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The balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such a balance is arguably preserved in
dendritic branches, yet its underlying mechanism and functional roles remain unknown. In this study, we developed computational
models of heterosynaptic spike-timing-dependent plasticity (STDP) to show that the excitatory/inhibitory balance in dendritic branches
is robustly achieved through heterosynaptic interactions between excitatory and inhibitory synapses. The model reproduces key features
of experimental heterosynaptic STDP well, and provides analytical insights. Furthermore, heterosynaptic STDP explains how the matu-
ration of inhibitory neurons modulates the selectivity of excitatory neurons for binocular matching in the critical period plasticity. The
model also provides an alternative explanation for the potential mechanism underlying the somatic detailed balance that is commonly
associated with inhibitory STDP. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and the resultant
dendritic computation.
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Introduction
Activity-dependent synaptic plasticity is essential for learning.
Especially, the spike-timing difference between presynaptic and
postsynaptic neurons is a crucial factor for synaptic learning (Bi
and Poo, 1998; Caporale and Dan, 2008). Recent experimental
results further reveal that the relative differences in spike timings
at neighboring synapses on a dendritic branch have a significant
influence on changes in synaptic efficiency at these synapses
(Tsukada et al., 2005; Hayama et al., 2013; Paille et al., 2013;

Bazelot et al., 2015; Oh et al., 2015). In particular, the timing of
GABAergic input exerts a great impact on synaptic plasticity at
nearby glutamatergic synapses. Similar phenomena have also
been observed in biophysical simulations (Cutsuridis, 2011;
Bar-Ilan et al., 2013). This heterosynaptic form of spike-
timing-dependent plasticity (h-STDP) is potentially important
for synaptic organization on the dendritic tree and the resultant
dendritic computation (Mel and Schiller, 2004; Branco et al.,
2010). However, the functional role of h-STDP remains elusive,
partly due to the lack of a simple analytical model.

In the understanding of homosynaptic STDP, simple mathe-
matical formulations of plasticity have played important roles
(Gerstner et al., 1996; Song et al., 2000; Vogels et al., 2011). Mo-
tivated by these studies, we constructed a mathematical model
of h-STDP based on calcium-based synaptic plasticity models
(Shouval et al., 2002; Graupner and Brunel, 2012), and then con-
sidered the potential functional merits of the heterosynaptic plas-
ticity. The model reproduces several effects of h-STDP that are
observed in the hippocampal area CA1 and the striatum of ro-
dents (Hayama et al., 2013; Paille et al., 2013), and provides an-
alytical insights into underlying mechanisms. The model reveals
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Significance Statement

Recent experimental studies reveal that relative differences in spike timings experienced among neighboring glutamatergic and
GABAergic synapses on a dendritic branch significantly influences changes in the efficiency of these synapses. This heterosynaptic
form of spike-timing-dependent plasticity (STDP) is potentially important for shaping the synaptic organization and computation
of neurons, but its functional role remains elusive. Through computational modeling at the parameter regime where previous
experimental results are well reproduced, we show that heterosynaptic plasticity serves to finely balance excitatory and inhibitory
inputs on the dendrite. Our results suggest a principle of GABA-driven neural circuit formation.
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that h-STDP causes a temporally precise balance (i.e., the detailed
balance) between the timing of excitatory and inhibitory inputs
on a dendritic branch, because of the inhibitory inputs that shunt
long-term depression (LTD) at neighboring correlated excitatory
synapses. This result suggests that, not only are the number and
total current of excitatory/inhibitory synapses balanced at a
branch (Liu, 2004; Wilson et al., 2007), but that the temporal
input structure is also balanced, as observed in the soma (Dorrn
et al., 2010; Froemke, 2015). Moreover, by considering dendritic
computation, we demonstrate that the detailed balance is bene-
ficial for detecting changes in input activity. The model also rec-
onciles with the critical period plasticity for binocular matching
observed in the V1 of mice (B. S. Wang et al., 2010, 2013), and
provides an explanation for how GABA maturation modulates
the selectivity of excitatory neurons during development.

Materials and Methods
In this study, we first constructed a model of a dendritic spine, and then
based on that model, built models of a dendritic branch and a dendritic
tree of a neuron. We also created an analytically tractable model of a spine
by reducing the original spine model.

Spine model: dynamics. Let us first consider the membrane dynamics of
a dendritic spine. The membrane potential of a spine is mainly driven by
activation of AMPA/NMDA receptors by presynaptic inputs, backpropa-
gation of postsynaptic spikes, leaky currents, and current influx/outflux
caused by excitatory/inhibitory synaptic inputs at nearby synapses.
Hence, we modeled the membrane dynamics of a spine i with the follow-
ing differential equation:

dui�t�

dt
� �

ui�t�

�m
� �Axi

A�t� � �NgN�ui� xi
N�t� � �BP xi

BP�t�

� �I �
j��i

I

xj
I�t � dI� � �E �

j��i
E

xj
E�t � dE�, (1)

where gN(ui) � �Nui � �N, with �N and �N being constant coefficients.
In the equation, ui is the membrane potential of the spine, and �m is the
membrane time constant (for definitions of variables, see Table 1). Here,
changes in conductance were approximated by current changes. The
resting potential was normalized to zero for simplicity. The terms, xi

A and
xi

N represent the glutamate concentration at AMPA and NMDA recep-
tors, respectively. The function gN(ui) represents the voltage depen-
dence of current influx through the NMDA receptors. This positive
feedback is enhanced when additional current is provided through
backpropagation. As a result, the model reproduces a large depolariza-
tion caused by coincident spikes between presynaptic and postsynaptic
neurons. In addition, although the AMPA receptor also shows voltage
dependence, here we neglected this dependence, as the relative change

around the resting potential is small (Lüscher and Malenka, 2012). xi
BP is

the effect of backpropagation from the soma, and the last two terms of the
equation represents heterosynaptic current, which is given as the sum of
the inhibitory (excitatory) currents xj

I (xj
E) at nearby synapses. We de-

fined the sets of nearby inhibitory and excitatory synapses as �i
I and �i

E,
respectively, and their delays were denoted as dI and dE. The parameter
for inhibitory heterosynaptic effect �I is not weight-dependent, because
the inhibitory weight was kept constant throughout the paper. In addi-
tion, the parameter for excitatory heterosynaptic effect �E was approxi-
mated as a constant in Figure 2, E and F, as the synaptic weights changed
only slowly, and was set as zero in the rest of simulations.

Each input xi
Q (Q � A, N, BP, I, E) is given as the convoluted spikes:

dxi
Q�t�

dt
� �

xi
Q�t�

�Q
� �

sk

	�t � sk�, (2)

where sk represents the spike timing of the kth spike. Although convolu-
tion is calculated at the heterosynaptic synapse in the simulation, it does
not influence the results, as the exponential decay is linear.

Spine model: plasticity. We next consider the calcium influx to a spine
through NMDA receptors and the voltage-dependent calcium channel
(VDCC). For a given membrane potential ui, the calcium concentration
at spine i can be written as follows:

dci

dt
� �

ci

�C
� gN�ui� xi

N�t� � gV�ui�, (3)

where gV(ui) ��Vui represents calcium influx through VDCC, and gN(ui)
xi

N(t) is the influx from NMDA. Importantly, in this configuration, the
hyperpolarization of the membrane potential through heterosynaptic
inhibitory inputs suppresses the Ca 2� influx to the spine, because both
gV(ui) and gN(ui) are modeled as monotonically increasing functions of
the membrane potential. This is consistent with recent findings indicat-
ing that an inhibitory input significantly suppresses Ca 2� transients in
both dendrites and spines (Chiu et al., 2013; Marlin and Carter, 2014;
Müllner et al., 2015). Note that spine-projecting inhibitory synapses
might mediate Ca 2� suppression in long-necked spines (Chiu et al.,
2013).

The calcium concentration at the spine is a major indicator of synaptic
plasticity, and many studies indicate that a high Ca 2� concentration on a
spine typically induces LTP, whereas a low concentration often causes
LTD, though the speed of Ca 2� rise is also known to affect the sign of
plasticity (Lüscher and Malenka, 2012). Previous modeling studies
showed that calcium-based synaptic plasticity models constructed on
this principle well replicate various homosynaptic STDP time windows
observed in in vitro experiments (Shouval et al., 2002; Graupner and
Brunel, 2012). We therefore used this framework for modeling plasticity.
In contrast to the previous calcium-based model where a synaptic weight
was assumed to be binary (Graupner and Brunel, 2012), here we assumed
that a synaptic weight is a continuous variable, and we additionally in-
troduced an interim weight variable to ensure that the learning dynamics
of synaptic weights is robust. As shown in Equation 5, the interim weight
variable imposes an additional threshold mechanism to prevent minor
synaptic modulation from affecting the synaptic weight (Petersen et al.,
1998). This interim weight variable represents the approximate concen-
tration of plasticity-related enzymes such as CaMKII or PP1 (Graupner
and Brunel, 2007). In the proposed model, the interim weight yi and
synaptic weight wi follow:

d yi�t�

dt
� �

yi�t�

�y
� Cp�ci � 
p�� � Cd�ci � 
d��, (4)

dwi�t�

dt
� Bp� yi � yth�� � Bd��� yi � yth���. (5)

[X]� is a sign function that returns 1 if X � 0, but returns 0 otherwise. In
the model, the neural dynamics is defined in such a way that the somatic
potential caused by a presynaptic spike linearly depends on its synaptic
weight wi (Table 1). Thus, wi reflects the amplitude of EPSP. Note that, in
this model setting, as observed in recent experiments (Gambino et al.,

Table 1. Definitions of variables

ui(t) Membrane potential at spine i Eq. 1
ci(t) Calcium concentration at spine i Eq. 3
yi(t) Interim synaptic weight Eq. 4
wi(t) Synaptic weight of spine i Eq. 5
gN(u) Voltage dependence of NMDA receptor gN(ui) � �Nui � �N

gV(u) Voltage dependence of VDCC gv(ui) � �vui

xi
A(t) Inputs through AMPA receptor Eq. 2 with Q � A

xi
N(t) Inputs through NMDA receptor Eq. 2 with Q � N

xi
BP(t) Backpropagation Eq. 2 with Q � BP

xi
E(t) Excitatory heterosynaptic inputs Eq. 2 with Q � E

xi
I(t) Inhibitory heterosynaptic inputs Eq. 2 with Q � I

ub
k(t) Membrane potential at dendritic branch k ub

k�t� � �i�1

Nb
E

wi
kui

k�t�/�wo
ENb

E�,

usoma(t) Membrane potential at the soma usoma�t� � �k�1
K gb�ub

k�t��.

gb(u) Dendritic nonlinearity function
gb�u� � � u �if u � ub

o�
ub

o �otherwise)

Hiratani and Fukai • Heterosynaptic Spike-Timing-Dependent Plasticity J. Neurosci., December 13, 2017 • 37(50):12106 –12122 • 12107



2014), backpropagation is not necessary for LTP if presynaptic inputs
arrive when the membrane potential at the spine is well depolarized. The
model reproduces various properties of homosynaptic STDP replicated
by Graupner and Brunel (2012), because it is an extension of their model.
For instance, it is known that the STDP time window depends on the
frequency of the pre-post stimulation (Sjöström et al., 2001). We con-
firmed that this could indeed be observed in our model, by changing the
interval of stimulation in the simulation of STDP (Fig. 1C). In addition,
our model replicates the dendritic position dependence of STDP
(Sjöström and Häusser, 2006) by mimicking dendritic attenuation with a
reduced backpropagation (Fig. 1D, black line). Moreover, by increasing
the amplitude of presynaptic stimulation, LTP is rescued (Fig. 1D, gray
line) as observed in the experiment (Letzkus et al., 2006). Note that
Figure 1, C and D, corresponds to Graupner and Brunel (2012), their
Figures 4 B and 5A, respectively.

