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Abstract

Because they bridge the genetic gap between rodents and humans, non-human primates (NHPs) play a major role
in therapy development and evaluation for neurological disorders. However, translational research success from NHPs
to patients requires an accurate phenotyping of the models. In patients, magnetic resonance imaging (MRI) combined
with automated segmentation methods has offered the unique opportunity to assess in vivo brain morphological changes.
Meanwhile, specific challenges caused by brain size and high field contrasts make existing algorithms hard to use routinely
in NHPs. To tackle this issue, we propose a complete pipeline, Primatologist, for multi-region segmentation. Tissue
segmentation is based on a modular statistical model that includes random field regularization, bias correction and
denoising and is optimized by expectation-maximization. To deal with the broad variety of structures with different
relaxing times at 7T, images are segmented into 17 anatomical classes, including subcortical regions. Pre-processing steps
insure a good initialization of the parameters and thus the robustness of the pipeline. It is validated on 10 T2-weighted
MRIs of healthy macaque brains. Classification scores are compared with those of a non-linear atlas registration, and

the impact of each module on classification scores is thoroughly evaluated.
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1. Introduction

Magnetic resonance imaging (MRI) is the modality of
choice to investigate the human brain structure. It is non-
invasive and offers the opportunity to image brain tissues
in vivo at a millimetric resolution. With the advances in
computer science, a number of automated methods have
been developed to extract and analyze brain morphology
and anatomy. When it comes to group comparisons, two
strategies stand out: landmark-based and registration-
based methods (Mangin et al., 2004b). Landmark-based
methods consist in the segmentation in the subject’s ref-
erential of well-defined anatomical regions such as the
subcortical nuclei (Fischl et al., 2002; Patenaude et al.,
2011; Visser et al., 2015), the hippocampus (Chupin et al.,
2009) or the cortical sulci (Mangin et al., 2004a), while
coordinate-based methods rely on the parametrization of
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the brain topography either through the registration of
volumes (Ashburner, 2000) or surfaces (Fischl et al., 1999)
towards a template, or through a theoretical coordinate
system (Auzias et al., 2013; Régis et al., 2005; Talairach
and Tournoux, 1988).

On a technical standpoint, most methods start with the
classification of brain voxels into tissue classes, typically
cerebrospinal fluid (CSF), gray matter (GM) and white
matter (WM), sometimes into more precise anatomical re-
gions. The first strategies proposed consisted in the seg-
mentation of multi-contrast images based solely on the in-
tensity histogram with supervised or unsupervised classi-
fication techniques (Vannier et al., 1988), with Gaussian
mixture models (GMMs) showing the best efficacy. Liang
et al. (1992) first proposed to fit such a parametric model
to cerebral MRI data by expectation-maximization (EM).
This framework was later extended with bias field esti-
mation (Wells et al., 1996) and regularizing Markov ran-
dom fields (MRFs) (Goldbach et al., 1991; Liang et al.,
1994). To produce more robust segmentations in the case
of low contrast images, Ashburner and Friston (1997) and
Van Leemput et al. (1998) proposed to initialize the fitting
process with tissue probability maps derived from a set of
manually segmented images. However, to avoid segmenta-
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tion bias, careful consideration should be given to the rep-
resentativeness of the population within this set. Because
GMDMs are simple and extremely flexible, they are still the
basis of some of the most frequently used MRI analysis
tools such as Freesurfer (Fischl et al., 2002), FSL (Zhang
et al., 2001) and the voxel-based morphometry toolbox of
SPM (Ashburner and Friston, 1997, 2005). Another set
of methods is based on the optimal fusion of multiple seg-
mentations. Building on Warfield et al. (2004)’s STAPLE
fusion method, Rohlfing et al. (2003) proposed a segmen-
tation method solely based on the registration — eventu-
ally several registrations with varying parameters — of a
representative collection of segmented images towards the
target image space and the fusion of their labels. An ac-
curate segmentation requires however a large number of
registrations, and is thus computationally expensive. An
extensive review of multi-atlas segmentation methods can
be found in Iglesias and Sabuncu (2015).

Automated methods have easily found a field of appli-
cation in neurodegenerative diseases. Indeed, cerebral at-
rophy is one of the hallmarks of these pathologies. Rosas
et al. (2002) opened the way with the characterization of
cortical thinning patterns in Huntington’s disease (HD).
Applications also include normal aging (Kochunov et al.,
2005), Parkinson’s disease (PD) (Lyoo et al., 2010; Pereira
et al., 2012) and Alzheimer’s disease (AD) (Chupin et al.,
2009; Dickerson et al., 2009; Frisoni et al., 2007; Reiner
et al., 2012). Supporting the use of MRI-based techniques,
a strong correlation has been demonstrated between MRI-
based volumetry and stereology-based neuron count in AD
(Bobinski et al., 1999).

If numerous methods and software packages have been
developed to study the human brain, preclinical image
analysis has somehow been left aside, hampered by the
small size of rodent and NHP brains and by the low
availability of preclinical imaging systems. As a result,
few morphological analyses of healthy NHP brains have
been carried out: the majority were published later than
2012 whereas cortical thickness measures in patients were
possible since 2002 (Rosas et al., 2002). Most of them
took advantage of clinical pipelines such as FSL (Hopkins
and Avants, 2013; Latzman et al., 2015; Liu et al., 2015;
McLaren et al., 2010; Wey et al., 2013), Atropos (Hopkins
and Avants, 2013), SPM (McLaren et al., 2009), FreeSurfer
(Van Essen et al., 2012) or BrainVISA (Autrey et al., 2014;
Bogart et al., 2014, 2012; Hopkins et al., 2010; Kochunov
et al., 2010; Rogers et al., 2010) sometimes in combination
with ad hoc NHP-specific treatments such as adapted skull
stripping or intensity normalization. To ease the transla-
tional process, a pipeline dedicated to NHP MRI analysis
should be made available.

Depending on the context, NHP imaging presents dif-
ferent challenges. Because the macaque brain is twenty
times smaller than the human brain, a millimetric reso-
lution is low and partial volume effect becomes a critical
issue. Additionally, head muscles are prominent in NHPs
and possess a T1 similar to that of brain tissue, hamper-

ing the skull stripping process. It is thus common to also
acquire T2-weighted (T2w) images in which muscles are
much more distinguishable from the brain. With high
field preclinical systems, other challenges arise. At 7T,
magnetization-prepared rapid gradient echo (MPRAGE)
sequences usually used for T1-weighted (T1w) imaging are
highly sensitive to B1 inhomogeneity (Seiger et al., 2015).
Despite the development of a self-correcting T'1w sequence
(Marques et al., 2010; Van de Moortele et al., 2009), a com-
mon practice is to use fast spin echo T2w sequences that
are less sensitive to magnetic field inhomogeneity. T2w im-
ages, however, show less contrast between gray and white
structures. Additionally, different anatomical regions that
would be considered WM in T1w images — cortical WM,
corpus callosum and pallidum — present highly different
T2w signal. The broad variety of T1lw and T2w signals
between regions had previously been described by Fischl
et al. (2002). A generic segmentation pipeline should thus
be sequence-independent and robust to magnetic field in-
homogeneity, low resolution and low contrast.

As a result, we chose a statistical model, similar to that
of Zhang et al. (2001), where major parameters are opti-
mized by EM. It models intensity distribution as a mixture
of Gaussians, with a MRF that integrates spatial depen-
dency constraints. The MRF priors were obtained from
the anatomical atlas published by Calabrese et al. (2015).
That same atlas was registered towards the MRI space and
derived into tissue priors. The bias field was estimated by
low-pass filtering as in Wells et al. (1996) and Zhang et al.
(2001). Additionally, we investigated the use of a denois-
ing step, integrated to the EM scheme, that was never pro-
posed before to the best of our knowledge. To make the
whole process more robust, the EM segmentation was pre-
ceded by a first bias field estimation with BrainVISA bias
correction tool (Mangin, 2000) and a new skull-stripping
step robust to the problem caused by NHP head muscles
was proposed. To better deal with registration errors, tis-
sue priors were initialized from a fast 4-class GMM. The
final segmentation can be used to compute volumes or to
supervise PET analyses.

A complete automated pipeline was implemented in
BrainVISA, a freely available image analysis software
(www.brainvisa.info), and will be available with its next
release (4.6). It performs tissue segmentation into multi-
ple anatomical regions and is compatible with BrainVISA’s
sulci segmentation pipeline. It also takes advantage of
BrainVISA’s graphical interface, pipelining tools and par-
allel processing framework. It was validated on manually
segmented T2w images acquired in 10 healthy macaques.
Two impactful quantitative parameters that modulate the
effects of the MRF and the atlas-derived priors were op-
timized and we took advantage of the modular structure
of our pipeline to investigate the impact of its different
parts (bias estimation, MRF, denoising) on the resulting
segmentation.
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2. Material and Methods

We tried to use common notations throughout this ar-
ticle with, notably, y naming observed intensities, x nam-
ing latent tissue classes and 8 naming model parameters.
More details are given in Appendix A.

2.1. Statistical model

Statistical models of intensity are widely used for MRI
segmentation because, in their context, Bayesian inference
can be used to recover class labels based on both observed
data and a priori knowledge. Such models have been ex-
tensively described before and “unified” models, which de-
scribe all parameters in the same statistical framework,
have become increasingly popular. They present the ad-
vantage that parameters can then be optimized all to-
gether and that Bayesian priors can easily be included.
Common quantitative parameters in MRI intensity mod-
els are, among other, Gaussian parameters, prior tissue
probabilities and bias field.

