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ABSTRACT 
 
Cell therapy products are frequently developed and produced without incorporating cost 

considerations into process development, contributing to prohibitively costly products. Herein 

we contextualize individual process development decisions within a broad framework for cost 

efficient therapeutic manufacturing. This roadmap guides the analysis of Cost of Goods (COG) 

arising from tissue procurement, material acquisition, facility operation, production, and 

storage. We present the specific COG considerations related to each of these elements as 

identified through a 2013 International Society for Cellular Therapy (ISCT) COG survey, 

highlighting the differences between autologous and allogeneic products. Planning and 

accounting for COG at each step in the production process could reduce costs, allowing for 

more affordable market pricing to improve the long term viability of the cell therapy product 

and facilitate broader patient access to novel and transformative cell therapies.    
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INTRODUCTION 
 

Current and expected pricing for approved and late-stage cellular therapy products reflect the 

high Cost of Goods (COG) used today to produce most therapies (Fig. 1). Optimizing COG 

will promote the development and commercialization of more affordable cell therapy products, 

which in turn are more likely to achieve reimbursement from payers and gain broader adoption 

for patient treatment 1. Ideally, the economic aspects of a product will be addressed from the 

very beginning of development to enable a viable, profitable product lifecycle since process 

changes become more difficult as development progresses. A robust cell therapy business 

model cannot be fully realized without addressing every cost-relevant "needle-to-needle" 

consideration. Starting from cell sourcing through to manufacturing, distribution, and finally 

clinical application, COG optimization aims to minimize the cost per unit of cells and 

ultimately the cost per dose while maintaining product quality.  

In June 2013, a survey was distributed to the ISCT membership asking about the COG 

breakdown in therapies under development by member organizations (See Fig S1 for survey 

overview). The survey results indicated that commonalities can be drawn between process 

components of similar cell products. The two main cell therapy modalities, allogeneic (donor 

to patient) and autologous (patient to self) necessitate different "needle-to-needle" pathways 

(Fig. 2). The production process differences between manufacturing strategies used for 

allogeneic products and the patient-specific manufacturing strategies used for autologous 

products result in distinct COG optimization decisions. Notably, allogeneic products benefit 

highly from economies of scale in a similar manner to traditional pharmaceuticals, whereas 

costs are relatively consistent as autologous products are scaled out. 
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 In this paper, we outline a COG roadmap of key considerations and objectives for each step in 

cell manufacturing to plan for reduced COG, enable lower product pricing, and improve patient 

access. Designed to inform early process development of the connection between each 

development decision and the eventual cost-efficiency of the final therapy, this roadmap 

augments the ISCT COG survey results with relevant published references on how to address 

the challenges encountered with each manufacturing step (Fig. 3). 

 

COG Impact Analysis for Cell Therapy Products  

When beginning translation of a preclinical process to clinical production, the various 

manufacturing methods available can significantly impact the final COG at commercial scale. 

Impact analysis is a valuable tool to understand the sensitivity of the final COG in response to 

different manufacturing strategies and product demand scenarios forecast at the end of the 

expected decade of development of a cell therapy 2-5. By comparing future manufacturing 

scenarios to the current manufacturing process, this analysis will identify elements of both 

manufacturing strategy and development to prioritise for COG reduction. Common 

development priorities can include development of new technologies, distribution systems, 

shelf life enhancement, and closed system solutions and automation. Manufacturing strategy 

priorities often include CMO usage, number of manufacturing sites, central or decentralized 

manufacturing, and intermediate demand transition facility usage. Importantly, a quantitative 

understanding of the influence of process changes on the key factors that ensure product 

quality using frameworks such as Quality by Design should guide the decision to incorporate 

these COG reduction steps (described by Lipsitz et al 6). 
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Analysis of the COG roadmap early in development can help determine the impact of different 

scenarios on achieving a future cost-optimal process. These scenarios should consider 

variations such as differences in future demand, process automation, shorter versus longer shelf 

life of final product, and point of care needs. Comparison of different scenarios will show 

which considerations have the highest impact on the overall COG and on quality risk, specific 

for each cell product. To analyze manufacturing COG, processes and outcomes for each 

manufacturing step should be carefully described. These steps include tissue procurement, 

material acquisition, facility operation, production, and storage (Table 1). As clinical 

development progresses, the model predicting the impact of these decisions on final COG can 

be updated for relevance and accuracy. The following sections provide insights from the ISCT 

COG survey and relevant literature into the cost considerations associated with each of these 

steps. 