As the heterosynaptic interaction in our model is essentially mediated
by the voltage change, our model is also related to the voltage-dependent
STDP model (Clopath et al., 2010). The key differences are that our
model uses the local membrane potential instead of the somatic poten-
tial, and better approximates a previously proposed biophysical model of
synaptic plasticity (Graupner and Brunel, 2007) than the phenomeno-
logical description used in the voltage-dependent STDP model.

Spine model: details. In the simulation, we set the common parameters
as �C � 18.0 ms, �M � 3.0 ms, �N � 15.0 ms, �A � 3.0 ms, �BP � 3.0 ms,

�I � 3.0 ms, �E � 6.0 ms, �Y � 50 s, dI � 0.0 ms, �N � 1.0, �N � 0.0, �V �
2.0, �A � 1.0, 
p � 70, 
d � 35, Cd � 1.0, Bp � 0.001, and Bd � 0.0005
(Table 2 shows the definitions and values of the parameters). Note that,
due to positive feedback between Equations 1 and 3, the effective time-
scales of the calcium dynamics and NMDA channels become longer than
the given values. In the model of STDP at the striatum, we additionally
used �N � 0.05, �BP � 8.0, �I � 5.0, Cp � 2.3, and yth � 250, whereas for
the model of Schaffer collateral synapses, we used �N � 0.2, �BP � 8.5, �I �
3.0, Cp � 2.2, yth � 750, dE � 1.0, and �E � 1.0. In the parameter search,
the decay time constants were chosen within biologically reasonable
ranges (Koch, 1998); �N, �A, Cd, and Bd were fixed at unitary values (i.e.,
at 1, except Bd, which was scaled to 0.0005), whereas the other parameters
were manually tuned. The robustness of the parameter choices was sub-
sequently confirmed numerically (see Fig. 3). Synaptic weight variables
{w} were bounded to 0 	 w 	 500, and initialized at w � wo

E, which was
defined as wo

E � 100. All other variables were initialized at zero in the
simulation. Paired stimulation was applied every second for 100 s, and
the synaptic weight changes were calculated from the values 400 s after
the end of the stimulation. In the corticostriatal synapse model, the in-
hibitory spike was presented with the same timing as the presynaptic
spike, whereas for the Schaffer collateral synapses, the inhibitory spikes
were given 10 ms before the pre (post) spikes in the pre-post (post-pre)
stimulation protocols. In the calculation of the interim weight variable
y(t) in Figure 2, B, D, and F, we ignored the effect of exponential decay

A B

C D

Figure 1. Schematic figure of the model of h-STDP. A, A schematic figure of the model. Two variables in the spine, u(t) and c(t), represent the normalized membrane potential and Ca 2�

concentration, respectively. Presynaptic action potentials modulate the membrane potential u(t) through AMPA (x A) and NMDA (gN(u)x N) receptors. In addition, u(t) is modified by backpropagation
(x BP), and heterosynaptic current caused by excitatory (x E) and inhibitory (x I) inputs. The calcium level c(t) is modulated by influx/outflux through NMDA (gN(u)x N) and VDCC [gV(u)]. Consequently,
c(t) is indirectly controlled by u(t), because both NMDA and VDCC are voltage-dependent. B, An example of the dynamics of the membrane potential variable u(t) (top), Ca 2� concentration c(t)
(middle), and the interim weight variable y(t) that controls the synaptic weight w(t) (bottom). The change in the Ca 2� level roughly follows the membrane potential dynamics, and the interim
weight variable y(t) is positively (negatively) modulated when the Ca 2� level is above the LTP (LTD) thresholds represented by orange (cyan) dotted lines. Based on the variable y(t), the synaptic
weight w(t) is updated on a slow timescale (Fig. 5C). C, Pairing frequency dependence of STDP. In corticostriatal synapse model without GABA, we changed the interval of pair-stimulation while
keeping the total number of stimulations constant (see Materials and Methods). The blue 1 Hz line is the same as the red line in Figure 2A. The spike-timing windows for 20 and 40 Hz stimulations
were shown only in the middle ranges because the spike-timing difference cannot be longer than the interval of stimulations, and the asymmetry around 0 ms is caused by the axonal delay. D,
Dendritic position dependence of STDP. We mimicked dendritic position dependence by changing the amplitude of the backpropagation term �BP in the corticostriatal synapse model under the
pre-post condition depicted by the red lines in Figure 2B. In the black line, the AMPA and NMDA coefficients were kept at the same values as in Figure 2B, whereas they were increased threefold in
the gray line.
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because of the difference in the timescale (�y 

 1 s). In the calculation of
spike-timing difference, we subtracted 7.5 ms of axonal delay from the
timing of presynaptic stimulation. Simulations of the differential equa-
tions were implemented using a Runge–Kutta method with a time step of
0.1 ms.

Dendritic hotspot model. A dendritic hotspot model was constructed
based on the Schaffer collateral synapse model described above. For sim-
plicity, we hypothesized that the effect of dendritic geometry is negligible
within a dendritic hotspot; hence the heterosynaptic current due to the
inhibitory spike arrives at all the nearby excitatory spines at the same
time. In addition, we also disregarded the excitatory-to-excitatory (E-
to-E) interaction by setting �E � 0.0. Correlated spikes were generated
using hidden variables as in previous studies (Vogels et al., 2011; Hiratani
and Fukai, 2015). We generated five dynamic hidden variables and updated

them at each time step by s
�t � �t� � �� � 1

2
� �1 � �s) � s
�t��s, where

�s � exp���t/�S�, �S � 10 ms, 
 � 0, 1, . . ., 4, and � is a random variable
uniformly chosen from [0, 1). In the simulation, the time step was set to
�t � 0.1 ms. The activities of the presynaptic neurons were generated by
a rate-modulated Poisson process with ri

E�t� � rX
E � rS

Es
�t� for excitatory
neuron i modulated by the hidden variable 
 (due to a non-negative
constraint on ri

E�t�, we set ri
E�t� � 0 when rX

E � rS
Es
�t� � 0. Similarly, the

presynaptic inhibitory neuron was described by a Poisson model with
rI�t� � rX

I � rS
I s0�t�. The activity of the postsynaptic neuron was given as a

Poisson model with a fixed rate rpost. We set the parameters {rx
E, rs

E, rpost}
such that all presynaptic and postsynaptic excitatory neurons show the
same average firing rate at 5 Hz, to avoid the effect of firing-rate differ-
ences on synaptic plasticity.

In Figure 7, to explore the role of dendritic spiking in synaptic plastic-
ity, we introduced the effect of dendritic spikes by changing Equation 1 as
follows:

dui�t�

dt
� �

ui�t�

�m
� �A xi

A�t� � �NgN�ui� xi
N�t� � �BPxi

BP�t�

� �I �
j��i

I

xj
I�t � dI� � �ds� xds�t � dE� � 
ds��, (6)

where xds obeys
dxds�t�

dt
� �

xds�t�

�ds
� �

i
wi�si

k 	�t � si
k�, with si

k being the

kth spike of the ith presynaptic neuron. The sign function [X]� returns 1
if X � 0, but returns 0 otherwise. With these modifications, the mem-

brane potential of each spine receives additional excitatory current when
xds exceeds the threshold 
ds due to coincident inputs onto nearby spines.

We used �I � 1.2, �N � 1.0, �BP � 8.0, Cp � 2.11, and yth � 250 with
other parameters being kept at the same values used in the original Schaf-
fer collateral model (Table 2). The number of excitatory inputs to the
branch Nb

E was set to Nb
E � 10. Except for Figure 5F, the mean delay of the

inhibitory spikes was set to zero. Presynaptic activities were given by rX
E �

1.0 Hz, rS
E � 500.0, rX

I � 2.0 Hz, and rS
I � 1000.0 so that the average firing

rate of presynaptic neurons became �5 Hz, whereas the postsynaptic
firing rate was set to rpost � 5.0 Hz. The large values of rS

E and rS
I were

chosen because the correlation factor s
(t) was typically very small
��
s


2 � � 0.02�. In Figure 5C, the correlations were calculated between
the dendritic membrane potential gb(ub) and hidden variables {s
(t)},

where ub�t� � �i�1

Nb
E

wiui�t�/�wo
ENb

E�, and gb(u) were defined as gb(u) � u if
u 
 ub

o, otherwise gb(u) � ub
o with ub

o � �5.0. For the dendritic spike
model shown in Figure 7, we used �sd � 1.0, �sd � 10.0 ms, and 
ds �
4wo