Latent parameters can be optimized by searching for
their maximum likelihood (ML) estimate, which makes
sense if they are “subject-dependant”, or by searching for
their maximum a posteriori (MAP) estimate, which makes
sense if their prior probability is known and thus if they are
“population-dependant”. If parameters are thought to be
of very low-variance or if their optimization is considered
intractable, they can be set to a pre-defined fixed value.

When the statistical model depends on hidden variables,
class labels in our case, the EM algorithm (Dempster et al.,
1977), whose general principles are recalled in Appendix
B, can be used to find local ML estimates of the parame-
ters. The algorithm alternates between approximating the
posterior probability of the latent variable given parameter
estimates and updating these parameter estimates.

2.1.1. Gaussian mizture model

Brain MR signal is usually described as a mixture of
log-normal densities. In a theoretical case without par-
tial volume effect, each voxel would belong to tissue class [
that would generate a signal dependant on its intrinsic T'1
or T2 under a log-normal law of parameters (u;, o;). The
necessity to log-transform the data is justified by the expo-
nential relationship that exists between intrinsic T1 or T2
values and the received MR signal at a given sequence pa-
rameter (inversion or echo time). From now on, we will al-
ways consider the log-transformed intensities y = log(y™),
where y™ is the magnitude MR image.

Under this model, labels of different voxels are supposed
to be independent from each other: X; follows a discrete
probability density P(X; = 1) = A, (the prior). The
density function of Y; is conditioned by X; under the usual
GMM and the full density function of Y; is then:

p(Yi:yi):ZP(Yi:yi\Xi:l)P(Xi:l) - (M
leL

According to Bayes’ rule, class probability conditioned
by the observed intensity is:

PX;=11Yi=y) xgi|m,o)P(Xs=1). (2

Ifv(i,j) € Z, P(X; = 1) = P(X; = ) = a, the prior
is said to be stationary and represents the proportion of
voxels belonging to each class in the image. This assump-
tion is often made in histogram fitting applications. In
this work, we chose to incorporate prior knowledge about
the possible location of the different tissue classes, as de-
scribed by Van Leemput et al. (1999) and Ashburner and
Friston (2005). Priors are then said to be non-stationary.

2.1.2. Markov random field

The fact that all voxels belonging to the same tissue
class do not generate the exact same intensity p; can be
explained in two non-exclusive ways: tissue type [ can ac-
tually be composed of a variety of subtissues that possess a
different but close T1 or T2, and noise inherent to the ac-
quisition process can modify the intrinsic signal. The first
explanation validates the finite mixture model of MR sig-
nal whereas the second hampers the segmentation process
since it introduces outlier values, making voxels of tissue
type [ resemble another tissue type m.

The noise issue drove the use of MRFs in MR image
segmentation. By modeling the tissue organization in the
brain by an MRF, one can introduce prior probabilities on
the existence of certain neighboring voxels organizations
and bias the classification towards spatially homogeneous
regions.

Within a random field, the variables X; are not inde-
pendent. However, with MRFs, dependence is restricted
to connected variables with respect to a neighborhood sys-
tem N. Let NV = (N;)iez such a neighborhood system
with A; the set of indices of Z that are connected to index
i

P (i | x\1iy) = P (% | xn7) - (3)

By taking advantage of the Hammersley-Clifford the-
orem (Hammersley and Clifford, 1971), it is common to
formulate the MRF probability function in a logistic form
factorized over the cliques of the lattice, i.e. the edges of
the neighborhood. In this case:

P (z; | xp;,) xexp | B Z V(xi,xj) | (4)
JEN;

where f is a regularizing factor and V(z;,2;) is a clique
potential. A customary way to set cliques potentials, pro-
posed by Besag (1986), is V(I,m) = &;™, where §;” is the
Kronecker product.

The issue with this formulation is that cliques potentials
are arbitrarily set. In order to use learned clique priors,
we have made a mean field approximation of the MRF
conditional probability:

P | xx) = I Pl ). (5)

JEN;



We additionally state that clique prior probabilities are
stationary and can thus be computed from a single refer-
ence segmentation. Because clique probabilities depend on
the image resolution, we modulate reference clique priors
C with a 8 parameter similar to that of equation (4). Ad-
ditionally, to correct for anisotropy, we weighed each clique
prior by its length d(4, j) which is the distance between the
centers of voxels 7 and j. Hence:

- _ oy d(ij) 8

Vi,j, P(X;=1]X; =m) S o ) (Crm)” . (6)

In this framework, the posterior is expressed:

P(Xi=1]y) < g(yi | p, o) P (X =1]y), (7)
where PMRF incorporates the spatial dependency due to
the MRF. The most common way to solve this problem
is by iterated conditional modes (ICM), as described by
Besag (1986). In this case, the MRF term is expressed:

PMU(X =1 ]y) = lm PG =1%), ()

where %(%) is the current best estimate of x. The initial
estimate %(9) is often set to the MAP classification of the
usual GMM:

@(0) = argmax PSMM(X; =1 |y)

l 9)

= argmax g(y; | i, 01)Ai -
l

In the field of neuroimaging, this method is used in most
MRF implementations (Fischl et al., 2002; Zhang et al.,
2001). However, because it relies on a MAP estimate of
class labels, it can tend to overly smooth the resulting seg-
mentation in thin regions such as the CSF, especially when
there is a strong partial volume effect. Consequently, we
chose a different implementation, where class probabilities,
in the MRF term, are approximated by their GMM form:

PMRE(X; =1 y)oc [T Do P(Xi=1]X;=m)
jGNi meL (10)

PEMM(X; =m | y;)

2.1.3. Bias field

Measured MR signal is hampered by the inhomogene-
ity of the BO (static) and Bl (transmission and recep-
tion) fields, especially with high intensity magnets (7T
and more), that cause the presence of a slowly varying
bias field in the MR image. This bias field is usually con-
sidered to be multiplicative in the measured signal space,
and thus additive in the log-transformed intensity space.
Consequently, the actual signal should be decomposed into
its tissue component, for which the GMM is adequate, and
its bias field component: y = log(y™) - b.

The bias field depends on a wide range of physical phe-
nomena that are specific to the scanner, coil, sequence and

subject and thus cannot be learned from a population of
scans. Wells et al. (1996) and Van Leemput et al. (1999)
have described two different ways to use the EM algorithm
to estimate the bias field, based on its modelling either as
a multi-dimensional, zero-centered Gaussian realization or
as a grid of basis functions. We used the approach from
Wells et al. (1996) since it is based on the EM algorithm
and amounts to a simple low-pass filter that can be very
effectively implemented as a separable, recursive Gaussian
filter.

2.1.4. Noise

Noise in magnitude MR images is an additive feature
that follows a Rice distribution, which can however be ap-
proximated by a Gaussian distribution in cases of high
signal to noise ratio (SNR > 2) (Gudbjartsson and Patz,
1995). Here we will consider that noise mostly hampers
the segmentation in tissue classes, and we will thus restrict
ourselves to this latter case so that y™ = exp(y -+ b) + n.

While MRFs tackle the noise issue in the space of class
probabilities, it could also be dealt with in the intensity
space by estimating a denoised version of the MRI. Most
denoising techniques consist in filtering the magnitude im-
age with a kernel that would remove those spatially in-
dependent, zero-centered artifacts while keeping regions
of true biological contrast preserved (Mohan et al., 2014).
Some approaches tackle the issue in the K-space, but most
end users only possess magnitude images, making those
approaches unusable in the general case. Linear filters in
the spatial domain show poor efficacy because they tend to
smooth biological features such as frontiers between gray
and white matters. The use of anisotropic filters can over-
come this issue, but today’s most popular methods rely on
non-local means filters (Coupe et al., 2008; Manjon et al.,
2008) which are very precise but bear heavy computational
costs. Indeed, their complexity is O(KN?), where K is the
size of a neighboring window and N the number of voxels
in the image, when more classic filtering techniques com-
plexity is O(KN), where K is the size of the convolution
kernel. Moreover, those techniques are purely based on in-
formation theory and cannot be easily included in a unified
Bayesian model.

We propose to take advantage of class probability knowl-
edge to filter the magnitude image while preserving inter-
structure contrast. To make the noise estimation process
tractable, we suppose that the noise n is defined in a de-
terministic way when the magnitude image y™ and class
labels x are known. Indeed, inside each region, voxels
are supposed to possess similar intensities ; consequently,
there should exist a low-pass linear filter that yields a good
approximation of the denoised intensity y* = y™ - n if it
was used only for intra-class smoothing. For each voxel
i, let us call N the kernel domain and w its associated
weights. The denoised signal can then be obtained by:

m

.
Zje/\/’i Oz} w;yY,

Zj ) (11)

yi =



where §,,% is the Kronecker product. When class proba-
bilities are known, the expected value of y* is then:

o P(X; = Dwjy
]E[y?]:ZP(Xi:l)ZJGM (X = Dy
= > jen, P(Xj = Dw;

(12)

The noise image is then obtained through n = y™ - y*.