 

Tissue Procurement  

Tissue stability during transport from the site of origin to processing can have high COG 

consequences. In many cases, cadaveric tissue must be processed when it becomes available, 

requiring a processing facility to operate continuously.  Fresh material drawn from clinical 

sites will be shipped Monday to Friday.  Patient procedures such as apheresis or bone marrow 

recoveries are preferred by the patients to be late in the week, allowing them the weekend to 

recover before work. These concerns affect COG through facility utilization and labor demand 

profiles, and the supply chain logistic must be optimized to minimize this impact.  

Tissue procurement considerations differs greatly between allogeneic and autologous therapies 

(highlighted in Table 2). In allogeneic therapies, cells for routine manufacturing are sourced 
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from specially recruited donors. The cost to recruit and incentivize each donation is directly 

related to the size of the qualifying donor pool. Donors must be willing and able to undergo 

stringent screening procedures to protect both the donor and the product recipient. Additionally, 

it is critical that tissue and donor screening adheres to regulatory agency donor and 

procurement guidelines for all markets where the cells may be ultimately used. Failure to do so 

can result in therapies unsuitable for use in certain markets. As well, one must determine the  

need for and frequency of primary cell culture qualification, which poses a significant cost on 

production. 

In autologous therapies, consistent acquisition processes for multiple patients at multiple 

clinics must be established and controlled, since common techniques such as bone marrow 

acquisition and apheresis can be highly operator dependent 7-10. Variability in acquisition is 

compounded by variability in donor samples 11-13, both of which must be understood in a 

manufacturing context to ensure consistent cell therapy product quality. Notably, development 

is often conducted on healthy samples, without indication of how diseased samples will 

perform until phase I trials, introducing manufacturing risk that may impact timelines and 

development costs. The regulatory requirements of ensuring GMP compliant, sterile 

procurement, handling, preservation, and storage of the starting materials also add significant 

costs to tissue acquisition. In certain cases, the drugs required to procure the desired tissue (e.g. 

mobilisation of stem cells to peripheral blood) may represent an important cost consideration. 
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Material Acquisition 

Overall, forty percent of ISCT COG survey participants estimated that greater than 20% of 

their COG are due to media (12% of respondents estimated the COG to be between 20-30%; 

24% estimated between 30-50%; and 4% estimated a COG greater than 50%). On average, the 

estimated materials costs accounted for 36% of overall manufacturing COG. In addition, 92% 

of survey participants have considered using serum-free or xeno-free media, however, greater 

than 50% of participants did not understand the cost-impact of switching to serum-free or 

xeno-free media. 

Cell growth media components can be divided into two functions: maintaining basic functions 

required for cell survival and maintaining advanced functions required for cell state and 

differentiation. Basal media which allow for cell survival and growth are well established, and 

the growth factors, cytokines, and signaling molecules required for cell state and differentiation 

account for the major media costs. While many cells (notably hMSCs) have been generated 

through conventional static adherent cultures in the presence of fetal bovine serum (FBS) for 

clinical applications 14, these methods are not appropriate to meet the expected future demand 

for safe, quality-assured hMSCs for global human therapeutic use. FBS is a complex and 

undefined mixture of proteins, signaling molecules, and other bioactive factors that vary in 

concentration and activity between batches. Furthermore, a significant supply chain challenge 

exists for sourcing sufficient FBS to meet demand as these products approach commercial 

scale production. Sustainability of the supply chain can often be a critical risk and cost driver. 

Single-use disposables incur a significant cost per patient in patient specific therapies. For 

example, CD34 microbeads and a single-use cell sorting tube-set for hematopoietic therapies 
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can cost >$7000 simply to purify the starting cells for further processing (See Table 3 for more 

examples).  

