
Altered lymph node composition in diphtheria toxin receptor-
based mouse models to ablate dendritic cells

Janneke van Blijswijk*, Barbara U. Schraml*,†, Neil C. Rogers*, Paul G. Whitney*,‡, Santiago 
Zelenay*, Sophie E. Acton*, and Caetano Reis e Sousa*,1

*Immunobiology Laboratory, Cancer Research UK, London Research Institute, Lincoln’s Inn 
Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3LY, United Kingdom

Abstract

Dendritic cells (DCs) are key regulators of innate and adaptive immunity. Our understanding of 

immune function has benefited greatly from mouse models allowing for selective ablation of DCs. 

Many such models rely on transgenic diphtheria toxin receptor (DTR) expression driven by DC-

restricted promoters. This renders DCs sensitive to DT but is otherwise thought to have no effect 

on immune physiology. Here, we report that, unexpectedly, mice in which DTR is expressed on 

conventional DCs display marked lymph node (LN) hypocellularity and reduced frequency of 

DCs in the same organs but not in spleen or non-lymphoid tissues. Intriguingly, in mixed bone 

marrow (BM) chimeras the phenotype conferred by DTR-expressing DCs is dominant over 

control BM-derived cells, leading to small LNs and an overall paucity of DCs independently of 

the genetic ability to express DTR. The finding of alterations in LN composition and size 

independently of diphtheria toxin challenge suggests that caution must be exercised when 

interpreting results of experiments obtained with mouse models to inducibly deplete DCs. It 

further indicates that DTR, a member of the epidermal growth factor family, is biologically active 

in mice. Its use in cell ablation experiments needs to be considered in light of this activity.
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Introduction

Dendritic cells (DCs) are key inducers of adaptive immunity and tolerance, as well as 

regulators of innate immunity. The DC family comprises several subsets that are defined 

based on function, surface marker expression, localization in the body and ontogeny (1-5). It 

is common to sub-divide DCs into plasmacytoid DCs (pDCs) and conventional DCs (cDCs) 

(1-5). A further sub-classification of cDCs is made within lymph nodes (LNs) to distinguish 

between resident DCs (resDCs) and migratory DCs (migDCs). While the former derive from 

precursors that enter LNs via the blood, migDCs derive from DCs in non-lymphoid tissues 

that immigrated into draining LNs via afferent lymphatics (1-4). ResDCs and migDCs are 

heterogeneous and comprise multiple cDC subsets, often referred to as the CD8α+ cDC and 

the CD11b+ cDC families.

Mouse models to deplete DCs have proven useful tools to elucidate DC function in vivo. 

The first such model exploited CD11c expression to drive expression of simian diphtheria 

toxin receptor (DTR) fused to GFP in DCs (6). DTR is also called heparin-binding EGF-like 

growth factor (HB-EGF) and is a membrane-anchored protein (7). The EGF portion can be 

cleaved by metalloproteinases, releasing a soluble EGF-like ligand. As simian and human 

HB-EGF bind diphtheria toxin (DT) with about 105 times higher affinity than rodent 

versions, expression of primate DTR in murine cells by transgenesis renders the latter highly 

susceptible to DT intoxication, resulting in block of protein translation and cell death (8). 

CD11c is commonly used as marker for DCs and, in CD11c-DTR mice, DTR expression is 

driven by a minimal CD11c promoter (6). This allows for DTR expression in cDCs, pDCs 

and Langerhans cells (LC) and makes the cells sensitive to ablation by DT. However, 

CD11c-DTR mice die after repeated DT injections, probably because of aberrant DTR 

expression on non-immune cells, such as epithelial cells of the gut (9). Therefore, long-term 

DC depletion can only be achieved in radiation chimeras in which wild-type mice are 

reconstituted with CD11c-DTR bone marrow (BM). Furthermore, CD11c is also expressed 

by some macrophages, plasmablasts, Ly-6Clow monocytes, activated T cells and NK cells, 

resulting in DTR expression and DT-mediated depletion of these cell types (6, 10, 11). More 

recently, improved models have been developed in which DTR is more highly restricted to 

DCs (CD11c-DOG and zDC-DTR mice) (10, 12) or is expressed selectively in specific DC 

subsets (Langerin-DTR, BDCA2-DTR, SiglecH-DTR, CD205-DTR and Clec9a-DTR mice) 

(13-18). All these models allow for successful DT-mediated ablation of the target DC 

populations and have been instrumental in advancing DC research even if they suffer from 

limitations, predominantly due to mis-expression of DTR or side effects such as neutrophilia 

following DT-mediated DC ablation (19-21). Nevertheless, no immune abnormalities have 

been reported in any models expressing DTR on DCs in the absence of DT treatment, 

despite the fact that DTR, being an EGF family member, might potentially be able to engage 

murine EGF receptors.

