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Comparing Social Science and Computer Science  

Workflow Processes for Studying Group Interactions  

 

Abstract 

In this article, a team of authors from the Geeks and Groupies workshop, in Leiden, Netherlands, 

compare prototypical approaches to studying group interaction in social science and computer 

science disciplines, which we call workflows. To help social and computer science scholars 

understand and manage these differences, we organize workflow into three major stages: 

research design, data collection, and analysis. For each stage, we offer a brief overview on how 

scholars from each discipline work. We then compare those approaches and identify potential 

synergies and challenges. We conclude our paper by discussing potential directions for more 

integrated and mutually beneficial collaboration that go beyond the producer-consumer model. 
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At its core, research on group interaction is interdisciplinary (Wagner et al., 2011) and 

draws on many different research traditions and practices. At a workshop in Leiden, Netherlands, 

a group of social scientists and computer scientists gathered to discuss potential for collaboration 

across disciplines to move the study of groups and teams forward for both disciplines in a multi-

faceted and interdisciplinary manner.  It was quickly realized through these initial interactions 

that in order to deepen collaboration between social scientists and computer scientists interested 

in group interaction, researchers must go beyond shared research interests and understand the 

nuts and bolts of each other’s research processes. In fact, constructive conflict quickly arose 

during the workshop concerning how each discipline works. We call these issues workflows, 

which encompass the research design, data collection, data analysis, and dissemination of results. 

In particular, we compare prototypical workflow approaches to studying group interaction in 

each discipline. We aim to provide a starter guide for researchers in both disciplines interested in 

collaboration. In doing so, we make many generalizations about each discipline and necessarily 

minimize differences within each discipline, exaggerating their homogeneity. We provide 

references to more comprehensive reviews of research methods so that the readers may read 

more about the topics mentioned.    

Social Science and Computer Science Workflow 

Imagine that thousands of videos of group interaction were available for both social 

scientists and computer scientists to use simultaneously. In the social sciences, groups and teams 

scholars have collected video and audio data from thousands of group and team interactions and 

annotated them (i.e., coded/labeled them) for specific behaviors and states (e.g., McGrath & 

Altermatt, 2001; Waller & Kaplan, 2016). Meanwhile, computer scientists studying group 

interaction use a variety of techniques to measure and induce observable correlates of many 



Workflows       3 

  

similar behaviors and states in group interactions (e.g., Gatica-Perez, 2009), though they also 

tend to develop technologies to interpret individual or dyadic behaviors (e.g., Vinciarelli et al., 

2012). The potential for synergy should be obvious. However, if only computer scientists could 

access and analyze the many thousands of annotated videos that social scientists, or groups 

researchers, have produced to provide a broader base for developing more sophisticated 

automated analytic techniques. If only groups researchers could access and use the computer 

scientists’ approaches to automate coding of the behaviors or emotions of group members, rather 

than going through the laborious process of coding them by hand. 

This producer-user model is an obvious point of potential synergy, and yet may be only 

the beginning of deeper collaborations between social and computer scientists studying group 

and team interactions. In order for deeper collaborations to emerge, the many barriers to 

collaboration between group interaction scholars from different disciplinary backgrounds need 

addressing. Even if scholars agree on a shared research topic, they must still contend with 

differences in workflows--the processes by which research is conducted. Scholars from different 

disciplines may have different approaches to and terminology for designing, collecting, and 

analyzing data on group interactions, and they may work on very different time scales for 

collecting, analyzing, and disseminating research results (Wagner et al., 2011). Such differences 

can inhibit communication between disciplines and prevent potential collaborations from being 

explored.  

To help social and computer science scholars understand and manage these differences, 

we organize workflow into three major stages: research design, data collection, and analysis. For 

each stage, we first offer a brief overview on how scholars from each discipline work. We then 

compare these approaches and identify potential synergies and challenges. Finally, we discuss 
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potential directions for more integrated and mutually beneficial collaborations beyond the 

producer-consumer model. 

Social Scientist Workflow  

 At a basic level, most social science scholars aim to publish their research in peer-

reviewed journals. The publication process is a long one – top journals routinely take two to four 

months to return manuscripts after submission, request two or three revisions (each requiring 

several months of authors’ work), and may or may not accept them for publication, so rejected 

manuscripts must be resubmitted to another journal. Thus, the time from initial submission to 

final acceptance of a peer-reviewed article takes around a year, often longer. Although social 

scientists present their research at peer-reviewed conferences and these conferences sometimes 

publish proceedings, these have lower status and are rarely cited by other researchers. The time-

consuming work of publishing is in addition to the process of research design, data collection, 

and analysis below.  

