Removal of arsenic, nitrate, persistent organic pollutants and pathogenic microbes from water using redox-reactive minerals

ANNA A. BOGUSH, JONG KYU KIM and LUIZA C. CAMPOS

Civil, Environmental and Geomatic Engineering Department, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK, e-mail: a.bogush@ucl.ac.uk (annakhol@gmail.com), j.k.kim@ucl.ac.uk, l.campos@ucl.ac.uk

Water pollution is a major global problem at present, involving inorganic and organic contaminants such as heavy metals, pesticides and pharmaceutical compounds, as well as pathogens. Therefore, the development of water-management strategies and appropriate water-treatment technologies has been the subject of intense research for decades. This chapter reviews the potential use of redox-reactive minerals as reactive media in environmental cleanup technologies especially in the removal of arsenic, nitrate, persistent organic pollutants and pathogenic microbes. The properties and applications of five classes of redox-reactive materials are summarized: zero-valent metals, mixed-valence iron oxyhydroxides, Fe-bearing clays, mixed-valence manganese oxides and titanium and zinc oxides. Examples and case studies that demonstrate the significant role of these reactive materials in water-treatment processes are also provided.

1. Introduction

Rapid industrial development, urban growth and domestic and agricultural activities are the main contributors to the quality deterioration of water bodies (*i.e.* surface and ground waters) and soils. Pollution of aquatic and terrestrial environments is the contamination of streams, lakes, groundwater, rivers and soils by substances harmful to the entire ecosystem. The major soil and water pollutants are chemical, biological or physical materials. These pollutants are the major threat to human health, especially in densely populated countries such as China and India.

Inorganic pollutants include heavy metals (e.g. Cd, Pb, Cr, Cu, V and Hg) and metalloids (e.g. As, Se and Sb) and these are regarded collectively as the most serious environmental contaminants globally due to their high toxicity and links to many forms of cancer (Riley et al., 1992; Smedley and Kinniburgh, 2002; Mishra et al., 2010; Tchounwou et al., 2012). The treatment of heavy metals and metalloids is essential due to their persistence in the environment (Dangerous Substances Directive, 1976; Bradl, 2005). Organic pollutants include petroleum and its derivatives, polycyclic aromatic

©Copyright 2017 the European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland DOI: 10.1180/EMU-notes.17.12

hydrocarbons (PAHs), and chlorinated hydrocarbons. These contaminants affect the aquatic ecosystem by depletion of dissolved oxygen (LENNTECH (a)). They are also known to have direct health effects including cancer, damage to the nervous system and reproductive disorders (Rao and Rao, 1997; Mosharraf Hossain *et al.*, 2012). Biological pollution is another major concern caused by invasive biological species including viruses, bacteriophage and bacteria. Millions of people die of illnesses contracted through infectious microorganisms, and most cases are caused by microbiological contamination of water supplies (Inamori and Fujimota, 2007). The major sources of biological contamination are domestic and agricultural activities.

Various water-treatment processes utilize chemical, physical and/or biological solutions to remove pollutants from water (Cheremisinoff, 2002; Bradl, 2005). Biological slow sand filtration was the sole method used to treat water until the advent of rapid gravity filters at the end of 19th century, followed by the introduction of chlorination and chemical coagulation (Bowles et al., 1983). The appearance of organic and inorganic compounds and emergent pathogens in water led to the development of many other processes. Water-treatment processes currently available include, among others, adsorption, membrane filtration, oxidation, ion exchange and photocatalysis. Oxidants employed in water treatment include chlorine, ozone and hydroxyl radicals (OH). However, some of these oxidants have been found to produce by-products as a result of either reactions with compounds in water or as a natural decay of the product itself (Legube et al., 1989; McGuire et al., 1990). Some of these by-products are caused by the application, in particular, of chlorine, including halogenated organics such as thrihalomethanes, which are said to be carcinogenic. As result, there is a need for the development and application of chemicals that are efficient but non-toxic or harmful to human health.

There is increasing interest in employing reduction-oxidation (redox) reactions using redox-reactive minerals in environmental remediation technologies due to their cost effectiveness and potential for the development of sustainable remediation technologies. Redox reactions transform the valence states of toxic contaminates (*e.g.* dissolved Cr^{VI}) to less reactive and less toxic forms (*e.g.* less soluble Cr^{III}) (Borch *et al.*, 2010). Redox-reactive materials have been evaluated to break down chlorinated solvents (*e.g.* trichloroethane, trichloroethylene, dichloroethene, tetrachloroethylene, vinyl chloride) in groundwater of permeable reactive zones (Sivavec *et al.*, 1997; USEPA, 2008c; Karn *et al.*, 2009; Bardos *et al.*, 2011) and the removal of redox-active elements such as U and Cr (see Fig. 1 from Ahmed *et al.*, 2010b; Dickinson and Scott, 2010; Crane *et al.*, 2011), and Cr (Schrick *et al.*, 2004; Cao and Zhang, 2006).

Amongst the redox-reactive minerals used in water treatment are iron-bearing phases (magnetite, green rust, zero-valent iron (ZVI), etc.), iron-bearing clay phases, sulfides, manganese oxide (MnO₂) and titanium oxide (TiO₂). Besides their redox properties, these materials have unique surface characteristics that lead to exceptional sorption and ion exchange properties. These redox-reactive media can be very useful in water-cleanup processes and environmental protection technologies. This chapter provides a review with examples of promising water-treatment processes involving redox-

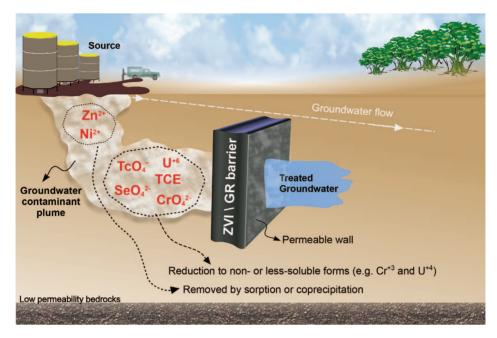


Figure 1. Permeable reactive barrier system: Zero-valent iron/ green rust (ZVI/GR) to remove inorganic and organic contaminants from groundwater. (Reproduced with the permission of the Environmental Chemistry Group of the Royal Society of Chemistry from Ahmed *et al.*, 2010)

reactive minerals for the removal of arsenic, nitrate, persistent organic pollutants and pathogenic microbes.

1.1 Properties of some redox-reactive minerals

In this section, we will discuss the properties of five groups of redox-reactive minerals: zero-valent metals, mixed-valence iron oxyhydroxides, Fe-bearing clays, mixed-valence manganese oxides and titanium and zinc oxides. The main properties of these redox-reactive minerals are summarized in Table 1.

Zero-valent metals (e.g. Fe⁰, Zn⁰, Ni⁰, etc.) are used as strong reducing agents in water treatment. For example, the corrosion of zero-valent iron (ZVI) in water under the aerobic or anaerobic condition can be described by the following reactions:

$$2Fe_{(s)}^{0} + O_{2(g)} + 2H_{2}O_{(l)} \rightarrow 2Fe_{(aq)}^{2+} + 4OH_{(aq)}^{-}$$
 (aerobic, fast process) (1)

$$Fe_{(s)}^{0} + 2H_{2}O_{(l)} \rightarrow Fe_{(aq)}^{2+} + H_{2(g)} + 2OH_{(aq)}^{-}$$
 (anaerobic, slow process) (2)

In the first reaction, zero-valent iron reduces the oxygen present in water, leading to a decrease in redox potential (often < -0.5 V) and an increase in pH. In equation 2, ZVI reduces water to hydrogen and hydroxide, and an increase in pH occurs. Products of ZVI corrosion such as Fe²⁺ and H₂ are also reducing agents (Tratnyek *et al.*, 2003). However, the condition, media and nature of the contaminants can influence

Table 1. Properties of the redox-reactive minerals.

Redox-reactive	active mineral	Redox property	Redox processes	Parameters	Application
Zero-valent metals (ZVM)	Zero-valent iron (ZVI)	Fe ²⁺ _(aq) + 2e ⁻ \rightarrow Fe _(s) , Direct reduction $E = -0.44 \text{ V}$; $\Delta G = +42.5 \text{ kJ}/$ at the metal surelectron; face; reduction by formation of oxidizing interferous iron and mediates (O ₂ , H ₂ O ₂ , $^{\bullet}$ OH, hydrogen (with Fe(IV)) under oxic conditions catalyst); oxidation by oxidizing intermediates	Direct reduction at the metal surface; reduction by ferrous iron and hydrogen (with catalyst); oxidation by oxidizing intermediates	$mZVI$ (>0.1 nm) with SSA \leqslant 1 m ² /g; nZVI (20–100 nm) with SSA \approx 10–40 m ² /g; Fe(0) content 20–90%; bcc Fe(0) and Fe ₃ O ₄ were identified in nZVI	Reductive and oxidative treatment of polluted waters containing inorganic (Cr, As, U, Th, Cl, N) and organic (chlorinated hydrocarbons, pesticides, viruses, pathogenic microbes) contaminants
	Zero-valent zinc (ZVZ)	$Z n_{\rm (aq)}^{2+} + 2 e^- \rightarrow Z n_{\rm (s)}$ Reduction at $E = -0.76 {\rm V}$, $\Delta G = +73.6 {\rm kJ}/$ metal surface electron	Reduction at the metal surface	I	Catalyst, reductive treatment of polluted waters
Mixed Fe(II)-Fe(III) minerals	Mixed Magnetite Fe(II)-Fe(III) (Fe ²⁺ Fe ³⁺ O ₄) minerals	E varies by almost 1 V	Reduction and adsorption at the mineral surface	Spinel group; Reductive and adsorpt pH _{PZC} \approx 6; treatment of polluted SSA varies from \sim 2 to waters from inorganic contaminants	Reductive and adsorptive treatment of polluted waters from inorganic contaminants
	Green rusts $([Fe_{G-x}^GFe^{III}]^K)$ OH ₁₂] k with interlayers of anions (CI ⁻ , SO ₄ ²⁻ and CO ₃ ²⁻) and water molecules	E varies, because of the variable composition (Fe ²⁺ / Fe ³⁺ ratio)	Reduction and adsorption at the surface of green rust	Structure of a pyro- aurite type; PZC of GRSO ₄ = 8.3 ± 0.1 and PZC of GRCO ₃ = 8.35 ± 0.05 ; GR particle size \approx $50-200$ nm	Reductive and adsorptive treatment of polluted waters from inorganic contaminants

Reductive treatment of polluted waters containing inorganic and organic contaminants	Oxidative treatment of polluted waters containing inorganic and organic contaminants	Oxidative treatment of polluted waters containing inorganic and organic contaminants	Photocatalytic oxidative degradation of organic pollutants (herbicides, insecticides and pesticides)	Photocatalytic oxidative degradation of organic pollutants (herbicides, insecticides and pesticides)
Reducing agents: bacteria, dithionite, hydrazine, hydrogen gas, hydrogen sulfide; Structural Fe ²⁺ content changed from 10% to 90%	single-chain structure	layer structures	Wurtzite crystal structure; SSA of ZnO \approx 2.5–12 m ² /g	Tetragonal crystal; TiO ₂ particle size \approx 6-104 nm with SSA $\approx 14-254$ m ² /g
Redaction and adsorption processes at the active site of the Fe-bearing clay mineral	oxidation and absorption	surface-mediated oxidation and ab- sorption	Photocatalysis and oxidation processes	Photocatalysis and oxidation processes
E varies considerably, be- cause of the Fe oxidation adsorption prostate, the clay mineral struc- ture, the total Fe content, and tive site of the the ordering of structural Fe-bearing clay cations	E varies	E varies	$\begin{split} ZnO+hv &\rightarrow e^- + h^+, \ E_g = 3.3 \ eV; \ Photocatalysis \\ e^- + O_2 &\rightarrow O_2^-; \\ H_2O+h^+ \rightarrow \bullet OH + H^+; \\ \bullet OH + orgaric \ pollutants \rightarrow In- \\ termediates \rightarrow CO_2 + H_2O \end{split}$	$\begin{split} & \text{TiO}_2 + h v \rightarrow e^- + h^+, \text{ E}_g = 3.2 \text{ eV}; \text{ Photocatalysis} \\ & \text{H}_2\text{O} + h^+ \rightarrow {}^{\bullet}\text{O} \text{H} + \text{H}^+; \\ & \text{and oxidation} \\ & \text{O}_2 + e^- \rightarrow \text{O}_2^-; \\ & \text{O}_2 + \text{H}^+ \rightarrow \text{HO}_2^\bullet; \\ & \text{h}^+ + \text{O}_2 \rightarrow 2.0^{\bullet} \end{split}$
Fe ³⁺ /Fe ²⁺ clay minerals (e.g. smectite – s Fe content < 30 t wt.%)	Pyrolusite	Birnessite	Hexagonal wurtzite, cubic zincblende	Anatase, brookite and rutile
Fe-bearing clay miner- als	Manganese oxides		ZnO	TiO_2

E – Standard reduction potential and ΔG – Gibbs free energy changes at 25C and pH 7.

significantly the mechanism of reactions of Fe^0 , with contaminants involving multiple competing pathways (see Fig. 2 from Matheson and Tratnyek, 1994; Dickinson and Scott, 2010). Under oxic conditions, Fe(II) oxidation leads to the formation of intermediates $(O_2^-, H_2O_2, {}^{\bullet}OH \text{ and } Fe(IV))$, which are able to oxidize pollutants such as As (Leupin and Hug, 2005).

Matheson and Tratnyek (1994) described a model of possible pathways for the reduction of chlorinated solvents by ZVI. The model proposed three reaction pathways: (1) direct electron transfer from ZVI to the adsorbed halocarbon occurs, resulting in dechlorination and production of Fe^{2+} ; (2) Fe^{2+} dechlorinates the halocarbon, producing Fe^{3+} ; (3) H_2 from the anaerobic reduction of water can dechlorinate halocarbon if a catalyst is present. Understanding the relative importance of these reaction pathways is essential for the development and performance assessment of ZVI-based remediation technologies.