We have recently shown that DNGR-1 (also known as CLEC9A) is specifically expressed 

on conventional DC precursors and pre-DCs (5). As a consequence, mice expressing Cre 

recombinase under the control of the Clec9a locus can be used to fate map those precursors 

in vivo when crossed to a ROSA26-LSL-YFP reporter line (5). ROSA26 is a locus that is 

often targeted to drive constitutive and ubiquitous gene expression in mice (22). In 
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ROSA26-LSL (lox-stop-lox) strains, expression is prevented by a STOP cassette flanked by 

loxP sites that can be irreversibly excised through the action of Cre recombinase. We 

therefore predicted that the same Clec9a-Cre mice could be used to generate DT-sensitive 

DCs in vivo if crossed to a ROSA26-LSL-DTR strain (23). Here, we report that such mice 

indeed allow for specific DT-dependent DC ablation. However, they display LN 

hypocellularity and reduced frequencies of DCs in LNs even in the absence of DT injection. 

Moreover, the LN phenotype induced by DTR-expressing DCs is dominant over that of DCs 

lacking the receptor. Finally, we report that the LN hypocellularity and reduced frequencies 

of DCs in LNs is a common feature of other mouse models in which DTR is expressed on 

DCs. Thus, transgenic expression of human or simian HB-EGF in mice is not without 

consequences and caution and the use of proper controls is warranted when using and 

reporting on any mouse model in which DTR is expressed on DCs and, perhaps, other cells.

Materials and Methods

Mice

Clec9a-Cre (5), ROSA26-LSL-iDTR (23), CD11c-Cre (24), CD11c-DTR (6), Langerin-

DTR (14), CD11c-DOG (10), CD19-Cre (25), DEREG (26), C57BL/6J and B6.SJL mice 

were bred at Cancer Research UK in specific pathogen-free conditions. Eight to sixteen 

week old mice were used in all experiments, unless otherwise indicated. Littermates or 

ROSA26-LSL-iDTR mice were used as controls. All animal experiments were performed in 

accordance with national and institutional guidelines for animal care and were approved by 

the London Research Institute Animal Ethics Committee and by the UK Home Office.

To deplete DCs in Clec9a+/CreROSAiDTR mice, mice were injected i.p. with 12ng/g body 

weight diphtheria toxin (Sigma D0564) and analyzed 24 hours later.

Radiation chimeras

CD45.2+ C57BL/6J mice were irradiated twice with 6.6 Gray, separated by 4 hours. Mice 

were injected i.v. 24 hours later with 2×106 total BM cells at a 1:1 mixture of CD45.1+ 

B6.SJL and CD45.2+ Clec9a+/+ROSAiDTR or Clec9a+/CreROSAiDTR BM. Mice were 

analyzed 3-6 months after reconstitution.

Cell isolation

Inguinal LNs were used for analysis of sdLNs. Spleens, thymus, LNs and Peyer’s patches 

were digested with Collagenase IV (200U/ml; Worthington) and DNase I (0.2mg/ml, 

Roche). For spleens, red blood cells were lysed with Red Blood Cell Lysis Buffer (Sigma).

Isolation of DC from small intestines (SIs) was adapted from reference (27). SIs were sliced 

open after removal of Peyer’s patches, rinsed and cut into small pieces. Epithelial cells and 

intraepithelial lymphocytes were removed by incubating SI pieces in RMPI containing 

25mM HEPES, L-glutamine, Penicillin/Streptomycin, 50μM β-mercaptoethanol, 5mM 

EDTA (all Gibco), 3% fetal calf serum and 0.145mg/ml DL-dithiothreitol (Sigma) for 20 

min at 37 °C while shaking. The suspension was strained through a sieve and SI pieces were 

collected in RMPI containing 25mM HEPES, L-glutamine, Penicillin/Streptomycin, 50μM 
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β-mercaptoethanol and 2mM EDTA (all Gibco), vortexed and strained again. This last step 

was repeated twice. SIs were digested with Collagenase IV (200U/ml) and DNase I 

(0.2mg/ml) in 10 ml RPMI medium for one hour at 37 °C.

For the analysis of dermis and epidermis both ears were collected and split into dorsal and 

ventral halves. Split ears were incubated for 1 hour at 37°C, while floating dermis-down on 

2U/ml Dispase II (Roche) in PBS. Epidermis and dermis were separated and digested 

separately with Collagenase IV (200U/ml; Worthington) and DNase I (0.2mg/ml, Roche) in 

RPMI for 1 hour at 37°C.

For analysis of SIs, dermis and epidermis, leukocytes were enriched by Percoll gradient 

centrifugation (GE Healthcare).