Research design: Deductive or inductive. For groups and teams scholars from the 

social sciences, researchers usually propose one or more specific relationships to study 

(hypotheses), between two or more theoretical concepts (variables). Hypotheses typically specify 

causal relationships between the variables, although they can also predict positive or negative 

associations or investigate conditions under which such associations are stronger or weaker 

(Mohr, 1982). This approach is deductive--using existing theories and empirical findings, 

scholars design studies to test their hypotheses and further refine theories about group behavior.  

Inductive or exploratory research is also common in the social sciences, in which researchers 

identify a phenomenon or setting of interest and seek to better describe it or develop theory 

through data collection and analysis (e.g., Gersick, 1988; Ericksen & Dyer, 2004). In such cases, 
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researchers neither have a priori hypotheses nor are they necessarily concerned with measuring 

variables (see Edmondson & McManus, 2007 on research design). Because deductive research is 

more common, we describe it in more detail as a baseline research workflow, and only briefly 

summarize inductive research approaches.  

Deductive research design. To design a deductive study, scholars make two related sets 

of decisions: (a) how to measure the variables in their hypotheses, and (b) whether to collect data 

from naturalistic groups (i.e., field research) or from synthetic groups formed explicitly for 

research purposes (i.e., laboratory research). The choice of naturalistic versus synthetic groups 

provides both advantages and disadvantages.  Naturalistic groups exist in the field and are more 

realistic, thereby increasing generalizability as compared to synthetic groups.  Synthetic groups 

are often comprised by the researcher and have no interaction history; these groups are studied in 

in the lab where considerably methodological control is afforded, but at the expense of real-

world comparison and therefore a reduction in generalizability.  Thus, the trade-off of 

generalizability versus control also is considered when choosing the setting for data collection.  

Once researchers decide on a set of hypotheses to investigate, they must decide how to 

move from the theoretical concepts to actual measurement of the variables (operationalization). 

In group research, scholars commonly measure behavior by coding (i.e., annotating) recordings 

of group behaviors (see McGrath & Altermatt, 2001; Waller & Kaplan, 2016). These recordings 

can include video recordings, audio recordings, transcripts, or interviews about past behavior. In 

deductive research, coders typically do not know the hypotheses (i.e., coders are blind to 

hypotheses), so that their expectations do not inadvertently influence their coding of the data. 

Research assistants who are unaware of the studies’ hypotheses often do the coding. These 

coders must be trained to agree with one another to a sufficient level for their codes to be 
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regarded as scientifically valid (i.e., inter-rater reliability). The precise level of agreement 

depends on the concepts, the measurements of them, and the number of coders (Hayes & 

Krippendorff, 2007). The coding process including inter-rater agreement is often a laborious 

aspect of groups research and can take weeks or months to complete depending upon amount of 

data to be coded. 

Groups researchers can also measure members’ thoughts and feelings about the group 

context (e.g., satisfaction, trust, cohesion) using members’ self-reports, typically through survey 

questions (Weingart, 1997). For example, surveys of small group meetings typically contain a 

measure of meeting satisfaction where individuals rate a series of items (i.e., affective terms) on 

the degree to which they agree that they represent the recent meeting experience (see Rogelberg, 

Allen, Shanock, Scott, & Shuffler, 2010).   Social scientists (especially social psychologists) are 

extremely concerned with the precise wording, sequence of questions, and response-types (e.g., 

7-point agree disagree), and have many criteria for determining which to use in each situation 

(e.g., Sudman, Bradburn, & Schwarz, 1996). High quality survey measures have multiple 

questions (i.e., items) that measure the same construct/concept. Group members’ responses to 

these questions are expected to co-vary with other items measuring the same variable (forming 

an index), but not with their responses to questions about other constructs on the same survey 

(internal validity). Valentine, Nembhart, and Edmondson (2015) provide a useful review of 

teamwork variables commonly measured with surveys. Further, for concepts intended to describe 

a group (rather than its individual members), researchers test the degree of similarity among its 

members’ responses (within-group agreement, Hayes & Krippendorff, 2007). If data on 

behaviors are difficult to obtain or if the behaviors rarely occur, survey measures can be used to 

obtain approximate assessments of behaviors (e.g., Jehn, Rispens, & Thatcher, 2010; van der 
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Vegt & Bunderson, 2005; but see Baumeister, Vohs, & Funder, 2007 for concerns regarding this 

behavioral proxy approach).  

 Deductive data collection. To test their hypotheses, social scientists need to collect data 

from a sufficiently large number of groups (sample size) that is representative of their target 

population of interest. Samples should contain sufficiently large numbers of groups, people, or 

behaviors to have a high likelihood of detecting significant relations (i.e., statistical power; see 

Cohen, et al., 2003). The sufficiency of the sample size depends on the level of analysis; that is, 

are the hypotheses about member behaviors, individual group members, or the group as a whole 

(Hackman, 2002)? If researchers are collecting field data, they must obtain access to studying 

groups within the organization. In some cases, this might entail video recording regular meetings 

of organizational groups (e.g., Kauffeld & Lehmann-Willenbrock, 2012). In other cases, it might 

require sending surveys to an organization for distribution to the relevant teams. Typically, 

tailoring data collection to a specific field setting, negotiating access, and collecting group data 

often takes several months. Though not particularly common, in some cases, the group 

interaction data is publicly available (e.g., O’Mahony & Bechky’s (2008) study of open-source 

collaborations). When data on interactions already exists, it may need only to be processed and 

analyzed (e.g., Stuart & Moore’s (2016) study of the role of enforcers in National Hockey 

League teams).  