With this model, any smoothing kernel can be used and
several could be studied. Here, we chose a very basic
one based on a linear weighted moving average filter. Let
wyin = [0.25, 0.5, 0.25] the linear kernel, w is obtained by
convolution: w = wg * wy * w,.

2.2. Tissue and clique priors

The number of classes is an arbitrary choice, often set
to 4 when non-stationary priors are used, as it is usually
understood that the brain signal can be decomposed into
GM, WM, CSF and background. This simplistic model
is not always appropriate, especially in T2w images which
generally show a broader range of intensities, with some
anatomical regions such as the pallidum having a very
singular signal. We thus chose to classify the brain into
anatomical classes. Since many of these anatomical classes
possess a similar intensity range, the use of non-stationary
priors is necessary. Such priors are usually built from a
population of ground truth segmentations registered into
a common space (Evans et al., 1994). However, few digital
atlases of the macaque brain are available compared to the
human brain (see inline supplementary material 1) which
led us to derive pseudo-probabilistic tissue maps from a
hard label segmentation.

We chose to build those priors upon the atlas published
by Calabrese et al. (2015) which consists in a high res-
olution post mortem T2w template with a parcellation
into 241 regions. This labelling was provided with a hi-
erarchy making it easy to extract a parcellation of any
given complexity. Even though it was not probabilistic, we
based our tissue map construction on this atlas. We first
added two regions that were lacking from the atlas: CSF
was obtained by a 1 mm dilation of the brain mask and
corpus callosum was manually delineated from the tem-
plate with Anatomist (www.brainvisa.info) and a Cintiq
24HD touchscreen (Wacom, Saitama, Japan). The Paxi-
nos macaque atlas (Paxinos et al., 2008) was used as a
reference. Based on the provided hierarchy, we then ag-
gregated classes to keep only regions that made sense from
the MR signal standpoint. The resulting atlas contained
18 labels (17 anatomical regions plus background) and 5
hierarchical levels, intracranial being the root node. The
final hierarchy and the corresponding parcellation are de-
picted in figure 1. Clique priors can also be learned from a
population of ground truth segmentations, as was done by
Fischl et al. (2002) for their non-stationary clique priors.
Here, we used stationary clique priors that were learned
from the same ground truth segmentation. The modu-
lating parameter 8 was optimized a posteriori based on
segmentation results obtained with a validation database.

The model we presented is not fully unified beause the
mapping of the atlas to the subject space was performed as
a preprocessing step in a non-probabilistic way. An affine
and a non-linear transformations were estimated by opti-
mizing resemblance functions between the template and
target MRI (Appendix C). Since both intensity correc-
tion and skull stripping have been shown to greatly im-
prove the registration process (Acosta-Cabronero et al.,
2008; Fein et al., 2006), our preprocessing pipeline starts
with these two steps. An estimation of the bias field
was performed with BrainVISA bias correction tool (Man-
gin, 2000), which principles are detailed in Appendix D.
This first estimation was later used to initialize the EM-
optimized bias field. A skull-stripping mask was then ob-
tained with a combination of automated thresholding and
morphomathematical operations described in Appendix E.
Although the proposed method may seem quite basic, one
should keep in mind that its sole purpose is to constrain
and ease the registration process. As explained in Ap-
pendix C, the final registration step was performed on the
non-stripped image, and the registered atlas was then used
to perform a more robust skull-stripping: a mask obtained
with a 2 voxels dilation of the registered atlas was system-
atically used to analyze the data in order to avoid unnec-
essary computations during EM optimization.

Registered atlas labels were resampled in the MRI space.
Individual 3D volumes were created for each label. These
volumes were then smoothed with a 3D Gaussian kernel
(full width at half maximum = 3 voxels).

2.3. Mizture parameters initialization

Each class [ is associated with two parameters charac-
terizing its normal distribution: its mean pu; and standard
deviation o;. Because magnitude images are not quantita-
tive, these parameters cannot be learned from a population
of images, unless their intensities were previously homog-
enized. We have thus considered that these parameters
were image-dependent and had to be optimized for each
target image by EM.

Because the EM algorithm only ensures convergence to-
wards a stationary point of the likelihood function, ini-
tialization of the Gaussian mixture is a defining step of
the optimization process. If registered probability maps
were used to initialize these parameters, overly smoothed
tissue priors and registration errors could cause a bad eval-
uation of the Gaussian parameters, especially in small or
thin regions such as the CSF. To make our process as ro-
bust as possible, we decided to first fit, without a priori
and regularization, a 4-class Gaussian mixture to the log-
transformed intensity histogram and use it to initialize the
final 18-class mixture. The four naive classes were back-
ground, WM, GM and CSF.

First, the bias corrected MRI was log-transformed and
its histogram was translated so that its maximum was
matched to zero. A 4-class k-means clustering was per-
formed with centroids initialized with values that were
experimentally found to be in general close to the final


www.brainvisa.info

H  CsF

 Ventricles | { Medulla |

Intracranial

Brain

- Hindbrain |H{  Pons

Cerebellum

Corpus callosum

Isocortex

Pallidum
Subpallium Caudate
i |
|

Striatum

-| Forebrain |—-| Pallium

Dorsal pallium
Hypothalamus

Figure 1: Simplified CIVM atlas and hierarchy. Labels are shown along with the T2w template in coronal (top left) and sagittal (bottom
left) incidence. The corresponding hierarchy (right). Only labels associated with a color correspond to a class in the GMM. The other (in

italics) are built by aggregation and used for multi-scale evaluation.

parameters (Figure 2). Means and standard deviations
obtained from the resulting classification were used to ini-
tialize a 4-class Gaussian mixture that was then optimized
by EM.

Previously, each atlas region had been classified as one
of background, CSF, WM, GM or white-gray mixture
(WGM). Our complete classification is shown inline sup-
plementary table 1. Let C(l) be the naive class corre-
sponding to class [ and 6, the parameters of the 4-class
GMM. Posterior probabilities at each voxel were then com-
puted according to:

P(X; =1|y:i,04) < pecuy(yi | 04)P(Xi =1), (13)
with:
pi(y | 04) = a;g(y | pj.0;) (14)
and in the case where C(l) = WGM:

p;i(y | 04) < awgw (i) + acga (¥i) - (15)

Finally, mixture parameters were initialized with their
maximum likelihood estimate obtained from the above
posterior probabilities.

2.4. EM optimization

Let us call 8 = (u, o, b, n) the model parameter vec-
tor. In practice, the first step consists in computing the
hidden variable probabilities under the previous parame-
ter estimate, P(x | y, ™), that are stored in a matrix
Z:

vieI, lel Z) =P(X;=1]y™6™). (16)

Its elements values are obtained from the model’s equa-
tions stated before, with:
y™ =log(y™ — n™) — bl (17)
The second step consists in computing the parameters
maximum likelihood estimates under these class probabil-
ities, as described by equation (B.3). Because of the high
dimensional nature of the parameter vector, an exact op-
timum cannot be obtained in practice. We will thus com-
pute the optimal parameter for each “component” (Gaus-
sian mixture, bias and noise) independently, with the other
parameters supposed known. The optimum for the full
vector will thus be approximated with acceptable preci-
sion:

1. Means and standard deviations estimation (Liang
et al., 1992):

(n+1) Diet Zz(’rll)yz( "

o) == o (18)
Sier Z)
(), (n) (n+1)
(n+1)) 2 ZzEIZ (v, =)
o, o (19)
Yier Zid

2. Bias field estimation (Wells et al., 1996):
(a) Computation of the residuals vector and the
symmetric covariance matrix:

(")) (n+1)

f(n+1) _ Z Z(n) log(yz g
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(20)
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The minimum number of EM iterations was set to 1 and
the maximum number to 5. Optimization was stopped if
the log-likelihood gain between two iterations was inferior
to 0.01. Output images were the MAP classification, pos-
terior probability maps for each class, the estimated bias

field and the corrected and denoised MRI. The different
components of the statistical model (bias estimation, de-
noising, MRF) were optional, enabling the user to deacti-
vate each one if necessary.

2.5. Software implementation

All tools described in this paper were implemented in
the BrainVISA framework, along with a dedicated pipeline
and an input/output ontology, allowing fast and simple
processing of user data (Tlw or T2w macaque MRIs).
The most demanding algorithms (registration, EM seg-
mentation) were implemented in C++, as parts of AIMS
which is BrainVISA’s collection of image processing tools.
Skull-stripping and fast GMM tools were implemented in
Python, in the form of BrainVISA processes, with calls
to low-level image processing libraries such as SciPy and
pyAIMS (python bindings for the AIMS library).

2.6. Evaluation

Validation of the pipeline was performed by computing
similarity scores between automated and manual segmen-
tations performed on a set of MRIs acquired in 10 healthy
macaques. This validation dataset was made publicly
available concomitantly to this paper (Balbastre et al.,
2017). MRIs were T2w and had a final lattice of 256 x
256 x 80 voxels of size 0.45 x 0.45 x 0.8 mm3.

Let us recall that rather than manually segmenting all
80 coronal slices that constitute a MR volume, we de-
cided to select a subset of sections in all three incidences.
This choice was guided by the will to avoid any incidence-
induced bias in the segmentation as well as lower the seg-
mentation load. As a result, 7 coronal, 5 axial and 3 sagit-
tal sections were selected so that all anatomical classes
were found in all three incidence

To investigate the usefulness and influence of the dif-
ferent model parameters and components, automated seg-
mentations characterized by varying parameter values and
activation/deactivation of components were obtained and
compared to the reference segmentations.