 

Facility Operation and Labor 

Of ISCT COG survey respondents, 94% used fresh starting material and planned to deliver 

fresh product, which can be challenging to manufacture due to stability and contamination 

issues. 68% of respondents planned to manufacture internally in their own facility, though 33% 

of respondents did not know what this would cost. 

Facility costs are strongly affected by the choice between a “fresh” (non-cryopreserved) 

product and a cryopreserved product amenable to longer storage and transport times. A fresh 

product component restricts a facility’s market reach and ties manufacturing to the patient and 

clinic schedules, possibly necessitating a multicenter approach. In contrast, cryopreserved 

products can be manufactured at a single centralized site which meets the regulatory 

requirements in each primary market to be considered (Table 4). 

This choice between centralized and multicenter manufacturing impacts several cost 

considerations, such as the logistics of future capacity increases and the potential hurdle of 

technology transfer from one facility to another 15, 16 (Table 4). This choice can be made by 

first determining the demand forecast for the marketed product, which dictates the scale of 

manufacturing required. This informs whether manufacturing will be outsourced to a contract 

manufacturing organization (CMO), done internally, or divided between the two options. 

Importantly, if multiple sites will be required, analytical tools will be needed to ensure 

comparability in manufactured product between sites.  
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In addition to distinguishing between fresh and frozen products, the level of cell  manipulation 

influences facility costs. Autologous, minimally-manipulated products do not require costly 

GMP processing, while more-than minimally-manipulated products would incur these costs 17. 

Allogeneic therapies are all manipulated cell products where facility costs can be reduced on 

per unit basis as the process is scaled up. Strategies for cost-effective progressive batch-size 

increases should be implemented when moving towards commercial production scales.  

 

Labor is a dominant cost factor: 47% of ISCT COG survey respondents reported >30% of 

COG were due to labor costs with processes comprising between 2 to 15 steps. Respondents 

indicated the need for automated processing to increase productivity and reduce labor costs.  

Allogeneic products benefit from the ability to share labor costs in a batch across many patient 

doses. Autologous therapies often include complex manipulations requiring skilled labor and 

long production times, increasing cost per dose. Increasing demand for autologous products 

can only be met by increasing the number of batches. Autologous products with a large manual 

component can also struggle with  scale-out from the lack of access to skilled labor either due 

to geographic issues or, when establishing new manufacturing sites, due to disruption of the 

core manufacturing team to enable technology transfer. Thus, automation of autologous 

processes has emerged as a tactic to alleviate the high COG associated with manual methods 

requiring a skilled workforce. 

A related key cost driver is the development of functionally closed systems. By closing 

manufacturing systems, non-classified spaces can be used instead of more costly class 10 000 

(Grade C, / ISO 7) facilities. Gowning and training costs are also reduced (See Fig. 4), and 
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decentralized manufacturing systems can more readily be incorporated (Table 4). Key 

considerations for labor costs are outlined in Table 5 

 

Production: Scaling Up Cell Expansion 
 
60% of respondents planned to use fewer than 3*106 cells per kg dose. 64% planned to launch 

with fewer than 50 000 doses per year as their commercial target, and 43% planned launch 

with fewer than 10 000 doses per year as their commercial target. 38% of the ISCT COG 

survey respondents indicated that cell processing is the rate-limiting factor in manufacturing, 

contributing substantially to manufacturing costs.  

To provide commercial quantities of allogeneic, clinical-grade cell therapy products as well as 

many patient-specific, expansion-dependent therapy products,, an efficient cell expansion 

method that reliably produces high quality at acceptable cost is required 18. Trade-offs will 

occur between the cost of developing process knowledge to ensure product quality in 

manufacturing and scale-up versus the costs of discarding batches that do not meet 

specifications. Quality by Design is a risk-based framework that can guide cell therapy process 

development and scale-up to identify and control  the properties most likely to influence 

product safety and efficacy 6. By overlaying a quantitative understanding of how process 

parameters affect cell quality with the costs of gaining that knowledge and the costs associated 

with not having this knowledge, Quality by Design process development closely complements 

COG reduction strategies. 

