Mathematical Epistemologies at Work [1]

RICHARD NOSS

In mathematical terms, there is a celebrated tension between
forms of discourse and cognition that are delicately tuned to
cultaral practices and those that are focused explicitly on
mathematics per se, recognisable by its symbolic forms and
epistemological structures This tension parallels (and is
perhaps derived from) the episternological duality of mathe-
matical thought as both tool and object, simultaneously a
component of pragmatic activity and theoretical endeavour
The preparation of this atticle has afforded an opportunity
to reflect retrospectively on this duality and on a corpus of
research in which I and my colleagues have been involved,
spanning a variety of sub-fields and a couple of decades. I
hope it is not too fanciful to impose upon this work a nara-
tive that was not necessarily evident to any of us while we
were engaged upon it. Here is a first outline of that narrative
I begin with a pervasive finding that arises from investi-
gations with (mainly young} people expressing mathematical
ideas with computers. These studies led to a series of
thoughts concerning the generation of mathematical mean-
ings that nagged away until the early nineteen-nineties,
when Celia Hoyles and myself began to formulate a theo-
retical framework for describing the phenomena we
encountered Shortly after this, we had the opportunity to

wotk in a variety of settings with the broad common aim of

elaborating the mathematics used in working practices.

I shall then illustrate how these studies began to thiow
light on some fundamental questions, particularly concern-
ing the nature of mathematical practices, and encouraged
us to investigate further the problem of mathematical mean-
ing from both cognitive and socio-culiural perspectives. This
effort has led to some general principles about the design of
mathematical activity systems for learning and, in paiticular,
the rather special role that digital technologies may play
within them. Thus, pethaps fittingly but probably over-ambi-
tiously, I will conclude where I began, with the assertion that
digital technologies can play an unusually powertul role in
helping to understand and reshape the nature of mathema-
tical sense-making.

I would like to make two general observations at the out-
set. The first concerns my wish to consider both cognitive
and social dimensions. To steer a course between these two
approaches is not easy, not least because proponents of each
often ignore the work of the other, or denounce as mere
eclecticism any attempt at synthesis (there are impoitant
exceptions to this: see, for example, Cobb and Bowers,
1999, Kieran, Forman and Sfard, 2001) One organising idea
for thinking about this apparent dichotomy has been sug-
gested to me by Andy diSessa who distinguishes between
phenomena that are distally and proximally social

Much of what I have to say comes from a recognition that

many phenomena concerned with mathematical meaning are
proximally social, in that they manifestly involve social and
cultural relations between people and within communities.
But I also recognise that many facets of human thought are
only distally social; while it is true that what I think, and
the techniques I use for thinking and communicating are
shaped both socially and culturally, T think in ways that are
structured by my personal cognitive history at least as
strongly as by the socio-cultural relationships in which T find
myself embedded.

No attempt to understand how mathematics is learned by
human beings can afford to ignore this essentially cognitive
element, any more than it can afford to ignore the social and
cultural relations in which cognitive activity is embedded.
Thus, in what follows, I hope to illustiate not only that such
a perspective need not necessarily lapse into eclecticism, but
rather that co-ordination of the two approaches provides a
possible and even necessary methodological stance.

The second observation concerns the title of this article. I
recognise that it is bad form to tell a joke and then explain
it Forgive me then, if I explain the double entendre in the
title I want to talk about mathematical epistemology as it is
found in work, to understand how mathematics is used and
how it is conceived by participants in their cultural practices.
But 1 also want to tatk about mathematical epistemology as
a crucial element at work in leatning situations; how math-
ematics education researchers can develop not just new
approaches to teaching, but new mathematical epistemolo-
gies that are more learnable and, at least for all but the few,
more expressive

Insights from observations of activities with
computers

QOver sore two decades, Celia Hoyles and T have engaged in
studies of children and adults interacting with computational
systems designed to afford mathematical expression.
Throughout this time, we have noticed an interesting phe-
nomenon, which we can simplistically characterise as
follows: leatners are often able to express themselves in
terms that might be considered abstract, yet which seem to be
bound tightly into the tools and symbols of the computational
world. Learners can, in other words, say and do things with
suitably-designed systems that they may be unable to say or
do without them - and they can often do so in ways that are
interestingly different from conventional means. Let me give
an example of this phenomenon from the recently-completed
doctoral thesis of my colleague, Lulu Healy. Healy (2002)
reports the results of an investigation into children’s under-
standing of reflection and symmetry, in which she designed,
constructed and evaluated two learning systems, one based
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on Cabri and the other on a Logo-based toolset.

Within this toolset was one particular tool, named meet, that
simulated the action of turtles moving successively closer
(their ‘speeds’ adjusted accordingly) in order to construct a
new turtle at the point at which their paths intersect Figure 1
shows three snapshots of the general meet tool in action.
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Figure 1. The ‘meet’tool in action: copies of each of the tur-
tles at the ends of the line segment inch forward
until they meet and become one

In the special case in which the two turtles are initially
placed in a (reflective} symmetric configuration, they will,
of course, meet on the line of symmetry: surprisingly or not,
Healy’s twelve-year-old students all appeared to acknow-
ledge this intuitively The meet tool, therefore, was designed
to tap into this intuition and afford students a way both to
construct symmetrical figures (see Figure 2), as well as to

justify hypotheses that one turtle was the reflection of

another in a given line of symmetry.
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Figure 2: Using the ‘meet’tool to complete a symmetrical
figure

I will suppress all of the interesting detail in order to focus
on the ways that children expressed their ideas about sym-
metry during interactions with this tool As an example,
Aimee said:

Every turtle has its own reflection turtle [with] the same
distance away from the mirtor and the same angle,
except for lefts and rights.

Notice that ‘except for lefts and rights’ states precisely what
it means within the Logo setting - under reasonable condi-
tions, a figure is symmetrical if and only if it consists of two
patts which are the same with left and right swapped.
Aimee’s expression captures the properties of the figures
drawn on the screen; but it also focuses on the relationships
that associate an object with its itnage (and line of symme-
try), suggesting a view of 1eflection as a transformation of a
set of turtles (points)

Statements such as Aimee’s could be used to reason about
reflection, i.e to generate implied knowledge Here, for
example, is Jodie’s reasoning:

It’s wiong. If it was symmetrical, the turtles would
meet on the mirtor. This one looks the same distance
as this [J thinks the tartles are equidistant from the line
of symmetry], but it’s not going te go the right way

Jodie has caught nicely two important mini-theorems: that
symmetry would necessarily imply meeting on the mirror
line; and the converse too - if they do not meet, then they
cannot be symmetrical.