2.6.1. Hierarchical evaluation metric

Image segmentation can be seen as a classification prob-
lem, a domain where the F'; score is a widely used metric.
The Fy score is exactly equivalent to the Dice coefficient
(Dice, 1945), a more common designation in the field of
image segmentation. However, this score was only defined
for binary classifications, where observations can be sep-
arated between positives and negatives. In the case of
multi-labels segmentation, it must be extended. We used
the micro-averaged F'; score, which can be obtained with a
multi-labels definition of sets “positives” and “classified as
positives”. Details are provided in Balbastre et al. (2017).

In addition to the micro-F'; score, the binary F score
was computed for each node of the atlas hierarchy. When
optimizing parameters, decisions were made based on the
micro-F'; score.



2.6.2. Evaluated methods and statistical analysis

Because they were computed on a lattice, MRF clique
priors depend on its resolution. In our case, the resolution
of the atlas, in which priors were computed, differs from
that of the target MRI. Consequently, we used a modulat-
ing parameter, 3, similar to one classically used in Gibbs
fields:

(Cl’m)ﬁ

DokeN; (Cip)’

(29

where C' contains stationary clique priors computed from
the reference atlas. The effect of this parameter is to make
(s diagonal elements more or less influential, and thus to
bias the segmentation towards more or less compact re-
gions. We evaluated 12 different values for this parameter,
ranging from 0.025 to 10, with otherwise all components
activated and a = 1.

Non-stationary priors also have a great influence on the
segmentation, and registration errors may hamper it. We
investigated the usefulness of a modulating parameter, «,
that made those priors more or less equipossible:

1—
P(Xi =1) = adiy + — e (25)

We evaluated 10 different values, ranging from 0.1 to 1,
with otherwise all components activated and [ set to its
previously optimized value.

We also investigated the influence of each component of
the statistical model in the quality of the resulting seg-
mentation. FEach combination of activation-deactivation
for the MRF, bias correction and denoising was tested,
yielding 8 different combinations. One should keep in
mind that, when the bias estimation component was de-
activated, the bias field estimated in Appendix D was still
used to correct the MRI. What was investigated here was
the additional improvement brought by the statistical bias
estimation. In order to analyze the influence of each com-
ponent, a linear mixed-effects model (type IIT ANOVA)
was used with activation of MRF, bias estimation and de-
noising as fixed factors and subjects as random factors.

Finally, optimized statistical segmentations were com-
pared with those obtained by the sole non-linear atlas reg-
istration. Student’s t-tests for paired measures were per-
formed on a region-wise basis and p-values were corrected
for multiple comparisons with Bonferroni’s method.

All statistical analyses were performed in R (R Core
Team, 2016), linear mixed-effects analysis was performed
with the nime package (Pinheiro et al., 2016) and graphs
were generated with ggplot2 (Wickham, 2009). Data
points are in general depicted as Tukey’s boxplots that
show the first, second (the median) and third quartiles.
Upper and lower whiskers extend to the last values within
the 1.5 interquartile range. Data points outside this range
can be considered outliers according to Tukey’s method.

3. Results

For the sake of clarity, in addition to the micro-F'y score,
only F'y scores for regions CSF, isocortex and WM are de-
picted on graphs. Mean scores for all regions can be found
in the associated tables. Let us recall that these are hier-
archical regions ; consequentely, CSF includes both ven-
tricular and external CSF and WM includes both cerebral
WM and the corpus callosum.

3.1. Primatologist toolbox

The complete pipeline (Figure 3) is implemented in
BrainVISA in the form of a toolbox that contains all indi-
vidual processing tools, ready-to-use pipelines that allow
easy processing of a batch of images, and database ontol-
ogy that describes and organizes all input and output files.
An example pipeline window is shown in figure 4.

BrainVISA is deeply intertwined with Soma-Workflow, a
job distribution software that allows to speed-up the pro-
cessing of image batches by running them in parallel on
a multi-core workstation or on a computing cluster. For
this paper, we were consequently able to process 10 im-
ages with 30 different combinations of parameters, which
represent 300 pipeline runs.

Running Primatologist with a single 2.4 GHz processor
and 2 GB of RAM on one of the images from our vali-
dation database lasts 1 hour and 15 minutes, with atlas
registration being the most demanding step (affine trans-
form estimation: 22 min, non-linear transform estimation:
44 min, transform application: 2 min, EM optimization:
3 min). If, instead of probabilizing a segmentation, an
existing prior probability volume is used, the transform
application step is more expensive (up to 16 minutes). In
order to take advantage of multi-core workstations or com-
puting clusters, some of the steps (transform application
and sulci extraction) are parallelized.

All tools are shipped, along with dedicated documenta-
tion, in the Primatologist toolbox that will be made avail-
able with the next BrainVISA release (4.6). Sources of the
C++ segmentation command and all python tools will be
open.

3.2. Optimization of the MRF 3 parameter

F' scores obtained with different 8 values are depicted
in inline supplementary figure 1 and complete results are
given in inline supplementary table 2. A maximum com-
mon to 12 out of 22 regions (17 if we count co-maximums
with a precision of 0.01) is found for 8 = 0.25 and most of
the other regions possess a score close to their maximum
at that value. Only CSF has maximum at a lower /3 value
(0.1), but F; values are very similar for both parameters
at 0.72 and 0.71. Interestingly, this optimum is very close
to the ratio between the atlas and MRI resolutions, as:

0.15
(0.45 x 0.45 x 0.8)1/3

=0.28 . (26)
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Figure 3: Segmentation workflow. Inputs are shown in the first line: only the original MRI, atlas (template and labels) and clique statistics
are necessary. The second and third lines show preprocessing steps applied to initialize the statistical model. The fourth line shows the EM

iterations and the resulting segmentation.

Qualitatively, most errors induced by an inadequate (3
value are found in the CSF for large values and in the WM
for small values, as shown in inline supplementary figure 2.

For a given image resolution, micro-F; optimums are
quite reproducible between subjects as § = 0.25 was an
optimum for 8 out of 10 subjects. The other two had their
optimum for 8 = 0.1, with almost identical micro-F; for

both values of 3 (|f7="" — fF=9%| < 1073).

3.3. Optimization of the prior o« parameter

As shown in inline supplementary figure 3 and in in-
line supplementary table 3, no positive impact on the seg-
mentation was brought by non-default values of the a pa-
rameter, apart from the CSF and medulla where a subtle
optimum can be found for o = 0.9.

As for the MRF parameter, optimal « are quite ro-
bust. Seven out of 10 subjects had a maximal micro-
Fy for @« = 1. Two had their optimum at o = 0.9 and
one at a = 0.7, with, in all cases, very close micro-F';
(g — fe=1] < 1079).

3.4. Evaluation of the different model components

As shown in figure 5, micro-F; scores vary between
0.75 and 0.8 depending on the combination, with few out-
liers detected. Complete results are given in inline sup-
plementary table 4. The optimum for 8 out of 22 re-
gions (16 with a precision of 0.01) is found with a model

that includes a MRF and bias estimations but no de-
noising (f1™° = 0.8). The use of denoising slightly
improves the segmentation for regions CSF, intracranial,
forebrain, hypothalamus and cerebellum. Only regions
midbrain and thalamus do not reach their maximum score
with MRF activated. Regions midbrain, hindbrain, hy-
pothalamus, corpus callosum, subpallium, striatum, cau-
date, pons, medulla and cerebellum did not reach their
maximum with statistical bias estimation activated, even
though one should note that scores had a low variability
in these regions.

Results of the linear mixed-effects model are summa-
rized in table 1. The use of such a model, instead of a type
I ANOVA, was made necessary by the non-independence of
the observations between groups (the same 10 images are
processed with different parameters). Briefly, this model
can be written the same way as an ANOVA, with an ad-
ditional term that captures inter-subject variability. Ex-
planatory factors are called “fixed effects” while subject-
related factors are called “random effects”, with the latter
supposed drawn from a zero-centered normal law. Such a
model is fitted to the data by restricted maximum likeli-
hood optimization, contrary to linear models that are usu-
ally fit by least squares minimization. Here, all fixed-effect
factors are categorical variables taking only two values, 0
or 1. Fitted coefficients for all fixed-effect factors are given
in the table, along with the significance level of the test
on whether or not the coeflicient is non-zero (the null hy-
pothesis is “the coeflicient value is zero”).
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Figure 4: A Primatologist pipeline window in BrainVISA. The filling
of all filenames and parameters is automated by the databasing and
ontology system.

These results can be interpreted the same way as an
ANOVA': the intercept coefficient corresponds to the ex-
pected micro-F'; score when no component is activated ;
each fixed-effect coefficient represents the expected change
brought to the micro-F; score by activation of the corre-
sponding component when all the other factors are consid-
ered equal ; interaction coeflicients represent the expected
change brought by a specific co-activation of components.
Here, we find a statistically significant effect of the MRF
and the bias estimation on the micro-F'; as well as a neg-
ative interaction between the MRF and denoising compo-
nents. The most impactful component is the MRF which,
when activated, causes an expected 0.038 improvement of
the micro-F'; score. Qualitative results are shown in fig-
ure 6.