E. The other parameters were kept at the same values used above.
Two-layered neuron model. Previous studies suggest that the compli-

cated dendritic computation can be approximated by a two-layered
single-cell model (Poirazi et al., 2003; London and Häusser, 2005). We
therefore constructed a single cell model by assuming that each hotspot
works as a subunit of a two-layered model. In this model, a dendritic
subunit (i.e., a unit in the first layer of the two-layered model) corre-
sponds to an electrically compartmentalized subregion of the dendritic
tree, such as a thin terminal dendrite or a combination of oblique and
terminal branches diverted from the main dendritic shaft. By contrast, in
the dendritic hotspot model, a hotspot represents a group of excitatory
synapses modulated by a common inhibitory input on a subregion of a
dendritic branch. Thus, given that an inhibitory input can modulate
excitatory synapses up to 10 –15 
m away from the input site (Hayama et
al., 2013), a dendritic subunit may contain multiple hotspots. However,
for simplicity we supposed that a dendritic subunit corresponds to a
hotspot in the two-layered model. We defined the mean potential of a

dendritic subunit k as ub
k�t� � �i�1

Nb
E

wi
kui

k�t�/�wo
ENb

E�, and calculated
the somatic membrane potential as usoma�t� � �k�1

K gb�ub
k�t��. Post-

synaptic spikes were given as a rate-modulated Poisson model with
the rate usoma(t)/Idv(t). The term Idv(t) is a divisive inhibition term
introduced to keep the output firing rate at rpost. By using the mean

somatic potential
du� soma�t�

dt
��

u� soma�t� � usoma�t�

�v
, Idv(t) was calculated

as Idv�t� � u� soma�t�/rpost.
In the simulations described in Figure 6, we used Cp � 2.01, �v � 1 s,

and K � 100, with the other parameters being kept at the same values
used in the dendritic hotspot model. During the learning depicted in
Figure 6B–E, we used the same input configuration as in the dendritic
hotspot model. In Figure 6F–H, the activity level of the hidden variables
{s
(t)} was kept at a constant value s
(t)� 0.25 during the 500 ms stim-
ulation, whereas it was otherwise kept at zero. Additionally, the inhibi-
tory presynaptic activities were set to rX

I � 10 Hz and rS
I � 2000. For the

data presented in Figure 6, G and H, we modulated the firing rates of both
the excitatory and inhibitory presynaptic neurons by changing the activ-
ity levels of the hidden variables {s
(t)} from 0.1 to 0.5. The ratio of the
change detecting spikes was defined as the ratio of the spikes occurring
within 50 ms of the change to the total spike count.

In Figure 6, C and E, the standard STDP model (Song et al., 2000;
Hiratani and Fukai, 2015) was implemented as follows:

�w � ��stdpAp exp � � ��t � /�p� ��t � 0�
��stdpAd exp � � ��t � /�d� ��t � 0� , (7)

where �t is the spike-timing difference between the post and presynaptic
spikes (i.e., pre-post is LTP). Here, we introduced a 3 ms dendritic delay
into the calculation of �t. In addition, to induce branch-specific compe-
tition, we performed normalization wi � w̃i/�i��branch

�w̃i�/wo� at each

dendritic branch at every time step. Neural dynamics was kept at the
same dynamics used in the two-layered model described above. In the
simulations presented, we used �p � 17 ms, �d � 34 ms, Ap � 1.0, Ad �
0.5, and �stdp � 3.0.

Table 2. Definitions and values of parameters

Corticostriatal
model (Fig. 2A,B)

Schaffer-collateral
model (Fig. 2C–F)

Hotspot model, and
single neuron model
(Figs. 5–8)

�V VDCC coefficient 2.0 2.0 2.0
�N NMDA voltage

dependence
1.0 1.0 1.0

�N NMDA baseline 0.0 0.0 1.0
�A AMPA coefficient 1.0 1.0 1.0
�N NMDA coefficient 0.05 0.2 0.2
�BP Backpropagation

coefficient
8.0 8.5 8.0

�I Inhibitory heterosynaptic
effect

5.0 3.0 1.2 (Figs. 5–7)

2.5 (Fig. 8)
�E Excitatory heterosynaptic

effect
0.0 1.0 0.0


p LTP threshold 70 70 70

d LTD threshold 35 35 35
Cp LTP constant 2.3 2.2 2.11 in (Figs. 5, 7)

2.01 (Fig. 6)
1.85 (Fig. 8)

Cd LTD constant 1.0 1.0 1.0
yth Plasticity threshold 250 750 250 (Figs. 5–7)

750 (Fig. 8)

Hiratani and Fukai • Heterosynaptic Spike-Timing-Dependent Plasticity J. Neurosci., December 13, 2017 • 37(50):12106 –12122 • 12109



The model of binocular matching. For the model of the critical period
plasticity of binocular matching depicted in Figure 8, we also used a
two-layered single cell model. The neuron model has K � 100 dendritic
branches, each receives Nb

E � 20 excitatory inputs and 1 inhibitory input.
At each branch, half of the excitatory inputs are from the contralateral
eye, and the other half are from the ipsilateral eye. Each excitatory input
neuron has direction selectivity characterized by 
k,i

E , and shows rate-
modulated Poisson firing with:

rk,i � rx
E exp ��E cos �
 �t� � 
k,i

Q ��/I0��E�, (8)

where 
(t) is the direction of the visual stimulus at time t, Q is either
contralateral or ipsilateral, and I0(�E) is the modified Bessel function of
order 0. Similarly, the firing rate of an inhibitory neuron is given as
rk

I �t� � rx
I exp ��I cos �
 �t� � 
k

I ��/I0��I�. For each excitatory input neu-
ron, the mean direction selectivity {
k,i

Q } was randomly chosen from a von
Mises distribution exp ��S cos �
k,i

Q � 
Q��/2�I0��S�, where Q � {con-
tra, ipsi}. In the simulation, we used 
contra � ��/4, and 
ipsi � �/4.
Correspondingly, the mean direction selectivity of an inhibitory neuron
{
k

I} was defined as the mean of its selectivity for ipsilateral and contralat-
eral inputs (i.e., 
k

I � (
k
I,ipsi � 
k

I,contra), where 
k
I,ipsi and 
k

I,contra were also

A

B

C

D

E
F

Figure 2. The model reproduces spike-timing-dependent heterosynaptic effects. A, Spike timing window with/without a disynaptic GABAergic input. The lines represent simulation data, and the
points are experimental data taken from Paille et al. (2013). Vertical dotted lines represent the spike-timing differences from which B was calculated. B, Dynamics of calcium concentration c(t) (top)
and the interim weight variable y(t) (bottom) at the stimulated spine. Gray areas in the bottom figures represent the regions satisfying y(t) 	 yth /Krep, in which the change in the interim weight is
not reflected to the synaptic weight, where Krep represents the number of paired stimulations given in the simulation for A. C, Synaptic weight change with/without GABAergic inputs immediately
before pre-post stimulation. Data points were taken from Hayama et al. (2013). The gray point is a result from muscimol application, not GABA uncaging. D, Dynamics of c(t) and y(t) at the stimulated
spine. Black lines represent the dynamics under GABA uncaging, and red lines represent the controls. E, Synaptic weight change at a neighboring spine through excitatory heterosynaptic interaction.
F, Dynamics of c(t) and y(t) at the neighboring spine.
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randomly depicted from exp ��S cos �
k
Q � 
Q��/2�I0��S�. The direction of the

visual stimulus 
(t) changes randomly with 
�t � �t� � 
�t� � �sr�G, where
�G is a Gaussian random variable and �t is the time step of the simulation. To
mimic monocular deprivation, in the shadowed area of Figure 8E, we re-
placed the contralateral-driven input neuron activity with a Poisson spiking
having a constant firing rate of rmd

E . In addition, to simulate the lack of
contralateral-driven inputs to inhibitory neurons, we replaced the inhibitory
activity with rk

I �t� � rmd
I � �rx

I /2�exp ��I cos �
 �t� � 
k
I,ipsi��/I0��I�. Simi-

larly, in the firing response shown in Figure 8C, we measured direction
selectivity by providing monocular inputs, while replacing the inputs
from the other eye with homogeneous Poisson spikes with a firing rate
of rmd

E .
To evaluate the development of binocular matching we introduced

three order parameters. First, the difference between the mean excitatory
direction selectivity and the inhibitory selectivity at a branch k was eval-
uated by 
b,k

d � �arg ��i wk,i
E ei�
k,i

E �
k
I �� � . Similarly, the global direction

selectivity difference between the inputs from the ipsilateral and con-
tralateral eyes was defined by the following:


G
d � d̂	arg
�

k�1

K �
i�ipsi

wk,i
E ei
k,i

E �, arg 	�
k�1

K �
i�contra

wk,i
E ei
k,i

E ��, (9)

where the function d̂�
1, 
2� calculates the phase difference between the
two angles. Finally, the direction selectivity index (DSI) for binocular
input was calculated by:

DSI � 
 �
k�1

K �
i�1

Nb
E

wk,i
E ei
k,i

E ��
k�1

K �
i�1

Nb
E

wk,i
E 
 . (10)

For the calculation of the monocular DSI, at each branch k, we took the
sum over Nb

E/2 excitatory inputs corresponding to each eye, instead of all
the Nb

E inputs.
In the simulation, we set �I � 2.5, Cp � 1.85, yth � 750.0, and ub

o � 0.0,
with the rest of parameters being kept at the values used in the dendritic
hotspot model. The inputs parameters were set to �E � 4.0, �I � 2.0,
�S � 1.0, 
contra � ��/4, 
ipsi � �/4, rX

E � 5.0, rX
I � 10.0, rmd

E � 1.0, rmd
I �

1.0, and �sr � 0.1��t.
Reduced model. If we shrink equations for membrane potential (Eq. 1)

and calcium concentration (Eq. 3) into one, the reduced equation would
be written as follows:

dCi�t�

dt
� �

Ci�t�

�C
� CpreXi�t� � Cpost �1 � gC�Ci�t � �t���Xpost�t�

� CI �
j��i

I

Xj
I�t � dI� � CE �

j��i
E

Xj
E�t � dE�, (11)

where gc( X) � [X]��X captures the nonlinear effect caused by the pre-
post coincidence [i.e., gc( X) returns �X if X 
 0, otherwise returns 0]. All
inputs Xi, Xpost, Xj

I, and Xj
E were given as point processes, and dI and dE

are heterosynaptic delays. The variable gc was calculated from the value of
Ci at t � t � �t to avoid pathological divergence due to the point pro-
cesses. In the simulation, we simply used the value of Ci from the previous
time step. For the interim weight y, we used the same equation as before.
Note that Equation 11 is basically the same as the one by Graupner and
Brunel (2012), except for the nonlinear term gc( C) and the heterosynap-
tic terms.