Key considerations for technology selection when scaling up cell expansion are highlighted in 

Table 6. The anticipated demand for large numbers of cells will necessitate bioreactor 

production methods, an alternative to traditional planar culture. Different bioreactor types and 

scales can be tailored to different operating sizes and target doses 19. Simaria et al. 3 present a 
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detailed process economics analysis for allogeneic cell expansion that predicts dose-demand 

combinations when planar technologies would cease to be cost-effective, as well as target 

performance capabilities of microcarrier-based systems for the industry to be sustainable for 

high demand, high dose (109 cells/dose) scenarios 3. Technology S-curves are used to describe 

the development of new technologies in several industries by depicting the introduction, 

adoption, and maturation of the new technology 20. An S-curve can be used to visualize the 

performance trajectory of various cell expansion technology in terms of billion cells achieved 

per lot against R&D effort. Published S-curve analyses3 highlight that each progressive 

technology covers approximately ten fold greater performance (billion cells per lot) before 

being replaced by a newer technology.  

Storage  
 
Liquid nitrogen storage will be required for the majority of products in development (identified 

by 55% of ISCT COG survey respondents), with cold chain distribution being an integral part 

of cell therapy delivery (52% of products shipped frozen). The majority of the respondents 

indicated anticipated storage time requirements of less than 2 years. 

The cold chain for cell therapy begins as early as tissue acquisition, storage prior and after 

processing, and transport and handling upon receipt to end users. A wide range of 

biopreservation solutions, methods and storage options, are available for users to choose based 

on their specific requirements21. Factors influencing the associated cost include storage time, 

cell bank size and concentration, temperature, and stability (Table 7). 

 
 

A balance between storage time, cell bank size (i.e., lot size), clinical pre-treatment preparation, 

and stability must be established in order to reduce the cost and minimize the impact on cell 
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functionality. Extended storage time can incur additional running costs and may raise 

uncertainty regarding cell stability. Lower temperatures (below -150°C) can improve stability 

but may be more costly. Several reviews addressing the technical aspects, such as selection of 

cryopreservative, cooling protocols, storage container system, temperature, period, and the 

effect on cell functionalities are listed in Table S1. Development of new technologies for cell 

preservation at ambient temperatures has emerged as a potential area technology innovation 

(for example, the Prestige Lyotechnology system from Osiris Therapeutics). 

 
Cost Structure Illustration 

Examining the cost structure of a cell therapy product illustrates the systematic cost 

components and can highlight opportunities to minimize costs through early process 

development planning. Figure 4 presents an example of a manually implemented protocol 

completed in Grade B suites, optimized as far as possible to minimize cost. This example is an 

anonymized cell therapy process derived from analysis of three autologous therapies. This data 

aligns with the COG survey results where respondents highlighted labor costs around 30% of 

the total product cost. 

By applying automated processing within functionally closed disposables many commercial 

and quality attributes of the manufacturing process are improved while also dramatically 

reducing the dependence on skilled labor (Fig. 4).  Of particular interest is the change in cost 

structure, where the systematic facility and labor costs are replaced with disposable and process 

specific capital costs that are responsive to the economies of scale, as previously mentioned.  In 

this example, automation led to more than 30% savings in COG. While automation can 

significantly reduce COG, indirect costs associated with developing automation strategies must 

be considered. 
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Conclusion 

A strong cell therapy business model cannot be realized without taking into consideration 

every relevant aspect of a product lifecycle and how it can influence product cost (Fig. 5). 

Through strategic process design, one can influence multiple costs: capital (i.e. production 

facility and equipment); supply chain (consumables, cold chain); compliance (GMP production 

area costs); regulatory (strategic selection of QA/QC testing, automation where justified); 

manufacturing; quality deviations; and licensing. Success is not only built on therapeutic 

efficacy but also on well-defined strategies for pricing, reimbursement, and commercialization. 