Flow Cytometry

Samples were collected on a LSR Fortessa flow cytometer (BD Biosciences) and analyzed 

using FlowJo software (TreeStar Inc.). Gating strategies are shown in figure S1.

The following antibodies were purchased from BD Bioscience: CD8α-FITC (53-6.8), Ly6c-

FITC (AL-21), CD45.1-FITC (A20), CD45.2-FITC (104), CD3-FITC, CD3-PE (145-2C11), 

CD16/32 (2.4G2; Fc block), CD11c-FITC (HL3), B220-FITC and B220-PE (RA3-6B2).

The following antibodies were purchased from Biolegend: CD11c-PerCP/Cy5.5 (N418), 

CD64-PE (X5-4/7.1), Gr-1-FITC, (RB-8C5), CD103-PerCP/Cy5.5 (2E7), CD326-AF647 

(Ep-CAM, G8.8) and CD45.2-PeCy7 (104).

The following antibodies were purchased from eBioscience: CD45.1-PerCP/Cy5.5, CD45.1-

PeCy7 (A20), MHCII I-A/I-E-AF700, MHCII I-A/I-E-APC-eFluor780 (M5/114.15.2), 

CD8α -eFluor605nc (53-6.8), CD11b-AF700, CD11b-APC-eFluor-780, CD11b-

eFluor605nc (M1/70), Ly6G-AF700 (RB6-8C5), CD103-PE and CD103-APC (2E7).

CD207-AF488 (929F3.01) was purchased from Dendritics. Biotinylated polyclonal anti-

DTR (hHB-EGF) was purchased from R&D systems and detected with streptavidin-PE (BD 

biosciences).

Dapi was used to exclude dead cells, except for when cells were stained intracellularly with 

anti-CD207-AF488, when dead cells were excluded by live/dead fixable violet dye 

(Invitrogen). For intracellular staining, cells were stained for surface markers followed 

fixation and intracellular staining with FIX&PERM (ADG) according to the manufacturer’s 

protocol.

Microscopy

Frozen sections from inguinal LNs were air dried, fixed for 10min in 2% PFA and washed in 

PBS. Blocking was performed for 30min at room temperature in 10% goat serum (Sigma) in 

PBS. Sections were stained for 1 hour at room temperature with B220-APC (RA3-6B2, BD 

Bioscience) and CD3-FITC (145-2C11, BD Bioscience) in blocking buffer. Images were 

acquired on a LSM710 upright confocal microscope (Zeiss) using a 10x objective and 

analyzed with Bitplane Imaris software.
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Statistical analysis

Results are depicted as mean ± SD. Unpaired student’s t tests were performed to calculate p-

values.

Results

Efficient depletion of DCs in Clec9a+/CreROSAiDTR mice upon DT injection

We crossed Clec9a-Cre “knock-in” mice to a ROSA26-LSL-iDTR strain (23) to generate 

Clec9a+/CreROSAiDTR mice. All mice used for experiments were heterozygous for Cre 

recombinase and, therefore, DNGR-1 sufficient. We did not observe any differences 

between mice harboring either one or two copies of DTR and therefore combined them in 

our experiments. On average 93±1% of CD8α+ DCs and 59±5% of CD11b+ DCs, but no 

other cell types, expressed DTR in the spleens of Clec9a+/CreROSAiDTR animals (figure 1A 

and data not shown). The fact that circa 40% of CD11b+ splenic DCs were negative for DTR 

expression is in line with the previously observed incomplete penetrance of Cre activity in 

heterozygous Clec9a-Cre mice (5).

When Clec9a+/CreROSAiDTR mice were injected with DT, virtually all splenic CD8α+ DCs 

and most CD11b+ DCs were depleted 24 hours post-treatment (figure 1B,C) while other 

immune cell populations were spared (data not shown). Notably, DT-mediated DC depletion 

in this strain was not accompanied by neutrophilia and monocytosis (figure 1D), at least at 

this time point, in contrast to depletion in other models such as CD11c-DOG mice and 

CD11c-DTR mice (12, 20, 21). Therefore, Clec9a+/CreROSAiDTR mice can be used to 

successfully and specifically deplete DCs using DT with minimal side effects caused by DT 

treatment.