3.5. Comparison between registration-based and EM seg-
mentations

F1 scores at all nodes of the hierarchy for both the op-
timized EM segmentation and the registration-based seg-
mentation are summarized in table 2, along with paired
Student’s t-tests results. Registration-based scores vary
from 0.29 for the total CSF to 0.93 for the intracranial
region. EM scores vary from 0.57 for the hypothalamus to
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Table 1: Results of the linear mixed-effects model fitting of formula
f1 ~ Bias * MRF * Denoising + (1 | Subject). Significance lev-
els: 0.1 (+) 0.05 (*) 0.01 (%) 0.001 (skx).

Factor Value p-value

Intercept 0.75

Bias (B) 0.011 5.1 x 107 *oHok
MRF 0.038 < 102 Kok
Denoising (D) 0.002 0.42

B xMRF 0.001 0.78

B xD -0.003 0.43

MRF xD -0.012 2.6 x 103 *k
B xMRF xD -0.001 0.92

0.97 for the intracranial region. EM scores are higher than
registration-based scores for all nodes except for the corpus
callosum (0.61 vs. 0.63). A significant increase is found
in total CSF, ventricles, isocortex, white matter, pallium,
dorsal pallium, hypothalamus, pons, medulla, and cerebel-
lum as well as in meta-regions such as hindbrain, midbrain,
forebrain, brain and intracranial region. The micro-F
score is also significantly improved, with a 20% increase.
The most massive improvements are found in total CSF
and ventricles with respective increases of 137% and 89%.
Qualitative results are shown in figure 7.

4. Discussion

The main goal of this work was to develop an auto-
mated pipeline for Macaque brain MRI segmentation and
to make it freely available. The proposed pipeline is based
on a state-of-the-art statistical model, enabling sequence-
independent segmentation and bias field estimation. Fur-
thermore, a novel noise-estimation method is proposed and
evaluated. Additionally, the use of cliques statistics, which
is non-standard in the literature, makes the method more
automatic and less reliant on an arbitrarily set parameter.
This pipeline is implemented in BrainVISA, relies on its
databasing system, and can be easily used thanks to its
graphical interface, integrated viewers and comprehensive
documentation.

Challenges arised from the low resolution of images,
caused by macaques smaller brains, from the large variabil-
ity of MR signals and from the substantial magnitude of
the bias fields, both caused by the use of a 7T magnet. Im-
ages resolution mainly impacted the implementation of the
MRF, making us diverge from common ICM optimization
methods. Inter-region signal variability made us choose
a segmentation into anatomical regions rather than into
tissue classes (GM, WM, CSF) as more commonly done.
However, no region probability maps of the macaque brain
are freely available, and the absence of whole brain refer-
ence segmentation databases forbade us to build our own.
Consequently, our pipeline relies on the registration and
probabilization of a hard-label atlas. This incidentally
forced us to use non-linear registration, which bears higher
computational costs than affine registration.
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Figure 5: Effect of the activation of the different model components on the similarity score. For each tested combination, a Tukey’s boxplot
represents the different quartiles of the Fy score for regions CSF, isocortex and white matter as well as those of the micro-F} score. The mean
score is also indicated in blue.
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Figure 6: Resulting segmentation of an arbitrarily chosen subject for different activation combinations of MRF and bias estimation modules.
The first row shows the segmentation while the second one shows in red voxels which classification differ from the manual segmentation of
reference.
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Figure 7: Resulting segmentation of subjects with the best, median and worst micro-F1 scores obtained with the EM segmentation (right),
compared with manual references (left) and segmentations obtained through a simple non-linear registration of the atlas (middle). Odd rows
show the segmentation while the even rows show in red voxels which classification differ from the manual segmentation of reference.
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Table 2: Difference in mean F'; score between registration-based
and EM segmentations. A paired Student’s ¢-test was performed for
each region as well as for the micro-F'1 score. Significance levels after
Bonferroni correction: 0.004 (+) 0.002 (x) 0.0004 (x*) 0.00004 (s:).

ROI flEM flatlas
Fymiere 0.80 > 0.66 Hokk
Intracranial 0.97 0.93 Fokk
CSF 0.71 > 0.30 Kook
Ventricles 0.71 > 0.37 Kok
Brain 0.95 > 0.90 Kk
Forebrain 0.95 > 0.90 Fkok
Midbrain 0.79 > 0.76 *
Hindbrain 0.92 0.87 Kk
Isocortex 0.84 0.75 Kxk
Pallium 0.70 0.62 Kk
Dorsal Pallium 0.76 0.70 Hok
Thalamus 0.81 0.79
Hypothalamus 0.54 0.47 *
White matter 0.77 > 0.70 Kk
Corpus callosum 0.61 < 0.63
Subpallium 0.80 > 0.78
Pallidum 0.70 > 0.68
Striatum 0.80 > 0.78
Caudate 0.74 0.72
Putamen 0.84 > 0.83

Pons 0.76 > 0.67 Kxk
Medulla 0.76 > 0.72 Hk
Cerebellum 0.92 > 0.88 Hokok

Rather than using null or random parameter initializa-
tion, we took advantage of non-integrative methods to ap-
proximate the bias field and mixture parameters. This
allowed us to initialize these parameters close to the ex-
pected optimum, saving the EM algorithm from being
stuck in spurious local optimums.

4.1. Quality of the segmentation

Brain morphology is much less variable in macaques
than in humans. Consequently, we could expect a straight-
forward non-linear atlas registration to yield good segmen-
tation results. This approach was incidentally used by
Knickmeyer et al. (2010), Liu et al. (2015) and Scott et al.
(2015) to segment cortical lobes and subcortical structures
in MRIs of the developing macaque brain, following a pro-
cedure described by Styner et al. (2007). It should however
be noted that, in all cases, when it comes to segmenting
the isocortex, gray and white matters were previously sep-
arated with an EM approach.

However, our results show that, for healthy subjects, our
approach yields better results than atlas registration in al-
most all regions, with very significant differences found
in the CSF, white matter and isocortex, regions that are
the most variable. Few statistically significant differences
were found for subcortical regions, though different results
would be expected when it comes to pathological cases,
such as models of striatal atrophy, as we have described
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before (Balbastre et al., 2015). Significant improvements
due to our approach were also found in macroscopic re-
gions such as the whole brain, forebrain and hindbrain.
The most striking differences were found in total CSF and
ventricles which are thin and variable regions that are very
difficult to correctly segment through registration.

These results are obtained on 2D reference sections,
which is not standard. However, the F'; score is not as-
sociated with any neighborhood structure and can be ef-
ficiently approximated from a dense sampling of points in
the image. However, the fact that our sampling is per-
formed sections-wise, and not completely randomly, might
bias the estimation because not all regions are equally sam-
pled. On the other hand, the fact that reference sections
were manually segmented in different incidences reduces
incidence-induced bias. In our case, the less represented
class in the reference set is the hypothalamus (406 voxels
+ 135). However, if the best automated segmentation is
taken as an estimate of the total number of voxels, it cor-
responds to one of the highest sampling rates with 24%
of all hypothalamus voxels that were manually segmented.
Mean sampling rates vary between 15%, for the subpal-
lium, and 25%, for the pallium.

4.2. Role of the Markov Random Field

Analysis of the influence of the different model compo-
nents shows that the use of a MRF greatly improves the
segmentation. Even the CSF gets a F'; score close to its
maximum with the MRF activated, even though its thin-
ness could lead one to predict a loss of sensitivity due to
the MRF in this structure.

Magnitude of clique prior probabilities is intrinsically
linked to the image resolution and the size of structures.
To understand this, let us focus on a binary volume con-
taining a square object of dimensions 2n x 2n. The prob-
ability for a pixel to be black when one of its neighbors is
white, P(X; = 0| X; = 1), is expressed as:

24+48 (n—1)+24 (n—1)?

84144 (n—1)+120 (n—1)2+48 (n—1)3 (27)

The evolution of P(X; =0| X; =1)and P(X;=1| X; =1)
is depicted accordingly in figure 8. The square is sup-
posed of constant size and n is then directly linked to
the lattice resolution. One can then understand that the
more resolved the lattice, the bigger the diagonal terms
(P(X; = k | X; = k)). When stationary clique priors are
learned from a reference segmentation, our study hints to-
wards a linear connection between the modulating 8 pa-
rameter of the random field and the resolution ratio be-
tween reference and target images. However, this link was
not thoroughly validated and could be the subject of a
future investigation.

This also shows, as explained before by Morris et al.
(1996), that clique priors are intrinsically linked to the size
of regions through both their volume and surface (area and
perimeter in 2D), even though differences diminish with
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Figure 8: Evolution of the conditional probabilities of cliques (0 | 1)
and (1 | 1) in the case of a square of increasing resolution n. The z
axis is plotted on a logarithmic scale.

higher resolutions. The common way of setting identical
potentials for all regions, through Potts model for example
(Avants et al., 2011; Besag, 1986), might be imprecise in
low resolution images.

Two potential improvements of our MRF model are pos-
sible:

1. The use of non-stationary clique priors learned from a
set of reference segmentations, as described in Fischl
et al. (2002), would allow for more precise prior in-
formation to be injected in the model. This requires,
however, a large number of reference segmentations
that are not yet available in our database.