Micro- and nanoscale zero-valent iron (mZVI>0.1 μm and nZVI<0.1 μm) has been investigated widely in water-treatment applications (Sayles *et al.*, 1997; Li *et al.*, 2006; Fu *et al.*, 2014). ZVI is used to treat the following types of contaminants (Yan *et al.*, 2013): organic pollutants (chlorinated solvents, pesticides, azo-dyes, flame retardants, and antibiotics); inorganic contaminants (nitrate, arsenic, hexavalent chromium, heavy metals and radionuclides). The characteristics of nZVI are summarized in the comprehensive reviews by Nurmi *et al.* (2005) and Yan *et al.* (2013). The key advantage of nZVI is its large surface area which provides more reactive sites with

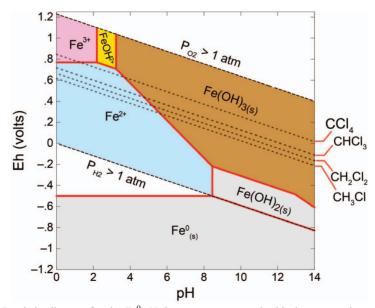


Figure 2. Pourbaix diagram for the Fe⁰-H₂O system constructed with the suppression of hematite, magnetite, goethite and FeO. Modified, with the permission of the Royal Society of Chemistry, using *Geochemist's Workbench*, from Matheson and Tratnyek (1994).

more rapid degradation of contaminants compared to mZVI (USEPA, 2008b). For example, the average specific surface area (SSA) of the nZVI is in the range of $10-40~\text{m}^2/\text{g}$ and SSA of conventional microscale iron powder is typically $\leq 1~\text{m}^2/\text{g}$ (Cao and Zhang, 2006). The disadvantages of nZVI are: difficulty in preparing stable and well dispersed nZVI; limited life of nZVI particles; the agglomeration or clumping of particles to each other or to the soil surface (USEPA, 2008a; Yan *et al.*, 2013). Agglomeration may be caused by groundwater conditions, surface properties of the particles, the age of the materials or shipping conditions (USEPA, 2008a). Using surface coating of nZVI with polyelectrolytes or non-ionic surfactant can improve the particle stability (Yan *et al.*, 2013).

Mixed Fe(II)-Fe(III) minerals (e.g. magnetite (Fe₃O₄) and green rusts) contain the ferrous (Fe²⁺)-ferric (Fe³⁺) iron redox couple, and can control several environmental processes (reduction of several chemicals, redox mediating reactions, biological nutrient cycling, etc.). Thus, these minerals play important roles in the reductive treatment of polluted waters containing different contaminants. Magnetite is a common, naturally occurring mineral and a member of the spinel group. Magnetite can form during biotic and abiotic reduction of Fe(III) oxides and as a result of the oxidation of Fe(II) and Fe(0) (Anthony et al., 1997; Cornell and Schwertmann, 2003; Gorski, 2009; Gorski et al., 2010). At room temperature, Fe₃O₄ has a spinel facecentred cubic unit cell with the chemical formula often written as Fe_A³⁺[Fe²⁺Fe³⁺]_BO₄, where A and B represent the tetrahedral and octahedral sites, respectively (Santos-Carballal et al., 2014). Magnetite stoichiometry $(x = Fe^{2+}/Fe^{3+})$ can range from 0 to 0.5, where 0.5 corresponds to the most reduced form (stoichiometric magnetite), and 0 is the completely oxidized form (maghemite: γ-Fe₂O₃) (Gorski et al., 2010). The specific surface areas for synthetic magnetite, synthetic nano-scale mesoporous magnetite, mechanically activated magnetite and three commercial magnetite chemicals (two ALFA chemicals with 97% and 99.999% purity and one Sigma Aldrich (<50 nm; \geq 98% purity)) are 95.2-95.3, 247-257, 0.5-6.1, 5.59, 2.76 and 52.5 m²/g (Sun *et al.*, 1998; Illés and Tombácz, 2004; Balâž et al., 2010; Crane et al., 2011). Gorski et al. (2010) investigated the factors controlling rates of contaminant (particularly for nitrobenzene) reduction by magnetite (Fe₃O₄) which are still poorly understood. They showed that rates of nitrobenzene (ArNO₂) reduction became almost five orders of magnitude faster as the particle stoichiometry increased from 0.31 to 0.50. They also proposed that both redox and Fe²⁺ diffusion processes plays important role in contaminant reduction by magnetite. The pH value of the point of zero charge (PZC) of magnetite in the absence of multivalent cations is about 6 (Sun et al., 1998; Pang et al., 2007; Ficai et al., 2012). The presence of excess cations such as Fe²⁺ or Fe³⁺ in magnetite can greatly influence the zeta potential (Sun et al., 1998; Marmier et al., 1999; Illés and Tombácz, 2004; Pang et al., 2007). Magnetite particles are positively and negatively charged at the dispersion pH values below and above the PZC, respectively (Sun et al., 1998; Pang et al., 2007). Sun et al. (1998) explained that at pH < pH_{PZC} the protonation may be significant, at pH \approx pH_{PZC} coagulation occurs, and at pH > pH_{PZC} deprotonation and surface metal ion hydrolysis dominate.

Green rusts (GRs) are layered double hydroxide compounds and are intermediate phases in the formation of Fe oxides and oxyhydroxides such as goethite, lepidocrocite and magnetite (Schwertmann and Fechter, 1994). GRs are products of abiotic and microbially induced corrosion of iron and steel (Génin et al., 1998; Kumar et al., 1999; O'Loughlin *et al.*, 2003). The general formula of green rust is $[Fe_{(1-x)}^{II}Fe_x^{III}(OH)_2]^{x+}$ $\cdot [(x/n)A^{n-})\cdot mH_2O]^{x-1.2}$ where $x = Fe^{III}/Fe_{total}$, A^{n-} denotes interlayer anions with charge n, and m is moles of water molecules (Ahmed et al., 2010a,b). Green rusts have a structure of a pyroaurite type consisting of positively charged trioctahedral iron hydroxide layers of variable composition ($[Fe_{6-x}^{II}Fe_{1-x}^{III}$ anions such as carbonate, sulfate and chloride and water molecules (Bernal et al., 1959; Brindley and Bish, 1976; Hansen et al., 1994; Schwertmann and Fechter, 1994). Fougerite ($[Fe_4^{2+}Fe_2^{3+}(OH)_{12}][CO_3]\cdot 3H_2O$) is the natural analogue of green rust (Genin et al., 2001). There is an analytical challenge to handling, sampling and characterizing green rusts due to its quick transformation into ferric phases (e.g. goethite and magnetite) under oxidizing conditions (Ahmed et al., 2010b). Ahmed et al. (2010a,b) developed a chemostat reactor combined with in situ time-resolved X-ray scattering measurements in order to characterize accurately GR and understand its formation and further transformation. Synthesized GR particle sizes vary from 50 to 200 nm (Ruby et al., 2003, 2006; Bocher et al., 2004; Guilbaud et al., 2013). Guilbaud et al. (2013) determined that the point of zero charge (PZC) values are 8.3±0.1 and 8.35±0.05 for GR containing SO_4^{2-} (GRSO₄) and GR containing CO_3^{2-} (GRCO₃), respectively.

Fe-bearing clay minerals, such as rectorite (RAr-1 (illite:smectite = 50:50), 4.9 wt.% Fe, SSA $- 144 \text{ m}^2/\text{g}$); illite (IMt-1, 12.3 wt.% Fe, SSA $- 5 \text{ m}^2/\text{g}$); nontronite (NAu-2, 23.4 wt.% Fe, SSA - 271 m²/g)) are important redox-reactive phases in subsurface soils and sediments, and play an important role in contaminant reduction (White and Peterson, 1996; Ernstsen et al., 1998; Hofstetter et al., 2003, 2006; Schwarzenbach et al., 2010; Neumann et al., 2011; Liu et al., 2012). Gorski et al. (2012a) quantified the electron-accepting and -donating capacities (Q_{EAC} and Q_{EDC}) at applied potentials (Eh) of -0.60 V and +0.61 V, respectively, for four natural Fe-bearing smectites (SWa-1, 12.6 wt.% Fe), Na-rich montmorillonite (SWy-2, 2.3 wt.% Fe), and two nontronites (NAu-1, 21.2 wt.% Fe and NAu-2, 19.2 wt.% Fe). They showed that for SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested Eh range but for NAu-1 and NAu-2, a significant fraction (~18%) of the structural Fe was redoxinactive. Iron may be distributed randomly or clustered in the octahedral sheet. Khaled and Stuki (1991) showed that the total layer charge of unaltered (oxidized) Fe-bearing smectites (SWa-1) measured by K⁺, Ca²⁺, Zn²⁺ or Cu²⁺ varies from 66.3 to 77.3 cmol_c/kg. Structural iron (e.g. Fe³⁺) in clay minerals can be reduced to Fe²⁺ by different reducing agents (e.g. hydrazine, hydrogen gas, hydrogen sulfide) but the two most commonly used agents are dithionite and metal-reducing bacteria (Stucki et al., 1984, 1987; Neumann et al., 2011). Bacteria including Shewanella, Geobacter, Pseudomonas and Bacillus may reduce structural iron in clay (Stucki and Getty, 1986; Stucki et al., 1987; Kostka et al., 1999; Stucki, 2005). Fe²⁺ released can reduce organic and inorganic pollutants. Neumann et al., (2011) showed that the redox properties of

structural Fe are affected by its bonding environment in the clay's lattice, the total Fe content, the ordering of structural cations and the Fe oxidation state. Gorski et al. (2012b) investigated the redox properties of structural Fe in an iron-bearing clay mineral (ferruginous smectite, SWa-1), including the distribution of apparent reduction potentials of Fe³⁺/Fe²⁺ pairs, the reversibility and pH dependence of electron transfer to and from structural Fe. Large changes in the standard reduction potential were observed for ferruginous smectite (-0.28 V to -0.54 V) as the structural Fe²⁺ content changed from 10% to 90% (Gorski et al., 2012b). Lear and Stucki (1989) showed that specific surface area (SSA) of swelling SWa-1 (SSA $\approx 720 \text{ m}^2/\text{g}$) decreased with increasing Fe²⁺ in the octahedral sheet and about 20% of the layers collapsed completely in Febearing smectite. Reduction of Fe³⁺ to Fe²⁺ in the dioctahedral structure of clay minerals is reflected in an increase in the negative surface charge and in cation fixation (Stucki, 2005). Kostka et al. (1999) added that SSA decreased by 170 m²/g and the cation exchange capacity increased from 0.81 to 1.05 mEq/g in SWa-1 upon reduction of structural Fe by bacteria. In addition, Khaled and Stucki, (1991) showed that the total layer charge of chemically reduced Fe-bearing smectites (SWa-1) measured by K⁺, Ca²⁺, Zn²⁺ or Cu²⁺ varies from 77.9 to 99.7 cmol_c/kg.

Manganese-bearing minerals such as manganese oxides play an important role in removal of inorganic and organic pollutants (Moore et al., 1990; Tournassat et al., 2002; Tebo et al., 2004; Mohan and Pittman, 2007; Con et al., 2013). Manganese can form oxides with main oxidation states of +2 and +3 (e.g. MnO₂, Mn₂O₃, Mn₃O₄). Therefore, Mn oxides are capable of acting either as reducing agents $(Mn^{2+} - e^{-})$ $Mn^{3+} - e^- = Mn^{4+}$) or oxidizing agents ($Mn^{4+} + e^- = Mn^{3+} + e^- = Mn^{2+}$) (Fierro, 2006). Manganese oxides are used for many different applications in water treatment, soil and sediment remediation, metal removal and recovery, and they are also used as catalysts, sorbents and electrical conductors (Tebo et al., 2004). Pyrolusite is manganese dioxide (MnO₂, single chain structure) formed under oxidizing conditions in manganesebearing hydrothermal deposits, bogs, lakes and oceanic systems (Anthony et al., 1997). Birnessite, with an empirical formula of (Na,Ca)_{0.5}(Mn⁴⁺,Mn³⁺)₂O₄·1.5H₂O, is a major manganese-bearing mineral occurring in soil, aquifers and oceanic and aquatic systems (Anthony et al., 1997; Tournassat et al., 2002). Lanson et al. (2000) determined the structural formula of hexagonal birnessite to be H_{0.33}Mn_{0.111}Mn_{0.055} $(Mn_{0.722}^{4+}Mn_{0.111}^{3+} \square_{0.167})O_2 \cdot (H_2O)_{0.50}$, where \square is a Mn vacancy in the octahedral layer. These vacancies, in turn, can be reactive sorption sites for pollutants (Tournassat et al., 2002). The presence of Mn(III), Mn(II) and vacant sites within Mn oxide minerals cause negative surface charges, which can be compensated by cation sorption.

Titanium dioxide (TiO₂: anatase, brookite and rutile) is a widely used semiconductor photocatalyst (Fujishima *et al.*, 2000; Hashimoto *et al.*, 2005). Titanium dioxide (TiO₂) is chemically stable in acidic and basic conditions and costs relatively little (Castellote and Bengtsson, 2011). When aqueous TiO₂ suspensions are irradiated with light energy greater than the band-gap energy (E_g), TiO₂ is activated and can combine with water or dissolved oxygen (or both) to form highly reactive species, including O₂⁻, •OH, HO₂^o and O₂^o, which can oxidize and degrade a range of contaminants (Table 1; USEPA,

2008a; Hashimoto et al., 2005). The band-gap energy of TiO₂ (anatase) is 3.2 eV, which corresponds to photons with a wavelength of 388 nm (Castellote and Bengtsson, 2011). Rutile has a 3.0 eV band-gap energy. In general, anatase gives better reaction results than rutile for hydrogen production in photocatalysis. There are several reasons why anatase is more efficient in photocatalysis. It is probably because of the higher reduction potential of photogenerated electrons in anatase than in rutile, i.e. the bottom of the conduction band of anatase is located at a point 0.1 V more negative than that of rutile (Hashimoto et al., 2005), and the recombination of electron-hole pairs is slower in anatase than in rutile. Suttiponparnit et al. (2011) showed that nanoscale titanium oxide particles have different specific surface areas: (a) TiO₂ (P25) nanoparticles (27 nm) with SSA = $57.4 \text{ m}^2/\text{g}$; (b) anatase TiO₂ nanoparticles of 6, 16, 26, 38, 53 and 104 nm with SSA of 253.9, 102.1, 61.5, 41.2, 29.7 and 15 m^2/g , respectively; (c) rutile TiO₂ particle of 102 nm with SSA of 13.8 m²/g. Nanoscale TiO₂ has been shown to mineralize a variety of herbicides, insecticides and pesticides via photocatalysis and can convert other contaminants to less toxic compounds (Konstantinou and Albanis, 2003).

Zinc oxide, a II-VI compound semiconductor, has been used as a pigment in rubber, sun-blocking ointments and paint, as well as a food supplement. Recently its application in water treatment has been acknowledged increasingly as a suitable alternative for TiO₂ due to its comparable band-gap energy (3.37 eV) and lower cost of production (Yu and Yu 2008; Sapkota *et al.*, 2011; Doria *et al.*, 2013; Hoseinzadeha *et al.*, 2014). ZnO has a large excitation binding energy (60 meV) at room temperature (Yu and Yu, 2008). ZnO nanoparticles with excitation wavelengths of 300 nm and 350 nm exhibited a strong and wide photoluminescence signal in the range 400 to 550 nm, with the energy of the excitation light being greater than the band-gap energy, having two obvious photoluminescence peaks at ~420 and 480 nm, respectively (Liqiang *et al.*, 2006). These photoluminescence signals are attributed to excitonic photoluminescence, which results mainly from surface-oxygen vacancies and defects of ZnO nanoparticles (Liqiang *et al.*, 2003).