LNs of Clec9a+/CreROSAiDTR mice show hypocellularity and reduced frequency of DCs

As expected, DTR was also expressed by DCs in skin-draining LNs (sdLNs) of 

Clec9a+/CreROSAiDTR mice (figure S2A) and allowed for their depletion upon DT injection 

(Figure S2B). However, when analyzing sdLNs, we noticed that both resDCs and migDCs 

were present at reduced frequency in PBS-treated Clec9a+/CreROSAiDTR mice compared to 

PBS-treated genetic control mice (figure S2B). To follow-up on this unexpected 

observation, we analyzed in greater detail the spleens, thymi and LNs of untreated 

Clec9a+/CreROSAiDTR mice. We confirmed that untreated Clec9a+/CreROSAiDTR mice 

display a marked reduction in frequency of both resDCs and migDCs in sdLNs when 

compared to Cre-negative controls (figure 2AB). A similar decrease in frequency of DCs 

was observed in mesenteric LNs (mesLNs; figure 2B). In contrast, DC frequency in the 

spleen and thymus was identical between Clec9a+/CreROSAiDTR mice and Cre-negative 

controls (figure 2B). DC frequency was also identical in epidermis, dermis, small intestine 

and Peyer’s patches of Clec9a+/CreROSAiDTR mice when compared to Cre-negative controls 

(figure 2C). Together, these observations suggest that only lymphoid organs with an afferent 

lymph supply and, consequently, possessing migDCs are affected.

In addition to lower DC frequency, we also observed a marked reduction in the cellularity of 

sdLNs and mesLNs (figure 2D) in untreated Clec9a+/CreROSAiDTR mice when compared to 
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their genetic controls. This accentuated the dearth of LN DCs and was not seen in the spleen 

and thymus, which displayed normal cellularity (figure 2D). All immune cell populations 

were reduced in number in the LNs of Clec9a+/CreROSAiDTR mice, contributing to the 

overall hypocellularity, although the loss of T cells was most acute, leading to an increase in 

the ratio of B to T cells (figure 2E and data not shown). However, despite hypocellularity 

and increased B/T cell ratio, the overall LN architecture appeared intact (figure 2F).

To determine the influence of age on the observed phenotype, we assessed DC frequency 

and cellularity in spleen and sdLNs of one year old Clec9a+/CreROSAiDTR mice and Cre-

negative controls. In line with our previous findings, there was no difference in splenic DC 

frequency or spleen cellularity between Clec9a+/CreROSAiDTR and Cre-negative control 

mice (figure S3AB). However, we again observed a reduced frequency of migDCs in sdLN 

of old Clec9a+/CreROSAiDTR mice compared to control mice (figure S3AB). Furthermore, 

cellularity was reduced in sdLN of old Clec9a+/CreROSAiDTR mice (figure S3AB). In this 

experiment we did not observe a difference in resDC frequency in sdLNs.

In sum, the cellularity and composition of LNs but not spleen or thymus is markedly altered 

in Clec9a+/CreROSAiDTR mice and the phenotype appears to be maintained with ageing. 

These results were unexpected, as DTR transgene expression in DCs is widely used in 

mouse models of inducible DC depletion without reports of adverse effects in the absence of 

DT treatment.

The phenotype of Clec9a+/CreROSAiDTR bone marrow is dominant over WT bone marrow in 
mixed bone marrow chimeras

DTR expression could be toxic to DCs, acting in a cell-autonomous fashion to decrease 

survival or migration. Alternatively, expression of DTR on DCs might act in a non-cell-

autonomous manner to broadly influence the LN environment and all DCs within it. To 

distinguish these possibilities, we generated mixed BM chimeras with a 1:1 mixture of 

CD45.1+ wild-type (WT) BM and CD45.2+ Clec9a+/+ROSAiDTR (Cre-negative) or 

Clec9a+/CreROSAiDTR (Cre-positive) BM. Full chimerism was confirmed by measuring the 

ratio of CD45.1 to CD45.2 in blood neutrophils (data not shown). We first compared 

frequencies of resDCs and migDCs within the total CD45.1+ or CD45.2+ population in both 

sdLNs and mesLNs. Among CD45.2+ cells, both resDC and migDC frequencies were 

reduced in mice receiving Cre-positive BM compared to animals receiving control Cre-

negative BM (figure 3A). These data indicated that the paucity of DCs in 

Clec9a+/CreROSAiDTR mice could not be rescued by the presence of WT cells. Moreover, 

we were surprised to find that the frequencies of both resDCs and migDCs in the CD45.1+ 

WT compartment were similarly reduced in chimeras receiving Cre-positive BM but not in 

chimeras receiving Cre-negative control BM (figure 3A). Therefore, DTR does not appear to 

merely affect in a cell autonomous manner those DCs that express it. Rather, 

Clec9a+/CreROSAiDTR BM-derived cells have a dominant effect that reduces the frequency 

of DCs deriving from WT BM. This dominance was also reflected in the size of sdLNs and 

mesLNs, but not spleen, which was reduced in chimeras receiving Cre-positive BM when 

compared to size in control chimeras (figure 3B and data not shown). In summary, the 
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hypocellularity and relative reduction of DCs in LNs of Clec9a+/CreROSAiDTR mice are 

replicated in mixed chimeras containing Clec9a+/CreROSAiDTR BM.