Let us consider the weight dynamics of an excitatory synapse that has
only one inhibitory synapse in its neighbor. For analytical tractability, we
consider the case when presynaptic, postsynaptic, and inhibitory neu-
rons fire only one spikes at t � tpre, tpost, and tI, respectively. In the case of
the CA1 experiment, because the GABA uncaging was always performed
before the presynaptic and postsynaptic spike, the timing of the inhibi-
tory spike is given as tI � min(tpre, tpost) � 	I for 	I 
 0. In this setting, the
change in the interim weight variable of the excitatory synapse is given as
follows:

�y � �
G1�C1, tpre � tpost�

� G2�Cpre � C1e
��tpre�tpost�/�C�

�if tpost � tpre�

G1�C2, tpost � tpre�

� G2
Cpost�1 � gC�C2e��tpost�tpre�/�C��
� C2e��tpost�tpre�/�C � �otherwise�

,

(12)

where

C1 � Cpost � CIe
��tpost�tI�/�C, C2 � Cpre � CIe

��tpre�tI�/�C, (13)

G1�C, �t� � Bp�C � 
p��
	�C log
C


p
� �t�

�

�t � 	�t � �C log
C


p
�

�

�C log
C


p
� � Bd�C � 
d��
	�C log

C


d
� �t�

�

�t � 	�t � �C log
C


d
�

�

�C log
C


d
�, (14)

G2�C� � Bp�C � 
p���C log
C


p
� Bd �C � 
d�� �C log

C


d
. (15)

Similarly, in the case of the striatum experiment, by setting � � 0, the
change in the interim weight variable is given as follows:

�y

� �
G1�Cpost, tpre � tpost� � G1�C3, tI � tpre�

� G2��CI � C3e��tI�tpre�/�C�
�if tpost � tpre � tI�

G1�Cpre, tI � tpre� � G1�C4, tpost � tI�
� G2�Cpost � C4e��tpost�tI�/�C�

�if tpre � tI � tpost�

G1�Cpre, tpost � tpre� � G1�C5, tI � tpost�
� G2��CI � C5e��tI�tpost�/�C�

�if tpre � tpost � tI�

,

(16)

where

C3 � Cpre � Cpost e��tpre�tpost�/�C, C4 � �CI � Cpre e��tI�tpre�/�C

and C5 � Cpost � Cpree
��tpost�tpre�/�C. (17)

In the simulation, the parameters were set to �c � 30 ms, Cpost � 2.0,

p � 1.6, 
d � 1.0, Bp � 2.25, and Bd � 1.0. Additionally, in the model of
a Schaffer collateral synapse, we used 	I � 1.0, Cpre � 1.0, CE � 0.30, and
� � 2.0, whereas for the model of a corticostriatal synapse, we used 	I �
5.0, Cpre � 0.75, CE � 0.0, and � � 0.0. In Figures 4, C and D, we used the
parameter set for the model of a Schaffer collateral synapse.

As depicted in Figure 4D, the model also provides an analytical insight
into the E-to-E interaction, in addition to the inhibitory-to-excitatory
(I-to-E) interaction analyzed in the main result. In the E-to-E interaction,
neighboring synapses receive small heterosynaptic calcium transient CE, in-
stead of presynaptic input Cpre. We can therefore characterize the shapes of
the STDP time windows by the heterosynaptic excitatory effect parameter
CE, and the postsynaptic effect parameters Cpost (Fig. 4D). When the post-
synaptic effect parameter Cpost satisfies 
p � Cpost � 
p � CIe

�	I/�C, and the
heterosynaptic effect parameter CE fulfills CIe

�	I/�C � CE � 
p, the STDP
time window shows Hebbian-type timing dependency (Fig. 4D, top-middle
orange region). However, if CE is smaller than CIe

�	I/�C while satisfying

p � CIe

�	I/�C � Cpost � CE, then the STDP curve becomes LTD dominant
(Fig. 4D, top-left green region), as observed in previous experiments
(Hayama et al., 2013; Oh et al., 2015). The excitatory heterosynaptic effect CE

is expectedly smaller than the inhibitory effect CI, because the inhibitory
potential is typically more localized (Gidon and Segev, 2012). Thus,
CE � CIe

�	I/�C is also expected to hold for small 	I, suggesting robust
heterosynaptic LTD at neighboring synapses.
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Experimental design and statistical analysis. Parameters used in the
simulations are summarized in Table 2. The main simulation codes for
the models are available at https://github.com/nhiratani/hstdp.

Results
Calcium-based synaptic plasticity model with current-based
heterosynaptic interaction explains h-STDP
We constructed a model of a dendritic spine, as shown in Figure
1A (see Materials and Methods, Spine model). In the model, the
membrane potential of the spine u(t) is modulated by the current
influx/outflux via the AMPA and NMDA receptors (Fig. 1A, x A

and gN(u)x N), spike backpropagation (x BP), and heterosynaptic
currents from nearby excitatory and inhibitory synapses (x E and
x I, respectively; see Table 1 for the definitions of variables). The
calcium concentration in the spine c(t) is controlled through the
NMDA receptors and the VDCCs gv(u) (Higley and Sabatini,
2012). Because both NMDA and VDCC are voltage-dependent
(Lüscher and Malenka, 2012), the calcium level in the spine is
indirectly controlled by presynaptic, postsynaptic, and heterosynap-
tic activities (Fig. 1B, top and middle). The voltage dependence of
NMDA and VDCC [gN(u) and gv(u)] were assumed to be linear
for simplicity. This linear assumption may overestimate the effect
of a backpropagating action potential on the dendritic NMDA
receptors in the overshooting phase, but the effect is expectedly
insignificant because in the absence of Ca 2� spike, a backpropa-
gated action potential tends to overshoot less at the dendrite
compared with the soma due to dendritic attenuation (London
and Häusser, 2005). In addition, although the synaptic input at
an inhibitory synapse causes a positive Ca 2� influx by itself
(Koch, 1998), activation of nearby inhibitory input hyperpolar-
izes the membrane potential at the local dendritic site, and may
suppress the Ca 2� influx through VDCCs. Indeed, recent exper-
imental results reveal that Ca 2� influx driven by backpropagat-
ing spikes or excitatory synaptic inputs is strongly reduced by an
inhibitory input in a temporally and spatially precise manner
(Hayama et al., 2013; Marlin and Carter, 2014; Müllner et al.,
2015). On the basis of these observations, the Ca 2� level in our
model is negatively regulated by the heterosynaptic inhibitory
inputs through the hyperpolarization of the membrane potential.
To model synaptic plasticity, we used a calcium-based model in
which LTP/LTD are initiated if the Ca 2� level reaches above the
LTP/LTD thresholds (Fig. 1B, middle, orange and cyan lines);
this plasticity model reproduces the features of homosynaptic
STDP very well (Shouval et al., 2002; Graupner and Brunel,
2012). We introduced the interim weight variable y(t) to capture
the non-graded nature of synaptic weight change (Petersen et al.,
1998). Thus, changes in Ca 2� level are first embodied in the
interim weight y(t) (Fig. 1B, bottom), and are then reflected in
the synaptic weight w(t) upon accumulation. The interim weight
y(t) is expected to correspond with the concentration of active
plasticity-related enzymes such as CaMKII or PP1 (Graupner and
Brunel, 2007), and the synaptic weight w(t) reflects the somatic
EPSP amplitude. Despite the modification, our model replicates
the properties of homosynaptic STDP reproduced by Graupner
and Brunel (2012) well (Fig. 1C,D).

We first consider the effect of inhibitory input on synaptic
plasticity at nearby excitatory spines. A recent experimental study
in a medium spiny neuron (Paille et al., 2013) revealed that syn-
aptic connections from cortical excitatory neurons typically show
anti-Hebbian type STDP under a pairwise stimulation protocol,
but if the GABA-A receptor is blocked, the STDP time window
flips to a Hebbian type STDP (Fig. 2A, circles). Our model can
explain this phenomenon in the following way. Let us first con-

sider the case when the presynaptic excitatory input arrives
before the postsynaptic spike (the “pre-post” regime). If the
GABAergic input is blocked, presynaptic and postsynaptic spikes
jointly cause a large membrane depolarization at the excitatory
spine. After repetitive stimulation, the calcium concentration
rises above the LTP threshold (Fig. 2B, top-right, red line), hence
inducing LTP (Fig. 2B, bottom-right, red line). By contrast, if the
GABAergic input arrives coincidentally with the presynaptic in-
put, depolarization at the excitatory spine is attenuated by a neg-
ative current influx though the inhibitory synapse. As a result, the
calcium concentration cannot reach the LTP threshold although
it is still high enough to eventually cause LTD (Fig. 2B, right,
black lines). Similarly, when the postsynaptic spike arrives at the
spine before the presynaptic spike (the post-pre regime) in the
absence of GABAergic input, the delayed presynaptic spike causes
a slowing of the decay in the level of calcium concentration that
may induce LTD (Fig. 2B, left, red lines). To the contrary, if the
GABAergic input is provided simultaneously with the presynap-
tic input, the decay in the calcium concentration is sped up be-
cause of the hyperpolarization of the membrane potential at the
excitatory spine by the inhibitory input. As a result, LTP is
more likely to occur (Fig. 2B, left, black lines). Therefore,
when a GABAergic input arrives in coincidence with a presyn-
aptic excitatory input, the STDP time window changes its sign
in both the pre-post and the post-pre stimulation regimes
(Fig. 2A, lines).

A GABAergic effect on excitatory synaptic plasticity is also
observed in CA1 pyramidal neurons (Hayama et al., 2013). In this
case, the post-pre stimulation does not induce LTD unless GABA
uncaging is conducted near the excitatory spine immediately be-
fore the postsynaptic spike arrives at the spine, whereas LTP is
induced by the pre-post stimulation regardless of GABA uncag-
ing (Fig. 2C, squares). Our model can also replicate these results.
In the pre-post stimulation, the membrane potential of the spine
shows strong depolarization due to positive feedback through the
NMDA receptor, even if inhibitory current is delivered through
GABA (Fig. 2D, top-right, red and black lines). Thus, LTP occurs
after repetitive stimulation (Fig. 2D, bottom-right, red and black
lines). By contrast, in the post-pre protocol, the effects of trigger-
ing LTP and LTD tend to cancel each other in the absence of
GABAergic input, whereas LTD becomes dominant under the
influence of GABAergic input (Fig. 2D, left, red and black lines,
respectively).

