climate change and 
global warming are directly relevant to harmful emissions from reactive flows, which involve a broad range of 
physicochemical phenomena, interacting over various spatial and temporal scales2. Besides, understanding of 
reactive flows is helpful to prevent fires in buildings, gas explosion in mines, burst in chemical factories, etc. Due 
to their significant importance to human society, reactive flows have attracted considerable attention in experi-
mental, theoretical, and numerical fields. Actually, it is a challenging issue for traditional macroscopic or micro-
scopic models to efficiently and accurately describe combustion phenomena where the span of spatial-temporal 
scales is relatively large and nonequilibrium phenomena play essential roles3–5, In fact, the nonequilibrium effects 
always change physical quantities (such as density, velocity, temperature, etc) in the evolution of fluid systems 
away from equilibrium, especially in transient and/or extreme conditions. A promising way to address this issue 
is to employ a mesoscopic kinetic model, lattice Boltzmann model (LBM), based on suitably simplified versions 
of the Boltzmann equation6–14.

Recently, LBM has emerged as a versatile tool to simulate various complex systems, including reactive 
flows15–31. Previous LBMs were successfully employed as solvers of macroscopic governing equations, such as 
hydro-chemical equations for incompressible systems15–31. Physical quantities (such as pressure, velocity, tem-
perature) can be described separately by several distribution functions in traditional LBMs, which are different 
from the Boltzmann equation where a single distribution function contains all information. For traditional LBMs, 
only a few low order kinetic moments of discrete equilibrium function are used, and the high order moments 
are not correctly reproduced32. This limitation results in the failure of recovering the complete Navier-Stokes 
(NS) equations and providing more information on nonequilibrium behaviours. To overcome those problems, 
one promising method is to resort to a variant of traditional LBM, discrete Boltzmann model (DBM), where a 
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required number of high order moments are satisfied33–38. Different from traditional LBMs, DBM contains both 
equilibrium and nonequilibrium physical quantities that stem from the same discrete distribution function33–38.

Over the past years, the versatile DBM has been effectively applied to thermal phase separation, fluid instabili-
ties, reactive flows, etc33–38. The DBM for reactive flows was firstly presented by Yan et al. in 201335. Then, Lin et al. 
extended the DBM to reactive flows in a polar coordinate36. In 2015, Xu et al. proposed a multiple-relaxation-time 
DBM for reactive flows where the specific heat ratio and Prandtl number are adjustable37. The next year, a DBM 
is formulated for reactive flows where chemical reactant and product are described by two coupled distribution 
functions38. However, previous DBMs are suitable for premixed reactive flows, but not for nonpremixed or par-
tially premixed reactive flows35–38. For the sake of simulating both subsonic and supersonic nonequilibrium reac-
tive flows with premixed, nonpremixed, or partially premixed reactants, we propose a multi-component DBM 
in this work. The DBM presents two ways to access the thermodynamic nonequilibrium behaviours. One is to 
measure the viscous stress and heat flux that are described by traditional NS models; The other is to calculate 
the kinetic moments of the difference between equilibrium and nonequilibrium discrete distribution functions, 
which is beyond conventional hydrodynamic models. Such capability is the main object of the present work.

Discrete Boltzmann model
Without loss of generality, we consider the oxidation of propane in air using the one-step overall reaction,

+ → +C H 5O 3CO 4H O, (1)3 8 2 2 2

where C3H8, O2, CO2, and H2O denote propane, oxygen, carbon dioxide, and water, respectively. The stoichiomet-
ric coefficients for them are a a a a[ , , , ]C H O CO H O3 8 2 2 2  = [−1, −5, 3, 4]. Nitrogen is assumed to be inert. The 
overall reaction rate reads

ω = −k n n E RTexp( / ), (2)aov ov
C H O3 8 2

with kov the reaction coefficient, nσ molar concentration, Ea effective activation energy, R universal gas constant, T 
temperature. The mass change rate of species σ is ωσ = aσ ⋅ Mσ ⋅ ωov. In addition to the one-step reaction, detailed 
or reduced multi-step chemical kinetics can also be employed.