Reduced DC frequencies and LN hypocellularity in other mice where DTR is expressed on 
DCs

The LN hypocellularity and reduced frequencies of DC subsets in LNs could be the result of 

targeting the Clec9a locus, targeting the ROSA26-locus, or expressing DTR on DCs. 

Arguing against the first two possibilities, our original reporter mice in which the Clec9a-

Cre strain was crossed to ROSA26-LSL-YFP mice all had normal size LNs and unaltered 

LN composition (figure S4A). Nevertheless, to determine whether the phenotype was 

exclusive to the use of the Clec9a-Cre strain, we crossed CD11c-Cre mice (24) to ROSA26-

LSL-iDTR mice. CD11c-Cre+veROSAiDTR mice also showed hypocellularity of sdLNs and 

mesLNs, but not spleen, and reduced frequencies of migDCs in sdLNs and mesLNs (figure 

4A, S4B and data not shown). ResDC frequency was also reduced in mesLNs of CD11c-

Cre+veROSAiDTR mice (figure S4B) and there was a trend for reduced frequencies of 

resDCs in sdLNs, although this did not reach statistical significance (figure 4A). Thus, 

CD11c-Cre+veROSAiDTR mice largely phenocopy Clec9a+/CreROSAiDTR mice.

Next, we analyzed the original CD11c-DTR mice (6), which have been widely used to study 

DC functions in vivo. Similar to Clec9a+/CreROSAiDTR mice, CD11c-DTR mice showed 

reduced frequencies of resDCs and migDCs in sdLNs and mesLNs and hypocellularity of 

the same organs (figure 4B and S4C). As CD11c-DTR mice do not express DTR from the 

ROSA26-locus, this finding excludes the possibility that the ROSA26-LSL-iDTR strain is 

responsible for the observed phenotype. Together, these results indicate that paucity of LN 

DCs and hypocellularity of LNs is a feature common to Clec9a+/CreROSAiDTR, CD11c-

Cre+veROSAiDTR and CD11c-DTR mice.

The above strains all allow for expression of DTR on multiple DC subtypes. To test if 

expression of DTR on a subset of DCs is sufficient to induce the observed phenotype, we 

used Langerin-DTR mice (14). In Langerin-DTR mice, DTR is under control of the CD207 

locus, which is active in LCs, CD103+ dermal DCs and some CD8α+ resDCs. As observed 

for the other mouse strains, Langerin-DTR mice displayed reduced frequencies of migDCs 

in sdLNs and hypocellularity of the same organ (figure 4C). This phenotype was not 

observed in mesLNs, unlike in the other strains tested (figure S4D). Further investigation 

revealed that the difference between sdLNs and mesLNs in Langerin-DTR mice correlated 

with levels of DTR expression: very little DTR expression was observed on DCs from 

mesLNs while DTR was expressed on both resDCs and migDCs subsets in sdLNs (figure 

4D and S4E). In sum, analysis of Langerin-DTR mice suggests that DTR expression on a 

subset of DCs is sufficient to induce reduced migDCs accumulation in LNs and LN 

hypocellularity. Moreover, the effect of DTR appears local and not systemic as in Langerin-

DTR mice the affected LNs are those in which higher DTR expression is found on DCs.

We also tested CD11c-DOG mice, which express DTR on DCs1. Like CD11c-DTR mice, 

these mice also exploit CD11c expression to express DTR on DCs. However, CD11c-DOG 

mice utilize the CD11c locus control region instead of a minimal promoter to drive DTR 

expression (6, 10). Surprisingly, we found no difference in sdLN and mesLN cellularity and 
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DC frequencies in sdLNs and mesLNs between CD11c-DOG mice and controls (figure 4E 

and S4F). However, we noticed that resDCs in sdLNs and mesLNs of CD11c-DOG mice 

expressed DTR at very low levels (figure 4F and S4G). Moreover, DTR expression on 

migDCs in sdLNs and mesLNs of CD11c-DOG mice was undetectable by staining (figure 

4F and S4G). These results suggest that low DTR expression on resDCs alone may not be 

not sufficient to confer the LN phenotype.

Finally, to address whether DTR expression on other immune cells leads to a similar LN 

phenotype, we crossed CD19-Cre mice (25) to ROSA26-LSL-iDTR mice, to drive 

expression of DTR on B cells. Notably, frequencies of B cells and resDCs were not 

decreased in sdLNs and mesLNs of CD19+/CreROSAiDTR mice (figure 5A). MigDC 

frequencies were unaltered in sdLNs, but slightly decreased in mesLNs (figure 5A), 

although this decrease was much smaller than that observed in the DC-restricted DTR 

models tested here. CD8α+ DCs in the spleen of CD19+/CreROSAiDTR mice were unaltered, 

while CD11b+ DC frequency was increased in CD19+/CreROSAiDTR mice (figure 5A). 