2. Removal of arsenic

Arsenic in drinking-water is a hazard to human health, potentially causing arsenicosis, a chronic disease with a significant latency period for non-cancer (skin lesions, hyperkeratosis, melanosis, blackfoot disease, diabetes and neurological dysfunction) and cancer effects including those of bladder, skin and lung cancers (National Research Council, 1999; WHO, 2001, 2003a; Roberts *et al.*, 2004; Hopenhayn, 2006). Arsenic enters drinking water supplies from natural deposits or from agricultural, mining or industrial practices. Arsenic is present at various concentrations (<10–5300 µg/L) in the groundwater of several countries, including Bangladesh, India, Mongolia, Thailand, China, Vietnam, Nepal, Myanmar, Cambodia, Pakistan, Mexico, Argentina, Chile, Hungary, Romania, Germany, USA and Canada (Kinniburgh and Smedley, 2001; Smedley and Kinniburgh, 2002; Welch and Stollenwerk, 2003; Sun,

2004; Vaughan, 2006; Hopenhayn, 2006; Edmunds *et al.*, 2015). The WHO guideline for arsenic in drinking water is $10 \mu g/L$.

Arsenic can occur in the environment in different oxidation states (-3, 0, +3 and +5), and in natural waters is mostly found in inorganic form as trivalent arsenite [As(III)] or pentavalent arsenate [As(V)]. Redox potential and pH are the most important factors controlling arsenic speciation (Masscheleyn *et al.*, 1991). Arsenic(V) is generally the main As species in oxygen-rich surface waters and As(III) usually predominates in groundwater (Smedley and Kinniburgh, 2002). The common pentavalent (+5) species in natural waters are AsO_4^{3-} , $HAsO_4^{2-}$ and H_2AsO_4 , and trivalent (+3) species are $As(OH)_3$, $As(OH)_4^-$, $AsO_2OH_2^-$ and AsO_3^{3-} (Mohan and Pittman, 2007). Toxicity depends upon the chemical species and, in general, As(III) is 20 to 60 times more toxic than As(V) (Korte and Fernando, 1991). The toxicity of arsenic for aquatic organisms decreases in the order: arsenite (As^{3+}) > arsenate (As^{5+}) > monomethylarsonic acid (CH_5AsO_3) > dimethylarsinic acid $(C_2H_7AsO_2)$ > arsenobetaine $(C_5H_{11}AsO_2)$ (Hindmarsh and McCurdy, 1986; Shiomi, 1994; CCME, 1999).

The most common treatment processes for arsenic removal from water include chemical precipitation, oxidation, biological oxidation, co-precipitation, adsorption, ion exchange, filtration and membrane technology (reverse osmosis, electrodialysis and nanofiltration) (NSF, 2001; Bissen and Frimmel, 2003; Holm and Wilson, 2006; Mondal *et al.*, 2006; Mohan and Pittman 2007; Jain and Singh, 2012). Table 2 shows the efficiency of the main treatment process for arsenic removal. Redox-reactive minerals play a significant role in arsenic removal and can be used in several water-treatment technologies. Sometimes a combination of processes can be used, *e.g.* oxidation by filtration through zero-valent ions (Leupin and Hug, 2005).

2.1. Chemical precipitation

Chemical precipitation is an effective process used for arsenic removal and is usually applied in water treatment plants by coagulation-flocculation (Fig. 3). Four precipitation processes using redox compounds can be used: iron coagulation, iron/manganese precipitation and lime softening (Table 3).

Technology	Efficiency removal	Reference
Chemical precipitation	95%	Vu et al. (2003)
Adsorption on different media	up to 99%	Mohan and Pittman (2007)
Chemical oxidation and filtration	80-95%	Jain and Singh (2012)
Reverse osmosis	99%	NSF (2001)
Ion exchange	>90%	Mondal et al. (2006)
Aeration	20-25%	Holm and Wilson (2006)

Table 2. Main treatment processes for arsenic removal from water.

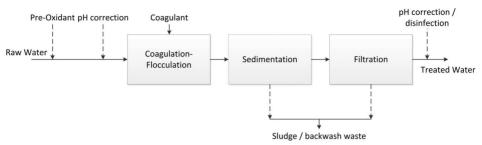


Figure 3. Schematic representation of a chemical precipitation process for water treatment. Dashed lines indicate optional processes.

Arsenic in drinking water can be removed effectively with alum if a pre-oxidant such as chlorine, potassium permanganate, ozone or hydrogen peroxide is used (Table 4). For precipitation with iron metals, ferric chloride or ferric sulfate can be used. Iron-based coagulants are usually more effective at removing As(V) than aluminium salts. This is because iron hydroxides are more stable than aluminium hydroxides in the pH range 5.5–8.5 (Jain and Singh 2012). Lakshmanan *et al.* (2008) found that the efficiency of removal of As(V) was significantly greater than As(III) when iron, titanium and zirconium coagulants (in decreasing order of efficiency) were used at pH values of 6.5, 7.5 and 8.5. Therefore, depending on the raw water characteristics, pH adjustment prior to coagulant addition may be required to achieve the optimum coagulation/precipitation. A final pH correction after disinfection is usually required to ensure acceptable pH levels in the distribution system.

When raw water (e.g. groundwater) contains both iron and arsenic, the best method is to oxidize Fe(II) by an aeration/oxidation process (Fig. 4) and the resulting Fe(III)

Table 3.	Chemical	precipitation	processes	for	arsenic	removal	(modified	from	Mondal	et	al.,
2006).											

Process	Efficiency of removal (%)	Advantages	Disadvantages
Precipitation with iron	60-90	Proven and reliable	Use of chemical; high-As contaminated sludge; dose of oxidizing chemicals influences the removal efficiency.
Precipitation with Fe/Mn	40-90	Proven and reliable	Higher and lower pH reduces efficiency; use of chemical; high-As contaminated sludge; dose of oxidizing chemicals influence the removal efficiency.
Lime softening	80-90	Proven and reliable; reduces corrosion	Sulfate ions influence efficiency; secondary treatment is required; use of chemicals.

Oxidant	Advantages	Disadvantages
Chlorine	Well established technology Low cost	Highly corrosive and toxic. Reacts with some organic compounds to create disinfection by-product.
Ozone	No harmful by-products Generated onsite so few pro- blems with transport/handling Increase dissolved oxygen (DO) content in water	Complex technology Highly reactive and corrosive. Provides no residual in drinking water. Relatively high implementation cost.
Potassium permanganate	Controls taste and odour Oxidizes iron and manganese Control of DBP formation Oxidizes As(III) very quickly	Higher relative cost. No primary disinfection capability. Possibly pink colour in water. Difficulty in handling.
Hydrogen peroxide	Does not produce residuals	Reacts with various compounds.

Table 4. Main oxidants used in water treatment.

precipitates the arsenic. Leupin and Hug (2005) found that during the oxidation of Fe(II) by dissolved oxygen, As(III) was partially oxidized and As(V) adsorbed on the hydrous ferric oxides (HFO) that formed. To improve arsenic removal, in this case, it is necessary to use an oxidant to oxidize both Fe(II) and As(III). Arsenic(V) then adsorbs onto the iron hydroxide precipitates that are ultimately filtered out of solution.

Roberts *et al.* (2004) investigated arsenic removal with Fe(II) and Fe(III) by passive treatment. They showed that application of Fe(II) was more advantageous than the Fe(III) applied usually because oxidation of Fe(II) by dissolved oxygen caused partial oxidation of As(III) and formation of Fe(III) (hydr)oxides with greater sorption capacities. Roberts *et al.* (2004) showed that five hourly additions of 5 mg of Fe(II)/L or

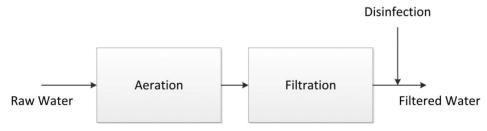


Figure 4. Schematic representation of aeration process for water treatment.

eight additions of 2.5 mg/L every 30 min to water containing 500 mg/L As(III), 3 mg/L P and 30 mg/L Si would suffice to attain the 50 ppb limit without an added oxidant. The removal efficiency of arsenic depends heavily on the initial iron and arsenic concentrations; where the Fe:As mass ratio should be at least 20:1 (Jain and Singh, 2012). Arsenic removal also depends on the anion composition of arsenic-contaminated waters. Groundwater in Bangladesh, for instance (Kinniburgh and Smedley, 2001), has high concentrations of silicate and phosphate which can influence negatively the rate of arsenic removal (Meng *et al.*, 2000, 2002).

2.2 Oxidation and adsorption

Oxidation and adsorption technologies have been used widely to treat As-polluted groundwater, reducing arsenic concentrations to <10 µg/L. Amongst the redox-based adsorbents for the removal of arsenic are iron-based sorbents (e.g. granular ferric hydroxide, zero-valent iron (ZVI), iron coated sand, etc.), red mud, activated carbon, biochar, lignite and peat (Sun et al., 2006; Mohan and Pittman, 2007; Jain and Singh, 2012). Natural hematite, goethite and magnetite, for example, were also found to be suitable adsorbents to remove both As(III) and As(V) from solutions, with hematite having the highest sorption capacity, especially at acidic pH (Gimenez et al., 2007). Raven et al. (1998) investigated arsenic adsorption on ferrihydrite. They concluded that the adsorption reaction was relatively fast and almost complete within the first few hours. They also showed that adsorption maxima arsenite and arsenate were ~0.6 and 0.25 mol As/mol Fe, respectively. Magnetite is effective in arsenic remediation (Yean et al., 2005; Yavuz et al., 2010). Yavuz et al. (2010) showed that percentage of As removal increases with decrease of magnetite particle size: (1) the magnetite particle size (MPS) was 300 nm and the As percentage removal (AsPR) was ~25–29%; (2) MPS = 20 nm and AsPR = $\sim 91-97\%$; and (3) MPS = 12 nm and AsPR = $\sim 98-99\%$. Joshi and Chaudhuri (1996) showed that iron oxide-coated sand might be a good material for use in small systems or home-treatment units for removing As(III) and As(V) from groundwater. Iron oxide-coated sand has more pores and a large surface area (Lo et al., 1997). The system temperature has a significant influence on iron-phase formation, i.e. at low temperature (60°C) only an amorphous iron phase is produced; at 150°C goethite and hematite are produced; and at 300-500°C only hematite forms (Lo et al., 1997). Guo and Chen (2005) used bead cellulose loaded with iron oxyhydroxides (BCF) for the removal of arsenate and arsenite from aqueous systems. They determined that the adsorption capacity for arsenite and arsenate was 99.6 and 33.2 mg/g BCF at pH 7.0 with Fe content of 220 g/L. They also showed that arsenate removal is better at acidic pH but arsenite - in a wide pH range of 5-11.

Using ZVI to remove arsenic from polluted waters is quite promising, but it is still difficult to predict the mechanism and efficiency of this process due to variations in aqueous parameters (pH, water composition, oxic or anoxic conditions). For example, under oxic conditions; Fe(0) corrodes, forming various amorphous and crystalline ironbearing phases (hematite, maghemite, lepidocrocite, magnetite, green rust) which can adsorb As(III) and As(V) (Su and Puls, 2001a, 2003; Manning et al., 2002; Bang et al.,

2005; Leupin and Hug, 2005; Lien and Wilkin, 2005). By contrast, under anoxic conditions arsenic is adsorbed on the surface of iron in an unspecified form (Leupin and Hug, 2005). Leupin and Hug (2005) investigated the fate of arsenic and iron in a filter containing a mixture of iron filings and sand with synthetic groundwater similar to groundwater in Bangladesh. They proposed the following reactions that can occur in this system under oxic conditions:

$$Fe(0) + 2H_2O + 1/2O_2 \rightarrow Fe(II) + H_2O + 2OH^-$$
 (3)

$$Fe(II) + 1/4O_2 + H_2O \rightarrow Fe(III) + 1/2H_2O + OH^-$$
 (4)

$$Fep(III) + 3H2O \rightarrow Fe(OH)3 + 3H+$$
 (5)

$$Asp(III) + intermediates (OH; Fe(IV)) \rightarrow As(IV)$$
 (6)

$$As(IV) + O_2 \rightarrow As(V) + O_2^-$$
 (7)

It was found that Fe(II) existed partly as a dissolved compound and partly as an adsorbed complex on the surfaces of iron filings and sand. Iron(II) oxidation led to the formation of intermediate complexes (O_2^- , H_2O_2 , OH and Fe(IV)), some of which are able to oxidize As(III) (Leupin and Hug, 2005). Those authors concluded that the hydrous ferric oxides formed in this system were excellent substrates for the adsorption of As(V). They found that 15-18 mg of Fe(III) are needed to remove 90% of 500 mg/L As(V) (with 3 mg/L of P and 20 mg/L of Si). Subsequently, the USEPA (2008a) showed that nanoscale zero-valent iron (nZVI) may be more effective than hydrous ferric oxide because nZVI has a high reactive surface area and can degrade contaminants more rapidly and completely than macroscale ZVI under similar environmental conditions (USEPA, 2008a). Du *et al.* (2013) developed a bifunctional resin-supported nanosized ZVI (N-S-ZVI) composite by combining the oxidation properties of nZVI/O₂ with adsorption features of iron oxides and anion-exchange resin N-S (as a supporter, a dispersant of nZVI and an adsorbent of anions). The maximum adsorption capacities of N-S-ZVI for As(III) and As(V) were 121 and 125 mg/g, respectively (Du *et al.*, 2013).

Manganese minerals such as manganese oxides (pyrolusite and birnessite) also play an important role in arsenic removal. The main reactions occurring in this process are: (1) reductive dissolution of MnO₂ surface; (2) oxidation of As(III) by MnO₂; and (3) adsorption of As(V) on the MnO₂ surface (Moore *et al.*, 1990; Tournassat *et al.*, 2002; Mohan and Pittman, 2007). Nesbitt *et al.* (1998) showed that the oxidation of As(III) results in the release of As(V) and Mn(II) according to the reactions:

$$2MnO_2 + H_3AsO_3 + H_2O \rightarrow 2MnOOH^* + H_3AsO_4$$
 (8)

$$2MnOOH^* + H_3AsO_3 + 4H^+ \rightarrow 2Mn^{2+} + H_3AsO_4 + 3H_2O$$
 (9)

where MnOOH* is a Mn(III) intermediate.

Con et al. (2013) investigated the properties of nano-dimensional MnO₂ (30–50 nm) prepared by redox reaction between MnSO₄ and KMnO₄ in a water–ethanol solution. The separate MnO₂ nano particles were coated on already-existing MnO₂ (pyrolusite) grains to create adsorption material for treatment of arsenic in a water environment

(Con *et al.*, 2013). The maximum adsorption capacity (84 mg/g) of arsenic on nano-MnO₂ coated on pyrolusite was about ten times greater than the maximum adsorption (8.67 mg/g) of MnO₂ produced by electrolysis oxidation coating on the same substrate (Con *et al.*, 2013).

Chakravarty *et al.* (2002) studied a low-cost ferruginous manganese ore (FMO), which consisted mainly of pyrolusite (MnO₂) and goethite (FeOOH), for the removal of arsenic from groundwater. Those authors showed that FMO can remove both As(III) and As(V) in the pH range 2.0-8.0 without any pre-treatment. They used FMO for the purification of six groundwater samples containing arsenic concentrations in the range 0.04-0.18 ppm and concluded that arsenic removals are almost 100% in all cases. The cost of the FMO is $\sim 50-56$ US\$ per metric tonne (Chakravarty *et al.*, 2002).