I would like to elaborate two points that emerge from this
little example. The first centres on the ways that learners can
use technology to shape their mathematical expression -
how some elements of the invatiant relationships between
the given objects are identified and related within the sym-
bolic discourse of the environment In the sense that these
invariant relationships remain articulated only within activ-
ity using the notational system of the virtual world, they
likely could not be said to constitute a formal abstraction
But to the extent that they become transformed into some-
thing coherent, reusable and general, it does make sense to
consider such activity as involving an abstraction of some
kind (For furthet elaboration of this argument, in the context
of stochastic thinking, see Pratt, 1998; Pratt and Noss, 2002
For a study in relation to students’ conceptualisations of non-
Euclidean geometiy fiom a similar perspective, see
Stevenson, 1996; Stevenson and Noss, 1999 )

The second point is related to the first, and concerns differ-
ential petformance Put bluntly, children who may be
apparently unable to express any relationships about their fig-
ures with pencil and paper are able to express them quite
adequately (and sometimes quite elegantly) with the computer.

Reports of differential performance depending on con-
text are commenplace. There are consistent and widely-
reported findings concerning the differential performance
between adults carrying out tasks in everyday settings and
when given written assessments For example, Scribmer’s
(1985) study of the dairy industry, Lave, Murtaugh and de
la Rocha’s {1984) investigation of weight-watchers, the
seminal work of Saxe (1991} and Nunes, Schliemann and
Carraher’s (1993) investigations of street vendors have all
shown convincingly that people who are error-prone in tests
are mostly error-free in familiar practical contexts and that
there is a major disjuncture between the strategies used in
the two settings.

More generally, and especially since the work of Jean
Lave and Etienne Wenger (1991) and othets in broader
anthropological contexts, we may more or less take for
granted the situated view of knowledge genesis A key



insight is that people construct solutions in the course of
action and that these solutions are structured by activity. In
the supermarket, for example, Lave et al. (1984) illustrate
how people avoid doing what might be classified as school
mathematics not because it is too hard, but because the prac-
tice of supermarket shopping carries with it its own
discourse and its own mechanisms for meaning-making
One point that is often missed, however, is that we cannot
conclude that there is nothing that passes for mathematical
in shoppers’ activities. The point is that when shoppers do
use mathematics, it is supermarket mathematics, a mathe-
matics made possible through the resources of the setting.

Since these studies, the situated cognition perspective has
become ubiquitons. In its extreme version, it claims that
“avery cognitive act must be viewed as a specific response
to a specific set of circumstances” (Resnick, 1991, p. 4)
However, such arguments - compelling as they are - pre-
sent researchets of mathematical learning with a number of
seemingly intractable difficulties. If mathematics cannot be
regarded as a decontextualised resource to be learned and
then mapped onto settings, if it can only be defined in relation
to specific situations, then we seem to have come close to dis-
tilling the mathematical essence out of mathematical thought

One way out of this difficulty has been indicated by con-
sideting the role of representations. While seeking to
understand the way schemas of ‘if-then’ reasoning were
developed, Cheng and Holyoak (1985) posited the inade-
quacy of the specific-experience view and proposed the
notion of pragmatic reasoning schemas which are guided
as much by goals and purposes as the logic of the argument
and are:

primarily the products of induction from recurting
experiences with classes of goal-related situations
(p 414)

The claim is that:

people typically reason using abstract knowledge struc-
tures organised pragmatically, rather than in terms of
purely syntactical 1ules of the sort that comprise stan-
dard logic. (Cheng et al., 1986, p 314)

Similatly Nunes, Schliemann and Carraher (1993) show
convincingly how street vendors could generalise theii
knowledge flexibly and argue that:

the fact that specific information is contained in repre-
sentations in street mathematics is not a drawback It
is specific information that allows subjects to control
for the meaning and reasonableness of their answers in
problem situations [ .] Thus, representation of the
particulars of a sitnation does not imply that the subject
is restricted to understanding exact sitvations There is
ample evidence for flexibility and generalisability of
the pragmatic schemas of street mathematics. (p. 147)

These accounts concur on one important point: that indi-
viduais engaged in situated activity can and do generalise
beyond the specificities of situations. Three questions
naturally arise. What is it that is generalised? What is
abstract about such knowledge? What is situated about such
knowledge?
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To try to answer these questions, Hoyles and I proposed,
some ten or so years ago, the idea of situated abstraction (a
first attempt is in Hoyles and Noss, 1992) as a tool to aid in
understanding how learners construct mathematical ideas by
drawing on the material and discursive components of a par-
ticular setting or, as we might put it today, activity system
Situated abstraction seeks to desctibe metaphorically how
a conceptualisation of mathematical knowledge can be both
situated and abstract. It may be finely tuned to its construc-
tive genesis - how it is learned, how it is discussed and
communicated - and to its use in a cultural piactice, yet can
simultaneously retain mathematical invariants abstracted
within that community of practice. The reflective symmetry
example above gives a simple illystration of this idea

A traditional view regards an abstraction as containing
some essential property of a situation extracted from it -
not contained within it; it is deemed to be “apart’ fiom, even
above, the situation of its genesis (see, for example, Piaget,
2000, p. 4). From this perspective, abstractions are, by defi-
nition, not embedded in situations. Rather, they involve
expressions (internally or externally manifested) which,
although they may detive from specific situations, are meant
to tepresent a shift away from that situation. This perspec-
tive leads to the widely-shared assumption that practice is
merely conciete and that abstraction is an extra-practical
form of thought: see Wilensky (1991}

The idea of abstraction as a conceptualisation ot a piece of
knowledge lying in a separate realm from action, tools, lan-
guage or indeed from any external referential sign system is
important from a perspective of mathematical discourse,
since mathematical discourse is normally conceived as self-
contained: it forms part of a system that has its own objects
and its own rules for transforming them.

This characteristic of formal mathematical abstraction is cen-
tral to its utility; sitnated abstraction does not seek to challenge
that utility, but questions whether mathematical abstractions can
ever be fully sepatated from the context of their construction
or application. Our broader hope is that the idea of situated
abstraction will contribute to a theory of how mathematical
knowledge is used or ‘transferred’ across settings (for other
contributions to this emerging theory see, for example, Carraher
and Schliemann, 2002; Sfard, 2001; Nemirovsky, in press;
Hershkowitz, Schwarz and Dreyfus, 2001).