Regulatory approval and marketing licenses are not the ultimate key to commercial success, as 

healthcare and reimbursement agencies are increasingly looking for cost-effective solutions. 

Understanding and planning the economic aspects of a new cellular therapeutic from the early 

phases of development will enable a viable lifecycle. The gross profit margin between the 

selling price of the product and all its associated costs is the only source of revenue to pay for 

all costs related to development, approval and sustained marketing of an innovative new 

therapy. While we have discussed only COG related concerns here, other important costs 

warrant future discussion (as outlined in Fig. 5). 

It is critical to align the initial process to the preferred long term production methods as soon as 

possible in clinical development.  Changes to processes place the entire clinical history at risk, 

since the product is defined by the production process itself.   Product COG issues described in 

this paper are a tool for designing the clinical scale manufacturing process to ensure all costs 

are well analyzed and considered.  The  real value emerges from a seamless translation from 

clinical trials into successful and profitable commercial manufacture. 
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Ultimately, developing rigorous understanding and modeling all costs is ideal for the 

theoretical cell therapy company with unlimited capital resources. In the capital-constrained 

environment in which most cell therapy companies operate, a trade-off must be made between 

allocating resources towards understanding cost drivers and allocating resources towards 

product, process, and business development. By implementing impact analysis during process 

development guided by the key cost drivers outlined above, such capital-constrained 

companies can prioritize studying the highest cost and highest risk aspects of their process 

development. Cost-conscious product development will make cell therapy products affordable 

and available to broad populations of patients in need. 
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Figure Legends 
 
Figure 1 – Sales price of autologous and allogeneic cell therapies. Expected sales prices 
from the COG survey in 2013 are compared with published and anticipated costs for therapies 
approved or in trials. Prices for Glybera, Strimvelis, Prochymal, and Provenge are based on 
published prices from each respective company. Analyst reports of expected CAR-T prices 
range from $300000-500000 22-25 but not confirmed by companies developing these therapies. 
 
Figure 2 - Allogeneic vs. autologous manufacturing models. In allogeneic therapies, a single 
sample is saved in a master cell bank from which a working cell bank is used for 
manufacturing. These therapies are then distributed to large patient populations. In autologous 
therapies, each single patient sample is manufactured into a product which is used to treat a 
single patient. 
 
Figure 3 - Needle-to-Needle Cost Center Roadmap. COG survey respondents indicated the 
expected cost of each stage of the production process, identifying key cost drivers. Each stage 
and associated cost drivers can be aligned with a guiding cost measure and a stage of clinical 
development. (R =  range of responses, M= mean response, NI= not included in survey 
questions) 
 
Figure 4 – COG reduction through automation. This anonymized case study of 3 
autologous processes indicate a significant saving from process automation using closed 
consumables of >30%.  
 
Figure 5 - Costs related to cellular therapy business model. Many costs can be influenced 
through careful process design. These influences can be realized at the time the application for 
a new drug is being written, highlighting the importance of commercial strategy (in addition to 
therapeutic strategy) when investing in a cell therapy product. Consideration of COG as 
discussed in this paper (see terms in Bold) are an important component in identifying and 
managing the cost of  manufacturing. Other costs not discussed here must also be taken into 
consideration when identifying the overall cost of bringing a cell therapy to market. 

Table 1 -  Cell therapy manufacturing processes steps that will be considered in this 
document and relevant cost considerations that will be discussed. 
 
Table 2 – Considerations in tissue procurement for allogeneic and autologous therapies 

Table 3 - Considerations in material costs in manufacturing  

Table 4 – Considerations for centralized or multi-center facility approach  

Table 5 – Labor considerations in clean room operations 

Table 6 –  Considerations for cell expansion technology selection 

Table 7 – Considerations for cryopreservation of cell therapies 
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Figure S1: Overview of COG survey respondents by role, geographic location, and industry 

sector. For more information on survey results, see: 

http://c.ymcdn.com/sites/www.celltherapysociety.org/resource/resmgr/CommunityRe

sources/ISCT_COGs_Survey_Results_and.pdf 

Supplement Table 1 - Selected reviews on the consideration in storage of human stem 