In addition to the I-to-E effect, the E-to-E effect is also ob-
served in the case of CA1 pyramidal neurons (Hayama et al.,
2013). If GABA uncaging is performed immediately before post-
synaptic firing, LTD is also observed in neighboring excitatory
spines (Fig. 2E, right, point). This E-to-E heterosynaptic effect is
not observed in the absence of GABAergic input (Fig. 2E, left,
points). Correspondingly, in the model, excitatory current influx
from a nearby synapse causes mild potentiation of calcium con-
centration in cooperation with inhibitory current influx, eventu-
ally inducing LTD (Fig. 2F, left, gray lines). Note that, in this
E-to-E effect, interactions of signaling molecules or competition
for resources at a later stage of synaptic plasticity may also play a
dominant role (Hayama et al., 2013).

To check the parametric robustness of the model, we uni-
formly sampled the values of all the main parameters from fixed
ranges, and studied the sensitivity of the model performance to
each parameter, by calculating the performance distribution over
the distributions of the other parameters (Fig. 3A,B). Even if the
values of the parameters were perturbed by 20 –100% from the
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original values (i.e., the values used in Fig. 2A), we obtained sim-
ilar sizes of fitting errors to Figure 2A in �2.5% of the simulations
(Fig. 3A). Moreover, we found that anti-correlation between the
VDCC coefficient and the backpropagation coefficient was cru-
cial for replicating the experimental result (Fig. 3B, �V vs �BP and
�BP vs�V), as their product determined the effective amplitude of
the calcium transient caused by a postsynaptic spike (Eq. 1 � Eq. 3).
A linear relationship between the LTP constant and LTD con-
stant is also important for model fitting (Fig. 3B, Cp vs Cd and Cd

vs Cp). Notably, fitting the experimental data from the striatum
requires a larger coefficient of the heterosynaptic inhibitory effect
than the value required for fitting the data from CA1, and thus the
striatum model depends on stronger inhibition than the CA1
model (Fig. 3C, top). This is consistent with the observation of
strong inhibition in the striatum (Mallet et al., 2005). We also
found that faithful reproducing of the CA1 experimental data

crucially depended on a high NMDA/AMPA ratio, whereas the
striatum model was rather robust against this ratio (Fig. 3C,
bottom).

Phase transitions underlying h-STDP
In the previous section, we introduced a biophysical model to
establish its relevance to the corresponding biological processes
and obtain insight into the underlying mechanism. However, not
all of the components of the model are necessary to reproduce the
observed properties of h-STDP. We next provide a simple ana-
lytically tractable model to investigate the generality of the pro-
posed mechanism.

To this end, we simplify the model to one in which the calcium
level at a spine is directly modulated by the presynaptic, postsyn-
aptic, and heterosynaptic activities, as given below:

0.0 0.150.03 0.06 0.09 0.12
Fraction above the criteria

A

B C

Figure 3. Parametric robustness of the h-STDP model. A, Fitting errors for the model of the striatum experiment at various values of model parameters. We conducted 10 5 simulations by
uniformly sampling all parameters within fixed ranges, and then calculated the median error (light gray line), 16 percentile error (dark gray line), and 2.5 percentile error (black line) for each
parameter by marginalizing the other parameters. The x-axes show the range of perturbation used for all parameters, with the 100% values corresponding to the values used in Figure 2A (Table 2).
Dotted lines represent the fitting error for the parameter set used in Figure 2A. See Materials and Methods for the definitions of the parameters. The fitting error was calculated as
��d

ND �wsim
d � wdata

d �2/ND, where wsim is the synaptic weight in the simulation, wdata is the weight in the experiment (Paille et al., 2013), and ND is the number of data points (ND � 64).
B, Performance dependence on two-parameter relationships. For the same data depicted in A, we calculated the percentage of simulation trials that exceeded the fitting error criteria (error 	 60.0),
under a given parameter pair. Dark blue points are parameter sets at which 0% of the simulations exceeded the criteria, whereas red points are the parameter sets where 15% did. The x- and y-axes
for each parameter are the same as in A. C, Comparisons of the parametric dependences of models fitted to the results from the striatum and CA1 experiments. The vertical dotted lines represent the
values used in Figure 2. The NMDA/AMPA ratio in the bottom panel was calculated as �N�N/�A�A at various values of �N. Here, the error for the striatum model was calculated over 10 4 simulations,
and the NMDA coefficient �N was uniformly sampled from [0.0, 0.25). Parameters for the CA1 model were sampled from the same ranges. Three lines with different shades represent the fitting error
at 6.7, 2.5, and 0.7 percentiles.
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dCi�t�

dt
� �

Ci�t�

�C
� CpreXi�t� � Cpost�1 � gC�Ci�t � �t���

� Xpost�t� � CI �
j��i

I
Xj

I�t � dI� � CE �
j��i

E
Xj

E�t � dE�. (18)

Here, Ci(t) represents the Ca 2� concentration at spine i, Xi, and Xpost

represent presynaptic and postsynaptic spikes respectively, dI and dE are
heterosynaptic delays, and �i

I and �i
E are the sets of neighboring inhibi-

tory and excitatory synapses (for details of the model, see Materials and
Methods, Reduced model). Despite its simplicity, the model can qualita-
tively reproduce the heterosynaptic effects observed in striatal and CA1
neurons, although the quantitative accuracy is degraded (Fig. 4A and B,
respectively). Importantly, the reduced model provides further analytical
insights into the phenomena.

Let us consider how the inhibitory effect parameter CI controls the
I-to-E heterosynaptic effect observed in the CA1 experiment. If we
characterize the shape of the STDP time windows by the total number
of their local minima/maxima, the parameter space can be divided
into several different phases (Fig. 4C). If the LTP threshold 
p satisfies
Cpre 	 
p 	 Cpost, a Hebbian type STDP time window appears
when the strength of heterosynaptic inhibitory effect CI satisfies
�Cpost � 
p�e

	I/�C � CI � Cpree
	I/�C (Fig. 4C, top, orange region; see Mate-

rials and Methods for details of the analysis). Here, we defined 	I as the
spike-timing difference between the inhibitory spike and the presynaptic
or postsynaptic spikes in the pre-post or the post-pre stimulation proto-
cols, respectively. If CI is larger than Cpreexp(	I/�C), a strong inhibitory
effect causes LTD, even in the pre-post regime (Fig. 4C, green region),
whereas LTD in the post-pre regime is suppressed when CI is smaller than

�Cpre � 
p� exp �	I/�C� (Fig. 4C, gray region). Thus, the heterosynaptic
LTD observed in Figure 2C can be represented as the phase shift from the
gray-colored region to the orange-colored region in Figure 4C, which is
due to the change in the inhibitory effect CI. This analysis further con-
firms the condition for inducing heterosynaptic LTD where the het-
erosynaptic spike-timing difference 	I should be smaller than the
timescale of Ca 2� dynamics �C (Hayama et al., 2013). This is because

	l � �C log
 Cl

Cpost � 
p
� is necessary for a significant heterosynaptic

LTD, and CI is typically smaller than Cpost and 
p. In addition, heterosyn-
aptic suppression of the pre-post LTP (green region) is very unlikely to
occur, as it is necessary for CI to be larger than Cpreexp(	I/�C). This
condition is difficult to satisfy even if 	I � 0, because the heterosynaptic
effect on Ca 2� dynamics in the spine is expected to be smaller than the
homosynaptic effect (i.e., CI 	 Cpre). A similar analysis is possible for
E-to-E interactions, although the phase diagram becomes complicated in
this case (Fig. 4D; see Materials and Methods).

These analyses reveal that the heterosynaptic effects are always observ-
able when the parameters of the calcium dynamics fall within a certain
region of the parameter space, and underscore the robustness of h-STDP
in our framework.

h-STDP induces the detailed dendritic E/I balance at
dendritic hotspots
The results described so far suggest that the proposed model gives
a good approximation of h-STDP. To investigate the possible
functions of h-STDP, we next examined how this h-STDP rule
shapes the synaptic organization on the dendrite of a simulated

A B

C D

Figure 4. Phase transitions on the STDP time window in an analytical model of h-STDP. A, B, STDP windows at various values of heterosynaptic inhibitory effect CI. A corresponds to the striatum
experiment and B corresponds to the CA1 experiment. B, Top and bottom represent the stimulated and a neighboring spine, respectively. Note that values in B were calculated by
ỹ � sgn�y� � � �y � � 15�� to reflect the effect of thresholding. C, Phase diagram of the STDP time window calculated for the inhibitory effect CI and LTP threshold 
p. The colors show the
number of local minima/maxima, whereas the lines are typical STDP time windows at each phase. The parameters written on the right side (top) of the panel represent the critical values of 
p (CI).
D, The phase diagram calculated for the heterosynaptic excitatory effect parameter CE and the postsynaptic effect parameters Cpost at a fixed inhibitory effect (CI � 0.5). See Materials and Methods,
Reduced model.
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neuron. We first considered a model of a dendritic hotspot (Jia et
al., 2010) that receives 10 excitatory inputs and one inhibitory
input (Fig. 5A), because the heterosynaptic effect is typically con-
fined within 10 
m of the synapse (Hayama et al., 2013). Excit-
atory inputs are organized into five pairs, with each pair of
excitatory synapses receiving correlated inputs (Fig. 5B; see Ma-
terials and Methods, Dendritic hotspot model). In addition, the
inhibitory input is correlated with one excitatory pair (Fig. 5A, A1

and A2). Here, we assumed that postsynaptic activity follows a
Poisson process with a fixed rate, because the influence of a single
hotspot on the soma is usually negligible. In addition, we
neglected the effect of morphology and supposed that the het-
erosynaptic interaction occurs instantaneously within the hot-
spot. In this configuration, surprisingly, excitatory synapses
correlated with the inhibitory input are potentiated, while other
excitatory synapses experience minor depression (Fig. 5C, top).