2. Stationary clique priors could be set more freely if
they were part of the statistical model parameters
that are optimized by EM, as in Rajapakse and
Kruggel (1998). They would still be initialized from
the reference segmentation but could, this way, be re-
fined to adapt better to the specificity of the target
image. The drawback is that by enlarging the param-
eter space, we would increase the chance to get stuck
in local likelihood maximums or to diverge greatly
from the optimal solution.

4.3. Non-stationary prior modulation

As shown by the optimization of the « parameter, the
method we chose to modulate the non-stationary priors
seems to be poorly adequate. The issue raised by this for-
mula is that all voxels are modulated the same way, with-
out any consideration for their location, enabling regions
to appear in voxels quite distant from their atlas location.
Even though this was the intended behavior, in order to
compensate the lack of freedom caused by a hard atlas
compared to a probabilistic one, objective results show
that drawbacks outweigh benefits. The size of the smooth-
ing kernel appears as a better candidate for optimization,
and this should be investigated in a near future.
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Let us note that part of the prior could be freed and
optimized by EM. This parametrization was described by
Ashburner and Friston (2005) and is also implemented in
Atropos (Avants et al., 2011). The prior is written:

P(XZ' = l) X TlAi,l 5 (28)

where 7; is the ratio between the global proportion of vox-
els of class [ in the image and that same proportion in the
atlas. This way, the segmentation is not biased by the pro-
portion of voxels from each class in the atlas. The r; can
then be optimized by EM. Let us call o;;("™) the estimated
proportion of voxels of class [ at iteration n and a;*1?s the
proportion of voxels of class [ in the atlas:

a?tlas X Z Ai,l y (29)
i€T
o™ o ST P(X =1]y,0M) (30)
i€T
(n+1)
(n+1) _ Y
7 - a?tlas (31)

4.4. Improvement brought by a statistical estimate of the
bias field

Several bias field estimation methods that do not rely
on the estimation of class probabilities, being based either
on information theory or non-explicit distribution model-
ing, have shown to perform extremely well (Mangin, 2000;
Sled et al., 1998; Tustison et al., 2010). In our study, using
images acquired at 7T, we showed that the inclusion of a
bias estimation module in the EM optimization, similar to
those described by Wells et al. (1996), Van Leemput et al.
(1999) and Zhang et al. (2001), improved the resulting
classification compared to an independent bias correction.
Indeed, the knowledge of class probabilities allows a bet-
ter estimate of the intensity distribution in the corrected
image and thus a better estimate of the bias field. The
maximum estimated bias field value in each image ranged
from 1.12 to 1.48 (mean + SD: 1.33 &+ 0.11) and an illus-
trative example is provided in figure 9. No correlation was
found between the maximum bias field value and the micro
F; score (Pearson’s product-moment correlation, r = 0.17,
p = 0.6). Nonetheless, non-statistical estimates are still a
good way to initialize the bias field before EM optimiza-

tion.
1.48

0.52
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Figure 9: Color map of the most biased MRI of the validation
database (left), along with the estimated bias field (right).



4.5. Statistical denoising

No statistical improvement of the segmentations was
brought by the use of denoising, even when the MRF
was deactivated. One should note, however, that mag-
netic noise was not overly present in our validation set. A
positive impact was nonetheless expected, and its absence
can be explained by our choice of kernel, which was very
basic, as well as by the absence of posterior control on
spatial dependency in the estimated noise image.

The analysis of the noise image in one representative
subject (Figure 10) shows that the estimated noise distri-
bution seems zero-centered, as expected, but suffers from
an over-representation of high values, especially positive
ones, which positively skews the distribution (v = 0.12).
A qualitative inspection of the noise image shows that ex-
treme noise values seem to be located in the CSF which
can be caused either by a non fully additive noise or by a
bad estimation in thin regions.

Note also that, in this paper, we used a deterministic
definition of noise. The presence of outliers could be re-
duced by searching for a MAP estimate in a Bayesian
setting, where noise is supposed to be a realisation of a
zero-centered Gaussian of variance 2. In this case, a ML
estimate of o could even be optimized by EM along with
the other model parameters.
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Figure 10: Color map of the estimated noise in a representative
subject (top left). Corresponding noise-corrected MRI (top right).
Density histogram of the estimated noise, with the distribution mean
value pu, standard deviation o and skewness v (bottom).

4.6. Potential applications

This pipeline is an entry point for any morphometry
analysis of the brain. Such analyses are particularly em-
ployed for studying brain development, brain aging and
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neurodegenerative diseases. In the case of brain devel-
opment studies, the macaque is an extremely interesting
model since ethical and practical constraints — movement
artifacts, experimentation time, etc. — make difficult the
constitution of healthy children cohorts. Contrary to chil-
dren, young macaques can be anesthetized and have been
a subject of study for many years (Knickmeyer et al., 2010;
Liu et al., 2015; Malkova et al., 2006; Scott et al., 2015),
whereas works to constitute the first human cohort started
later (Almli et al., 2007). Macaques have also been used as
models for studying neurodegenerative diseases such as HD
(Ferrante et al., 1993) and PD (Porras et al., 2012) and to
evaluate possible therapies with a translational aim (Jar-
raya et al., 2009). In this context, morphometry measures
can be used as biomarkers of disease progression. In AD,
NHPs are even more crucial as rodents need to be genet-
ically humanized to mimic the pathology. Morphometry
features are already widely used to study this disease in
humans and they would be vital in macaques if emerging
models (Forny-Germano et al., 2014) were to be used to
evaluate promising therapies.

Another major application would be its use to super-
vise PET analyses and extract region-wise kinetics in
group studies (Ballanger et al., 2013). The use of multi-
compartments models, which need anatomical priors, have
shown to more accurately quantify ligand binding (Gino-
vart et al., 2001). Moreover, automated ROIs are not
expert-dependent and are less time-consuming than man-
ual delineations.

4.7. Limitations and future directions

The most striking limitation of our approach is the lack
of a true probabilistic atlas of the macaque brain. Such
an atlas would capture accurately the inter-subject vari-
ability and would be obviously more informative than the
smoothed atlas we currently use. Consequently, the devel-
opment of macaque brain segmentation database would be
a welcome project in our field. The UNC-Wisconsin Rhe-
sus Neurodevelopment Database (Young et al., 2017) is an
important first step in this direction. It provides, under
a permissive free software license, longitudinal MRI scans
acquired in dozens of macaques from age 0 to 3 years.
They could be the building base for expert segmentations
that would allow the construction of age-appropriate prob-
abilistic atlases usable as priors in our software and others.
The existence of such a database would also allow the use
of non-stationary clique priors, which effect could be com-
pared with that of stationary clique priors.

Let us also note that, besides being non probabilistic,
the atlas we used was also based on images acquired post
mortem, after extraction from the skull. It means that,
in addition to global deformations inherent to the elas-
tic nature of the tissues, no CSF is present and sulci and
ventricles are partially closed (the banks of opposing gyri
touch each other). The CSF prior is thus poorly infor-
mative and can even hamper the segmentation. Luckily,
contrast between GM and CSF is one of the strongest in



the brain and the GMM was generally able to compen-
sate this poor prior. This problem could also be solved
by using a truly probabilistic atlas built from images ac-
quired in vivo. There are also differences in species (rhe-
sus vs. cynomolgus) which add some slight imprecision to
the segmentation. Once again, building more appropriate
templates is the key.

When it comes to probabilistic atlases, two strategies
stand out, depending on the use of affine or non-linear
registration. The second one allows for more precise and
strong priors but bears additional computational costs. If
the additional precision it brings to the segmentation out-
weighs the computational time, it becomes beneficial. An-
other strategy relies on the construction of subject-specific
prior maps from the registration of multiple atlases to-
wards the subject space, rather than using a pre-computed
probabilistic atlas. The computational cost is even higher,
but generative multi-atlas models prove to bring additional
precision to the segmentation (Iglesias et al., 2013).

Our scheme could also be extended to multi-channel
images, since GMMs easily apply to multivariate data.
Multi-contrast MRIs are extremely useful to segment sub-
cortical structures (Visser et al., 2015). In NHPs, be-
cause of their head muscles that can be better separated
in T2w images, such images would additionally help skull-
stripping the brain.

Finally, our pipeline should be applied to other species
by taking advantage of freely available atlases. In par-
ticular, the CIVM published atlases of the Mouse brain,
which incidentally includes anatomical probability maps
(Johnson et al., 2010), and of the Rat brain (Papp et al.,
2014) that could be used with our pipeline. The challenge
would be to adequately select GMM classes based on the
contrasts that are distinguishable in MRIs. In particu-
lar, it could be necessary to use separate classes for gray
and white regions of the hippocampus, since this struc-
ture takes a larger proportion of the brain in rodents than
in primates. Obviously, because of their small brain size,
partial volume issues and artifacts due to high fields would
also be present. On the bright side, their cerebral mor-
phology is much less complex and the cortex is not folded,
leading to more compact regions that are easier to accu-
rately segment than the thin gyri of the macaque brain.