cells for cell therapy. The reviews from biobanking can provide the guideline for cost of 

storage. Commercial courier delivery services (e.g., FedEx, World Courier, and DHL) can 

provide helpful information and the necessary requirements for the transportation of cells at 

low temperature 

  

http://c.ymcdn.com/sites/www.celltherapysociety.org/resource/resmgr/CommunityResources/ISCT_COGs_Survey_Results_and.pdf
http://c.ymcdn.com/sites/www.celltherapysociety.org/resource/resmgr/CommunityResources/ISCT_COGs_Survey_Results_and.pdf
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Provenge (Valeant) $93 000

KTE-C9 (Kite) $400 000

JCART017(Juno) $400 000

Prochymal (Osiris) $200 000

Expected Sale Price (COG Survey)

Actual and Analyst-Predicted Sales Price

Autologous Allogeneic Both

Strimvelis (GSK) $665 000
Glybera (UniQure) $1 000 000
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Process Step Relevant Cost Considerations  
Tissue procurement Screening, clinical acquisition, scheduling, variability in quality, transport, 

regulatory compliance 
Material Acquisition Medium, supplements, cell cultures, commercial demand, consistency, 

bioequivalence 
Facility Operation Forecast demand, production scale required, outsourcing or building, central or 

multi-centre, clean room environment for GMP manufacturing, comparability 
between sites 

Production  Personnel, cell culture, aseptic processing, automation, and Quality Control 
selection 

Storage Packaging, cryopreservation agents, storage temperature and storage time 
 
Table 1 
 
 

Topic Key Considerations 

General 
Considerations 

Develop/acquire technology for clear traceability of tissues and cells 
Ensure aseptic handling from the initial collection to the initiation of manufacturing 
processing 
Efficiently schedule processing to match time of tissue arrival  

Direct Costs

Raw Materials

Operating Labor  (can also be indirect)

QC Testing & Documentation

Indirect Costs

Supervision/Management

Facility Maintenance & Technical Support

General  Utilities (e.g. HVAC)

Amortization of Non-recurring Capital Investment

Other Cost of Failed Lots (quality risk, shelf-life)

Cost of Demonstrating Safety and Efficacy (Development Phase I, II, III)

Cost of Regulatory Compliance

Cost of Marketing and Distribution

Cost of Capital

Cost of Bringing Cell Therapy to M
arket

Cost of M
anufacturing
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Allogeneic 
Screen tissue / donors, adhering to regulatory agency donor and procurement guidelines of 
all markets where the cells may be ultimately used 

Determine need and/or frequency of primary cell culture qualification  

Autologous 

Establish and control consistent acquisition processes for multiple patients at multiple 
clinics  
Use GMP-compliant and sterile procurement, handling, preservation and storage of the 
starting materials  

Drugs required for procurement of tissue 

 
Table 2  

 

Topic Key Considerations 
Tissue 
Procurement 

Secure required quantities by selecting supplements and other consumables that will be readily 
available in large quantities to meet production scale requirements for commercial demand 

Start with materials that are deemed by regulatory authorities in key target markets to be safe 
ancillary materials to avoid any required changes in your manufacturing process downstream 
Consistently use the same materials, from the same sources, to reduce the risk of variance 
resulting from changes in materials utilized in the cells produced 
When possible, replace complex, animal sourced materials from media formulations with 
well-defined components 

Create and test strategies for “bioequivalence” as part of the CMC for those reagents at risk of 
supply disruption 

Minimize the amount of consumable and disposable waste materials to manage costs and 
minimize environmental issues 
Comprehend the systematic costs driven by process decisions, (for example antibody based 
cell selection is always likely to be a high cost) 

 
Table 3  

Facility Design Product Capacity Capacity 
Increase 

Change 
Implementation Logistics 

Centralized Frozen Dependent on 
market 
demand 

Expansion of 
existing facility 
or conversion to 
multi-centre 

Centralized to one 
centre 

Potentially 
more flexible, 
depending on 
existing 
infrastructure 

Multi-centre Fresh 
Frozen 

Dependent on 
local demand 

Establishment 
of new centres 

Complex 
(technology 
transfer to each 
site, and inter-site 
comparability) 