Let us introduce the discrete Boltzmann equation,
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Here σfi  ( σfi
eq) indicates the discrete (equilibrium) distribution function, σv i  the discrete velocity, t (τσ) the 

(relaxation) time. Ωσ
i , σRi , and σGi  are the collision, reaction and force terms accounting for the molecular colli-

sion, chemical reaction and external force, respectively. The collision term in Eq. (4) obeys the conservation of 
mass, momentum, and energy, from which the relations between the physical quantities ( σn , n, σu , u, σT , T) and 
the distribution function σfi  are obtained38. The symbols with (without) superscript σ denote the physical quan-
tities of the species (mixture). In Eq. (5), σ⁎n  and ⁎T  ( σn  and T) denote the molar concentration and temperature 
after (before) chemical reaction within time step τσ. Similarly, in Eq. (6), the hydrodynamic velocity changes from 

σu  to σ†u  within time τσ due to external force, meanwhile the temperature changes from σT  to σ†T . The discrete 
equilibrium function σfi

eq is linked with the formula,
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in the way that a required number of kinetic moments calculated by the integral of fσeq are equal to those by the 
summation of fi

σeq. In Eq. (7), mσ stands for molar mass, D = 2 space dimension, Iσ extra degrees of freedom cor-
responding to molecular rotation or vibration. There are 7 moments satisfied by fi

σeq = fi
σeq(nσ,u,T) in this work. 

Specifically,
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which can be expressed in an uniform form =f̂ Mf
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The discrete velocities vi
σ and ηi

σ are (see Fig. 1),
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discrete equilibrium distribution is expressed by

= .− ˆf M f (16)eq eq1

One significant capability of the DBM is to investigate nonequilibrium manifestations by measuring the fol-
lowing physical variables,
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It is easy to prove that, via the Chapman-Enskog multiscale analysis, the DBM is in line with the following 

modified NS equations,
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−σu u ]}2 2 , where =σ σ σp n T  indicates pressure, = +σ σ σ σe D I T m( ) /(2 ) internal energy per unit mass, 
µ τ=σ σ σp  dynamic viscosity coefficient, κ γ µ=σ σ σ heat conductivity, and γ = + + +σ σ σD I D I( 2)/( ) spe-
cific heat ratio. The superscript “′” represents the change rate of physical quantities due to the chemical reaction. 
In fact, applying the operator ∑σ to both sides of Eqs (21)–(23) gives NS equations for the whole system, which 
reduces to conventional NS equations when =σu u and =σT T . Obviously, Eqs (21)–(23) gives a more detailed 
description than the conventional NS equations. The latter is just a special case of the former.

Furthermore, dynamic viscosity and heat conductivity in the NS equations are regarded as two important 
thermodynamic nonequilibrium manifestations or physical effects on fluid flows. In fact, a more detailed way to 
study the nonequilibrium behaviours is to investigate the departure of high order velocity moments from their 
local equilibrium counterparts, as shown in Eqs (17)–(20). Those kinetic moments of the difference between 
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Figure 1.  Sketch of the two-dimensional sixteen-velocity model.
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nonequilibrium and equilibrium distribution functions have significant physical meanings. In particular,  
Δσ

2  is associated with viscous stress tensor and nonorganised momentum fluxes, Δσ
3,1 and Δσ

3  are related to  
nonorganised energy (heat) fluxes, Δσ

4,2 corresponds to the flux of nonorganised energy (heat) flux36,37, The  
terminology “nonorganised” is relative to “organised”. The latter refers to the collective motion of a fluid flow, 
while the former corresponds to the molecular individualism on top of the collective motion34. Moreover, 
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in α direction. Obviously, DBM provides more nonequilibrium information on various species in fluid flows, 
which is an essential advantage over traditional models.

Numerical simulation
To validate this DBM, we conduct five simulation tests. Test one is the combustion of (premixed, nonpremixed, 
and partially premixed) propane-air filled in a free-falling box. The released heat in constant volume and the 
external force effects are demonstrated. The second test is a subsonic flame at constant pressure. In the third 
part, to show its suitability for high speed compressible systems, the DBM is used to simulate a shock wave. Its 
capability to investigate nonequilibrium effects is verified as well. A supersonic reacting wave is simulated in the 
fourth part. The first four tests are 1-dimensional (1-D) cases. The last is for a typical 2-D case, Kelvin-Helmholtz 
(KH) instability.