5. Conclusion

In this paper, we present the first pipeline dedicated
to anatomical segmentation of macaque brain MRIs. It
allows computing of 17-region parcellations out of un-
stripped, uncorrected and unaligned T1w and T2w images.
The segmentation process is based on a statistical model
of intensity and is modular: the user may activate on de-
mand spatial dependency priors (MRF), bias field estima-
tion and noise estimation. Segmentations were validated
on a database of manually segmented images acquired in
healthy macaques. The combination of MRF and bias field
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estimation yielded the best results. Our software was im-
plemented as an open source BrainVISA toolbox which
will be made available with BrainVISA 4.6. This paper
also provides results on statistical MRI models that are
not restricted to macaque brain images. In particular, we
show how the use of learned clique priors improve such
models compared to Potts models. We also accurately
describe how the EM bias field estimation improves seg-
mentations compared to independent estimations. Thanks
to the free availability of this pipeline, researchers work-
ing with NHPs will be able to extract new morphological
features that could play a major role in the study of neu-
rodegenerative disorders at the preclinical level.
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Appendix A. Mathematical notations

We use uppercase letters (X) for random variables, low-
ercase letters (z) for their realisations and bold letters
(x) for vectors. Uppercase P will denote probability den-
sity functions (PDFs) of discrete random variables while
lowercase p denote PDFs of continuous random variables.
We will generally write intensities y, labels z and model
parameters §. When no ambiguity exist, the expression
P(A = a | B =) is abbreviated P(a | b). When defin-
ing discrete PDFs, we may avoid writing the normalization
term and will use the “proportional to” sign () instead.
Additionally, because, in the case of MRI segmentation,
intensities (y) take value in a continuous space and hid-
den variables (x) take value in a discrete space, we stick
to this case in the all formulations.

Let the image domain Z = [1,n] a set of indices with
n the number of voxels. The multivariate label variable
X = (X; ; i € 7) takes values in X = L™ with £ = [1, N].
The multivariate intensity variable Y = (Y; ; i € 7) takes
value in R"™.

Appendix B. Expectation-Maximization

The EM algorithm is an iterative method to find lo-
cal maximums of the likelihood function of a statistical
model given a set of realizations y, i.e., estimate its max-
imum likelihood parameter 6. To ease the analysis, the



log-likelihood is more often used:

6 = argmax L(0 ; y)
0 (B.1)
= argmaxlogp(y | 0) .
[

When hidden variables play a role, it is easier to have
them appear in the likelihood formulation:

p(y16)="> ply,x|0)

XEX

=3 by |x,0)P(x]6) .

XEX

(B.2)

The EM algorithm states that, knowing an estimate o)
of 0, a better estimate 8("*1) is found by maximizing the
following function @ over 6:

Q (9 | 0(”)) =E [logp(y,x 10) | y,0(")]
=Y P(x|y,0")logp(y,x | 6) .

xeX

(B.3)

This scheme insures that (1) L (9(”“)) > L (0(”)) and

(2) the sequence (8(™) converges at least towards a sta-
tionary point of L (McLachlan and Krishnan, 2008). For a
short and clear overview of the EM algorithm, see Borman
(2004).

Appendix C. Registration

For the affine registration step, we used our implementa-
tion of a strategy inspired by Thevenaz and Unser (1997).
Briefly, mutual information (MI) between a reference (the
target MRI) and a moving (the atlas template) image was
maximized at several pyramid levels with a relaxed ver-
sion of Newton’s optimization scheme that included back-
tracking and fronttracking steps. MI gradient and Hessian
were computed as in Thevenaz and Unser (1997). To suc-
cessively free transform parameters, a translation was first
computed, initializing a rigid transform that initialized an
affine transform. Different resolution levels were computed
by transforming the moving image into a L2 spline pyra-
mid (Unser et al., 1993). To speed up the process, 20000
points were randomly selected in the reference brain mask
for MI evaluation. This number does not depend on the
image resolution: because of the low number of optimized
parameters (12), additional points would only marginally
improve the estimation. Sixty four bins were used to com-
pute the joint histogram and optimization was stopped
when the difference between consecutive MI values was
inferior to 10°. The damping parameter was multiplied
(resp. divided) by 2 for the fronttracking (resp. back-
tracking) operations. Translation was initialized by align-
ing intensity-weighted gravity centers.

Elastic registration was performed with our implemen-
tation of Mattes’ Free Form Deformation (Mattes et al.,
2003), which we have previously presented in the context of
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mouse atlas registration (Lebenberg et al., 2010). Spline
grids of size 4, 6, 8 and 10 were successively optimized.
Sixty four bins were used to compute the joint histogram
and optimization was stopped when the relative MI gain
between two successive iterations was inferior to 5 x 10-3.
In order to correct for eventual errors induced by a po-
tential bad skull-stripping, the resulting 10 x 10 x 10
transform was used to initialize another optimization, this
time with the non-stripped MR image as a target.

Appendix D. Initial bias correction

A multiplicative bias field was modeled with a grid of
cubic B-splines whose coefficients were set by optimizing
an objective function in a multi-resolution scheme by sim-
ulated annealing. The objective function contains energy
terms that penalize entropy in the corrected image, spatial
irregularity of the bias field and mean intensity difference
between the original and corrected images. In the most
recent version of this algorithm, the robustness of the pro-
cess was increased by extracting WM ridge points charac-
terized as voxels of high curvature in the intensity space
(positive curvature in T1w images, negative curvature in
T2w images). An energy term penalizing the entropy of
the corrected image in the ridge was added to the objective
function. Let y be the original image, w the WM points,
b the multiplicative bias field and c its coefficients, the
objective function was expressed as :

f(C) = Kefentropy(bY>

+ Krfregul(b) (Dl)
+ Kofoffset (by,y)
+ waentropy (bY(W)) )
with
fregul(b) = Z Z 10g2 (?) ) (DQ)
i jEN; J
foffset(xa Y) = (}_( - }_’)2 3 (D3)

and fentropy the entropy of the image histogram. We used
the default parameter values set by the tool: K., = 1,
K, =50, K, = 0.5, K, = 20. Grid spacing was set at
16 mm. Bias field, original and corrected images were
saved for further processing steps.

Appendix E. Skull-stripping

Because of their massive head muscles, which volume
depends on age and species, skull-stripping is particularly
challenging in NHPs (Maldjian et al., 2015). As stated
earlier, T1lw and T2w images present different challenges
which led us to propose two adapted tools.

With Tlw images acquired in humans, a common and
simple way of performing skull-stripping is, after an auto-
mated thresholding of the MRI, to separate brain tissues
from skin tissues with an erosion or radius r (E,) and



an extraction of the biggest connected component with re-
spect to connectivity d (B), followed by a dilation (D,) to
recover lost tissues. Those operators are defined in inline
supplementary material 2. In NHPs, however, the brain
can be smaller than head muscles, which present a similar
T1w signal. To get around this issue, we have introduced
another relation to order components based on their com-
pactness. Indeed, because of the hole left by the brain, the
muscle component should be much less compact. In order
to keep the algorithmic complexity low, we have defined
compactness as the ratio between the volume of the com-
ponent and that of its bounding box. Consequently, we
note M, the selection of the most compact component. A
basic skull extraction function can then be written :

D,oMgoFE, (E.1)

where o is the function composition operator. To increase
robustness, we have added two steps. First, after com-
ponent selection, its topology was corrected by filling its
cavities. However, we did not deal with holes because their
filling is too computationally expensive. Second, in order
to allow the dilation to accurately recover lost brain tissues
without spurious inclusions of skin tissues, it was obtained
from a distance map computed in a space constrained by
the first automated threshold, B. Let us note Dg , such a
constrained dilation, the final skull stripping function can
be written :

Dp,r, 0 FyoMgo Er, (E.2)

In T2w images, muscles present a hypo-intense signal
compared to brain tissues, making them easily separable
by thresholding. In our method, we classified bias cor-
rected voxels into 6 classes by k-means clustering. The
least intense class was considered as background (Bg), the
second least intense as muscle (Mu), the following two as
brain tissue (Ti) and the two most intense as CSF (Csf).
The following processing was performed:

1. Raw =D, 0 F 0 Bgo E,. o F; (TiU Csf)
2. Brain=C. oD, o0 F 0 Bgo E, o Fy (TiNnRaw)
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Inline Supplementary Material 1: Digital atlases of the Macaque brain.

Styner et al. (2007), McLaren et al. (2009) and Rohlfing et al. (2012) published in vivo T1lw templates with probability
maps for GM, WM and CSF. Styner et al. (2007) also provided a lobar parcellation into 13 regions and a subcortical
parcellation comprising 4 regions and Rohlfing et al. (2012) provided a 502-region atlas obtained by non-linear registration
from the BrainInfo macaque atlas (Dubach and Bowden, 2009). In vivo templates and brain parcellations were also
proposed by Wisco et al. (2008) (T2w template, 14 regions), Frey et al. (2011) (T1w template, 255 regions obtained by
non-linear registration from the Paxinos macaque atlas (Paxinos et al., 2008)) and Ballanger et al. (2013) (T1w template,
42 regions) but without probability maps. Recently, Shi et al. (2017) published age appropriate templates and GM, WM,
CSF and subcortical probability maps. Those templates and maps were constructed using non-linear registration. The
parcellation from Styner et al. (2007) was also propagated towards each template.
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Inline Supplementary Material 2: Basic morphomathematical operations.