At the point at which Hoyles and I began to formulate
these ideas, they wete essentially hypotheses, based only
on data detived from children and adults engaged with com-
putationally expressive media. Fortunately, in the event, we
wete subsequently able to test these ideas in studies of math-
ematics in work and it is to these that I now tuin.

Into the workplace

The study of mathematics in work provides a particularly
fruitful setting for illuminating fundamental issues concern-
ing the construction of mathematical meanings. Specifically,
it affords an opportunity to focus on the situatedness of math-
ematical meanings by investigating their use rather
than their genesis, In the long term, one might hope that
such insight will afford leverage on the design of didactical
strategies within and ultimately beyond work-based settings
and I will outline some of these towards the end of this article.




Although it is clear that persons studied in their commu-
nities yield tich and useful data that describe what they do, it
remains desizable to locate and elucidate the mathematical
knowledge that they know. To achieve this aim, our group in
London has employed ethnographic and interview data to
capture meanings created in situ and the dialectical rela-
tionship of these meanings with mathematical expression on
the one hand and professional expertise on the other. This
has involved Celia Hoyles, Stefano Pozzi and myself in a
seties of studies with investment bank employees, paediatric
nurses and commercial pilots; more recently, Phillip Kent
and myself have been working with a group of structural
engineers.

These professional groups differ in substantial ways, but
there are similarities: in the explicitness of their mathemati-
cal training and in their intolerance - to a greater ot lesser
extent - of errors. We have developed a map of mathemati-
cal wotkplace activities comprised of documentary analysis,
interviews with senior staff in each profession, general and
task-based interviews with practitioner volunteers and
ethnographic observation of these subjects in the workplace

I will now try to summarise some of the outcomes of this
research. I do so by sketching five vignettes, chosen to illus-
tiate the outline of the theoretical position I wish to advance
in the form of a set of provisional ‘results’. The text of each
vignette is based on the relevant co-anthored papers that are
referenced within it

Vignette 1: The epistemological fragmentation of the
workplace

The first vignette is drawn from a study conducted with a
group of bank employees, part of which attempted to under-
stand the bankers’ ways of thinking about quantitative data
better (see Noss and Hoyles, 1996a) In one of the task-
based interviews, we presented the bankers with a problem
of graphical interpretation, given in Figure 3 opposite.

The responses of the bank employees were surprisingly
uniform. Most identified the graphs as a visual display of
numbers, as a pictorial representation of underlying data
rather than as a functional relationship and as an indication
of a trend in data that allowed prediction: as one of them
put it, a graph was the end tesult of a table of statistics that
enabled him “to see [.. ] faster [ . ] the implications of the
data” Where we saw graphs as a medium for expiessing
relationships (e.g between quantity and time), bankers saw
a display of data.

The otigins of this epistemological diversity are almost
certainly to be found in the tools of the system in which the
bankers operate. On each employee’s desk were several
computers Somne, the traders and the operations staff, had
three or four. On all but a very few screens, there were
columns of data, graphs, and more columns of data: in every
sense, giaphs were pictures of numbers, rather than graphi-
cal representations of a functional relationship.

This epistemnological standpoint with respect to graphical
representations can, it seems, be thought of as the graphical
face of a fragmented knowledge structure that characterises
the practice of investment banking. We encountered depart-
ments specialising in the finest detail on one financial

An agent received commission for each transaction as follows:

(a) for transactions less than £750 plus 2'%:%

£30,000 of the transaction
(b) for transactions more than 5% of the transaction
£30,000 ..

‘Which graph shows this situation most realistically?

Graph A

Comimnission Commission

Graph B

3
I

Amount of transaction Amount of transaction

Graph C Graph D
Corarnission Comuission
£
b4 Amount of transaction hd Amount of transaction
The correct graph is
Explain why

Figure 3. Probing notions of quantity and time in relation
to graphs: the carrect option is Graph C

ingtrument, sharing a common wall but ne common lan-
guage with another - essentially similar - department Of
course, similarity is in the eyes of the beholder: while we
might view, say, Nominal Certificates of Deposit and
Treasury Bills as flavours of similar financial instruments
sharing the same (ot nearly the same) mathematical struc-
ture, the bankers saw finely-tuned pragmatic knowledge and
strategies - and a discourse that served to reinforce the dif-
ferences between them.,

So the first major finding of our studies can be sum-
marised as follows:

Result 1. There is an epistemological fragmentation of
the knowledge structure of the workplace that shapes
and is shaped by the discourse of the working prac-
tice. Strategies are finely tuned to the pragmatic
demands of work activities, with litile tendency to strive
for a theoretical orientation involving generality or
appreciation of unifying models



Vignette 2: The role of artifacts and tools

The idea that people think and act within socie-cultural
contexts which are mediated by cultural tools is now com-
monplace The work of Vygotsky, Luria and Leont’ev,
indeed the entire corpus of work on activity theory, offers
compelling evidence that both individual and social acts of
problem solving are contingent wpon structuring resources,
involving a range of attifacts such as notational systems,
physical and computational tools, and wotk protocols
(Gagliardi, 1990).

Workplace settings are, naturally enough, littered with
artifacts These artifacts are, for the most part, a simple
expression of work protocols, so that in routine use - and the
overwhelming majority of time in working practices is spent
on routine - the structure of the artefact is hidden from view
For example, in one study on a hospital ward (Pozzi, Noss
and Hoyles, 1998), we found that a seemingly straightfor-
wartd artefact like a fluid balance chart contained within it
the crystallised activity (Leont’ev, 1978; see also Wertsch,
1985) of the hospital community, shaping in complex but
mainly unnoticed ways the actions and discourse of those
using it. A central part of this crystallised activity was a
mathematical model of essential variables and relationships
embedded in the activity: evidence for both the complexity
and the invisibility of this mathematical model was gained
by observing the ambiguity and uncertainty felt by a new-
comer to the paediatric ward, as well as the extreme
difficulty faced by the old-timers in communicating to her
the structure that they had come to take for granted

The artival of the newcomer on the ward served to trig-
get a ‘breakdown’ ot decision point within routine practice,
a situation in which the models underpinning artifacts and
the representational infrastructures on which their use
depends rise to the surface and become open for inspec-
tion and negotiation by participants (and observation by
researchers) That this model is normally hidden should
cause no surptise: I have already noted that the purpose of an
artefact is to facilitate the pragmatic activities of the work-
place, not to learn mathematics or to gain insight into
underlying models.