Moreover, the first order Euler forward time discretization and the second order nonoscillatory and 
nonfree-parameters dissipative finite difference scheme39 are adopted for the temporal and spatial derivatives in 
Eq. (3) in this section. Hence, the discrete velocities vi are independent of the grid mesh Δx and Δy. For the pur-
pose of accuracy and robustness, it is preferable to set the values of discrete velocities ( σva , σvb , σvc , σvd ) around the 
values of | |u  and σDT m/ , and choose (η σ

a , η σ
b , η σ

c , η σ
d ) around the value σ σI T m/ , which is reasonable on 

account of Eqs (8)–(10).

Combustion in constant volume.  First of all, we simulate the combustion of propane-air filled in a 
free-falling box, which consists of three parts with volumes V1, V2 and V3, respectively. The fixed volume of the 
box is V0 = V1 + V2 + V3, and V1:V2:V3 = 3:119:78. Initially, the left part is filled with propane, the middle part 
is full of air, and the right part is occupied by the propane-air mixture with equivalence ratio 0.6. In each part, 
the particle number density is 40.6mol ⋅ m−3, temperature 300 K, and pressure 1 atm. Premixed, nonpremixed 
and partially premixed combustion phenomena take place simultaneously in this box after ignition. Specifically, 
the nonpremixed combustion takes place between the left and middle parts, the partially premixed combustion 
occurs between the middle and right parts with a changing equivalence ratio, and the premixed combustion is 
in the rightmost part with a constant equivalence ratio. Three discrete velocity models (D2V16, D2V2437, and 
D2V65 40) are employed for this simulation. The grid is Nx × Ny = 200 × 1, spatial step Δx = Δy = 5 × 10−7 m, 
temporal step Δx = Δy = 1.25 × 10−10 s.

Figure 2 illustrates the simulation results and exact solutions during the chemical reaction in the free-falling 
box. Theoretically, the density remains constant, ρ = 1.30290kg ⋅ m−3, the velocity changes as uy = gt, with 
g = −9.8m ⋅ s−2, and the sum of internal energy and chemical heat remains constant, E = 2.59050 × 106J ⋅ m−3. 
As for the simulation, each model (D2V16, D2V2437, and D2V65 40) gives the density ρ = 1.30290kg ⋅ m−3 and 
the energy E = 2.59050 × 106J ⋅ m−3 in the whole process, which coincide with the exact solutions. There are tiny 
differences between the simulation results and exact solutions of the velocity. For example, at time t = 3 × 10−4 s, 
the three models (D2V16, D2V2437, and D2V65 40) give simulation results uy = −2.9402 × 10−3, −2.9399 × 10−3, 
and −2.9401 × 10 −3m ⋅ s−1, respectively. Compared to the exact value uy = −2.94 × 10−3m ⋅ s−1, their relative 
errors are 0.0068%, 0.0034%, and 0.0034%, respectively. Obviously, all simulation results agree well with the exact 
solutions.

Figure 2.  The average physical quantities of the reactive mixture in the free-falling box versus time t: (a) mass 
density ρ, (b) vertical speed uy, (c) the sum of internal energy and chemical heat E. The symbols (squares, 
circles, and triangles) denote simulation results (D2V16, D2V24, and D2V65), the solid lines exact solutions.
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Furthermore, after the chemical reaction is completed, the adiabatic constant volume temperature is 2078K 
calculated by the three DBMs, while it is 2614K obtained by the standard LBM12,41, The parameters for the LBM in 
this work are the same as those in ref.41. Compared with the experimental datum 2080K42, the relative differences 
are 0.1% for the DBM and 25.7% for the standard LBM, respectively. Physically, the DBM is suitable for compress-
ible systems with adjustable ratio of specific heats, while the LBM in refs12,41, can only be used for the case with 
constant pressure and fixed ratio of specific heats.