A B C

D E

F G H

I J

Figure 5. Emergence of detailed dendritic excitatory/inhibitory balance by h-STDP. A, A schematic figure of a dendritic hotspot model. The shaft synapse represents an inhibitory input. Colors
represent the spike correlations between synaptic inputs. B, Examples of correlated spike inputs. Each raster plot was calculated from 50 simulation trials. C, Changes in the synaptic weight, w (top),
and the correlation between the dendritic membrane potential and hidden signals (bottom), under h-STDP. The blue lines represent the dynamics of synapses correlated with the inhibitory input.
D, Traces of excitatory and inhibitory inputs before and after learning. Positive correlations between excitatory and inhibitory currents before learning (top, black and red lines) shift to large negative

correlations after learning (bottom, lines). The excitatory and inhibitory input currents were approximately defined as uE�t� �
1

wo
E �i�1

10 wi��Axi
A�t� � �NgN�ui�xi

N�t�� and

uI�t� � ��GxG�t�, respectively. In the graph, we scaled the inhibitory current twofold for illustration purposes. The green lines represent the dendritic membrane potential ub(t). The learning
was performed using the same parameter values as in the simulation depicted in C. E, Synaptic weight dependence on excitatory/inhibitory spike correlation. We changed the correlation by
modulating the sensitivity of inhibitory activity to the hidden signal, while keeping the inhibitory firing rate fixed at rI � 9.2 Hz. The spike correlation was calculated by taking 25 millisecond bins.
F, Synaptic weight change at the excitatory synapses correlated with the inhibitory inputs (blue), and at other synapses (gray), at various inhibitory delays. Error bars in C, E, and F represent SDs over
50 simulation trials. G, The relative weight changes wR calculated for various parameters. We defined wR as 
wi

E�i�corr � 
wi
E�i�un�corr, where “corr” represents a set of excitatory synapses

correlated with the inhibitory synapse, and “un-corr” stands for uncorrelated ones. The weights were calculated by taking an average over 10 simulations. H, The probability of a LTP/LTD occurrence
after a presynaptic spike calculated from a simulation. The lines represent the mean LTP/LTD probabilities at excitatory synapses correlated with the inhibitory input (blue lines) and other synapses
(gray lines), respectively. I, J, Results from single-spike simulations. The E/I coincidence prevents the LTD effect due to the pre-spike (I ), without affecting the LTP effect due to pre-post coincidence
(J ). In I, the inhibitory spikes were provided at t � 0 for the black line and t ��100 ms for the gray line, with the excitatory presynaptic spike being given at t � 0 in both lines. Similarly, in J, the
postsynaptic spikes were provided at t � �75 (light-gray), 0 (black), and �75 ms (dark-gray), while the presynaptic spike was given at t � 0 in all lines.
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As a result, the dendritic membrane potential of the branch be-
comes less correlated with all the hidden signals, because the
strong negative correlation with the blue signal is cancelled by the
potentiated excitatory inputs, whereas weak positive correlations
with other signals are diminished due to LTD at the correspond-
ing excitatory synapses (Fig. 5C, bottom). Although input spikes
to the hotspot is sparse and stochastic, the traces of excitatory and
inhibitory currents shift toward the detailed balance after learn-
ing (Fig. 5D). A spike correlation between excitatory and inhibi-
tory inputs is crucial for this potentiation of excitatory synapses,
but in the model a small correlation is sufficient to produce a
significant change in the synaptic weight (Fig. 5E). Moreover, this
GABA-driven potentiation is only observable when inhibitory
activity is precisely correlated with excitatory activities, and be-
comes larger when the inhibitory spike precedes excitatory
spikes, rather than when it follow them (Fig. 5F). We also found
that, when the heterosynaptic inhibitory effect �I is large enough
to cause a strong hyperpolarization at nearby synapses, depres-
sion is observed at correlated excitatory synapses (Fig. 5G, blue
area) instead of potentiation (Fig. 5G, red area). However, as can
be seen in Figures 3 and 4, such a large inhibitory effect does not
reproduce the STDP experiments, especially the data from the
CA1 pyramidal neurons, and is thus unlikely to be observed in the
actual brain. These results indicate that h-STDP induces a
dendrite-specific temporally precise E/I balance by potentiating
excitatory synapses that are correlated with inhibitory synapses.

To reveal the underlying mechanism of this E/I balance gen-
eration, we used the simulation data to calculate the probability
of the calcium level reaching above the LTD/LTP thresholds
after a presynaptic spike. The probabilities of LTP occurrences
show similar trajectories after a presynaptic spike, regardless of
whether the presynaptic activity is correlated with inhibitory in-
put or not (Fig. 5H, blue and gray dotted lines, respectively).
However, the peak probability of LTD occurrence is significantly
lower for spines that are correlated with inhibitory inputs (Fig.
5H, blue vs gray solid lines), although in both cases the probabil-
ity goes up after the presynaptic spike. This asymmetry between
LTP and LTD is consistent with the following interpretation:
LTD is mainly caused when the presynaptic neuron fires at a low
firing rate and the postsynaptic neuron remains silent, both in the
experiments (Malenka and Bear, 2004) and in our model (Fig. 5I,
gray line). However, if an inhibitory input arrives at a nearby
dendrite in coincidence with excitatory activity, the calcium
boost caused by the excitatory presynaptic input is attenuated by
the heterosynaptic inhibitory effect (Fig. 5I, black line). As a re-
sult, LTD is shunted by correlated inhibitory inputs. On the other
hand, LTP is mainly caused by coincident presynaptic and post-
synaptic spikes, which induce a large increase in calcium that
overwhelms the heterosynaptic inhibitory effect. Thus, LTP at
correlated excitatory synapses is not compromised by inhibitory
activity at a nearby site (Fig. 5J). Therefore, correlated spines tend
to be potentiated overall.

To evaluate the generality of the observed dendritic E/I bal-
ance, we extended the model to a two-layered single cell (Poirazi
et al., 2003) by modeling each branch with one dendritic hotspot
(Fig. 6A; see Materials and Methods, Two-layered neuron model),
and investigated the dendritic organization of synaptic weight
changes by h-STDP. In the simulation, we introduced a 10 ms
delay between the excitatory and inhibitory stimulation (Fro-
emke, 2015). Even in this case, when the dendritic branches of a
postsynaptic neuron receive inputs from various neurons with
different selectivity, each dendritic hotspot shapes its excitatory
synaptic organization according to the selectivity of its inhibitory

input (Fig. 6B,D; the frame colors in B represent the inhibitory
selectivities). As a result, the excitatory synapses on the dendritic
tree become clustered, as observed in previous experiments
(Kleindienst et al., 2011; Takahashi et al., 2012). Note that, in our
model, this clustering of excitatory synapses is caused by com-
mon inhibitory inputs, instead of direct interactions between ex-
citatory spines.

To further clarify the importance of heterosynaptic interac-
tion, we next compared the results of h-STDP with that of learn-
ing under the standard STDP (Song et al., 2000). In the model, we
introduced a branch-specific homeostatic plasticity to induce
competition among nearby synapses (see Materials and Methods
for the details of the standard STDP model). In the standard
STDP model, all dendritic branches developed similar synaptic
distributions regardless of the differences in local inhibitory se-
lectivity (Fig. 6C; the beige signal is learned in this example),
because one of the hidden signals is captured by chance through
self-organization (Song et al., 2000). As a result, under the stan-
dard STDP rule the synaptic organizations of branches remain
akin to each other (Fig. 6E, gray line). By contrast, under the
h-STDP rule, each dendritic branch acquires a synaptic structure
according to its local inhibitory input, and individual dendritic
branches become dissimilar from one another (Fig. 6E, black
line).

We further investigated the possible function of this synaptic
organization in information processing. To this end, we consec-
utively presented the five stimuli to the two-layered neuron
model (Fig. 6F). Before learning, the neuron showed an almost
constant response to the stimulation, with a small dip at the
change points between each of the five stimulations (Fig. 6F, top).
By contrast, after learning, the neuron showed transient bursting
activity immediately after the onset of the new 500 ms stimulus
window, and then rapidly returned to an almost silent state (Fig.
6F, middle). Hence, by h-STDP, a neuron can acquire sensitivity
toward abrupt changes in stimuli (Fig. 6F, bottom, G). This sen-
sitivity vanished if the selectivities of inhibitory synapses were
randomly shuffled, suggesting the importance of the balance at
each dendrite (Fig. 6H). This result indicates that although the
detailed E/I balance at each dendrite has a small overall effect to
the somatic membrane dynamics; the collective effect from all
dendritic branches has a significant impact on the postsynaptic
activity.

The effect of dendritic spikes
Previous studies on dendritic computation reveal the potential
importance of dendritic spikes in synaptic plasticity (Smith et al.,
2013; Kastellakis et al., 2016). Although we mainly consider a
regime within a low firing rate (�5 Hz), dendritic spikes may
occur due to strong input spike correlation. We therefore ex-
tended the model discussed in the previous section by including
dendritic spikes.

Here, we focus on Na� spikes that are typically localized
within a dendritic branch, not global Ca 2� spikes (London and
Häusser, 2005), as we are interested in branch-specific synaptic
organization. We modeled dendritic spikes as an excitatory het-
erosynaptic interaction with thresholding, and then added the
interaction to the dendritic hotspot model (see Materials and
Methods, Dendritic hotspot model). When the amplitude of a
dendritic spike is comparable to the amplitude of backpropagat-
ing spike, the synapses set their weights differently, depending on
the threshold of a dendritic spike. When the spike threshold is
very low, the relative weight difference between the correlated
and uncorrelated excitatory synapses converges to zero, because
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all excitatory synapses are potentiated in this regime. In contrast,
under conditions of a very high threshold, dendritic spikes rarely
occur, so the correlated synapses are only moderately potenti-
ated, as in the control (Fig. 7A; the dotted line represents the
control). Notably, when four to five spikes from synapses with the
unit weight (w � wo) are sufficient to generate dendritic spikes,
the relative weight differences becomes larger than the control, as
the dendritic spikes selectively strengthen such synapses that are
moderately potentiated by h-STDP (Fig. 7A). This effect is espe-
cially significant when inhibitory spikes are delayed by 5–10 ms
on average (Fig. 7B). These results suggest that local dendritic
spikes stabilize the synaptic weight structure generated through
heterosynaptic STDP.

h-STDP explains the critical period plasticity of
binocular matching
The results so far indicate that h-STDP induces GABA-driven
reorganization of synaptic weights, which in turn enriches den-
dritic computation such as in the enhanced sensitivity to detect
changes in input activity. To investigate its relationship with de-
velopmental plasticity, we next consider a model of critical period
plasticity in binocular matching (B. S. Wang et al., 2010, 2013). In
mice, 1 week after the eye opening, binocular neurons in V1
typically exhibit different orientation selectivity for inputs from
the two eyes. Nevertheless, after another 2 weeks, the selective
orientations for each eye become closer, and eventually they al-
most coincide with each other (B. S. Wang et al., 2010). More-