Nevertheless, when breakdowns do occur, invisible rela-
tionships buried in artifacts do not suffice and there is a
need for the community to understand at least some of the
workings of the models, to examine their strengths and lim-
itations and to scrutinise the tesults of the mathematical
labour congealed within them (see Hall, 1999, for a similar
finding). At least in breakdown situations, we are abruptly
made aware of circumstances that require more than mere
procedural routine and the learning of work protocols. They
require systemic interpretation - the individual is required to
make sense of what she does within the confines of the
broader socio-technical system

Result 2, Tools and artifacts shape activities and
thought in ways that only become visible at times of
breakdown to routine. In disruptions to routine, indi-
viduals need to develop a broader interpretative view of
the model that underpins their routine practice

Vignette 3: The anchoring of mathematical meanings in
practice

It will help to focus on a specific knowledge domain I will
turn to one of the most widely-researched topics in the field,
ratio and proportion. Reseatrchers on proportional reasoning
in school and the workplace have distinguished two ubi-
quitous classes of strategies for making proportional
calculations, fitnctional (across measures) and scalar (within
a single measure) - see Vergnaud (1983) for a thorough
analysis. Nunes, Schliemann and Carraher (1993) have
suggested that scalar strategies offer a mechanism for hold-
ing on to situational meaning by keeping only one measure
in view. By way of contrast, functional strategies tend to be
seen as semantically sparse manipulations of numerical
quantities per se

It appears that this difference is the reason why people
tend to prefer scalar strategies, even when they result in
a more computationally awkward calculation. This is the
crux of the counterposition in the literature of scalar and
functional approaches, in that the privileging of the former
has arisen from the apparent necessity in the latter to relin-
quish meaning in the form of a situational referent. Nunes,
Schleimman and Carraher concluded that scalar approaches
are drawn from expetiences in everyday situations, are more
flexible and generalisable than easily forgotten algorithmic
approaches and, most relevant here, allow people to preserve
the meaning of the situation by keeping variables separate
and not calculating across measures.

To see how robust this finding is, I turn to the case of a
group of paediatiic muses (see Hoyles, Noss and Pozzi,
2001) who are similarly expert in their field, but who have
had years of school mathematical education as well as pro-
fessional training. Nurses ate drilled to perform accurate
drug-dose calculations from an carly stage in their profes-
sional training. One key aspect of this training is what, in our
early interviews with them, several described as the ‘nursing
mantra’ which states: “What you want, over what you’ve
got, times the amount it comes in” or, in written form:

What you want .y 2mount it comes in
What you’ve got

This rule is a version of the ‘rule of three” and is corpletely
general in scope Furthermore, it mirrors the actions that a
nurse must take in order to prepare a presciiption: look at the
drug dose prescribed on the patient’s chart (‘what you
want’); note the mass of the packaged drug to hand (*what
you've got’}, and then the volume of solution (‘the amount it
comes in"). This match of rule with actions and artifacts pro-
vides a possible explanation for the fact that at no time did
we ever hear the nursing rule described in any other order.
Duiing ethnographic observations and interviews, we
noticed that while all the nurses” drug calculations were car-
ried out correctly (unsurprisingly, in written tests, nurses’
responses were highly error-prone), the strategies adopted
were varied and exhibited a far richer complexity than
would be suggested either fiom our interviews or from
our expectations derived from the nursing literature. Of




30 episodes related to drug administration (out of a total of

250), we collected during 80 hours of observation, 26 com-
binations of ratios were observed with a variety of drugs,
packaging and presciiptions Of these, only four involved
the nursing mantra, while equal numbers chose scalar and
functional strategies.

When we looked more closely at the strategies employed,
we certainly found evidence of scalar strategies - as Vergnand
and Nunes et al. would predict - even in the face of much
simpler calculations being available with a functional
approach. But we also found something suprising. I will
illustrate with an example.

Belinda needed to give 120 mg of an antibiotic,
amakacine, prepared in 100 mg per 2 ml vials. Before per-
forming the calculation, she prepared for the administration
and retrieved two vials of the antibiotic At this point, she
found the volume she had to give with a fluency that was
difficult to follow:

Belinda:  Amakacine [reads doses on the two vials]

one hundred; one hundred; [1eads year of

-expiry] ninety-eight; ninety-eight; [finds
volume to be given] two point fowr mils,

A short interview with Belinda later revealed the nature of

her strategy:

Int I didn’t see you do any calculating there at
all. You just drew it up. [ .. ]

I knew the doses. [...] I know that that one
is two point four . . . two point four mils.
With the amakacine, whatever the dose is,
if vou just double the dose, it’s what the mil
is Don’t ask me how it works, but it does
[emphasis added]

Belinda:

Int: Why, what’s the [ . ]?
Belinda:  One hundred and twenty mg, right [dose]
and it comes in [ . ] and it goes in one hun-
dred milligrams per two mils. So if you
double it, that makes two hundred and
forty [ - ] two point four mils

Int: I’'m sorry I don’t understand

Belinda:  So if you just double it up. Double one
twenty; one twenty and one twenty is two
hundred and forty. And the dose is two
forty. So very often that’s how it is with
amakacine, so if you're giving eighty [. ]
eighty milligtams to give, and if you dou-
ble it up, it’s one point six. [emphasis
added]

Belinda’s description clearly indicates a transformation
from the dose mass to the dose vohume, so in this sense the
strategy is functional. But a simple classification of the
strategy as functional does not do it justice. Her description
suggests that the operation was associated with the
drug itself rather than with the 1atio between the mass and

volume: “That’s how it is with amakacine”, says Belinda,
apparently seeing the allowable arithmetic operation and the
particular drug itself as intimately connected. Similarly, her
description of the strategy suggests that she was neither
simply manipulating numbers (or even quantities) nor
performing arithmetic operations on them Rather, she
described the transformation as ‘doubling up’ and effort-
lessly combined into a single process what would generally
be recognized as the doubling operation and the movement
of the decimal point

In this episede, we see an iflustration of how the nurses
often opted for strategies that would, in the literature, be
described as unlikely and lacking in meaning. Our interpre-
tation of these findings is that the nurses’ knowledge of
concenttation, that is their appreciation of the invariance of
the relationship between mass and volume as evidenced in
their drug calculations, was anchored in an intimate know-
ledge of the drug itself, as well as in the properties of
familiar packaging constraints of prescribed doses The
knowledge was mutually constituted and expressed as both
mathematical relation and culturally-shared situational noise
- the same kind of knowledge that we encountered earlier
in the context of computer worlds and which we called
situated abstraction

Result 3: Knowledge is mutually constituted by a
co-ordination produced in activity of mathematical
knowledge and situational noise to form situated
abstractions.