To discuss computational costs of various discrete velocity models, we keep a record of computing times 
required by the aforementioned simulation in Table 1. The computational facility is a personal computer with 
Intel(R) Core(TM) i7-6700K CPU @ 4.00 GHz and RAM 32.00 GB. There are 16, 24, and 65 (16, 24, and 16) dis-
crete velocities (moment relations) in D2V16, D2V2437, and D2V65 40, respectively. And the computing times are 
1560 s, 3960 s, and 4980 s for the three models, respectively. Obviously, D2V24 and D2V65 models need larger 
RAM and longer time than D2V16 model.

Flame at constant pressure.  Let us simulate a flame at constant pressure. It travels with subsonic speed in 
a channel from left to right. In front of the flame is the propane-air mixture with equivalence ratio 0.6, particle 
number density 44.6 mol ⋅ m−3, temperature 300 K, and pressure 1 atm. The grid is Nx × Ny = 2500 × 1, spatial step 
Δx = Δy = 2 × 10−5 m, temporal step Δt = 1.25 × 10−10 s.

Figure 3 shows the evolution of ωov (left) and Δ xx2
o2  (right) versus x. The peak of ωov corresponding to the most 

active chemical reaction is ahead of the trough of Δ xx2
o2  where nonequilibrium manifestations are intense and 

physical gradients are sharp. Note that the nonequilibrium manifestations can be employed to capture the flame 
or other interfaces34. The flame speed, 0.71 m/s, can be obtained from the profiles of either ωov or Δ xx2

o2 . And the 
flow velocity is 0.60 m/s in front of the flame. Hence, the burning velocity is (0.71−0.60) m/s = 0.11 m/s, which 
equals the experimental result 0.11 m/s43. While the standard LBM41 gives a relative error, 9.1%, compared with 
the experimental result43.

Moreover, in the DBM simulation, the pressure is close to 1atm around the flame, and the temperature is 
1705K behind the flame, which is consistent with the experiment2, while the temperature is 2028K in the tradi-
tional LBM12,41, (see Fig. 4). The latter’s relative error is 18.9% compared with the experimental result2. Physically, 
the ratio of specific heats in the DBM is tunable, while the one in the LBM in refs12,41, is fixed at 2. Besides, the 
chemical reaction does not affect the flow field in this LBM41, while the chemical reaction and fluid flow are nat-
urally coupled in our DBM.

Shock wave.  A shock wave is a type of disturbance that propagates faster than the local speed of sound in a 
fluid with significant compressible effects. Its applications cover the fields of medicine, astrophysics, industrial 
engineering, etc. For example, it becomes effective medical treatment for kidney and ureteral stones. It can be 
used for cell transformation, preservative impregnation in bamboo, sandal oil extraction, and removal of micron 
size dust from silicon wafer surfaces44. To validate the DBM for high-speed compressible systems, we conduct the 
simulation of a shock wave. The wave propagates in the air from left L to right R. The initial field is,

Model Number of discrete velocities Number of moment relations Computing time

D2V16 16 16 1560 s

D2V24 24 24 3960 s

D2V65 65 16 4980 s

Table 1.  Computing times for simulation of combustion in constant volume with various models.

Figure 3.  The flame profiles at constant pressure at times t1 = 0.055s, t2 = 0.0625s, and t3 = 0.07s. The left panel 
is for the overall reaction rate ωov, and the right for Δ2xxO2 which is two times the departure of translational 
energy of O2 in x direction from its equilibrium counterpart.
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The grid is Nx × Ny = 40000 × 1, spatial step Δx = Δy = 1 × 10−8 m, temporal step Δt = 1.25 × 10−12 s. Figure 5 
plots the profiles of the shock: (a) ρ, (b) ux, (c) T, (d) p. The squares denote DBM results, the lines exact solutions. 
The DBM results behind the shock wave are (ρ,ux,uy,T) = (1.58407kg ⋅ m−3,106.637m ⋅ s−1,0m ⋅ s−1,333.612K), 
which equal the exact values in Eq. (24) precisely.