'Greensand' is a green iron-rich clay-like mineral (e.g. glauconite) that has ionexchange properties. The greensand is treated with KMnO₄ until the sand grains are coated with a layer of manganese oxides of various Mn valence states. Arsenic-removal processes by greensand comprise oxidation, ion exchange and adsorption. Arsenic complexes displace species from the manganese oxide (presumably OH⁻ and H₂O) to become bound to the greensand surface (in effect, an exchange of ions occurs). The manganese oxide surface oxidizes As(III) to As(V), which is then adsorbed onto the surface. As a result of the electron transfer and adsorption of As(V), reduced manganese (Mn(II)) is released from the surface. Subramanian et al. (1997) investigated the effectiveness of manganese greensand filtration (MGSF) in batch and column experiments. Batch experiments showed that the removal efficiency of arsenic by MGSF up to the interim maximum acceptable concentration (IMAC = 25 μg/L) was 60% for 24 h equilibration. In a column experiment, the removal efficiency was 41%. However, in the presence of Fe(II), especially at an Fe/As concentration ratio of 20, manganese greensand gave an overall efficiency of 83% and a throughput volume of 1440 L (Subramanian et al., 1997).

Red mud, a by-product of the alumina production process, is also a promising material for the remediation of arsenic-contaminated waters (Altundogan *et al.*, 2000, 2002; Mohan and Pittman, 2007). The capacities were 4.3 µmol/g at a pH of 9.5 for As(III) and 5.1 µmol/g at a pH of 3.2 for As(V) (Altundogan *et al.*, 2002). Untreated red mud can contain high concentrations of hazardous elements including As, Pb, Hg, Cd and Cr (Ruyters *et al.*, 2011; Wang and Liu, 2012) and, therefore, requires purification before use. Seawater-neutralized red mud (Bauxol) has a higher sorption capacity with respect to arsenic (14.4 µmol/g) than unmodified red muds (Genc-Fuhrman *et al.*, 2003, 2004a,b, 2005). Furthermore, Bauxol activated by acid and heat treatment increased arsenic adsorption (Genc-Fuhrman *et al.*, 2004a,b).

In general, arsenic adsorption depends on the arsenic oxidation state, pH and property of the adsorbent surface. Usually the adsorption media is packed into a column. During the adsorption process contaminated water enters at the top of the column and flows downward through the bed and leaves through the underdrain system. The media may become clogged with suspended solids present in the feed water, resulting in increased head loss across the bed. When the maximum head loss is

achieved, the media must be backwashed to remove clogging. In order to minimize an increase in head loss, it is recommended that the influent water to the column has less than 5 mg/L of suspended solids (Reynolds and Richards, 1996), otherwise a pre-filter will be necessary (Fig. 5). When the adsorbent is exhausted, the column media must be regenerated or disposed of, and replaced with new media.

2.3. In situ treatment technologies

Conventional engineering technologies for the treatment of groundwater, such as pump and treat, are expensive. Therefore, *in situ* technologies, like Permeable Reactive Barriers (effective passive remediation technology combining subsurface fluid-flow management with chemical and biological treatment), have received increased attention in recent years (USEPA, 1998; Blowes *et al.*, 2000; Wilkin *et al.*, 2009). For example, Blowes and Ptacek (1994) proposed the use of iron as a reactive barrier material and subsequently this technology has been developed and improved (USEPA, 1998). Lackovic *et al.* (2000) investigated ZVI as a main material for permeable reactive barriers (PRBs) to remove arsenic from groundwater. A mechanism of arsenic removal by ZVI using a combination of abiotic surface precipitation and adsorption was proposed. Those authors also demonstrated that both As(III) and As(V) could be removed effectively from aqueous solution under anoxic conditions without the use of a preoxidation step.

Zero-valent iron, used for As removal, can be corroded under the influence of dissolved oxygen (DO), forming various iron-bearing phases such as ferric oxide, oxyhydroxide and hydroxide. Several studies have shown that arsenic precipitated, coprecipitated and adsorbed onto ZVI corrosion products, including iron hydroxides, oxyhydroxides and mixed-valence Fe(II)–Fe(III) green rusts (Farrell *et al.*, 2001; Manning *et al.*, 2002; Su and Puls, 2003; Bang *et al.*, 2005; Leupin and Hug, 2005; Lien and Wilkin, 2005). Beaulieu and Ramirez (2013) applied a commercially available product containing ZVI, organic carbon substrate and sulfate to an aquifer contaminated by dissolved arsenic and iron. The PRB was capable of removing 97% of the arsenic, achieving 5 μ g/L of total arsenic for ~2 y.

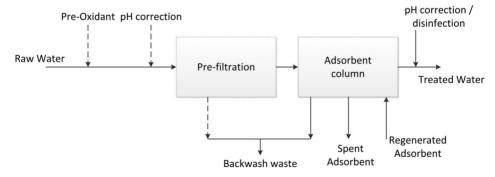


Figure 5. Schematic representation of adsorption process for water treatment. Dashed lines indicate optional processes.

It was shown that sodium-sulfate-type groundwater is better suited for arsenic treatment by ZVI than calcium-bicarbonate-type groundwater (Beak and Wilkin, 2009). This is because carbonate minerals (calcite, aragonite, etc.) can form in PRBs due to pH increase during the corrosion of the metallic iron (Beak and Wilkin, 2009). Precipitation of carbonate minerals can cause decreases in porosity, permeability and ZVI reactivity because iron surfaces become coated, blocking pores and cementing materials (USEPA, 2003; Beak and Wilkin, 2009). Deeper in the aquifer, sulfate from groundwater can be reduced to sulfides (usually iron sulfides) which provide additional surfaces for arsenic removal. Beak and Wilkin (2009) investigated the PRB core samples using XANES analysis and concluded that As is probably present in three forms in the PRB (i.e. As(V) and As(III) sorbed to Fe (oxy)hydroxides and As(III) sorbed to Fe sulfide phases. Rao et al. (2009) investigated the effects of humic acid on arsenic(V) removal by ZVI from groundwater. They concluded that the removal rate of arsenic by Fe(0) was inhibited in the presence of humic acid due to the formation of soluble Fe-humates in groundwater. Humic acid can also block adsorption sites (Gu et al., 1994). The binding capacity of humic acid for dissolved Fe is estimated to be ~0.75 mg Fe/mg of humic acid (Rao et al., 2009). Inorganic anions in groundwater, such as bicarbonate, sulfate, nitrate, silicate, phosphate and chromate, can also inhibit arsenic removal due to competition for adsorption sites on corrosion products (Su and Puls, 2001a,b, 2003; Tyrovola et al., 2006). Therefore, the effect of inorganic and organic compounds on the removal of arsenic from different groundwaters should be taken into account in the design of ZVI PRBs.

Other materials such as iron-bearing minerals (*e.g.* goethite, magnetite, akaganeite, ferrihydrite, *etc.*), granular ferric hydroxide, granular ferric oxide, furnace slag, hydrous ferric oxide loaded into activated carbon or furnace slag, and composite materials (iron oxides with calcium oxides and limestone; compost with zero-valent iron, *etc.*) have also been proposed for permeable reactive barriers (USEPA, 1998; Sasaki *et al.*, 2008; Gibert *et al.*, 2010).

Zero-valent iron-based permeable reactive barrier technologies are very suitable, effective and reliable for arsenic remediation and potentially cost-effective options (they require minimal operation and maintenance expenditure), but there is still a need for more investigation of the chemistry, geochemistry, hydrogeology and microbiology involved for long-term field applications. Direct injection of nZVI into contaminated aquifers could be less costly than traditional pump-and-treat methods and using PRBs (USEPA, 2008a). To use this direct injection technology, the geological and hydrological conditions, geochemical properties of aquifer, concentration and type of contaminant must be investigated in detail in order to optimize the effectiveness of the nZVI (USEPA, 2008a). Gavaskar *et al.* (2005) indicated that the price for nZVI varied from \$20 to \$77 per pound depending on the quantity purchased. They explained that the price of nZVI has decreased in more recent years because of a decrease in the price of raw materials and increase in manufacturing capacity and number of suppliers (Gavaskar *et al.*, 2005). Information on the cost of nZVI direct injection is limited. The USEPA (2008a), for example, provided total remediation costs for three sites which

varied from \$255,500 to \$4,000,000. USEPA (2008a) and Gavaskar *et al.* (2005) estimated the total nZVI injection implementation cost ranged from \$250,000 to \$1,400,000. The total nZVI injection implementation cost is quite variable and depends on many factors including: site type, environmental conditions and the geology of areas to be treated, type of contaminants, concentrations and speciation of contaminants, volume of contaminated water, installation of a monitoring well, sampling, extent of the plume, nZVI injection, post-injection sampling, reporting and any challenges that may have occurred during remediation (USEPA, 2008a; Gavaskar *et al.*, 2005).

3. Removal of nitrate

Nitrate (NO_3^-) is an essential nutrient for animals and plants (nitrogen is part of DNA and proteins) but in large concentrations may cause some health problems. Nitrate is a tasteless, colourless and odourless compound that cannot be detected unless the water is analysed chemically (Self and Waskom, 2008). The maximum recommended contaminant concentration in drinking water, according to the US Environmental Protection Agency and the World Health Organization, is: (1) 45 ppm as nitrate (NO_3^-) and 10 ppm as nitrogen in nitrate (NO_3^-N) (EPA, 2009); and (2) 50 ppm as nitrate and 11 ppm as nitrogen in nitrate (WHO, 2011).

Nitrates occur naturally in soil, rocks and surface and ground waters but become potentially more hazardous because they are applied as agricultural fertilizers. The common sources of nitrite include animal waste, manure, septic systems, industrial processes, municipal wastewater and sludge (Self and Waskom, 2008). Nitrates are very soluble and dissolve easily in natural waters, causing widespread contamination. Elevated concentrations of nitrate in surface waters promote excessive growth of plankton (mainly algae) and plants causing eutrophication, as well as death of aquatic living organisms (insects, invertebrates, fish, *etc.*) due to anoxia. High concentrations of nitrate in drinking water may cause chronic diseases, birth defects, gastric problems due to the formations of nitrosamines, as well as methemoglobinemia (blue baby syndrome) which can result in brain damage and death (Camargo and Alonso, 2006; Self and Waskom, 2008).

Drinking water treatments such as conventional purification (e.g. coagulation, flocculation, sedimentation and filtration) are not suitable for nitrate removal. The common technologies used to remove nitrate from drinking water are chemical denitrification, distillation, ion exchange, reverse osmosis and electrodialysis (Follett and Hatfield, 2001). These methods have some limitations and difficulties when applied in small communities (Huang et al., 1998; Jeong et al., 2012).

3.1. Application of iron-bearing minerals

Redox-reactive minerals such as Fe(II)-bearing minerals can, potentially, remove nitrate from drinking water. It was proposed that Fe(II) can reduce nitrate to nitrite, which converts to N₂ and/or might react with dissolved organic matter (Postma *et al.*, 1991; Davidson *et al.*, 2003; Burgin and Hamilton, 2007). For example, green rusts

A pilot-scale PRB at a lead-smelting facility operated by ASARCO, East Helena, Montana, USA.

The ASARCO East Helena lead smelter is located near East Helena in Montana (USA). The plant operated from 1888 to 2001. Wilkin et al. (2009) showed that groundwater underneath the site is contaminated with arsenic, selenium, lead, cadmium and zinc. Plumes of arsenic and selenium have migrated offsite whereas the occurrence of other dissolved metals is restricted within site boundaries. In June 2005, a 9.1 m long (perpendicular to groundwater flow), 13.7 m deep, and 1.8 to 2.4 m wide (in the direction of groundwater flow) pilot-scale permeable reactive barrier was installed at that area. The reactive barrier was designed to treat groundwater contaminated with moderately high concentrations of both As(III) and As(V), as well as other elements. The reactive barrier was installed over three days using bio-polymer slurry methods and modified excavating equipment for deep trenching (Wilkin et al., 2009). The reactive medium was composed entirely of granular iron which was selected based on longterm laboratory column experiments. The trench was backfilled with a 7.6 m-thick layer of granular iron (from 6.1 to 13.7 m below ground surface) and a 6.1 m-thick layer of sand (from 0 to 6.1 m below ground surface). The top of the granular iron zone was located >2 m above the maximum groundwater level observed during site characterization studies. The base of the granular iron zone is located ~1 m above the confining ash tuff deposit. The PRB contains ~174 t of granular iron with an estimated initial porosity of ~50% (Wilkin et al., 2009).

A monitoring network consisting of 40 multilevel wells was installed in 2005 within and around the PRB. Wilkin *et al.* (2009) collected and analysed groundwater samples within 1, 4, 12, 15 and 25 months of operation. Arsenic concentrations were >25 ppm in wells located hydraulically upgradient of the PRB; within the PRB, arsenic concentrations were reduced to 0.01 ppm after 2 y of monitoring.

Wilkin *et al.* (2009) concluded that ZVI can be used effectively to treat groundwater contaminated with arsenic, given appropriate groundwater geochemistry and hydrology.

Source: Wilkin et al. (2009)

(GRs) are excellent reductants for nitrate (Hansen *et al.*, 1996; Hansen and Koch, 1998). Hansen *et al.* (1996) suggested that sulfate green rust [Fe₄^{II}Fe₂^{III}(OH)₁₂ SO₄·yH₂O] should be considered as a possible important reductant for the reduction of nitrate to ammonium in subsoils, sediments or aquifers where microbially mediated reduction rates are small. Hansen *et al.* (1994) estimated the free energy of sulfate GRs formation, and indicated that GRs were stable in strongly reducible and non-acidic

condition at equilibrium state. They also demonstrated that sulfate green rust reacts with nitrate producing ammonia and magnetite according to the following reaction (Hansen *et al.*, 1996):

$$[Fe_4^{II}Fe_2^{III}(OH)_{12}]SO_4(s) + 1/4NO_3^- + 3/2OH^- \leftrightarrow SO_4^{2-} + 1/4NH_4^+ + 2Fe_2O_4(s) +6\cdot1/4H_2O$$
(10)

Hansen and Koch (1998) determined that active nitrate reducing sites were located at the green rust surface and that the accessibility of nitrate to these sites controls the reaction rate.

Redox-reactive iron-bearing clay phases (Stucki et al., 1984) can also play a significant role in nitrate reduction according to Day (2010) who determined a clear relationship between the amount of Fe(II) present in the clay structure and the amount of nitrate removed from a dilute solution. The reactive sites were located on the edge surfaces of the clay layers. The reduced form of Na⁺-SWa-1 smectite took up a small amount of nitrate due to coulombic repulsion between the negatively charged smectite surface and nitrate anions. This process can inhibit significantly nitrate reduction by Fe(II)-bearing smectite (Day, 2010). In order to solve this problem, Su et al. (2012) proposed the modification of smectite with polydiallyldimethylammonium chloride (poly-DADMAC) which resulted in the creation of a positively charged surface on the smectite where nitrate could be adsorbed easily. Then nitrate can be reduced to nitrite by the structural Fe(II) in the redox-modified smectite (Su et al., 2012). Those authors demonstrated extensive nitrate reduction by the positively charged, cationic polymermodified, reduced-Fe ferruginous smectite and concluded that these novel redoxreactivated organoclays have important adsorption and reduction properties. However, there are still many questions concerning the mechanisms and kinetics of nitrate reduction by redox-reactive iron-bearing clay.