Dependent on 
local 
infrastructure 
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Table 4  

 

Topic Key Considerations 
Training  Qualification and regular re-validation of operator aseptic technique26  

Staffing  Independent protocol verification of batch record for manual protocols 
(dedicated staff required to monitor active operator)27. 
Reduced productive hours of personnel working in clean rooms due to 
gowning times and restricted movement 
Additional personnel required to supply and remove materials from clean 
spaces 

Table 5  

 

Topic Key COG considerations 
Demand Where possible, design the manufacturing process to be suitable for commercial 

demands from the start  
Operational 
Performance and 
Lot Size 

Use estimates of expansion yields or harvest densities and downstream yields to 
determine if number of expansion units per lot is practical for each technology 
choice 

QC and regulatory 
compliance 

Automated or manual processing and open or closed processing are key decisions. 
Currently, most processes involve manual handling. Automated and closed 
processing may reduce costs and improve cell quality 

Costs of developing process understanding to implement Quality-by-Design 
process development 6 

Scalability  Multi-layer vessels can reach production limitations at higher cell production 
numbers. Determine by using the S-curve method3 if the desired lot sizes over a 
product lifecycle can be met by planar technologies or whether a switch to 
bioreactor technologies is required 

Process 
development effort 

If switches in technology are planned later in the development pathway, then the 
economic consequences of process changes need to be considered 5 

Upstream v 
downstream 
processing costs 
(USP:DSP) 

Consider the ratio of USP to DSP costs and potential bottlenecks to prioritize R&D 
efforts.  Typical contributions of DSP are 10-20% in planar processes employing 
multi-layer vessels and 50-80% in bioreactor-based processes 4. 

Table 6 

Topic Key Considerations 

Cryopreservation 
 

DMSO, a common cryopreservative may cause dose-related side effects 28-30. 
Costly proprietary agents can be substituted 31. 

Storage 
temperature,  

Four methods are available for cryogenic temperature storage:       
1) Electrical mechanical freezer (-130°C) 

a. High running cost, warm temperature 
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Topic Key Considerations 

2) Liquid nitrogen, liquid phase (-196°C) 
a. Medium running cost, very steady temperature, risk of cross 

contamination, higher user safety risks 
3) Liquid nitrogen, vapor phase,  low efficiency (>-150°C) 

a. Medium running cost, temperature fluctuation and no risk of cross-
contamination 

4) Liquid nitrogen, vapor phase, high efficiency (-190°C) 
a. Low running cost, steady temperature, no risk of cross contamination 

Additional cryopreservation equipment should be used to control cryovial transfers 
between storage containers during transport to avoid temperature variance32 

Cell concentration  Reduced cell viability after thawing might necessitate larger or more complex-to-
harvest source tissue 33, 34 

Storage duration Production should closely match demand to minimize storage costs 

Table 7  
 
 
Supplementary Material 



 26 

 

Figure S1 

 

 

Table S1 

Consideration Cell Type Reviews 

Cryopreservation Adipose tissue and adipose derived stem 
cells Shu et al 2015 35 

Cryopreservation Human mesenchymal stem cells Marquez-Curtis et al 201536 

Cryopreservation Human pluripotent stem cells Li and Ma 201237 

Cryopreservation Human pluripotent stem cells Martín-Ibáñez et al 201238 

Hypothermic storage Human mesenchymal stem cells Robinson et al 201439 
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Consideration Cell Type Reviews 
Human pluripotent stem cells 

Cryopreservation, storage and 
transportation 

Human mesenchymal stem cells 
Human pluripotent stem cells 
Haematopoietic stem cells 

Hunt et al 2011 40 

Packaging Human mesenchymal stem cells  Woods and Thirumala 201141 

Setting up and managing None specific Inamdar et al 201242 

Biobanking practices  None specific Vaught and Lockhart 2012 43 

Economic and cost analysis Umbilical cord blood  Sirchia et al 1999 44 
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