To exhibit the capability of the DBM to study nonequilibrium behaviours, Fig. 6 shows the nonequilibrium 
manifestations around the shock wave. Figure 6(a) displays the translational energy of oxygen in x direction 

fM ( )xx
1
2 2

O2 , its equilibrium counterpart fM ( )xx
eq1

2 2
O2 , and the exact solution ρ+n T ux

O O 22 2 . Figure 6(b) illustrates the 
departure of translational energy of oxygen in x degree of freedom from its equilibrium state Δ xx

O1
2 2

2 . Figure 6(c) 
and (d) are for nitrogen. It is clear that fM ( )xx

eq
2
σ  coincides with the solution ρ+σ σn T ux

2 in panels (a) and (c), 
respectively. Physically, the translational energy of oxygen (or nitrogen) in x degree of freedom travels faster than 
its equilibrium counterpart. Consequently, its departure from the equilibrium state is greater than zero around 

Figure 4.  The flame temperature at constant pressure. The solid (dashed) line denotes DBM (LBM) results, the 
squares experimental data.

Figure 5.  The profiles of a shock wave: (a) mass density ρ, (b) velocity ux, (c) temperature T, (d) pressure p. The 
squares represent DBM results, the lines exact solutions.
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the shock wave. Furthermore, there are few differences between the DBM and the approximate solution38 in pan-
els (b) and (d), respectively. Because the approximate solution is obtained by the first-order truncation of distri-
bution function38. The simulation results are satisfactory.

Supersonic reacting wave.  Supersonic reactive flows have been successfully used to deposite coating to a 
surface, clean equipment, mine for minerals, weld metals, etc. Numerical research of supersonic reacting wave 
has practical significance for the prevention of gas explosion in mining, flammable dust fires, and furnace burst 
in industry, etc. For the sake of verifying its suitability for supersonic reactive flows, the model is used to simulate 
a reacting wave. The initial field is divided into two parts. The right part is occupied by the premixed propane-air 
with equivalence ratio 0.524865, the left part by the chemical products. The reacting wave travels from left to 
right. And physical quantities satisfy the Hugoniot relations, i.e.,

ρ

ρ




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= . ⋅ . ⋅ ⋅ .
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The grid is Nx × Ny = 8000 × 1, spatial step Δx = Δy = 5 × 10−7 m, temporal step Δt = 6.25 × 10−11 s.
Figure 7 displays the wave profiles: (a) ρ, (b) ux, (c) T, (d) p. The squares indicate DBM results, the lines 

analytic solutions of Zeldovich-Neumann-Doering (ZND) theory2. The DBM results behind the wave are  
(ρ,ux,uy,T) = (2.00166kg ⋅ m−3,666.356m ⋅ s−1,0m ⋅ s−1,2383.86K). Compared with the first row in Eq. (25), the 
relative differences are 0%, 0%, 0%, and 0.8%, respectively. Moreover, DBM gives the wave speed 1632 m/s, and 
the analytic solution is 1631.6 m/s. The relative difference between them is 0.02%. Additionally, there are slight 
differences between the theoretical and numerical results around the wave peak. Physically, the ZND theory 
assumes a sharp discontinuity at the wave peak and ignores the viscosity, heat conduction and other nonequilib-
rium effects2. On the other hand, the DBM takes into account the viscosity, heat conduction and other transport 
processes. Thus, the DBM is more reliable than the simple ZND theory.

Kelvin-Helmholtz instability.  To demonstrate that the DBM has a good ability of capturing interface 
deformation, we simulate a typical 2-D phenomenon, KH instability. The initial field, with area 0.6 m × 0.2 m, 
consists of two parts. The left part is full of propane with vertical speed 200 m · s−1, while the right part is filled 
with air with −200 m · s−1. Considering the transition layer between the two parts, the field jump at the interface 
is smoothed by a tanh profile with width 0.002 m. The temperature is 300 K, and pressure 1 atm. Between the 
propane and air is a sinusoidal interface with amplitude 0.003 m, which is used to promote the KH instability. 
Moreover, the outflow and periodic boundary conditions are adopted in the x and y directions, respectively. The 
grid is Nx × Ny = 3000 × 1000, spatial step Δx = Δy = 2 × 10−4 m, temporal step Δt = 2.5 × 10−8 s.