A

B

C

D E

F

G H

Figure 6. Detailed dendritic excitatory/inhibitory balance in a two-layered single cell model. A, A schematic illustration of the single cell model. The actual model has 100 dendritic branches each
receiving 10 excitatory inputs and 1 inhibitory input. As in Figure 5A, the inhibitory inputs are represented by shaft synapses. B, Examples of synaptic weight change at each branch. The color of the
frames represents the selectivity of the inhibitory input to the branch. Each row represents a different simulation trial. C, An example of synaptic weight change at each branch under the standard
STDP rule. As in B, the frame colors represent the local inhibitory selectivity. D, The mean synaptic weight dynamics of synapses correlated with the local inhibitory inputs and other synapses under

h-STDP. E, Development of the branch dissimilarity under the two learning rules. Dissimilarity was given as
1

K�K � 1�wo
�k

K �k��k
K � 1

Nb
�i

Nb�wk,i � wk�,i�
2. F, Raster plots of output

spikes before (top) and after (middle) learning, and their firing rate dynamics (bottom), taken from 100 trials each for 10 simulated neurons. The colors of the spikes in the raster plots represent
results from different simulation trials. The black vertical lines represent the points of change in excitatory inputs, and the horizontal colored bars at the top of the bottom panel correspond to the
colors of the presynaptic neurons active in each period. G, The ratio of change detecting spikes before and after learning. The ratio was defined as the fraction of spikes occurring within 50 ms of a
change in stimuli to the total number of spikes. On the x-axis, in addition to the mean excitatory input firing rates, the mean inhibitory input firing rates were also modulated from 50 to 210 Hz
correspondingly, to maintain the E/I balance of the input. H, The ratio of change detecting spikes with/without inhibitory shuffling. The gray line is the same with the black line in G. In the black line,
selectivities of inhibitory synapses were randomly shuffled to break the E/I balance at each dendrite. We introduced a 10 ms delay between the excitatory and inhibitory stimulus, both during
learning (B–E) and in the change detecting task (F–H ). The averages in D, E, G, and H were taken over 10 simulation trials.
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over, this binocular matching is disrupted by accelerating
inhibitory maturation (B. S. Wang et al., 2013). Thus, the
activity of inhibitory neurons plays a decisive role in shaping
binocular matching, in addition to Hebbian plasticity at excit-
atory synapses.

We modeled this process with the two-layered single cell
model introduced in Figure 6 (Fig. 8A, right; see Materials and
Methods, The model of binocular matching). The input spike
trains were modeled as rate-modulated Poisson processes driven
by a circular variable 
, which corresponds to the direction of

moving visual stimuli. We assumed the following: (1) inputs
from ipsilateral and contralateral eyes already have some weak
orientation selectivity at the eye-opening (B. S. Wang et al., 2010;
Espinosa and Stryker, 2012), (2) inhibitory cells are driven by
both ipsilateral and contralateral eyes (Yazaki-Sugiyama et al.,
2009; Kuhlman et al., 2011), and (3) the average orientation se-
lectivity of inhibitory inputs fall between the orientation selectiv-
ity for ipsilateral and contralateral excitatory inputs (Fig. 8A,
left). This last assumption has not yet been supported by experi-
mental evidence, but if inhibition is provided by neighboring

A B

Figure 7. Dendritic spike stabilizes the detailed dendritic balance. A, Relative synaptic weight wR obtained at various dendritic spike thresholds for an inhibitory delay of 10 ms. The relative
synaptic weight was defined as the difference between the weights of the synapses correlated with the inhibitory input and the other excitatory synapses, as in Figure 5G. The x-axis is normalized
as 
̂ds � 
ds/wo, and the dotted line shows the value without dendritic spikes (control). B, Relative synaptic weight wR for various inhibitory delays at 
̂ds � 4.0. The gray line is the same as the
difference between the two lines in Figure 5F.

A B C

D E F

Figure 8. h-STDP can trigger binocular matching. A, Left, Direction selectivity of input neurons. In the model, as depicted by the black vertical lines, the majority of excitatory input neurons from
the contralateral (ipsilateral) eye are selective for directions around 
 � ��/4 ��/4, whereas inputs from the inhibitory neurons are weakly selective for 
 � 0. Right, A schematic figure of
the model configuration. Each dendritic branch receives inputs from both ipsilateral and contralateral-driven excitatory neurons, and also from inhibitory neurons. B, Top, Difference between the
mean excitatory direction selectivity and inhibitory direction selectivity in each branch. Middle, Difference between the mean ipsilateral-driven excitatory direction selectivity and the mean
contralateral-driven excitatory direction selectivity over all synapses on the neuron. Bottom, DSI calculated for contralateral inputs (purple), ipsilateral inputs (light green; hidden under the purple
line), and binocular inputs (black). See Materials and Methods, The model of binocular matching for details of the evaluation methods. Red vertical lines represent the timings for the introduction
of inhibitory inputs. Throughout Figure 8, the error bars are SD over 10 simulation trials. C, Firing responses of the neuron for monocular inputs, immediately after the initiation of inhibitory inputs
(left; t � 30 min) and after the learning (right; t � 60 min). D, Examples of the direction selectivity of three representative branches before (gray lines; t � 0 min) and after (purple/light green lines;
t�60 min) the learning. Black lines represent the selectivity of the inhibitory input to the branch. E, Behavior in the monocular deprivation model. In the shadowed areas, contralateral-driven inputs
were replaced with rate-fixed Poisson inputs to mimic monocular deprivation. The ordinates are the same with B. F, Synaptic weights development at different mean inhibitory selectivity. Ordinates
are the same as in B, and the values were calculated at t � 60 min. The purple and green vertical dotted lines are the mean selectivity of contralateral and ipsilateral excitatory inputs, respectively.
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interneurons, these inhibitory neurons are likely to be driven by
similar sets of feedforward excitatory inputs to those driving the
output neuron. For mathematical convenience, we consider di-
rection selectivity instead of orientation selectivity, but the same
argument holds for the latter.

In the simulation, we first ran the process without inhibition,
and then introduced GABAergic inputs after a while (Fig. 8B,E,
red vertical lines represent the starting points of inhibitory in-
puts), because maturation of the inhibitory neurons typically oc-
curs in a later stage of the development (Hensch, 2005). Upon the
introduction of inhibition, the mean preferred direction selectiv-
ity of excitatory synapses in each branch converges to that of the
local inhibition, because of heterosynaptic plasticity (Fig. 8B, top;
see Materials and Methods for details of evaluation methods),
although the synaptic weight development was biased toward the
overall direction selectivity of the postsynaptic neuron (Fig. 8D;
the bias is toward the zero-degree direction). This dendritic E/I
balancing reduces the difference between the direction selectivity
of ipsilateral and contralateral inputs on average, because both
become closer to the selectivity of the inhibitory input (Fig. 8B,
middle). As a result, the binocular direction selectivity is strength-
ened (Fig. 8B, bottom), and the responses for monocular inputs
approximately coincide with each other (Fig. 8C, right). Depriva-
tion of the contralateral inputs immediately after the introduc-
tion of inhibition blocks binocular matching (Fig. 8E), in
accordance with the experimental data (B. S. Wang et al., 2010).

Precocious GABA maturation has been reported to disrupt
binocular matching (B. S. Wang et al., 2013). Our model suggests
that the disruption is possibly related to the violation of the third
assumption in the model. When the mean inhibitory direction
selectivity is substantially different from the ipsilateral and the
contralateral direction selectivity (Fig. 8F, at the parameter re-
gions outside of the area surrounded by purple and green lines),
h-STDP does not work effectively (Fig. 8F, top), and the differ-
ence between ipsilateral and contralateral inputs is not reduced
(Fig. 8F, middle). As a result, the binocular direction selectivity is
not improved by learning (Fig. 8F, bottom). These results indi-
cate that the rate of maturation of GABA inputs and their effect
on h-STDP are an important part of the underlying mechanisms
of binocular matching in critical period plasticity.

Discussion
In this study, we first showed that a calcium-based plasticity
model robustly captures several characteristics of the plasticity-
related interactions between neighboring synapses that occur on
a millisecond timescale; this was accomplished by the introduc-
tion of heterosynaptic interaction terms (Figs. 2–4). On the basis
of this proposed model, we next investigated the possible func-
tions of h-STDP. This study revealed that h-STDP causes the
detailed dendritic E/I balance on dendritic hotspots (Figs. 5–7),
which is beneficial for detecting changes in input activity (Fig. 6).
Furthermore, we found that h-STDP can induce binocular
matching upon GABA maturation, and can support an accurate
input estimation (Fig. 8).

Experimental predictions
This study provides three experimentally testable predictions.
First, our results provide a hypothesis for synaptic organization
on the dendritic tree. Excitatory synaptic inputs to a dendritic
hotspot often show correlated activities (Kleindienst et al., 2011;
Takahashi et al., 2012). Our results indicate that an inhibitory
input may also be correlated with excitatory inputs projecting to
the nearby dendritic hotspot (Figs. 5, 6), especially on the den-

dritic tree of an excitatory neuron that is sensitive to changes in
the external environment (Figs. 6, 8). Moreover, the model ex-
plains why the feature selectivity of these spines shows only a
weak similarity, despite their correlations (Jia et al., 2010; Chen et
al., 2011). When a synaptic cluster is carved by the heterosynaptic
effect of common inhibitory inputs, and not by E-to-E interac-
tions, the variability of feature selectivity within the cluster tends
to be large, because inhibitory neurons typically have wider fea-
ture selectivity than excitatory neurons (Ma et al., 2010; Moore
and Wehr, 2013). In addition, it should also be noted that, E-to-E
heterosynaptic LTP is typically induced as a meta-plasticity over a
timescale of minutes (Harvey and Svoboda, 2007), which by itself
is insufficient to create a correlation-based synaptic cluster.

Second, the results in Figure 5 indicate that LTD at an excit-
atory synapse is offset by coincident inhibitory inputs to the
nearby dendrite. Thus, LTD from low-frequency stimuli (Malenka and
Bear, 2004) can be attenuated by coincident GABA uncaging near
the stimulated spine. Note that this result would not contradict
the previously reported GABA-driven heterosynaptic LTD by
paired stimulation, because in that experiment, the excitatory
spine was presumably too active to induce LTD in the absence of
GABA (Hayama et al., 2013). Indeed, coincident GABAergic in-
puts may induce heterosynaptic LTD when combined with a
moderately high-frequency presynaptic stimulation that in itself
does not cause LTD (Blaise and Bronzino, 2003). The model also
indicates that correlated inhibitory inputs are likely to suppress
LTP at excitatory synapses if the heterosynaptic effect is suffi-
ciently strong (Fig. 5G, blue area). This may be the case for spine-
projecting inhibitory synapses.