Furthermore, CD19+/CreROSAiDTR mice displayed only a mild reduction in cellularity of 

sdLNs, but not of the mesLNs or spleen (figure 5A). We also analyzed DEREG mice in 

which DTR is expressed on regulatory T cells (Tregs) (26). DEREG mice displayed a mild 

decrease in the frequency of migDCs in both sdLNs and mesLNs compared to controls, 

while resDCs and DCs in the spleen were unaltered (figure 5B). However, in contrast to 

mice expressing DTR on DCs, DEREG mice did not show signs of LN hypocellularity 

(figure 5B). In summary, neither CD19+/CreROSAiDTR mice nor DEREG mice fully 

recapitulate the phenotype of dramatic hypocellularity of LNs and reduced frequencies of 

resDCs and migDCs in LNs. However, LNs of CD19+/CreROSAiDTR and DEREG mice are 

not identical to those in the respective controls perhaps because of DTR expression on B 

cells or Tregs or an unknown cause (e.g., haploinsufficiency of CD19 or aberrations due to 

BAC integration). Overall, these results suggest that expression of DTR on a large fraction 

of LN cells is not necessarily detrimental but that its expression specifically on DCs has 

unexpected consequences.

Discussion

Mouse models to deplete DCs are useful tools to elucidate immune function. Many of these 

models rely on transgenic DTR expression driven by promoters more or less restricted to 

DC. Despite the fact that the first such model, the CD11c-DTR mouse (6), was generated 

over ten years ago and has since been used extensively (19), mice in which simian or human 

DTR is forcibly expressed on DCs have not been reported to display immune abnormalities. 

Here, we describe the unexpected finding that they display reduced LN cellularity and a 

profound decrease in the relative frequency of DCs in LNs in the absence of DT treatment.

We tested five different mouse models in which DTR is forcibly expressed in DCs 

(Clec9a+/CreROSAiDTR, CD11c-Cre+veROSAiDTR, CD11c-DTR, Langerin-DTR and 

CD11c-DOG mice). Although this list includes widely-used models for DC depletion, it is 

not exhaustive. In particular, we have not tested the recently described zDC-DTR mice (12). 

Furthermore, the data presented here do not allow us to assess whether it is necessary and/or 

sufficient for DTR to be expressed by a particular subset of DCs to confer the LN 
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phenotype. In this regard, Clec9a-DTR mice (18), SiglecH-DTR and BDCA2-DTR mice 

(15, 16) may be used to address the consequences of expressing DTR on CD8α-like cDCs or 

pDCs, although there are at present no mouse models that allow DTR expression exclusively 

by CD11b+ cDCs. In addition, it will be interesting to assess LN cellularity and phagocyte 

frequency in mice in which DTR is forcibly expressed on monocytes or macrophages.

We do not at present understand the mechanistic basis for our findings, although the data 

presented here may provide some clues. As DC frequencies were unaltered in the spleen and 

non-lymphoid tissues in the mouse models examined here, and because in Langerin-DTR 

mice the sdLNs, but not mesLNs were affected, which correlated with DTR expression, a 

defect at the level of DC precursors or their ability to seed tissues is unlikely. Rather, only 

tissues with an afferent lymph supply seem to be affected and the paucity of migDCs in LNs 

likely reflects an impairment in their migration from peripheral sites, or a reduced lifespan 

once in the LN. Reduced lifespan might also explain the decrease in LN resDCs frequencies. 

Furthermore, the alteration in LN composition and function is not imprinted during mouse 

development as it can be conferred to adult mice by transplantation of BM from affected 

mice and, remarkably, acts dominantly over WT BM. We therefore speculate that DCs 

expressing DTR modulate the LN microenvironment, either via a soluble factor or cell-cell 

contact, to make it unfavorable for DC immigration. This factor could be DTR itself, either 

shed from, or expressed on the DC surface, or another factor made by DCs or other cells, 

upon engagement of DTR on DCs and EGF receptors on adjacent cells. Within the LN, 

either the lack of DCs or, again, a modulation of the microenvironment by DTR-expressing 

DCs, may impair the homing to, or retention in the LN of lymphocytes, especially T cells, 

resulting in LN hypocellularity. In this regard, it is notable that paucity of DCs has been 

shown to cause shutdown of high endothelial venules (HEVs) (28). Furthermore, when DC 

migration to LNs is impaired due to a lack of CCR7, LNs also show a reduced number of 

HEVs, reduced LN size and T cell lymphopenia in LNs (29). Given these hypotheses, we 

have tested whether DTR-expressing DCs display an alteration in their migratory ability, 

looked for alterations in HEV phenotype and searched for an effect of DTR-expressing DCs 

on LN stroma leading to reduced production of lymphocyte chemoattractants (data not 

shown). Our conclusions to-date are that none of these scenarios can fully explain the 

phenotype observed (data not shown). We cannot exclude that the phenotype observed is a 

consequence of a complex interaction with the external environment. In this regard, it will 

be of interest to analyze the same strains across multiple animal facilities or after 

rederivation into a gnotobiotic environment.