Figure 6.  Nonequilibrium manifestations around the shock wave: (a) translational energy of oxygen in x 
direction, (b) departure of translational energy of oxygen in x direction from equilibrium state, (c) translational 
energy of nitrogen in x direction, (d) departure of translational energy of nitrogen in x direction from 
equilibrium state.
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Figure 8 shows the molar fraction of propane at four different times. Initially, the interface starts to wrinkle 
due to the initial perturbation and velocity shear. A rolled-up vortex emerges after the initial linear growth stage. 
Then there is a large vortex around the interface. The evolution of the field is qualitatively similar to previous 
studies38,45, Moreover, Fig. 9 delineates the contour of pressure with velocity field, corresponding to Fig. 8(c). 
Compared Fig. 9 with Fig. 8(c), we can find that the minimum pressure, p = 0.257atm, is located at, (0.3004 m, 
0.0750 m), the center of the vortex. While the maximum, p = 1.24atm, takes place at, (0.3008 m, 0.1708 m), where 
counterflows above the vortex encounter each other and the horizontal velocity is close to zero. Physically, the 
pressure gradient around the vortex provides the centripetal force for the rotating flow.

To quantitatively validate the results, we plot the logarithm of absolute value of the minimum perturbed hori-
zontal velocity, ln|ux−min|, versus time, see Fig. 10. The squares are for DBM results, the solid line represents the 
fitting function F(t) =−3.89713 + 11.3302t, and the dashed line stands for the analytic solution 

= − . + F t At( ) 3 95868  with the growth rate = .A 12 099546. Here the nondimensionalization is used the same 
as ref.46. The relative difference of the growth rate between the fitting function and the analytic solution is 6.4%. 
Furthermore, we compare the simulation frequency 1256 Hz with the analytic solution 1248 Hz38,46. The relative 
difference is 0.6%. The difference mainly comes from the fact that the effects of compressibility, viscosity, and heat 
conduction are considered by the DBM, but ignored by the analytic theory46.

Conclusions
We present a reactive multi-component DBM in combination with a one-step overall chemical reaction. The 
effects of chemical reaction and external force are considered. A two-dimensional sixteen-velocity model D2V16 

Figure 7.  Profiles of a supersonic reacting wave: (a) mass density ρ, (b) velocity ux, (c) temperature T, (d) 
pressure p. The squares stand for DBM results, the lines exact solutions.

Figure 8.  The molar fraction of propane in the evolution of KH instability at various times: (a) 0 s, (b) 5 × 10−4 s, 
(c) 10−3 s, (d) 2 × 10−3 s.
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is proposed with adjustable parameters ( σva , σvb , σvc , σvd ) controlling discrete velocities and (η σ
a , η σ

b , η σ
c , η σ

d ) for 
internal energies in extra degrees of freedom. The specific heat ratio of each species σ is flexible since extra 
degrees of freedom are taken into account. This model is suitable for premixed, nonpremixed or partially pre-
mixed combustion, from subsonic to supersonic fluid flows, in or out of equilibrium. Through the 
Chapman-Enskog multiscale analysis, the DBM recovers the modified NS equations for reactive species with 
external force effects in the hydrodynamic limit. In addition to the usual nonequilibrium terms (viscous stress and 
heat flux) in NS models, more detailed hydrodynamic and thermodynamic nonequilibrium quantities (high order 
kinetic moments and their departure from equilibrium) can be calculated in the DBM dynamically and conven-
iently. Since the DBM can provide detailed distributions of nonequilibrium quantities, it permits to assess the 
corresponding numerical predictions of NS models without considering the nonequilibrium effects. Hence, the 
DBM has the potential to offer more accurate information to help design devices operating in transient and/or 
extreme conditions away from equilibrium. Furthermore, thanks to its mesoscopic nature, the DBM could pro-
vide deeper insight into ubiquitous reactive or nonreactive fluid flows with a large span of spatial-temporal scales. 
Finally, due to its generality, the developed methodology is applicable to a wide range of phenomena across many 
energy technologies, emissions reduction, environmental protection, mining accident prevention, chemical and 
process industry.
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