Micro- and nano-scale zero-valent iron can also reduce nitrate (Young *et al.*, 1964; Huang *et al.*, 1998; Till *et al.*, 1998; Alowitz and Scherer, 2002; Westerhoff, 2003) through the following equation:

$$4Fe^{0} + NO_{3}^{-} + 7H_{2}O \leftrightarrow 4Fe^{2+} + NH_{4}^{+} + 10OH^{-}$$
 (11)

Alkalinity is produced in this process and, therefore, pH is an important parameter which can influence the reaction kinetics (Huang *et al.*, 1998; Huang and Zhang; 2002; Choe *et al.*, 2004; Miehr *et al.*, 2004). Choe *et al.* (2004) investigated nitrate reduction by ZVI under anaerobic and various pH conditions. The pH rise was neutralized by the addition of acids (HCl and CH₃COOH), and NO₃ reduction occurred continuously and completely with the appearance of green rusts at pH 6.5. Thus, the formation of green rust leads to nitrate reduction in this process.

3.2. Electrochemical methods

Electrochemical methods for nitrate removal show high potential as effective and low cost technologies which do not require the addition of chemicals before or after treatment, and which produce small amounts of sludge (Koparal and Ogutveren, 2002). The latter authors investigated the feasibility of the nitrate removal from water by an

electrocoagulation method with a bipolar, packed-bed reactor filled with iron Raschig rings. The following reactions occurred in this system:

$$2H_2O + 2e \leftrightarrow H_2 + 2OH^-$$
 at the cathode (12)

$$Fe^0 \leftrightarrow Fe^{2+} + 2e$$
 at the anode (13)

$$Fe^{2+} + 2OH^{-} \leftrightarrow Fe(OH)_{2} \leftrightarrow Fe(OH)_{3}$$
 in the solution (14)

Koparal and Ogutveren (2002) found that the concentration of nitrate decreased from 300 mg/L to 50 mg/L in ~10 min with an energy consumption of about 0.7×10^{-4} kWh/g at 80 V. They also showed that electrocoagulation is more cost effective than electroreduction (energy consumption of 1×10^{-3} kWh/g).

Jeong *et al.* (2012) investigated the performance of a ZVI packed-bed bipolar electrolytic cell for nitrate removal (Fig. 6). They used ZVI not only as conductive particles but also as electron donors. In their experiment pH increased slightly due to the consumption of hydrogen ions during nitrate reduction, with iron corrosion as a product, according to the following equations:

$$NO_3^- + Fe^0 + 2H^+ \rightarrow Fe^{2+} + NO_2^- + H_2O$$
 (15)

$$NO_3^- + 4Fe^0 + 10H^+ \rightarrow 4Fe^{2+} + NH_4^+ + 3H_2O$$
 (16)

$$2NO_3^- 5Fe^0 + 12H^+ \rightarrow 5Fe^{2+} + N_{2(g)} + 6H_2O$$
 (17)

$$NO_2^- + 3Fe^0 + 8H^+ \rightarrow 3Fe^{2+} + NH_4^+ + 2H_2O$$
 (18)

$$2NO_2^- + 3Fe^0 + 8H^+ \rightarrow 3Fe^{2+} + N_{2(g)} + 4H_2O$$
 (19)

$$6NO_3^- + 10Fe^0 + H_2O \rightarrow 5Fe_2O_{3(s)} + 6OH^- + 3N_{2(g)}$$
 (20)

$$NO_3^- + 2.82 Fe^0 + 0.75 Fe^{2+} + 2.25 H_2 O \rightarrow NH_4^+ + 1.19 Fe_3 O_{4(s)} + 0.5 OH^-$$
 (21)

Figure 6. Schematic representation of a ZVI packed-bed bipolar electrolytic cell.

As a result of these redox reactions, ZVI removed >99% of the nitrate and the influx nitrate was converted to ammonia (20% to a maximum of 60%) and nitrite (always less than 0.5 mg/L as N in the effluent). The mechanism of nitrate removal was nitrate reduction in the lower part of the reactor under acidic conditions, followed by adsorption in the upper part of the reactor under alkaline conditions (Jeong *et al.*, 2012).

4. Removal of persistent organic pollutants

Some organic pollutants are toxic and cannot be degraded by natural environmental degradation. These organic pollutants, termed 'persistent organic pollutants' (POPs), refer to a variety of chemical compounds which contain carbon and are resistant to environmental degradation by chemical, biological and photolysis processes (Ritter *et al.*, 2007). POPs have low water contents, high fat solubilities and low vapour pressure. It has been proven that some POPs cause death or illness including certain cancers (*e.g.* breast, prostate) and endometriosis, neurobehavioural disorders, and disruption of the endocrine system (Ritter *et al.*, 2007). As a result of major threats to human health, the United Nations Environment Programme Governing Council (UNEPGC) has short-listed an initial twelve POPs substances for elimination, including organochlorine pesticides, cancer-causing polychlorinated biphenyls (PCBs) and the super-toxic dioxins and furans (Ritter *et al.*, 2007). Tonnes of POPs are being developed and manufactured every day and used in various products, including pesticides, industrial chemicals, food additives, pharmaceutical and personal care products (PPCPs), endocrine disruptor, surfactants and fuel additives (Pal *et al.*, 2010).

4.1. Conventional treatment technologies for POPs

Conventional treatment technologies for POPs in water consist of coagulation/flocculation, biofiltration, filtration and disinfection. The efficiency of POPs removal using these conventional technologies may be a joint function of the pollutant's structure and the treatment process applied.

Coagulation/flocculation, which removes only hydrophobic compounds associated with particle or colloidal material with a large organic carbon content, is not regarded as an efficient way of removing most POPs because most of these compounds are polar and hydrophilic (Yu et al., 2008). Activated sludge, which uses air and a biological floc composed of bacteria and protozoa, is commonly used in municipal sewage and industrial wastewater-treatment plants (Jones et al., 2002). It is possible, therefore, that POPs are easily removed by this treatment process.

Adsorption processes using either powdered activated carbon (PAC) or granular activated carbon (GAC) could play an important role in the removal of POPs (Yu *et al.*, 2008). Hydrophobic interactions are the principal mechanism in activated carbon adsorption of organic compounds (Yoon *et al.*, 2003). Therefore, POPs with higher octanol/water partition coefficients (K_{ow}) could be removed by activated carbon.

Powdered activated carbon with microfiltration (PAC-MF) systems and PAC with ultrafiltration (PAC-UF) systems, which combine PAC adsorption with low-pressure-

driven membrane filtration, have shown great potential to achieve the removal of POPs from water. They have been considered as an alternative process for the remove of low molar mass compounds, including nano-sized POPs such as phenol, clofibric acid (a pharmaceutical product), methaldehyde (pesticide), which could not be removed by the membrane alone. Figure 7 shows the PAC with membrane hybrid process, in which the membrane module is arranged in connection with the adsorption reactor and operated in cross-flow mode (Delgado *et al.*, 2012). However, the PAC with membrane filtration system carries a high capital cost and energy consumption compared with conventional activated carbon processes.

Some conventional technologies have been adapted with redox processes for degradation of POPs in water and wastewater treatment. These include the ZVI with absorbent process and semiconductor (photocatalyst) with membrane filtration process (Zhang *et al.*, 2005; Luo *et al.*, 2007; Madaeni and Ghaemi, 2007; Zhu *et al.*, 2009; Doria *et al.*, 2013; Khraisheh *et al.*, 2014). As redox processes are the main topic of this book, they will be discussed in more detail in the next section.

4.2. Reduction and oxidation process for POPs

Redox processes are used in a wide variety of POPs remediation schemes for water. Generally, ZVI has been applied widely as a reductive material for the dechlorination of chlorinated organic compounds such as carbon tetrachloride (CT), trichloroethylene (TCE) and dichloroethylene (PCE) in ground and surface waters. Gillham and O'Hannesin (1994), using the results of CT reduction by ZVI, concluded that the reductive dechlorination of CT occurred at the metal surface. Matheson and Tratnyek, (1994) and Muftikian *et al.* (1995) proposed that the dechlorination process is a consequence of direct oxidative corrosion of the iron by TCE according to the following equations:

$$Fe^0 \rightarrow Fe^{2+} + 2e \tag{22}$$

$$C_2HCl_3 + 3H^+ + 6e^- \rightarrow C_2H_4 + 3Cl^-$$
 (on an iron phase surface) (23)

Semiconductor materials (such as TiO₂ anatase phase, TiO₂ rutile phase, ZnO, CdS, ZnS, WO₃, WSe₂, SrTiO₃, Si, GaAs, CdTe, SnO₂, Fe₂O₃, *etc.*), which can be regarded as photocatalysts, have also been applied to remove or degrade POPs in water. These materials can generate oxidation reactions from photo-generated holes, and reduction reactions from photo-generated electrons. Among those photocatalysts, TiO₂ has been used widely in water-treatment applications. Titanium dioxide (TiO₂) is the most industrially suitable photocatalyst because it has the most efficient photoactivity, the greatest stability and the lowest cost (Hashimoto *et al.*, 2005). Figure 8 shows redox

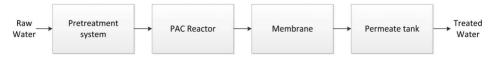


Figure 7. Schematic representation of the PAC with a membrane hybrid system.

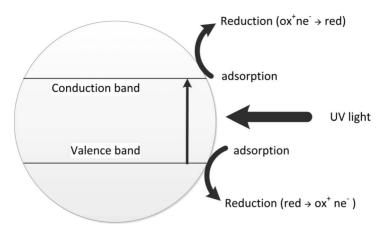


Figure 8. Redox reactions involved in the photocatalysis process.

reactions in the photocatalysis process. Khraisheh *et al.* (2014) researched the removal of pharmaceutical and personal care products, which are classified as emerging and persistent pollutants, from waters using novel TiO₂ with a coconut-shell powder composite. Three pharmaceutical and personal-care-products pollutants were removed with an efficiency of 99% from water. Doria *et al.* (2013) investigated the removal of metaldehyde (pesticide) using ZnO/Laponite composite using batch tests, and achieved greater removal efficiencies with combined redox and adsorption reactions than with an adsorption reaction only.

The photocatalyst membrane hybrid process has been investigated extensively because it has great potential for the development of efficient treatment systems compared with photocatalytic treatment or filtration system only. Membrane processes are well known in the chemical, medical, water and wastewater treatment and many other industries. Madaeni and Ghaemi (2007) investigated the effects of coating membrane surface with TiO₂ particles and UV radiation in creating self-cleaning to avoid the problem of fouling the membrane surface. Ma *et al.* (2009) invented a novel Ag-TiO₂/hydroxylapatite/Al₂O₃ bioceramic composite membrane which has antifouling properties and highly efficient bacterial adsorption properties. Ag-TiO₂ in this novel membrane acted as a powerful photocatalyst to attack bacteria in water.

Redox-reactive nanoparticles (NPs) have also been applied extensively to remove POPs in water. The nano-scale zero-valent iron (nZVI) technology, in which the advantages of the reductive potential of ZVI can be maintained, and the large surface area to volume can be exploited, gives rapid and high degradation efficiency for organic pollutants. Moreover, stable NPs with various chemical additives (*e.g.* polyelectrolytes, polymers, and surfactants) or NPs immobilized on inorganic or organic substrates have also been reported. Zhu *et al.* (2011) investigated the dechlorination of recalcitrant PCBs, which are one of the POPs, and a group of aromatic compounds notorious for their toxicity and persistence in the environment (UNEP, 2010). Nanoscale Ni/Fe particles were applied and compared to NZVI and nano-Ni⁰. The

Chlorinated-solvent source-zone remediation via ZVI-Clay soil mixing at Marine Corps Base Camp Lejeune, North Carolina, USA.

ZVI-Clay was applied *in situ* with soil mixing to treat a chlorinated solvent, TeCA, TCE, and degradation products, consisting primarily of cDCE, tDCE, and VC at Site 89, Camp Lejeune, North Carolina. The dimensions of the treated zone include a surface footprint of 3010 m², a volume of 22,900 m³ of soil was treated to an average depth of 7.6 m by mixing with 2% ZVI and 3% bentonite. Soil-mixing equipment (Fig. 9) included a crane, rotary table, and mixing auger were used in this field.

Figure 9. Soil mixing equipment (left) and mixing was completed using 3 m diameter augers (right) – Photos' credit: Professor Charles Shackelford (CSU).

In several of the soil- and groundwater-monitoring sites, the total concentration of CVOC decreased more than 99% within 1 y of completion of the mixing of ZVI-Clay with soil.

Source: Olson et al. (2012)

dechlorination products were more prevalent in the presence of nano-scale Ni/Fe than other redox-reactive particles, and biphenys, cyclohexyl-benzene and 1-alkyl-benzenes were detected as the main by-products. The conclusion is that the reactive nano-scale Ni/Fe can retain PCBs in subcritical water for rapid catalytic hydrodechlorination. Zhu *et al.* (2010) reported that nano-scale Cu/Fe bimetals have been used in the dechlorination of hexachlorobenzene (HBC), a representative polychlorinated additive in agricultural antiseptics. They found that HCB reduction was significantly increased by nano-scale Cu/Fe. HCB removal was nearly complete within 48 h of reaction with nano-scale Cu/Fe.

5. Removal of bacteria and other microorganisms

Bacteria and microorganisms that are not removed through filtration are usually inactivated/killed during disinfection, which is the last stage in conventional water treatment. Redox-reactive compounds commonly used for water disinfection include silver and/or copper, and these have been used for centuries due to their bactericidal and algaecidal properties. The advantage of silver and/or copper is that they do not produce by-products such as trihalomethanes during disinfection while maintaining an effective residual. Most modern silver-copper systems use electrolytic ions generated to control their concentration. The electrolytic ion generators consist of positive and negative electrodes made of the silver and/or copper contained in a vessel. To release the metal ions into the water, a DC power source is used to provide current with a potential of a few volts. The concentration of metal ions released in the water depends on the current and water flow passing the electrodes. Silver-copper systems have been used successfully in hospitals for Legionella control (Box 3) and ionization units range from US\$40,000 to 80,000 with maintenance costs varying from US\$1500 to 4000 for electrode replacement (Lin et al., 2001). Silver ion systems have also been applied successfully to disinfect rainwater for human consumption in rural communities in Mexico (Adler et al., 2011).