Whatever the underlying mechanism, our findings indicate a need for caution when 

interpreting results obtained with DTR-based mouse models to inducibly deplete DCs, as the 

steady-state immune system in such mice clearly differs from that of controls. In this regard, 

it is important to note that small LN size has recently been shown to markedly impact 

immune responses and resistance to infection (30). Why the phenotype described here 

appears to have passed unnoticed or at least unreported is unclear but may in part be due to 

the tendency to use PBS-injected DTR-expressing mice (rather than littermates not encoding 

DTR) as controls for mice receiving DT. Based on our findings, we would suggest that both 

types of controls are warranted and that some of the changes in immune responses observed 

upon DT-mediated DC depletion might in fact be a composite caused by acute loss of DCs 
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superimposed on underlying LN defects. Our findings also suggest that simian HB-EGF 

possesses biological activities in mice that cannot be ignored. As such, DTR expression on 

other cell types, including those outside the immune system, might alter their cell biology or, 

as shown here, that of their immediate environment. The latter may require shedding via the 

action of cell-specific metalloproteinases, explaining why expression on some cells (e.g., B 

cells or Tregs) is apparently innocuous while that is not the case for expression on DCs. 

Clearly, the use of DTR in mice has pitfalls that might impact on experimental approaches 

and need to be tempered with the great advantages awarded by the ability to ablate cells at 

will.
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Abbreviations

BM bone marrow

Clec9a C-type lectin domain family 9, member A

DC dendritic cell

DNGR-1 Dendritic cell NK lectin group receptor-1

DT diphtheria toxin

DTR DT receptor

LC Langerhans cell

LN lymph node

mesLN mesenteric LN

migDC migratory DC

pDC plasmacytoid DC

resDC resident DC

sdLN skin-draining LN

WT wild-type
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Figure 1. Efficient DC depletion in spleens of DT-injected Clec9a+/creROSAiDTR mice
(A) CD8α+ DCs (CD11c+ MHCII+ CD8α+) and CD11b+ DCs (CD11c+ MHCII+ CD11b+) 

in spleen were stained with a polyclonal anti-DTR antibody and analyzed by flow 

cytometry. Each plot is representative of at least 6 mice per group. (B-D) Mice were injected 

with DT or PBS and sacrificed 24h later. (B-D) CD8α+ DCs (CD11c+ MHCII+ CD8α+) and 

CD11b+ DCs (CD11c+ MHCII+ CD11b+) in spleen were identified by flow cytometry. (B) 

Representative plots of spleen for PBS and DT treated Clec9a+/CreROSAiDTR mice (gated 

on live, autofluorescence− cells). Frequency of gated population is shown. (C) Total CD8α+ 

DCs and CD11b+ DCs in spleen of PBS- and DT-treated Clec9a+/CreROSAiDTR mice. (D) 

The total counts of monocytes (CD11b+ Ly6c+ Ly6g−) and neutrophils (CD11b+ Ly6g+) per 

spleen of PBS and DT treated Clec9a+/CreROSAiDTR mice is shown. Ns: non significant, 

***: p≤0.001, ****: p≤0.0001. This experiment was performed twice with 4-7 mice per 

group. One representative experiment is shown.
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Figure 2. LNs, but not spleen, thymus or non-lymphoid tissues of Clec9a+/CreROSAiDTR mice 
display hypocellularity and reduced DC frequency
(A) Representative plots of sdLNs of control and Clec9a+/CreROSAiDTR mice, gated on live 

cells. (B) CD8α+ DCs (CD11c+ MHCII+ CD8α+) and CD11b+ DCs (CD11c+ MHCII+ 

CD11b+) in spleen, DCs in thymus (CD11c+ MHCII+) and resDCs (CD11c+ MHCIIint) and 

migDCs (CD11c+ MHCIIhi) in sdLNs and mesLNs of control and Clec9a+/CreROSAiDTR 

mice were identified by flow cytometry and DC subsets as percentage of live leukocytes are 

plotted. (C) The frequency of Langerhans cells (LCs, MHCII+ CD64− EpCAMhi), CD103+ 

DCs (MHCII+ CD64− CD103+) and double negative DCs (dn DCs, MHCII+ CD64− 
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CD103− EpCAM−) in epidermis and dermis of control and Clec9a+/CreROSAiDTR mice is 

shown (left two panels). The frequency of CD64+ cells (CD11c+ MHCII+ CD64+), CD103+ 