Vignette 4: The qualitative restructuring of mathema-
tical knowledge in activity

In a recent study, Phillip Kent and myself have been inves-
tigating the ways in which mathematical knowledge is
conceived and deployed with employees of a large London-
based engineering firm (see Kent and Noss, 2001, 2002) We
have encountered, even with this mathematically educated
group, a ubiguitous view that the majority of structural engi-
neers do not “use mathematics’ of any sophistication in thei
professional careers. So, while all believed that it was
impottant for graduate engineers to have an appreciation
for advanced mathematics, it is something they would rarely
be expected to use.

Once you’ve left university you don’t use the maths you
leaint there, ‘squared’ or “‘cubed’ is the most complex
thing you do. For the vast majority of the engineets in
this firm, an awful lot of the mathematics they were
taught, T won’t say learnt, doesn’t surface again

1 think that this particular engineer’s description of mathe-
matics as not ‘swrfacing’ is a fortuitous ope. We have seen
in the case of the nurses that mathematical knowledge
becomes fused with professional knowledge as situated
abstraction, not as abstraction in its pure form But it is this
pure form, particularly for mathematically sophisticated
groups such as engineers, that is readily recognisable as
mathematics. Owr engineer is right that mathematics does
not surface; ot rather, that it seldom surfaces in the form it
was learned and taught. It has been transformed into some-
thing else, something at once more usable, more embedded,



more noisy. Only the vestigial traces of the college mathe-
matics tatght to engineers remains in the mathematics that
they actually use in activity. [2]

The transformation in the character of mathematics
appears to be not simply a quantitative one, nor merely a
replacement of mathematical activity by professional
expertise and experience. It represents a qualitative, episte-
mological and cognitive restructuring of the mathematics
as it becomes ‘embedded’ in engineering expertise [3]
I claim that engineers’ conceptualisations of this restructured
mathematical knowledge are legitimately considered as
situated absiractions.

I will ilfustrate with an example. The type of qualitative
thinking that characterises the use of ‘feel” in the engineer-
ing design process is exemplified by the concept of load
path, the notion that the loads acting con a structure have to
‘flow down into the ground’ like a kind of fluid. It is a pow-
erful, very physical concept and extremely useful because
it provides a way of thinking about a structure before any
analysis is done, allowing judgements to be made about the
validity of a quantitative analysis of the structure. One engi-
neet put it thus:

A load is applied and eventually it’s got to get back
into the ground . It’s so fundamental to structural design
that you have to be able to see what that route is in
order to have a feeling, to be able to calculate, what
sotts of loads and forces will be apparent in any par-
ticular member Without a clear idea of the load path,
you have nothing to judge what you're getting from the
computer

Formal mathematical analysis, on the othet hand, is based on
the assumption of static equilibrium, which assumes that
nothing is moving in a stable structure, an assumption that
appears to conflict with the load-path concept Nevertheless,
for the engineer above, load path has become a situated
abstraction of stability criteria: it allows predictions of
behaviour that emerge from fusing together the actual pro-
perties of the material (e g. steel beams) with the associated
{mathematically-abstracted) forces (see also Bissell and
Dillon, 2000)

The attribution of ‘mythical’ chains of causality to for-
mally non-causal situations has been studied by researchers
in various areas of cognitive science, although not, as yet,
within the context of mathematics education Viewed in
this light, it is tempting to view this as an idiosyncrasy, a
technique that works well enough in practice, as an approx-
imation or useful metaphorical approximation to the ‘real’
mathematical abstraction (3. Forces = 0), In fact, it turns
out that the view of force as momentum flow has a long and
epistemologically coherent pedigree. diSessa (1980) makes
a compelling case for a view of force as:

simply the flow of the conserved ‘stuff’, momentum,
from one place to another. (p 2)

He notes that broadly convergent views have been advanced
by no lesser scientific figuies than Mach, Kirchoff and
Hertz [4]

For the moment, the relevant point is this: engineering

discourse employs, in at least one important way, a kind of

knowledge which is at once about mathematical relations
and about substance The idea of flow makes no sense with-
out something to flow through - the beams and struts of
everyday engineering practice. Mathematical knowledge has
been transformed (in this case, there is an epistemological
isomorphism)} to the extent that even those engaged in it do
not necessatily recognise its existence. This poses sharply
two questions: how does the formally-learned knowledge
(e g the engineers’ knowledge of Newton’s laws, or the
nurses’ knowledge of the drug-dose mantra) become trans-
formed, both cognitively and culturatly, into something new
and more functional within professional practice and what
connection, if any, is maintained between them?

I have no data on these questions For the moment, the
key issue concerns the transformation of knowledge, the cre-
ation of new epistemologies as a chatacteristic part of
professional expertise. Here, at least, is the explanation of
the appatent invisibility of mathematical activity. Here, too,
is a broader, more culturally oriented perspective on the hith-
erto individualistic notion of situated abstraction that
recognises the individual’s embedding in an ambient social
and cultural space

Result 4. As mathematical knowledge is embedded
in new settings and activities, it undergoes an episte-
mological and cognitive transformation What is
consciously thought of as mathematics by practition-
ers appears to be only the visible component of a
larger, transformed body of mathematics in use that
takes the form of situated abstractions

Vignette 5: The sitnatedness of abstraction

The final vignette will deal with the most problematic (and
so far, under-researched) issue. The challenge is to test the
situatedness of knowledge, to assess the extent to which
knowledge in the form of situated abstraction ‘transfers’ to
new situations (o1 better still, to find a convincing alternative
metaphor for the notion of transfer itself)

For this task, T will return to the nurses (this vignette is
extracted from Noss, Hoyles and Pozzi, 2002) . Across many
different drug administrations, with varying degrees of com-
plexity and in a variety of situations, nurses’ procedures for
calculating diug dosages consistently retained a constant
covariation of mass and volume in the drug selution: this is
the epistemological core of the situated abstraction of con-
centration. In order to probe the nature of this knowledge, it
was necessary to devise a methodology that could tease out
the limits and situatedness of abstractions developed in
activity. Our solution was to displace the nurses from their
familiar practice, by ‘forcing’ them to reflect and articulate
what it was they knew, and how - if at all - they thought
about it in relation to their practice We did this by a series of
task-based interviews, in which nurses were progressively
faced with situations that were further and further removed
from the practices we had observed, yet retained elements of
familiar situations for them.