The third implication of the model concerns the mechanism
of binocular matching. Our model indicates that maturation of
GABAergic inputs plays a critical role in binocular matching, and
proposes a candidate mechanism for disruption of binocular
matching by precocious GABA circuit maturation (B. S. Wang et
al., 2013; Fig. 8). However, the phenomenon can also be ex-
plained by Hebbian plasticity plus some kind of meta-plasticity.
If binocular matching is induced purely by Hebbian plasticity and
not through a heterosynaptic mechanism, orientation selectivity
after the matching should depend solely on the initial orientation
selectivity of monocular inputs, assuming that the selectivity of
presynaptic neurons remains the same. Especially when the con-
tralateral input activity is larger than the ipsilateral input activity,
the resultant orientation selectivity should approximately co-
incide with the original selectivity of the contralateral input.
Alternatively, if the proposed mechanism is engaged during
development, the refinement of orientation selectivity should
also be influenced by the mean selectivity of the inhibitory input
neurons. Thus, long-term imaging of monocular orientation se-
lectivity of binocular neurons in V1 would reveal whether a
covariance-based rule is sufficient to explain the phenomena, or
whether some other mechanisms, including the one proposed
here, also play a major role in the shift of orientation of selectivity.

Carrier of heterosynaptic interaction
Heterosynaptic plasticity has been observed over various spatial
and temporal scales with different underlying molecular mecha-
nisms (Nishiyama and Yasuda, 2015). In the case of heterosyn-
aptic interactions involving milliseconds, single-atomic ions are
strong candidates, as small molecules such as IP3 are too big to
move rapidly from spine to spine (Santamaria et al., 2006). Under
the assumption that changes in Ca 2� concentration at an un-
stimulated spine are crucial for heterosynaptic plasticity, Ca 2�

influx/efflux from either intracellular or extracellular sources is
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necessary for induction of heterosynaptic plasticity. As inhibitory
synaptic inputs often change the local Ca 2� concentration in the
dendritic branch (Müllner et al., 2015), intracellular spreading of
Ca 2� may be a major source of Ca 2� changes in nearby unstimu-
lated spines. At the same time, because inhibitory inputs signifi-
cantly modulate the membrane voltage of local dendrites (Gidon
and Segev, 2012), a synaptic input should strongly drive Ca 2�

influx/efflux through NMDA and VDCC from extracellular
sources, even at nearby unstimulated spines. Additionally, most
of the intracellular calcium ions are bound by calcium buffers
(Higley and Sabatini, 2012), and the buffer concentration is also
presumably important for induction of synaptic plasticity. In our
model, both current-based interactions (Spine model) and
calcium-based interactions (Reduced model) replicate the exper-
imental results (Figs. 2 and 4, respectively). Nevertheless, our
analytical result suggests that the heterosynaptic Ca 2� change
typically needs to be comparable to the homosynaptic change to
cause significant heterosynaptic plasticity through calcium-based
interaction (Fig. 4C,D). Thus, this study highlights the possible
importance of current-based interactions and a spine-specific in-
flux/efflux of extracellular Ca 2� for inducing heterosynaptic
plasticity.

Note that heterosynaptic interaction does not need to work on
the order of milliseconds to influence the STDP time window.
For example, E-to-E heterosynaptic LTD can be initiated by
spreading of LTD-related molecules, not by messengers of neural
activity (Hayama et al., 2013). Additionally, for a shift in the
STDP time window, changes in the ratio of the calcium influx
through NMDA and VDCC may play a crucial role (Paille et al.,
2013).

Inhibitory cell types
Somatostatin-positive (SOM�) inhibitory neurons typically project
to the apical dendrite, have a shorter membrane time constant than
the typical timescale of calcium dynamics (Markram et al., 2004; Xu
et al., 2013), and often show strong feature selectivity in compar-
ison with other inhibitory neuron types (Ma et al., 2010). Thus,
SOM� is the likely candidate for heterosynaptic STDP. However,
our results do not exclude parvalbumin-positive (PV�) inhibi-
tory neurons, which usually have projections to proximal den-
drites, and are typically fast-spiking (Markram et al., 2004). In
particular, h-STDP through PV� cells may play an important
role in critical period plasticity (Takesian and Hensch, 2013).

Related theoretical studies
Previous theoretical studies show that excitatory heterosynaptic
mechanisms such as dendritic spiking generate a functional syn-
aptic clustering on the dendrite (Iannella and Tanaka, 2006; Le-
genstein and Maass, 2011; Kastellakis et al., 2016), and enriches
computational capacity of the neuron (Poirazi and Mel, 2001;
Legenstein and Maass, 2011). By contrast, we demonstrated in
this study that an inhibitory synapse can induce clustering of
nearby excitatory synapses (Figs. 5, 6). A characteristic of this
inhibition-based clustering is the involvement of temporally pre-
cise activity to produce the detailed balance between local excit-
atory and inhibitory inputs. For instance, inhibition-based
clustering is beneficial in the striatum, where temporally precise
activity is crucial for motor coordination, and also in the hip-
pocampus, where place cells exhibit temporally coordinated ac-
tivity during spatial navigation. However, for modeling of
contextual fear conditioning, excitation-based clustering is suffi-
cient (Kastellakis et al., 2016), or potentially desirable, as tempo-
rally precise activity is not required for such a task.

For implementing the E/I balance at the soma, inhibitory
STDP is a candidate underlying mechanism (Vogels et al., 2011;
Kleberg et al., 2014). The proposed h-STDP model can be con-
sidered as an alternative explanation for the somatic detailed bal-
ance, because when all dendritic branches are balanced, the
somatic membrane potential becomes naturally balanced. How-
ever, the model has further implications. First, unlike inhibitory
STDP, in which inhibitory synapses passively counterbalance a
pre-existing excitatory synaptic structure, in h-STDP the in-
hibitory synapses actively drive plasticity at nearby excitatory
synapses (Fig. 5). Moreover, h-STDP enables a nonredundant
synaptic weight organization on the dendrites by inducing the E/I
balance locally at each dendritic branch (Fig. 6B). Previous syn-
aptic plasticity models are unable to generate such dendritic syn-
aptic weight distributions on their own, as the inhibitory STDP
does not guarantee the balance at the dendrites, and the standard
excitatory STDP does not support dendritic diversity (Fig. 6C). It
is noted that, although h-STDP drives the local synaptic weights
on a dendritic branch toward the detailed balance, the conver-
gence to the exact balance is not guaranteed.

Recently, Yang and colleagues showed that an anti E/I balance
on the dendritic tree can be beneficial for the gating of synaptic
inputs, and suggested that heterosynaptic plasticity could be the
underlying mechanism (Yang et al., 2016). In contrast, our model
suggests that the anti-E/I balanced state is possible only under
conditions of strong heterosynaptic inhibition, which is non-
physiological (Fig. 5G, blue area). This discrepancy may arise
from the different definitions of presynaptic selectivity. In their
work, the selectivity was defined based on the firing rate, whereas
we used the spike correlation for defining the selectivity, as spike
correlation presumably drives weight changes in STDP (Song et
al., 2000).

Previous biophysical simulation studies reveal that synaptic
plasticity at excitatory synapses critically depends on the inhibi-
tory inputs at nearby dendrites (Cutsuridis, 2011; Bar-Ilan et al.,
2013; Jedlicka et al., 2015; Wilmes et al., 2016), but these studies
do not reveal much on the functional roles of the heterosynaptic
plasticity. In particular, although the cancellation of plasticity by
shunting inhibition was mentioned by Wilmes et al., (2016), their
simple pairwise STDP model does not capture the differential
effects of shunting inhibition on LTD and LTP depicted in our
model (Fig. 5H–J). On the other hand, network modeling studies
have found that heterosynaptic plasticity provides a homeostatic
mechanism (Chen et al., 2013; Zenke et al., 2015), but in these
models, heterosynaptic plasticity was modeled as a global ho-
meostatic plasticity without any branch specificity, and its advan-
tage over other homeostatic mechanisms was unclear. In this
study, by considering intermediate abstraction with analytical
but biologically plausible models, we proposed candidate mech-
anisms for experimental results that have not been modeled be-
fore, and revealed potential functions of h-STDP in neural circuit
formation.

Future work
Although we fixed the weight of inhibitory synapses in our model
to focus on the functions of h-STDP, inhibitory projections on
excitatory neurons are known to show plasticity (Hennequin et
al., 2017). In particular, a recent experimental study found that
inhibitory and excitatory projections on the same postsynaptic
cell show correlated weight changes, suggesting a heterosynaptic
effect of inhibitory plasticity on excitatory plasticity (L. Wang
and Maffei, 2014). This interaction among excitatory, inhibitory,
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and heterosynaptic plasticity should be studied in detail in the
future.

In addition, an increasing number of recent studies indicates
the importance of presynaptic changes for synaptic plasticity
(Costa et al., 2015, 2017), suggesting the presence of active
heterosynaptic plasticity at presynaptic axons. Correspondingly,
previous experimental studies found vesicle superpools on axons
that potentially regulate vesicle densities at neighboring boutons
(Staras et al., 2010). On the other hand, computational studies on
heterosynaptic plasticity including the present one are practically
limited to changes in the postsynaptic dendrites. Hence, a theory
on presynaptic heterosynaptic plasticity is awaited.

References
Bar-Ilan L, Gidon A, Segev I (2013) The role of dendritic inhibition in shap-

ing the plasticity of excitatory synapses. Front Neural Circuits 6:118.
CrossRef Medline

Bazelot M, Bocchio M, Kasugai Y, Fischer D, Dodson PD, Ferraguti F,
Capogna M (2015) Hippocampal theta input to the amygdala shapes
feedforward inhibition to gate heterosynaptic plasticity. Neuron 87:
1290 –1303. CrossRef Medline

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynap-
tic cell type. J Neurosci 18:10464 –10472. Medline

Blaise JH, Bronzino JD (2003) Effects of stimulus frequency and age on
bidirectional synaptic plasticity in the dentate gyrus of freely moving rats.
Exp Neurol 182:497–506. CrossRef Medline
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