Silver-copper ionization system for Legionella's control in hospitals

A long-term study was carried out in 16 hospitals in Pennsylvania, USA, to determine the efficacy of silver-copper ionization as a disinfection method in controlling Legionella in water systems. Surveys were conducted during 1995 and 2000 to determine the hospitals' experience with the maintenance of the system, contamination of water with Legionella, and occurrence of hospital-acquired Legionnaires' Disease. Each hospital had an average of 435 beds. All 16 hospitals had cases of Legionnaires' Disease prior to installing the silver-copper disinfection system. Prior to this, most of the hospitals had other disinfection systems, including superheat and flush, ultraviolet light, and hyperchlorination. After installation, in 1995, 50% of the hospitals reported 0% positivity, and 43% still reported 0% in 2000, with respect to cases of Legionnaires' Disease. After 1995, no new cases of hospital-acquired Legionnaires' Disease were reported in any of these hospitals.

Source: Stout and Yu (2003)

 ${
m TiO_2}$ and ZnO are redox-reactive compounds that have also been used for microbial disinfection of water by photocatalytic reaction. A recent study of the degradation of Methylene Blue found that ${
m TiO_2}$ nanoparticles generated more reactive oxygen species (ROS) and led to increased loss of cell viability than the ZnO nanoparticles for three of the four species of bacteria examined (S. aureus, B. subtilis, E. coli and P. aeruginosa)

(Barnes *et al.*, 2013). The ZnO particles produced less ROS than the TiO₂ nanoparticles under ultraviolet light, and they were shown to be toxic to two of the bacterial species even under dark conditions. *P. aeruginosa* cells were resistant to all types of treatment indicating a potential limitation to the application of these nanoparticles for water disinfection with these redox-reactive compounds. Another study investigating inactivation of *E. coli* by TiO₂/Cu nanosurfaces (*i.e.* DC-magnetron sputtered thin films) in the dark and under low-intensity actinic light found TiO₂/Cu sputtered layers to be sensitive to actinic light (Baghriche et *al.*, 2012). This work demonstrated the spectral characteristics of Cu/CuO indicating that Cu does not substitute for Ti⁴⁺ in the crystal lattice. The hybrid composite TiO₂/Cu sample produced fast bacterial inactivation times (<5 min) under diffuse actinic light (4 mW/cm²). A direct relation between the film optical absorption obtained by diffuse reflectance spectroscopy and bacterial inactivation kinetics by the TiO₂/Cu samples was also demonstrated. Baghriche et *al.* (2012) suggested that the bacterial inactivation mechanism by TiO₂/Cu occurred *via* interfacial charge transfer involving charge transfer between TiO₂ and Cu.

Metallic gold is another redox-reactive compound that has been used successfully in microbial disinfection. Biodegradable Au nanocomposite hydrogels have been developed recently using acrylamide and wheat protein isolate (Jayaramudu *et al.*, 2013). The gold nanoparticle composite hydrogels have been shown to be a potential candidate for antibacterial applications.

5.1. Effects of redox compounds on health and DBP production

Silver is not particularly toxic to human beings, and although large doses of this metal used for certain medical treatments have been found to cause discoloration of the skin, hair and nails (argirosis), no problems have been noted with the low concentrations needed to disinfect water. Treatment of drinking water with silver produces no byproducts and the World Health Organization's (WHO) guidelines for drinking water quality indicate levels of silver of up to 0.1 mg/L can be tolerated without risk to health (WHO, 2003b). There is also insufficient evidence for negative health effects of silver ions (Lin *et al.*, 2002) and copper-silver ionization (LENNTECH (b)) and their byproducts.

Titanium dioxide is the most widely used photocatalyst because of its efficient photoactivity, high stability, low cost and negative toxicity for humans and animals. A study by Richardson *et al.* (1996) observed a single type of organic DBP (tentatively identified as 3-methyl-2,4-hexanedione) in ultra-filtered raw water treated with ${\rm TiO_2}/{\rm UV}$ alone.

6. Conclusions

Redox-reactive minerals (green rusts, iron-bearing clay phases, ZVI, manganese oxides, TiO₂, ZnO, Ag, etc.) play a significant role in water-treatment processes. In this chapter we have demonstrated that proven treatment technologies using redox minerals are effective at reducing the levels of arsenic, nitrate, organic pollutants and pathogenic

microbes to concentrations which are less than the recommended maximum contaminant concentrations in surface and ground water. Selection of an appropriate cost-effective treatment technology for pollutant removal from drinking water requires a detailed investigation of the quality and composition of the raw water as well as consideration of simplicity, sustainability, feasibility, reliability and costs of chosen technologies.

Knowledge is still limited on the fate, transport and toxicological effects of some redox-reactive minerals (particularly nano-scale materials such as nZVI) in the environment. For example, agglomeration of nanoscale redox-reactive minerals (nRAM) in surface and underground waters and their interaction with other compounds present in the system can impact the reactivity and mobility (transport) of nRAM. Studies related to surface modification (e.g. coating) of nanoparticles or addition of compounds which can inhibit nRAM agglomeration and improve water-treatment technologies with increasing mobility and activity of nRAM within aquifers are required. Further comprehensive investigations are needed to understand fully reaction mechanisms and redox-reactive mineral fates in contaminated waters, as well as to determine cost-effective and environmentally friendly waste-water management. Investigation of the kinetic and thermodynamic controls on the redox reactivity of RAM (particularly complex heterogeneous redox-reactive minerals) is very important for the future.

Acknowledgements

We are grateful for comments, questions and careful and helpful reviews by Karen A. Hudson-Edwards, Imad A.M. Ahmed, Kevin Murphy and the anonymous reviewers.

References

- Adler, I., Hudson-Edwards, K.A. and Campos, L.C. (2011) Converting rain into drinking water: Quality issues and technological advances. *Water Science and Technology: Water Supply*, **11**, 659–667.
- Ahmed, I.A.M., Benning, L.G., Kakonyi, G., Sumoondur, A.D., Terrill, N.J. and Shaw, S. (2010a) Formation of green rust sulphate: A combined in situ time-resolved X-ray scattering and electrochemical study. *Langmuir*, 26, 6593–6603.
- Ahmed, I.A.M., Shaw, S., Kakonyi, G. and Benning, L.G. (2010b) In situ studies of green rust formation using synchrotron-based X-ray scattering. Helping to develop a new range of environmental materials. *ECG Bulletin*, 3–5.
- Alowitz, M.J. and Scherer, M.M. (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology, 36, 299–306.
- Altundogan, H.S., Altundogan, S., Tumen, F. and Bildik, M. (2000) Arsenic removal from aqueous solutions by adsorption on red mud. *Waste Management*, **20**, 761–767.
- Altundogan, H.S., Altundogan, S., Tumen, F. and Bildik, M. (2002) Arsenic adsorption from aqueous solutions by activated red mud. *Waste Management*, **22**, 357–363.
- Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (editors) (1997) Handbook of Mineralogy, Volume III, Mineralogical Society of America, Chantilly, Virginia, USA. http://www.handbookof mineralogy.org/.
- Baghriche, O., Rtimi, S., Pulgarin, C., Sanjines, R. and Kiwi, J. (2012) Innovative TiO₂/Cu nanosurfaces

- inactivating bacteria in the minute range under low-intensity actinic light. ACS Applied Materials & Interfaces, 4, 5234-5240.
- Baláž, P., Timko, M., Kovác, J., Bujnáková, Z., Durišin, J., Myndyk, M. and Šepelák, V. (2010) Magnetic properties and sorption activity of mechanically activated magnetite Fe₃O₄. Acta Phisica Polonica A, 118, 1005–1007.
- Bang, S., Korfiatis, G.P. and Meng, X. (2005) Removal of arsenic from water by zero-valent iron. *Journal of Hazardous Materials*, **121**, 61–67.
- Bardos, P., Bone, B., Elliott, D., Harton, N., Henstock, J. and Nathanail, P. (2011) A Risk/Benefit Approach to the Application of Iron Nanoparticles for the Remediation of Contaminated Sites in the Environment. Defra Research Project Final Report.
- Barnes, R.J., Molina, R., Xu, J., Dobson, P.J. and Thompson, I.P. (2013) Comparison of TiO₂ and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of grampositive and gram-negative bacteria. *Journal of Nanoparticle Research*, **15**, 1432–1443.
- Beak, D.G. and Wilkin, R.T. (2009) Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. *Journal of Contaminant Hydrology*, 106, 15–28.
- Beaulieu, B. and Ramirez, R.E. (2013) Arsenic remediation field study using a sulfate reduction and zero-valent iron PRB. *Groundwater Monitoring & Remediation*, **33**, 85–94.
- Bernal, J.O., Dasgupta, D.R. and Mackay, A.L. (1959) The oxides and hydroxides of iron and their structural interrelationships. *Clay Minerals Bulletin*, **4**, 15–30.
- Bissen, M. and Frimmel, F.H. (2003) Arsenic a review Part II: Oxidation of arsenic and its removal in water treatment. *Acta Hydrochimica et Hydrobiologica*, **31**, 97–107.
- Blowes, D.W. and Ptacek, C.J. (1994) System for Treating Contaminated Groundwater. US Patent number US5362394.
- Blowes, D.W., Ptacek, C.J., Benner, S.G., McRae, C.W.T., Bennett, T.A. and Puls, R.W. (2000) Treatment of inorganic contaminants using permeable reactive barriers. *Journal of Contaminant Hydrology*, 45, 123–137.
- Borch, T., Rretzschmar, R., Kappler, A., van Cappellen, Ph., Ginder-Vogel, M., Voegelin, A. and Campbell, K. (2010) Biogeochemical redox processes and their impact on contaminant dynamics. *Environmental Science & Technology*, 44, 15–23.
- Bocher, F., Gehin, A., Ruby, C., Ghanbaja, J., Abdelmoula, M. and Genin, J.M.R. (2004) Coprecipitation of Fe(II-III) hydroxycarbonate green rust stabilised by phosphate adsorption. *Solid State Sciences*, **6**, 117–124.
- Bowles, B.A., Drew, W.M. and Hirth, G. (1983) Application of the slow sand filter process to the treatment of small town water supplies. *Annual Convention Australian Water and Wastewater Association*, **28**, 1–28
- Bradl, H.B. (2005) *Heavy Metals in the Environment: Origin, Interaction and Remediation*. Elsevier Academic Press, Amsterdam.
- Brindley, G.W. and Bish, D.L. (1976) Green rust: a pyroaurite type structure. Nature, 262, 353.
- Burgin, A.J. and Hamilton, S.K. (2007) Have we over-emphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. *Frontiers in Ecology and the Environment*, **5**, 89–96.
- Camargo, J.A. and Alonso, Á. (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. *Environment International*, **32**, 831–849.
- Cao, J. and Zhang, W. (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. *Journal of Hazardous Materials*, B132, 213–219.
- Castellote, M. and Bengtsson, N. (2011) Principles of TiO₂ Photocatalysis. Pp. 5–10 in: *Application of Titanium Dioxide Photocatalysis to Construction Materials* (Y. Ohama and D. Van Gemert, editors). RILEM State-of-the-Art Reports 5.
- CCME (1999) Canadian sediment quality guidelines for the protection of aquatic life: Arsenic. In: *Canadian Environmental Quality Guidelines*. Canadian Council of Ministers of the Environment, Winnipeg.
- Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S. and Bhattacharjee, S. (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. *Water Research*, **36**, 625–632.
- Cheremisinoff, N.P. (2002) Handbook of Water and Wastewater Treatment Technologies. Butterworth-

- Heinemann, USA.
- Choe, S., Liljestrand, H.M. and Khim, J. (2004) Nitrate reduction by zero-valent iron under different pH regimes. *Applied Geochemistry*, **19**, 335–342.
- Con, T.H., Thao, Ph., Dai, T.X. and Loan, D.K. (2013) Application of nano dimensional MnO₂ for high effective sorption of arsenic and fluoride in drinking water. *Environmental Sciences*, 1, 69–77.
- Cornell, R.M. and Schwertmann, U. (2003) *The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses.* VCH. New York.
- Crane, R.A., Dickinson, M., Popescu, I.C. and Scott, T.B. (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. *Water Research*, **45**, 2931–2942.
- Dangerous Substances Directive (1976) Council Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (OJ L 129, 18.05.1976, p. 23).
- Davidson, E.A., Chorover, J. and Dail, D.B. (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: The ferrous wheel hypothesis. *Global Change Biology*, **9**, 228–236.
- Day, Z.B. (2010) Abiotic Nitrate Reduction by Redox Activated Iron-bearing Smectites. Master thesis, University of Illinois, Urbana, 57 pp.
- Delgado, L.F., Charles, F., Glucina, K. and Morlay, C. (2012) The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon a review. *Science of the Total Environment*, **435-436**, 509–525.
- Dickinson, M. and Scott, T.B. (2010) The Application of zero-valentiron nanoparticles for the remediation of a uranium-contaminated waste effluent. *Journal of Hazardous Materials*, **178**, 171–179.
- Doria, F.C., Borges, A., Kim, J.K., Nathan, A., Joo, J.C. and Campos, L.C. (2013) Removal of metaldehyde through photocatalytic reactions using nano-sized zinc oxide composites. *Water Air and Soil Pollution*, 22, 1434–1443.
- Du, Q., Zhang, Sh., Pan, B., Lu, L., Zhang, W. and Zhang, Q. (2013) Bifunctional resin-ZVI composites for effective removal of arsenate through simultaneous adsorption and oxidation. Water Research, 47, 6064–6074.
- Edmunds, W.M., Ahmed, K.M. and Whitehead, P.G. (2015) A review of arsenic and its impacts in groundwater of the Ganges-Brahmaputra-Meghna delta, Bangladesh. *Environmental Science: Processes and Impacts*, **17**, 1032–1046.
- EPA (2009) National Primary Drinking Water Regulations, 816-F-09-0004.
- Ernstsen, V., Gates, W.P. and Stucki, J.W. (1998) Microbial reduction of structural iron in clays A renewable source of reduction capacity. *Journal of Environmental Quality*, **27**, 761–766.
- Farrell, J., Wang, J., O'Day, P. and Conklin, M. (2001) Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environmental Science & Technology, 35, 2026–2032.
- Ficai, D., Andronescu, E., Ficai, A., Voicu, G., Vasile, B., Ionita, B. and Guran, C. (2012) Synthesis and characterization of mesoporous magnetite based nanoparticles. *Current Nanoscience*, **8**, 875–879.
- Fierro, J.L.G. (Editor) (2006) Metal Oxides: Chemistry and Application. Taylor & Francis Group, CRC Press, Boca Raton, Florida, USA.
- Follett, R.F. and Hatfield, J.L. (editors) (2001) Nitrogen in the Environment: Sources, Problems, and Management. Elsevier Science Publishers, Amsterdam.
- Fu, F., Dionysiou, D.D. and Liu, H. (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. *Journal of Hazardous Materials*, **267**, 194–205.
- Fujishima, A., Rao, T.N. and Tryck, D.A. (2000) Titanium dioxide photocatalysis. *Journal of Photochemistry and Photobiology C*, 1, 1–21.
- Gavaskar, A., Tatar, L. and Condit, W. (2005) Cost and Performance Report: Nanoscale Zero-Valent Iron Technologies for Source Remediation. NAVFAC, California, 54 pp.
- Genc-Fuhrman, H., Tjell, J.C., McConchie, D. and Schuiling, O. (2003) Adsorption of arsenate from water using neutralized red mud. *Journal of Colloid and Interface Science*, 264, 327–334.
- Genc-Fuhrman, H., Tjell, J.C. and McConchie, D. (2004a) Adsorption of arsenic from water using activated neutralized red mud. *Environmental Science & Technology*, **38**, 2428–2434.
- Genc-Fuhrman, H., Tjell, J.C. and McConchie, D. (2004b) Increasing the arsenate adsorption capacity of