I will summarise the findings. First, when the murses were
faced with a close simulation of their practice, they displayed
similar strategies to those identified in the ethnographic




studies, together with a strong sense of the invariant rela-
tionship of mass and volume. In these cases, the nurses’
reasoning was suppotted by a synergy of their exist-
ing (school) mathematical knowledge and their practical
experience Thus, knowledge of the invariance of drug con-
centration characterised nurses’ strategies even when they
were removed from their practice; they engaged with the
underlying objects of mass, volume, concentration and
tate and the relationships among them, in order to develop
effective sirategies, such as mentally dividing extensive
quantities into visualisable chunks in ways that made a
direct connection to the artifacts of their practice.

Second, and by contrast, an analysis of the nurses’
tesponses to a less familiar scenario illustrated that when it
became impossible to link contextual elements with mathe-
matical knowledge, the nurses’ responses became far less
clear Our conclusion was that it was crucial for the mases to
exploit the texture of their experience as a resource in their
mathematical activity: when the texture of that expetience
became unavailable, the mutually constitutive elements of
professional and mathematical knowledge became discon-
nected

It would be difficult to explain the nurses’ situated yet
abstract knowledge, if it were merely to consist of a collec-
tion of abstract procedures or, conversely, if it were entirely
contingent on participation in the specificities of nursing
practice - that is, if the mobilisation of the nurses’ know-
ledge depended wholly upon immersion in the cultural
practice that gave rise to it. Moreover, it is clear that the
noise of the situation is a critical element of the conceptual-
isation of the mathematical knowledge used in the practice,
one that affords the extension of a situated abstraction into
less familiar and novel domains. It also lmits its genezalis-
ability

Resulr 5 (conjecture). The noise of a situation forms a
core part of a situated abstraction. When it can be
called upon in a new situation (and only then?), the
mathematical knowledge can be ‘transferred’

Designing for change
I promised at the outset to draw out implications of these
work studies and to elicit some general principles concern-
ing the design of mathematical practices for learning The
hypothesis is that the ways in which people reconstruct
knowledge for use in work is spontaneous, in the sense of it
deriving from participation in the practices of the commu-
hity and, for the most part, not being formally taught within
the practice. That being so, I might further hypothesise that,
given the functionality of this kind of knowledge, one might
attempt to design and construct activity systems for learn-
ing that harness the features of the workplace, at least those
that are petceived as constitutive of learning. So I will try,
very briefly, to map the set of findings from the maths-in-
work studies onto a set of implications for design This will
also provide an opportunity to refocus this article back on
the roles of digital technologies and to begin to deliver on
the undertaking I gave at the outset in this regard,

The first finding (vignette 1) concerned the fragmenta-
tion of knowledge within the ecology of the workplace

system, If it is more generally true that strategies are prag-
matically oriented, perhaps we should design environments
which explicitly and visibly demonstrate the power of
(mathematical} invariants This power is singulatly lacking
as an explicit focus of most mathematics curricula. And, as
we have seen, the role and function of invariants is hardly a
natural priotity in the wotld of wotk. This observation adds
something to the ‘real world” movement that pervades - at
least at a rhetorical level - the stated aims and methodolo-
gies of various curricula. It focuses attention on the
construction of models of reality (1ather than reality itself),
an activity in which the identification of what does and what
does not vary, as well as how, is a crucial component As I
will clarify below, this is an initial point of contact with the
particularly powerful role that digital technologies can play

The second finding (vignette 2) was that knowledge is
petvasively stiuctured by artifacts. Artifacts-in-activity - o1
more properly, the knowledge congealed within them - do
much of the work involved in understanding and predicting
the behaviow of the wotkplace, as part of a distriibuted sys-
tem of knowledge construction within it Yet learning
environments are typically spartan in their use of artifacts. I
conjecture that lots of manipulable, combinable and useful
things are a key part of realising the design challenges we
face Here, too, we will see the special contribution that
digital technologies can make: the addition of a digital
dimension to learning-oriented artifacts can be exploited to
increase the range of expressive power and creative possi-
bilities afforded by the manipulation of artifacts and,
crucially, the potential to isolate and reflect upon the mech-
anisms and models that endow them with functionality

Two further findings (vignettes 3 and 5) concerned the
1ole of situated abstractions We saw that situated abstrac-
tions are mutually constituted by mathematical knowledge
and situational noise, and that situated abstiactions extend to
new situations to the extent that the contextual ‘noise’ of
their genesis can be carried alongside formal, mathematical
knowledge. Two possible implications arise. First, that we
should include noise as a carefully-designed element of
learning environments, not as contextual mess (a parti-
culatly irritating practice in the UK is to wrap any
mathematical idea in contextual clutter and Iabel it ‘situ-
ated”), but as culturally-shared situations that are meaningful
for its participants Second, we need to design systems that
afford the construction of new situations from old ones, in
ways that allow the knowledge-constitutive elements of
noise to remain invariant. This approach would, I think,
represent rather a radical shift in much current pedagogical
practice: it suggests that the standard modelling strategy of
removing noise in order to expose underlying structures
might froitfully be rethought in favour of a view of contex-
tual noise as an element of what makes knowledge
learnable, functional and, for want of a betiet word, trans-
ferable.

A final lesson (vignette 4) from the mathematics-in-work
studies involved the transformation of mathematical know-
ledge as it crosses boundaries of an individual’s experience,
ot its cultural embedding in different types of work situa-
tions. This is pethaps the most difficult finding from which
to draw a canonical implication for design, but I will choose



just one I conjecture that the shifting character of mathe-
matical meanings within different 1epresentational infra-
structures is endemic to the workplace and, more generally,
beyond it If that is the case, we would do well to consider
designing systems that afford a range of representational
systems for expressing mathematical relationships, rather
than focusing simply on one, standard infrastructure that
has evolved over time for purposes other than pedagogical
utility

I have summarised the findings and their implications
schematically in Figure 4. This summary should be taken
as merely indicative, as any map from the workplace find-
ings onto a set of design principles can hardly claim
uniqueness, perhaps achieving at best an outline research
agenda rather than a list of definitive implications

If . then we should design to .
1 | knowledge is fragmented demonstrate the power
and strategies pragmatic, ot invariants
2a| knowledge is pervasively supply lots of Really
structured by artifacts and Useful Things
their underlying models,
2b| people need to understand make things that people
the models, can see inside.

maximise situational
noise in culturaily-
relevant ways.