Let us describe basic morphomathematical operations that can be applied to a binary volume B. An erosion of radius
r (E,) is equivalent to thresholding a distance map to the background voxels of B at distance r. Dilation (D,) is the

opposite operation: D,.(B) = E,.(B), with * the binary operation that inverts foreground and background. An opening is
the concatenation of an erosion and a dilation (O, = D, o E,) while a closing is that of a dilation and an erosion (C, =
E, o D,). We will note By the selection of the biggest connected component of B under connectivity order d, and F, the
filling of all cavities of B (cavities are background components that are not connected to the image domain boundaries).
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Inline Supplementary Table 1: Classification of the 18 atlas classes into Background, CSF, WM, GM and WGM.
Background
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White Matter
Pallidum
White matter
Corpus callosum
Gray Matter
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Isocortex
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Caudate nucleus
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Inline Supplementary Figure 1: Optimization of the 8 parameter. For each tested value, a Tukey’s boxplot represents the different quartiles
of the F'1 score for regions CSF, isocortex and white matter as well as those of the micro-F'; score. The mean score is also indicated in blue.
The z axis has a logarithmic scale.
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Reference B =0.025 B=0.25 B=25

Segmentation

Difference

Inline Supplementary Figure 2: Resulting segmentation of an arbitrarily chosen subject with 3 different values of 8. The first row shows the
segmentation while the second one shows in red voxels which classification differ from the manual segmentation of reference.

Inline Supplementary Table 2: Optimization of the 8 parameter. Mean F'y scores for all region of the hierarchy. For each region, the maximum
score is shown in red and scores that are equal to the maximum with a precision of 0.01 are bold.

ROI 8| 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1.0 2.5 5.0 7.5 10.0
Frymicero 0.62 0.73 0.76 0.77 0.79 0.78 0.77 0.77 0.75 0.74 074 0.74
Intracranial 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.96 096 096 0.96
CSF 0.71 0.71 0.72 0.72 0.71 0.67 0.61 0.58 0.52 0.51 049 0.47
Ventricles 0.39 0.65 0.70 0.71 0.71 0.71 0.70 0.70 0.68 0.65 0.62 0.59
Brain 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.94 0.93 0.93 093 0.93
Forebrain 0.93 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.93 0.93 093 0.92
Midbrain 0.65 0.75 0.77 0.78 0.79 0.79 0.79 0.80 0.80 079 0.79 0.79
Hindbrain 0.87 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.90 090 0.89
Isocortex 0.75 0.78 0.80 0.82 0.84 0.84 0.84 0.83 0.82 0.81 0.81 0.81
Pallium 0.62 0.69 0.70 0.70 0.70 0.70 0.70 0.70 0.69 0.69 0.69 0.69
Dorsal pallium 0.68 0.76 0.75 0.74 0.76 0.74 0.74 0.73 0.71 0.69 0.68 0.68
Thalamus 0.72 0.78 0.79 0.80 0.81 0.82 0.82 0.82 0.81 0.80 0.80 0.80
Hypothalamus 0.07 0.20 0.49 0.52 0.54 0.54 0.54 0.53 0.53 0.52 051 0.51
White matter 0.55 0.70 0.74 0.75 0.77 0.78 0.78 0.77 0.76 0.76 0.76  0.76
Corpus callosum 0.45 0.47 0.49 0.50 0.61 0.66 0.66 0.66 0.64 0.62 0.60 0.57
Subpallium 0.44 0.69 0.77 0.78 0.80 0.80 0.80 0.79 0.79 0.78 0.78 0.78
Pallidum 0.27 0.51 0.60 0.64 0.70 0.70 0.70 0.70 0.69 0.69 0.69 0.69
Striatum 0.46 0.73 0.79 0.80 0.80 0.80 0.80 0.80 0.79 0.79 079 0.78
Caudate nucleus 0.70 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.72 0.72 0.71
Putamen 0.31 0.70 0.81 0.83 0.84 0.84 0.84 0.84 0.83 0.83 0.83 0.83
Pons 0.69 0.74 0.75 0.75 0.76 0.76 0.76 0.76 0.74 0.73 0.73 0.72
Medulla 0.59 0.75 0.75 0.75 0.76 0.76 0.76 0.76 0.74 0.73 0.73 0.73
Cerebellum 0.77 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.90 0.89 0.89 0.89
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Inline Supplementary Figure 3: Optimization of the « parameter. For each tested value, a Tukey’s boxplot represents the different quartiles
of the F'1 score for regions CSF, isocortex and WM as well as those of the micro-F'; score. The mean score is also indicated in blue.

Inline Supplementary Table 3: Optimization of the a parameter. Mean F'i scores for all regions of the hierarchy. For each region, the

maximum score is shown in red and scores that are equal to the maximum with a precision of 0.01 are bold.

ROI o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Frymiere 0.38 0.50 0.59 0.65 0.68 0.71 0.75 0.76 0.78 0.79
Intracranial 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97
CSF 0.65 0.67 0.68 0.70 0.70 0.71 0.72 0.72 0.72 0.71
Ventricles 0.29 0.36 0.43 0.48 0.53 0.56 0.62 0.66 0.68 0.71
Brain 0.89 0.91 0.91 0.92 0.93 0.93 0.94 0.94 0.95 0.95
Forebrain 0.80 0.85 0.88 0.91 0.92 0.93 0.94 0.94 0.94 0.95
Midbrain 0.13 0.27 0.47 0.61 0.68 0.74 0.76 0.78 0.79 0.79
Hindbrain 0.21 0.48 0.68 0.80 0.84 0.88 0.90 0.91 0.92 0.92
Isocortex 0.45 0.59 0.67 0.72 0.76 0.78 0.81 0.82 0.83 0.84
Pallium 0.12 0.42 0.57 0.65 0.68 0.69 0.70 0.70 0.70 0.70
Dorsal pallium 0.34 0.46 0.56 0.62 0.67 0.71 0.73 0.75 0.75 0.76
Thalamus 0.20 0.40 0.52 0.63 0.70 0.75 0.78 0.80 0.81 0.81
Hypothalamus 0.05 0.26 0.45 0.48 0.50 0.51 0.52 0.53 0.54 0.54
White matter 0.42 0.51 0.59 0.62 0.65 0.68 0.72 0.74 0.75 0.77
Corpus callosum 0.08 0.12 0.16 0.23 0.29 0.39 0.45 0.49 0.53 0.61
Subpallium 0.15 0.25 0.32 0.38 0.42 0.53 0.69 0.75 0.77 0.80
Pallidum 0.12 0.18 0.25 0.31 0.35 0.40 0.45 0.57 0.60 0.70
Striatum 0.09 0.22 0.27 0.32 0.35 0.49 0.70 0.77 0.79 0.80
Caudate nucleus 0.29 0.57 0.60 0.67 0.69 0.71 0.73 0.74 0.74 0.74
Putamen 0.01 0.02 0.03 0.04 0.03 0.31 0.68 0.78 0.82 0.84
Pons 0.15 0.30 0.42 0.56 0.63 0.69 0.72 0.74 0.75 0.76
Medulla 0.27 0.41 0.60 0.69 0.71 0.74 0.76 0.76 0.76 0.76
Cerebellum 0.19 0.48 0.71 0.81 0.86 0.89 0.91 0.92 0.92 0.92
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Inline Supplementary Table 4: Optimization of modules combination. Mean F'y scores for all regions of the hierarchy. For each region, the
maximum score is shown in red and scores that are equal to the maximum with a precision of 0.01 are bold.

Denoising no no no no yes yes yes yes

MRF no no yes yes no no yes yes

ROI Bias no yes no yes no yes no yes
Frymieroe 0.75 0.76 0.79 0.80 0.75 0.76 0.78 0.79
Intracranial 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
CSF 0.57 0.60 0.67 0.70 0.60 0.62 0.69 0.71
Ventricles 0.70 0.71 0.72 0.73 0.70 0.71 0.71 0.71
Brain 0.92 0.93 0.94 0.95 0.93 0.93 0.94 0.95
Forebrain 0.92 0.93 0.94 0.94 0.92 0.93 0.94 0.95
Midbrain 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.79
Hindbrain 0.91 0.91 0.93 0.93 0.91 0.91 0.92 0.92
Isocortex 0.80 0.81 0.84 0.86 0.79 0.80 0.83 0.84
Pallium 0.68 0.69 0.70 0.72 0.67 0.68 0.67 0.70
Dorsal pallium 0.74 0.74 0.76 0.77 0.74 0.74 0.74 0.76
Thalamus 0.82 0.82 0.82 0.82 0.82 0.82 0.80 0.81
Hypothalamus 0.51 0.52 0.54 0.54 0.52 0.52 0.55 0.54
White matter 0.77 0.78 0.79 0.80 0.76 0.77 0.76 0.77
Corpus callosum 0.68 0.67 0.68 0.68 0.68 0.68 0.62 0.61
Subpallium 0.81 0.81 0.81 0.81 0.81 0.80 0.80 0.80
Pallidum 0.70 0.70 0.70 0.71 0.69 0.69 0.69 0.70
Striatum 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.80
Caudate nucleus 0.78 0.77 0.78 0.77 0.77 0.75 0.77 0.74
Putamen 0.84 0.85 0.85 0.85 0.84 0.85 0.84 0.84
Pons 0.74 0.74 0.78 0.78 0.74 0.74 0.76 0.76
Medulla 0.77 0.76 0.79 0.78 0.76 0.76 0.76 0.76
Cerebellum 0.91 0.91 0.93 0.92 0.91 0.91 0.93 0.92
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