- neutralized red mud (Bauxsol). Journal of Colloid and Interface Science, 271, 313-320.
- Genc-Fuhrman, H., Bregnhoj, H. and McConchie, D. (2005) Arsenate removal from water using sand—red mud columns. *Water Research*, **39**, 2944—2954.
- Génin, J.M. R., Refait, Ph., Olowe, A.A., Abdelmoula, M., Fall, I. and Drissi, S.H. (1998) Identification of green rust compounds in the aqueous corrosion processes of steels; the case of microbially induced corrosion and use of 78 K CEMS. *Hyperfine Interactions*, 112, 47–51.
- Génin, J.R., Refait, P., Bourrie, G., Abdelmoula, M. and Trolard, F. (2001) Structure and stability of the Fe(II)—Fe(III) green rust "fougerite" mineral and its potential for reducing pollutants in soil solutions. *Applied Geochemistry*, **16**, 559–570.
- Gibert, O., Pablo, J., Cortina, J-L. and Ayora, C. (2010) In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures. *Environmental Geochemistry and Health*, **32**, 373–378.
- Gillham, R.W. and O'Hannesin, S.F. (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 29, 958–967.
- Gimenez, J., Martinez, M., Pablo, J., Rovira, M. and Duroc, L. (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. *Journal of Hazardous Materials*, 141, 575–580.
- Gorski, C.A. (2009) Redox Behavior of Magnetite in the Environment: Moving Towards a Semiconductor Model. PhD thesis, University of Iowa.
- Gorski, C.A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Fernandes, M.M., Hofstetter, T.B. and Sander, M. (2012a) Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. *Environmental Science & Technology*, 46, 9360–9368.
- Gorski, C., Kluepfel, L., Voegelin, A., Sander, M. and Hofstetter, T.B. (2012b) Redox properties of structural Fe in clay minerals: 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. *Environmental Science & Technology*, 46, 9369–9377.
- Gorski., C.A., Nurmi, J.T., Tratnyek, P.G., Hofstetter, T.B. and Scherer, M.L. (2010) Redox behavior of magnetite: implications for contaminant reduction. *Environmental Science & Technology*, 44, 55–60.
- Gu, B., Schmitt, J., Chen, Z., Liang, L. and McCarthy, J.F. (1994) Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. *Environmental Science & Technology*, **28**, 38–46.
- Guilbaud, R., White, M.L. and Poulton, S.W. (2013) Surface charge and growth of sulphate and carbonate green rust in aqueous media. *Geochimica et Cosmochimica Acta*, **108**, 141–153.
- Guo, X. and Chen, F. (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environmental Science & Technology, 39, 6808–6818.
- Hansen, H.C.B. and Koch, C.B. (1998) Reduction of nitrate to ammonium by sulphate green rust: Activation energy and reaction mechanism. *Clay Minerals*, **33**, 87–101.
- Hansen, H.C.B., Borggaard, O.K. and Sorensen, J. (1994) Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. *Geochimica et Cosmochimica Acta*, 58, 2599–2608.
- Hansen, H.C.B., Koch, C.B., Nanckekrogh, H., Borggaard, O.K. and Sorensen, J. (1996) Abiotic nitrate reduction to ammonium: Key role of green rust. *Environmental Science & Technology*, **30**, 2053–2056.
- Hashimoto, K., Irie, H. and Fujishima, A. (2005) TiO₂ photocatalysis: a historical overview and future prospects. *Japanese Journal of Applied Physics*, **44**, 8269–8285.
- Hindmarsh, J.T. and McCurdy, R.F. (1986) Clinical and environmental aspects of arsenic toxicity. CRC Critical Reviews in Clinical Laboratory Sciences, 23, 315–347.
- Hofstetter, T.B., Neumann, A. and Schwarzenbach, R.P. (2006) Reduction of nitroaromatic compounds by Fe(II) species associated with iron rich smectites. *Environmental Science & Technology*, **40**, 235–242.
- Hofstetter, T.B., Schwarzenbach, R.P. and Haderlein, S.B. (2003) Reactivity of Fe(II) species associated with clay minerals. *Environmental Science & Technology*, **37**, 519–528.
- Holm, T.R. and Wilson, S.D. (2006) *Chemical Oxidation for Arsenic Removal*. Illinois State Water Survey, 53 pp.
- Hopenhayn, C. (2006) Arsenic in drinking water: Impact on human health. *Elements*, 2, 103-107.
- Hoseinzadeh, E., Alikhani, M.Y., Samarghandi, M.R. and Shirzad-Siboni, M. (2014) Antimicrobial potential of

- synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria. *Desalination and Water Treatment*, **52**, 4969–4976.
- Huang, C.P., Wang, H.W. and Chiu, P.C. (1998) Nitrate reduction by metallic iron. *Water Research*, 32, 2257–2264.
- Huang, Y.H. and Zhang, T.C. (2002) Kinetics of nitrate reduction by iron at near neutral pH. *Journal of Environmental Engineering ASCE*, **128**, 604–611.
- Illés, E. and Tombácz, E. (2004) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **230**, 99–109.
- Inamori, Y. and Fujimota, N. (2007) Microbial/biological contamination of water. In: *Water Quality and Standards* (S. Kubota and Y. Tsuchiya, editors). *Encyclopedia of Life Support Systems* (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK. (http://www.eolss.net)
- Jayaramudu, T., Raghavendra, G.M., Varaprasad, K., Sadiku, R. and Raju, K.M. (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: For inactivation of bacteria. *Carbohydrate Polymers*, 92, 2193–2200.
- Joshi, A. and Chaudhuri M. (1996) Removal of arsenic from ground water by iron oxide-coated sand. *Journal of Environmental Engineering*, **122**, 769–771.
- Jain, C.K. and Singh, R.D. (2012) Technological options for the removal of arsenic with special reference to South East Asia. *Journal of Environmental Management*, **107**, 1–18.
- Jeong, J., Kim, H., Kim, J. and Park, J. (2012) Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell. *Chemosphere*, 89, 172–178.
- Jones, O.A.H., Voulvoulis, N. and Lester, J.N. (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. *Water Research*, 36, 5013-5022.
- Karn, B, Kuiken, T. and Otto, M. (2009) Nanotechnology and *in situ* remediation: A review of the benefits and potential risks. *Environmental Health Perspectives*, **117**, 1823–1831.
- Khaled, E.M. and Stucki, J.W. (1991) Iron oxidation effects on cation fixation in smectites. *Soil Science Society of America Journal*, **55**, 550–554.
- Khraisheh, M., Kim, J., Campos, L., Al-Muhtaseb, A.H., Al-Hawari, A., Al Ghouti, M. and Walker, G.M. (2014) Removal of pharmaceutical and personal care products (PPCPs) pollutants from water by novel TiO₂-coconutshell Powder (TCNSP) composite. *Journal of Industrial and Engineering Chemistry*, 20, 979–987.
- Kinniburgh, D.G. and Smedley, P.L. (2001) Arsenic Contamination of Groundwater in Bangladesh. British Geologic Survey Report WC/00/19 (www.bgs.ac.uk/arsenic/Bangladesh).
- Konstantinou, I.K. and Albanis, T.A. (2003) Photocatalytic transformations of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. *Applied Catalysis B: Environmental*, 42, 319–335.
- Koparal, A.S. and Outveren, U.B. (2002) Removal of nitrate from water by electroreduction and electrocoagulation. *Journal of Hazardous Materials*, **89**, 83–94.
- Korte, N.E. and Fernando, Q. (1991) A review of arsenic(III) in groundwater. Critical Reviews in Environmental Control, 21, 1–39.
- Kostka, J.E., Wu, J., Nealson, K.H. and Stucki, J.W. (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. *Geochimica et Cosmochimica Acta*, **63**, 3705–3713.
- Kumar, A.V.R., Singh, R. and Nigam, R.K. (1999) Mössbauer spectroscopy of corrosion products of mild steel due to microbiologically influenced corrosion. *Journal of Radioanalytical and Nuclear Chemistry*, 242, 131–137.
- Lackovic, J.A., Nikolaidis, N.P. and Dobbs, G.M. (2000) Inorganic arsenic removal by zero-valent iron. *Environmental Engineering Science*, **17**, 29–39.
- Lakshmanan, D., Clifford, D.A. and Samanta, G. (2008) Arsenic Coagulation with Iron, Aluminum, Titanium, and Zirconium Salts. WERC and AWWA Research Foundation and U.S. Department of Energy, USA.
- Lanson, B., Drits, V.A., Silvester, E.J. and Manceau, A. (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. *American Mineralogist*, 85, 826–838.
- Lear, P.R. and Stucki, J.W. (1989) Effects of iron oxidation state on the specific surface area of nontronite. Clays

- and Clay Minerals, 37, 547-552.
- Legube, B., Croue, J.P., De Latt, J. and Dore, M. (1989) Ozonation of an extracted aquatic fulvic acid: theoretical and practical aspects. *Ozone: Science and Engineering*, **11**, 69–91.
- LENNTECH (a) Organic compounds in freshwater. (http://www.lenntech.com/aquatic/organic-pollution.htm) LENNTECH (b) Disinfectants Copper-silver ionization.
- (http://www.lenntech.com/processes/disinfection/chemical/disinfectants-copper-silver-ionization.htm)
- Leupin, O.X. and Hug, S.J. (2005) Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. *Water Research*, **39**, 1729–1740.
- Li, X., Elliott, D.W. and Zhang, W. (2006) Zero-valent iron nanoparticles for abatement of environmental pollutions: Materials and engineering aspects. *Critical Reviews in Solid State and Materials Sciences*, 31, 111–122.
- Liu, D., Dong, H., Bishop, M.E., Zhang, J., Wang, H., Xie, S., Wang, S., Huang, L. and Eberl, D.D. (2012) Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. *Geobiology*, 10, 150–162.
- Lien, H.L. and Wilkin, R.T. (2005) High-level arsenite removal from groundwater by zero-valent iron. *Chemosphere*, **59**, 377–386.
- Lin, Y.E., Stout, J.E. and Yu, V.L. (2001) Control of *Legionella*. Pp. 505–512 in: *Disinfection, Sterilization, and Preservation* (S.S. Block, editor), Lippincott Williams & Wilkins.
- Lin, Y.E., Vidic, R.D., Stout, J.E. and Yu, V.L. (2002) Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling *Legionella pneumophila*. *Applied and Environmental Microbiology*, **68**, 2711–2715.
- Liqiang, J., Yichun, Q., Baiqi, W., Shudan, L., Baojiang, J., Libin, Y., Wei, F., Honggang, F. and Jiazhong, S. (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials & Solar Cells, 90, 1773-1780.
- Liqiang, J., Xiaojun, S., Jing, S., Weimin, C., Zili, X., Yaoguo, D. and Honggang, F. (2003) Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis. *Solar Energy Materials & Solar Cells*, 79, 133–151.
- Lo, S.L., Jeng, H.T. and Lai, C.H. (1997) Characteristics and adsorption properties of iron-coated sand. Water Science & Technology, 35, 63-70.
- Luo, Y., Liu, J., Xia, X., Li, X., Fang, T., Li, S., Ren, Q., Li, J. and Jia, Z. (2007) Fabrication and characterization of TiO₂/short MWNTs with enhanced photocatalytic activity. *Materials Letters*, **61**, 2467–2472.
- Ma, N., Fan, X., Quan, X. and Zhang, Y. (2009) Ag-TiO₂/HAP/Al₂O₃ bioceramic composite membrane: Fabrication, characterization and bactericidal activity. *Journal of Membrane Science*, **336**, 109–117.
- Madaeni, S.S. and Ghaemi, N. (2007) Characterization of self-cleaning RO membranes coated with TiO₂ particles under UV irradiation. *Journal of Membrane Science*, **303**, 221–233.
- Manning, B.A., Hunt, M.L., Amrhein, C. and Yarmoff, J.A. (2002) Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. *Environmental Science & Technology*, **36**, 5455–5461.
- Marmier, N., Delisée, A. and Fromage, F. (1999) Surface complexation modeling of Yb(III), Ni(II), and Cs(I) sorption on magnetite. *Journal of Colloid and Interface Science*, **201**, 54–60.
- Masscheleyn, P.H., Delaune, R.D and Patrick Jr., W.P. (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. *Environmental Science & Technology*, 25, 1414–1419.
- Matheson, L.J. and Tratnyek, P.G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. *Environmental Science & Technology*, **28**, 2045–2053.
- McGuire, M.J. Ferguson, D.W. and Gramith, J.T. (1990) Overview of ozone technology for organics control and disinfection. Conference proceedings, AWWA Seminar on Practical Experiences with Ozone for Organics Control and Disinfection, Cincinnati, Ohio, USA.
- Meng, X.G., Bang, S.B. and Korfiatis, G.P. (2000) Effect of silicate, sulfate and carbonate on arsenic removal by ferric hydroxide. *Water Research*, **34**, 1255–1261.
- Meng, X.G., Korfiatis, G.P., Bang, S.B. and Bang, K.W. (2002) Combined effects of anions on arsenic removal by iron hydroxides. *Toxicology Letters*, **133**, 103–111.
- Miehr, R., Tratnyek, M.M., Bandstra, J.Z., Scherer, M.M., Alowitz, M.J. and Bylaska, E.J. (2004) Diversity of contaminant reduction reactions by zerovalent iron: Role of the reductate. *Environmental Science &*