3 | situated abstractions are
mutually constituted by
mathematical knowledge
and situational noise,

respect the mathematical
epistermologies of new
representational forms

4 | mathematical knowledge
is transformed when it
structures new activities,

5 | situated abstractions depend | afford construction of new
on noise for ‘transfer’, situations from old ones.

Figure 4: Some schematic implications of the mathematics
in work findings for the design of learnable envi-
FOHIENts

In drawing some tentative implications from the maths-in-
work studies, I have mentioned the computational presence
several times. It is now time to concentrate explicitly on the
place of digital technologies. In our book Windows on Math-
ematical Meanings: Learning, Cultures and Computers
(Noss and Hoyles, 1996b), Celia Hoyles and I argue that
constructing runnable models in the form of computer
programs affords a compelling example of a learnable math-
ematics, opening unique oppoitunities for students to
interact with a formal system. In modifying or constructing
a model of a system, a student must articulate rigorously its
salient relationships, describing mathematical structires in a
language that can be communicated, extended and become
the subject of reflection

There are many advocates of a similar perspective (see
Hoyles and Noss, in press a, for a review). In a recent study,
for example, Sherin (2001) proposes that programming-
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based representations might be easier for students o under-
stand physics with than equation-based representations and
that programming-based representations might privilege a
somewhat different ‘intuitive vocabulary’, i.e. might tap into
different things that people ‘just know’. I would add a third
point: that programming can afford access to a rich and
extensible set of situated abstractions of physical relation-
ships that I think correspond to what he calls a physics of
processes and causation (as opposed to algebra-physics
which he characterises as a physics of balance and equili-
brium)

It is not important whether we accept Sherin’s strong con-
jecture or not: in Windows, we refer to LogoMathematics or
Programming Mathematics to emphasise that it is a different
kind of mathematics that is at issue (this is an instance of
the fourth design challenge). What is important is that we
recognise that the switch from one representational form to
another carries with it the possibility of a simultaneous
switch in both epistemology and learnability

I would like to underline a further element of the consi-
deration of design principles for learning environments: the
importance of mathematical models, a proximally social issue
that tacitly underpins much of what has gone before I have
not dealt with this problem in any depth, except in noting (in
vignette 2) that in breakdown situations, individuals at work
are explicitly required to interpret and understand elements
of the models that underpin the artifacts and work systems
they otherwise take for granted.

1 believe the knowledge economy has massively broad-
ened the number of people who need to understand the
system they ate using: elsewhere (Noss, 1998, 2002), [ elab-
orate a case that competence in constiucting, interpreting
and critiquing models has become a core part of social and
professional life in the twenty-first century. As profit mar-
gins are squeezed, and globalisation intensifies, the fall-out
of the knowledge economy applies to greater slices of the
(first-wotld) workforce - not to everyone, but to substantial
and increasing sections of it.

Not many individuals need constantly to access the pre-
cise details of the models that undetpin their social and
professional existence, but I am convinced there are more
than is evident at first sight. Models are genuinely pervasive;
more and more people need to know what a model is, even if
they cannot build one; to understand what a variable is, even
if they cannot write the relevant equation that defines it; to
interpret the output (and inputs) of a model, even if they can-
not grasp the model as a unified whole.

Vast sections of the workforce operate with models every
day - in the form of spreadsheets — even if most of their
workings are purposefully obscured in ‘macros’ or in
opaquely encoded recipes governing their use.

Sharing, critiquing and representing models is massively
under-represented in mathematics curricula, still wedded to
the epistemological and pedagogical requisites of the nine-
teenth century rather than transforming both in the face of
the demands and computational possibilities of the twenty-
first Elsewhere (Noss, 2002), I have labelled the needs of
the knowledge economy as requiring a meta-epistemelogical
stance:



+  knowing that things work in progiammed ways
1ather than (necessarily) fow;

+  knowing thar there are assumptions instantiated in
the choice of variables and that there are relation-
ships between them;

+  knowing about connections between variables
rather than calculational knowledge about their
detailed interrelationships;

+  knowing about interpreting and critiquing models,
together with the different representational forms in
which they may be expressed.

This stance is also about the ways in which this kind of
knowledge is communicated to others who interact with
other parts of the same systetn or other, linked systems (see
also Kaput, Hoyles and Noss, 2002)

In short, I contend that manipulating, modifying, con-
structing and sharing computationally instantiated models of
mathematical systems affords the best chance we have for
designing a more learnable mathematics and of realising
the five challenges-outlined in the previous section.

My colleagues and I have recently completed a study
aimed at instantiating this approach in the Playvground
Project [5] Plavground has involved a group of researchers
based in four European countries who have developed a
system with which young children, aged less than eight
vears old, can play, share, construct and rebuild computer
games. Our goal has been to put children in the 1ole of game
designers and game programmers, rather than merely con-
sumers of games programmed by adults, and to engage them
in exploring and understanding the formal rule systems that
underpin game play and game design. Ow broader, hitherto
untested, belief is that the children’s deep engagement with
a formal system of this kind will serve as a powerful generic
knowledge substiate on which future mathematical learn-
ing might be based

I will do no more than sketch an outline of the design of
our Playground. [6] The leatner is confronted with a world
in which things happen and, more importantly, can be made
to happen . It is full of objects - balls, spaceships, charac-
ters, balloons and many, many more. Most of these have
properties, or behaviours - they bounce, fly, walk, talk, and
s0 on. They interact: when the spaceship is hit by a balloon,
it may explode; when a ball hits an edge, it can bounce and
makes a bang Finding out how an object ‘works’ is straight-
forward: one simply flips it over and inspects the program,
amending it to one’s taste.