DCs (CD11c+ MHCII+ CD64− CD103+ CD11b−), CD103+ CD11b+ DCs (CD11c+ MHCII+ 

CD64− CD103+ CD11b+) and CD11b+ DCs (CD11c+ MHCII+ CD64− CD103− CD11b+) in 

the small intestine and DCs (CD11c+ MHCII+) in the Peyer’s Patches (PP) of control and 

Clec9a+/CreROSAiDTR mice is shown (right two panels). (D) Single-cell suspensions of 

spleen, thymus, sdLNs and mesLNs from control and Clec9a+/CreROSAiDTR mice were 

counted and the number of total leukocytes is plotted. (E) T cells (CD3+ MHCII−) and B 

cells (MHCII+ CD11c−) in mesLNs of control and Clec9a+/CreROSAiDTR mice were 

identified by flow cytometry and T cells and B cells as percentage of live leukocytes are 

plotted. (B-E) Each dot represents one mouse. Ns: non significant, *: p≤0.05, **: p≤0.01, 

***: p≤0.001, ****: p≤0.0001. Data are pooled from at least two independent experiments. 

(F) Frozen sections of sdLNs from control and Clec9a+/creROSAiDTR mice were stained 

with anti-CD3 and anti-B220 antibodies and imaged by confocal microscopy. Scale bar: 

300μm. Images are representative of 3 mice per group.
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Figure 3. In mixed bone marrow chimeras the phenotype conferred by Clec9a+/CreROSAiDTR 

bone marrow is dominant
CD45.2+ C57BL/6J hosts were lethally irradiated and reconstituted with a 1:1 mixture of 

CD45.1+ WT and CD45.2+ Clec9a+/+ROSAiDTR or Clec9a+/CreROSAiDTR BM. Mice were 

analyzed 7 months after BM transfer.

(A) Single cell suspensions of sdLNs were analyzed by flow cytometry. CD45.1+ and 

CD45.2+ cells were identified and within these fractions resDCs (CD11c+ MHCIIint) and 

migDCs (CD11c+ MHCIIhi) were gated. Frequencies of resDCs and migDCs within the 

CD45.2+ or CD45.1+ fraction are plotted. (B) Total leukocyte numbers of spleens and 

sdLNs are plotted. Each dot represents one mouse. Ns: non significant, *: p≤0.05, **: 

p≤0.01. Data are representative of two independent experiments.
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Figure 4. Other mouse models in which DTR is expressed on migDCs display hypocellularity and 
reduced DC frequency in sdLNs
(A-C) SdLNs of CD11c-Cre+veROSAiDTR (A) CD11c-DTR (B) and Langerin-DTR (C) 

mice were analyzed for total cellularity (left panel) and frequency of resDCs (CD11c+ 

MHCIIint) and migDCs (CD11c+ MHCIIhi) (right panel). (D) ResDCs (CD11c+ MHCIIint) 

and migDCs (CD11c+ MHCIIhi) in sdLNs from Langerin-DTR mice were stained with a 

polyclonal anti-DTR antibody and analyzed by flow cytometry. (E) SdLNs from CD11c-

DOG mice were analyzed as in A-C. (F) DTR expression on resDCs and migDCs in sdLNs 

from CD11c-DOG mice was analyzed as in D. (A-C,E) Each dot represents one mouse. Data 
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are pooled from at least two independent experiments. Ns: non significant, *: p≤0.05, **: 

p≤0.01 ***: p≤0.001, ****: p≤0.0001. (B,F) Each plot is representative of 6-8 mice per 

group.
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Figure 5. Expression of DTR on B cells or Tregs does not lead to overall LN hypocellularity and 
reduced frequencies of LN DCs
Left panels: single-cell suspensions of sdLNs, mesLNs and spleen from control and 

CD19+/CreROSAiDTR mice (A) or DEREG mice (B) were counted and the number of total 

leukocytes is plotted. Right panels: resDCs (CD11c+ MHCIIint) and migDCs (CD11c+ 

MHCIIhi) in sdLNs and mesLNs and CD8α+ DCs (CD11c+ MHCII+ CD8α+), CD11b+ DCs 

(CD11c+ MHCII+ CD11b+) and B cells (CD11c− MHCII+, CD19+/CreROSAiDTR mice only) 

in spleen of control and CD19+/CreROSAiDTR mice (A) or DEREG mice (B) were identified 

by flow cytometry and DC subsets as percentage of live leukocytes are plotted. Each dot 

represents one mouse. Data are pooled from at least two independent experiments. Ns: non 

significant, *: p≤0.05, **: p≤0.01 ***: p≤0.001.
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