- Technology, 38, 139-147.
- Mishra, S., Dwivedi, S.P. and Singh, R.B. (2010) A review on epigenetic effect of heavy metal carcinogens on human health. *The Open Nutraceuticals Journal*, **3**, 188–193.
- Mohan, D. and Pittman, C.U. Jr. (2007) Arsenic removal from water/wastewater using adsorbents a critical review. *Journal of Hazardous Materials*, **142**, 1–53.
- Mondal, P., Majumder, C.B. and Mohanty, B. (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. *Journal of Hazardous Materials*, **B137**, 464–479.
- Moore, J.N., Walker, J.R. and Hayes, T.H. (1990) Reaction scheme for the oxidation of As(III) to arsenic(V) by birnessite. *Clavs and Clav Minerals*, **38**, 549–555.
- Mosharraf Hossain, M., Nazmul Islam, K.M. and Rahman, I.M.M. (2012) An Overview of the Persistent Organic Pollutants in the Freshwater System. Pp. 455–470 in: *Ecological Water Quality Water Treatment and Reuse* (K. Voudouris, editor). InTech, Available from: http://www.intechopen.com/books/ecological-water-quality-water-treatment-and-reuse/an-overview-of-the-persistent-organic-pollutants-in-the-freshwater-system
- Muftikian, R., Fernando, Q. and Korte, N. (1995) A method for the rapid dechlorination of low-molecular-weight chlorinated hydrocarbons in water. Water Research, 29, 2434–2439.
- National Research Council (1999) Arsenic in Drinking Water. National Academy Press, Washington, D.C.
- Nesbitt, H.W., Canning, G.W. and Bancroft, G.M. (1998) XPS study of reductive dissolution of 7Å-birnessite by H₃AsO₃ with constraints on reaction mechanism. *Geochimica et Cosmochimica Acta*, **62**, 2097–2110.
- Neumann, A., Sander, M. and Hofstetter, T.B. (2011) Redox properties of structural Fe in smectite clay minerals. Pp. 361–379 in: *Aquatic Redox Chemistry* (P.G. Tratnyek, T.J. Grundl, S.B. Haderlein, editors). ACS Symposium Series, **1071**. Washington, DC.
- NSF International (2001) Environmental Technology Verification Report: Removal of Arsenic in Drinking Water. Hydranautics ESPA2-4040 Reverse Osmosis Membrane Element Module. NSF 01/20/EPADW395, March 2001.
- Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Lee Penn, R. and Driessen, M.D. (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. *Environmental Science & Technology*, 39, 1221–1230.
- O'Loughlin, E.J., Kelly, S.D., Cook, R.E., Csencsits, R. and Kemner, K.M. (2003) Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO₂ nanoparticles. *Environmental Science & Technology*, 37, 721–727.
- Olson, M.R., Sale, T.C., Shackelford, C.D., Bozzini, C. and Skeean, J. (2012) Chlorinated solvent source-zone remediation via ZVI-Clay soil mixing: 1-Year results. *Ground Water Monitoring & Remediation*, doi: 10.1111/j1745-6592.2012.01391.x
- Pal, A., Gin, K.Y.H., Lin, A.Y.C. and Reinhard, M. (2010) Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 8, 6062–6069.
- Pang, S.C., Chin, S.F. and Anderson, M.A. (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. *Journal of Colloid and Interface Science*, 311, 94–101.
- Postma, D., Boesen, C., Kristiansen, H. and Larsen, F. (1991) Nitrate reduction in an unconfined sandy aquifer water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27, 2027–2045.
- Rao, M.P. and Rao, P.S.C. (1997) Organic pollutants in groundwater: 1. Health effects. *Soil Science Fact Sheet SL-54*, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA.
- Rao, P., Mak, M.S.H., Liu, T., Lai, K.C.K. and Lo, I.M.C. (2009) Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. *Chemosphere*, 75, 156–162.
- Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. *Environmental Science & Technology*, 32, 344–349.
- Reynolds, T.D. and Richards, P.A. (1996) *Unit Operations and Processes in Environmental Engineering, 2nd ed.* PWS Publishing Co., Boston, London, 798 pp.

- Richardson, S.D., Thruston, Jr, A.D. and Collette, T.W. (1996) Identification of TiO₂/UV Disinfection Byproducts in Drinking Water. *Environmental Science & Technology*, **30**, 3327–3334.
- Riley, R.G., Zachara, J.M. and Wobber, F.J. (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. U.S. Department of Energy, Washington, D.C.
- Ritter, L., Solomom, K.R., Forget, J., Stemeroff, M. and O'Leary, C. (2007) *Persistant Organic Pollutant*. United Nations Environment Programme. Retrieved 2007-09-16.
- Roberts, L.C., Hug, S.J., Ruettimann, T., Billah, M., Khan, A.W. and Rahman, M.T. (2004) Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations. *Environmental Science & Technology*, 38, 307–315.
- Ruby, C., Gehin, A., Abdelmoula, M., Genin, J.M.R. and Jolivet, J.P. (2003) Coprecipitation of Fe(II) and Fe(III) cations in sulphated aqueous medium and formation of hydroxysulphate green rust. *Solid State Sciences*, **5**, 1055–1062.
- Ruby, C., Åssa, R., Gehin, A., Cortot, J., Abdelmoula, M. and Genin, J.M. (2006) Green rusts synthesis by coprecipitation of FeII– FeIII ions and mass-balance diagram. *Comptes Rendus Geoscience*, **338**, 420–432.
- Ruyters, S., Mertens, J., Vassilieva, E., Dehandschutte, R.B., Poffijn, A. and Molders, E. (2011) The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. *Environmental Science & Technology*, **45**, 1616–1622.
- Santos-Carballal, D., Roldan, A., Grau-Crespo, R. and de Leeuw, N.H. (2014) ADFT study of the structures, stabilitys and redox behaviour of the major surfaces of magnetite Fe₃O₄. *Physical Chemistry Chemical Physics*, **16**, 21082–21095.
- Sapkota, A., Anceno, A.J., Baruah, S., Shipin, O.V. and Dutta, J. (2011) Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. *Nanotechnology*, 22, 215703.
- Sasaki, K., Nukina, S., Wilopo, W. and Hirajima, T. (2008) Removal of arsenate in acid mine drainage by a permeable reactive barrier bearing granulated blast furnace slag: Column study. *Materials Transactions*, 49, 835–844.
- Sayles, G., You, G., Wang, M. and Kupferle, M.J. (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. *Environmental Science & Technology*, **31**, 3448–3454.
- Schrick, B., Hydutsky, B.W., Blough, J.L. and Mallouk, T.E. (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. *Chemistry of Materials*, **16**, 2187–2193.
- Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U. and Wehrli, B. (2010) Global water pollution and human health. *Annual Review of Environmental Research*, **35**, 109–136.
- Schwertmann, U. and Fechter, H. (1994) The formation of green rust and its transformation to lepidocrocite. *Clay Minerals*, **29**, 87–92.
- Self, J.R. and Waskom, R.M. (2008) *Nitrates in Drinking Water*. Colorado State University, Fact Sheet N0. 517. Shiomi, K. (1994) Arsenic in marine organisms: Chemical forms and toxicological aspects. Pp. 261–282 in: *Arsenic in the Environment: Part II, Human Health and Ecosystem Effects* (J.O. Nriagu, editor). John Wiley & Sons, Inc., New York.
- Sivavec, T.M., Mackenzie, P.D., Horney, D.P. and Baghel, S.S. (1997) Redox-active media for permeable reactive barriers. Pp. 753–759 in *International Containment Technology Conference and Exhibition*, St. Petersburg, FL, USDOE.
- Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. *Applied Geochemistry*, **17**, 517–568.
- Stout, J.E. and Yu, V.L. (2003) Experiences of the first 16 hospitals using copper—silver ionization for Legionella control: Implications for the evaluation of other disinfection modalities. *Infection Control Hospital and Epidemiology*, **24**, 563–568.
- Stucki, J.W. (2005) Iron redox processes in smectites. Pp. 395–406 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Elsevier, Amsterdam.
- Stucki, J.W. and Getty, P.J. (1986) Microbial reduction of iron in nontronite. Agronomy Abstracts, 279.
- Stucki, J.W., Golden, D.C. and Roth, C.B. (1984) Preparation and handling of dithionite-reduced smectite suspensions. *Clays and Clay Minerals*, **32**, 191–197.
- Stucki, J.W., Komadel, P. and Wilkinson, H.T. (1987) Microbial reduction of structural iron(III) in smectites. Soil Science Society of America Journal, 51, 1663–1665.

- Su, C. and Puls, R.W. (2001a) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. *Environmental Science & Technology*, 35, 1487–1492.
- Su, C. and Puls, R.W. (2001b) Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. *Environmental Science & Technology*, 35, 4562–4568.
- Su, C. and Puls, R.W. (2003) In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. *Environmental Science & Technology*, 37, 2582–2587.
- Su, K., Radian, A., Mishael, Y., Yang, L. and Stucki, J.W. (2012) Nitrate reduction by redox-activated polydiallyldimethylammonium-exchanged ferruginous smectite. Clays and Clay Minerals, 60, 464-472.
- Subramanian, K.S., Viraraghavan, T., Phommavong, T. and Tanjore, S. (1997) Manganese greensand for removal of arsenic in drinking water. *Water Quality Research Journal Canada*, **32**, 551–561.
- Sun, G. (2004) Arsenic contamination and arsenicosis in China. Toxicology and Applied Pharmacology, 198, 268–271.
- Sun, Z.X., Su, F.W., Forsling, W. and Samskog, P.O. (1998) Surface characteristics of magnetite in aqueous suspension. *Journal of Colloid and Interface Science*, **197**, 151–159.
- Sun, H., Wang, L., Zhang, R., Sui, J. and Xu, G. (2006) Treatment of groundwater polluted by arsenic compounds by zero valent iron. *Journal of Hazardous Materials*, **B129**, 297–303.
- Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T. and Biswas, P. (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. *Nanoscale Research Letters*, 6, 27–35.
- Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R. and Webb, S.M. (2004) Biogenic manganese oxides: properties and mechanisms of formation. *Annual Review of Earth and Planetary Sciences*, **32**, 287–328.
- Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J. (2012) Heavy metals toxicity and the environment. *Molecular, Clinical and Environmental Toxicology Experientia Supplementum*, **101**, 133–164.
- Tratnyek, P.G., Scherer, M.M., Johnson, T.J. and Matheson, L.J. (2003) Permeable reactive barriers of iron and other zerovalent metals. Pp. 371–421 in: *Chemical Degradation Methods for Wastes and Pollutants; Environmental and Industrial Applications. Environmental Science and Pollution Control* (M.A. Tarr, editor). Marcel Dekker, New York.
- Till, B.A., Weathers, L.I. and Alverez, P.J.J. (1998) Fe(0)-supported autotrophic denitrification. *Environmental Science & Technology*, **32**, 634–639.
- Tournassat, C., Charlet, L., Bosbach, D. and Manceau, A. (2002) Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. *Environmental Science & Technology*, **36**, 493–500.
- Tyrovola, K., Nikolaidis, N.P., Veranis, N., Kallithrakas-Kontos, N. and Koulouridakis, P.E. (2006) Arsenic removal from geothermal waters with zero-valent iron effect of temperature, phosphate and nitrate. *Water Research*, **40**, 2375–2386.
- UNEP (2010) Stockholm Convention on Persistent Organic Pollutants. Available from: http://chm.pops.int/ Convention/tabid/54/language/en US/Default.aspx#convtext, 2010.
- USEPA (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA 600/R-98/125, DC 20460: U.S. Environmental Protection Agency, Washington.
- USEPA (2003) Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-water Remediation; Volume 1, Performance Evaluations at Two Sites. USEPA National Risk Management Research Laboratory, EPA/600/R-03/045a, Cincinnati, Ohio, USA.
- USEPA (2008a) Nanotechnology for Site Remediation Fact Sheet. Solid Waste and Emergency Response: Fact Sheet. National Service Center for Environmental Publications.
- USEPA (2008b) Office of Superfund, Remediation and Technology Innovation. Nanotechnology: Practical Considerations for Use in Groundwater Remediation. National Association of Remedial Project Managers Annual Training Conference. Portland, Oregon, USA.
- USEPA (2008c) Selected Sites Using or Testing Nanoparticles for Remediation. https://clu-in.org/download/

- remed/nano-site-list.pdf
- Vaughan, D.J. (2006) Arsenic. *Elements*, 2, 71-75.
- Vu, K.B., Kaminski, M.D. and Nue, L. (2003) Review of arsenic removal technologies for contaminated groundwaters. Report ANL-CMT-03/2, United States Department of Energy, USA. www.ipd.anl.gov/ anlpubs/2003/05/46522.pdf
- Wang, P. and Liu, D. (2012) Physical and chemical properties of sintering red mud and Bayer red mud and the implications for beneficial utilization. *Materials*, 5, 1800–1810.
- Welch, A.H. and Stollenwerk, K.G. (2003) Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow.
- Westerhoff, P. (2003) Reduction of nitrate, bromate and chlorate by zero valent iron (Fe⁰). *Journal of Environmental Engineering*, **129**, 10–16.
- White, A. and Peterson, M. (1996) Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides. *Geochimica et Cosmochimica Acta*, **60**, 3799–3814.
- Wilkin, R.T., Acree, S.D., Ross, R.R., Beak, D.G. and Lee, T.R. (2009) Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. *Journal of Contaminant Hydrology*, 106, 1–14.
- WHO (2001) Arsenic and arsenic compounds. Environmental Health Criteria 224. International Programme on Chemical Safety, Geneva, Switzerland.
- WHO (2003a) Arsenic, Drinking-water and Health Risk Substitution in Arsenic Mitigation: A Discussion Paper. SDE/WSH/03.06. Prepared by G. Howard, Loughborough University, UK.
- WHO (2003b) Silver in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality.
- WHO (2011) Guidelines for Drinking-water Quality: Nitrate and nitrite in drinking-water, 4th edition. World Health Organization, Geneva, Switzerland.
- Yan, W., Lien, H., Koel, B.E. and Zhang, W. (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. *Environmental Science: Processes and Impacts*, **15**, 63–77.
- Yavuz, C.T., Mayo, J.T., Suchecki, C., Wang, J., Ellsworth, A.Z., D'Couto, H., Quevedo, E., Prakash, A., Gonzalez, L., Nguyen, C., Kelty, C. and Colvin, V.L. (2010) Pollution magnet: nano-magnetite for arsenic removal from drinking water. *Environmental Geochemistry and Health*, 32, 327–334.
- Yean, S., Cong, L., Yavuz, C.T., Mayo, J.T., Yu, W.W., Colvin, V.L. and Tomson, M.B. (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. *Journal of Materials Research*, 20, 3255–3264.
- Yoon, Y., Westerhoff, P., Snyder, S.A. and Esparza, M. (2003) HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynylestradiol on powdered activated carbon. Water Research, 37, 3530–3537.
- Young, G.K., Bungay, H.R., Brown, L.M. and Parsons, W.A. (1964) Chemical reduction of nitrate in water. *Journal of Water Pollution Control Federation*, **36**, 395–398.
- Yu, J. and Yu, D. (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environmental Science & Technology, 42, 4902–4907.
- Yu, Z.R., Peldszus, S. and Huck, P.M. (2008) Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound – naproxen, carbamazepine and nonylphenol – on activated carbon. *Water Research*, 42, 2873–2882.
- Zhang, X., Zhou, M. and Lei, L. (2005) Preparation of an Ag-TiO₂ photocatalyst coated on activated carbon by MOCVD. *Materials Chemistry and Physics*, **91**, 73–79.
- Zhu, H., Jia, Y., Wu, X. and Wang, H. (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. *Journal of Hazardous Materials*, **172**, 1591–1596.
- Zhu, N., Luan, H., Yuan, S., Chen, J., Wu, X. and Wang, L. (2010) Effective dechlorination of HCB by nanoscale Cu/Fe particles. *Journal of Hazard Materials*, **176**, 1101–1105.
- Zhu, N., Yi-Li and Zhang, F. (2011) Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles. *Chemical Engineering Journal*, **171**, 919–925.