Programs are not lines of text or even icons; programs
are animated robots, who have been trained by being given
an example to remember. The act of programming consists
of giving a robot a set of objects and a sequence of actions to
perform on it: she remembers both (in her thought bubble)
and applies the sequence to any set of objects that matches
those with which she was trained. Abstraction (how to gen-
e1alise from a given instance) is achieved not by introducing
variables, but by erasing specificity

There is much more to the design of Playground than the
above patagraph can possibly convey (see hitp://fwww ioe

ac.uk/playground for a comprehensive overview; see also,
Hoyles and Noss, in press b). I will resist elaborating the
design of the project and its findings here; equally, T will
leave as an exercise to the interested reader the various ways
in which the design of the project ‘cenforms’ to the design
principtes I outlined above. The latter enterprise, while ele-
gant, would presuppose a much more detailed elaboration of
the environment and the learning outcomes associated with
it Instead, I will focus on a single issue that, among the
many raised by the Playground study (as well as computa-
tional environments in general), returns us to the issue of
mathematical epistemology that has formed an underlying
theme for this article

Consider the case of a child designing a game fragment
in which a ball is to be made to move across the screen as the
mouse is moved (the case sketched here is based on a real
episode with an eight-year-old boy, reported in Noss, 2002).
How should that movement be instantiated? One way is to
borrow the behaviour of some other, pre-existing object
that already has a similar behaviour: perhaps there is a
nearby spaceship whose behaviour can be copied and pasted
(in Playground, these ‘system’ actions ate performed by
animated characters, not by key presses) Pasting the space-
ship’s behaviour onto the ball has the desired result or at
least near encugh for a first attempt. But it is not quite right;
some fine tuning is necessary and this, in turn, provokes
some engagement with the program that makes the space-
ship (and now the ball) work. It furns out {let us say) that
the two-dimensional motion of the ball is instantiated as the
vector sum of horizontal and vertical components Of
course, it does not look that way to the child: it might, for
example, be that there are two robots (one called ‘move left
and right’ and the other called ‘move up and down”).

Think for a moment of the knowledge congealed in the
innocent phrase ‘vector sum’. Concealed in this phrase is a
taken-for-granted representational infrastructure that includes
the definition of a vector, the algebraic system for combin-
ing two o1 more vectors and a range of properties (e g. scalat
and vector product) that give meaning to the very idea of
what a vector is and why it is a conceptnally powerful gen-
eralisation of a real number This structure is relatively
complex and is postponed with good reason until the latter
stages of compulsory education, if it is taught there at all Yet
the complexity is in the inftastructure, not the idea.

The point is that what is and what is not intuitive is hugely
contingent on the representational infrastructure with which
the intuition is expressed. In the Playground, the addition
of vectors is instantiated not as an algebraic relation but as
a natural property of the representational system The
(object-oriented) structures of the system translate, more or
less directly, into what kinds of things can be taken for
granted as being ‘just so’, what meanings can be derived
from them, and most importantly, the ways in which the
objects and their programmed behaviours can be made func-
tional within a given situation. In short, the representational
infrastructure has transformed not only the learnability of
the mathematical knowledge, but the mathematical episte-
mology at work in the activity system.

i1



Concluding remarks
This last point brings me to the intention I flagged at the out-
set, to conclude with the notion of epistemology af rather than
in work. What is the connection between the two? A key link
is that the analysis of mathematics in work concerns the trans-
formation of knowledge as it is recontextualized across
settings. We have seen how a person’s mathematical knowl-
edge is not invariant across time and space; it is transformed
into different guises, different epistemologies, more or less
visible in the form of mathematics, as the map of an individ-
ual’s participation in new activity systems is continually
redrawn. This transformation seems much more powerful
than the traditional notions of ‘application’ or ‘use’ that is
often employed as a metaphor to describe this process. I have
argued that recognising these transformations and designing
[earning environments that exploit them is a priority for the
construction of a more learnable mathematical epistemology.
More genetrally, I have elaborated a further point of con-
nection between cognitive and cultural perspectives. In
imagining how mathematical structures can be externalised
and mantpulated within an appropriately expressive tepte-
sentional structure, I have indicated how abstractions
constructed within concrete situations may compensate for
their lack of universality by their gain in expressiveness
When general relationships can be expressed, they can be
explored and become familiar. In the process, the links with
knowledge of lived-in cultures can be maintained, rather than
severed in the guest for ultimate pinnacles of abstraction
The objects that populate Playground are every bit as con-
crete and real to a learner as the load path on the components
of a bridge are to an engineer. Like their professional coun-
terparts, children are engaged in an activity that researchers
in the field of mathematical learning may recognise as
having a mathematical component, but which are to the
child merely part of the ecological system - the totality of
relationships between themselves and the environment and
the ways in which these are expressed and communicated.
That the Playground and mathematical epistemologies run
side-by-side should not be a matter of surprise: there is, after
all, no single way in which humans can conceptualise their
environment (mathematically or otherwise), even though
some are socially and historically privileged within a given
culture. Official, symbolic mathematics is privileged in just
this way and there are good reasons for this, But the com-
paciness and elegance of mathermatical expression does not
necessarily make it equally functional for learning and, if
learning is our priot goal, we would do well to think about
new epistemological frameworks in which to embed the
mathematics we wish our students to understand. New epis-
temologies mean new intuitions, new things to be built with
them and new means for combining and reconstructing
them . They involve new sets of situated abstractions that
are both functional and powerful I think this is the major
challenge for the design of didactical environments, to create
new systems which might, I think, be justifiably described as
involving new mathematical epistemologies at work.
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Notes

[1] This paper is an expanded and revised version of a plenary address to the
Twenty-sixth Intemational Conference on the Psychology of Mathematics
Education, University of East Anglia, June 2002

[2] In fact there is a division of labour in engineering into “analysts’ and
‘designers’. The former — who represent a few percent of the profession —
do indeed use mathematics in an explicit and readily recognisable way

[3] Michele Artigue (in press) has made a related point deriving from the
work of Yves Chevallard

4] diSessa (1980} suggests that a view of force as momentum flow may
more easily engage and refine students’ existing intuitions and therefore pre-
sent a more learnable physics than that represented by the familiar F = ma
[5]1 The Playground project invovled a consortivm across four countries,
directed by myself and Celia Hoyles. The London team also comprised (at
various times) Ross Adamson, Miki Grahame, Sarah Lowe and Dave Pratt
Ken Kahn, the author of ToonTalk, was a consultant to the project

[6] Actually, there are two “playgrounds’; the second, Pathways, will not be
referred to here. See, for example, Goldstein, Noss, Kalas and Pratt (2001)
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