In laboratory research, researchers advertise their study and often offer individuals 

compensation for participating in the study (e.g., money, course credit). Many universities 

maintain study pools, composed of students and other members of the community willing to 

participate in research. Once at the lab, researchers compose individuals into groups and give 

them a task (such as a decision-making task in which information is unequally distributed among 
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members, e.g., Stasser & Titus, 1985; or a creativity task to make an advertisement in one hour, 

e.g., Gersick, 1989). The researchers then record the relevant aspects of the group interaction and 

measure group members’ perceptions of it. Laboratory research often uses randomized-

controlled experimental designs, in which groups are randomly assigned to receive either a 

particular manipulation (i.e., treatment condition) or not (control condition). For studies run with 

online tasks or in-class group exercises, data can be collected in a matter of hours. However, a 

single complex experiment can take months to conduct (e.g., Fisher’s (2017) study of external 

interventions required the same experimenter for every group).  

Deductive data analysis. In many cases, quantitative data analysis from a computer 

processing perspective is the fastest part of the research process.  However, simply running the 

analysis does not include interpretation and application of the analysis. Quantitative data from all 

variables must be compiled into single datasets and analyzed at the appropriate level(s). Social 

scientists use a variety of quantitative software tools including SPSS, SAS, R, LISREL, MPLUS, 

HLM, and so on to analyze the data. In groups research, such analyses can be more complex than 

in studies of individuals. In group interactions, individual behaviors and perceptions are nested 

both within the group and also within the same individual over time (e.g., Krull & McKinnon, 

2001). Thus, complex analyses about how and when to aggregate (or not aggregate) the data 

from individual behaviors to the individual level, or from individual group members to the group 

level, are often necessary before analyzing the data to answer the research questions or 

hypotheses. For variables created from coding behaviors via raters, researchers must assess 

whether the raters agreed on which behaviors occurred at each time (see research design section 

above). Inter-rater agreement on the behaviors coded must be achieved prior to any analysis of 

the data.  
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Once data is organized and coded, in many cases, researchers test whether relations 

among known survey items and coded data are similar to those in past, related studies.  In other 

words, researchers seek to verify that the measures and coded variables are behaving as they 

should be in terms of the nature of their relationships within the data prior to further hypothesis 

testing. For instance, group members might be asked questions about their individual perceptions 

of conflict, trust, and satisfaction on the same survey. Researchers analyze whether these 

questions or items are associated as expected using techniques such as factor analysis (e.g., 

Conway & Huffcutt, 2003) and assessing the reliability of a scale (e.g., Dunn, Baguley, & 

Brunsden, 2014). For variables that apply to the whole group, rather than only to individual 

members, researchers also assess to what extent members agree with each other (within-group 

agreement), using statistical analyses such as the intra-class correlation coefficient and average 

within-group correlation (see van Mierlo, Vermunt, & Rutte, 2008). For example, after asking 

each member about their individual experiences of trust within the team, researchers can 

examine to what extent there is a climate of trust in the team (i.e., the degree to which members’ 

perceptions of intra-team trust converge).  

 After statistically establishing which questions or items can be aggregated within each 

scale, and which scales can be aggregated within each group (or individual), researchers test their 

hypotheses. Groups researchers often use analytical tools based on linear regression, such as 

Ordinary Least-Squares, t-tests, and ANOVAs. Such analyses compute the sizes of the relations 

among variables and assess whether they occur substantially more often than chance (statistically 

significant via p-values). However, these approaches make strong assumptions about how 

variation is distributed within a sample and about the probabilities of finding effects. Thus, there 

are increasing calls to use techniques that make fewer assumptions about the underlying 
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distributions of variance and rely less on p-values to assess statistical significance (e.g., Johnson, 

2013). Groups researchers are also increasingly employing analytical approaches that preserve 

the multi-level nature of group dynamics, rather than averaging or summing measures at the 

group level. These multi-level models allow researchers the freedom to specify hypotheses of the 

effects of groups on individual behaviors and vice versa, with greater precision (e.g., Hox, 2010).  

Inductive research approaches. In inductive approaches, researchers collect exploratory 

data to describe new theoretical concepts, processes, and relationships. The same techniques 

described for deductive research above can be used to explore and describe quantitative data 

obtained in inductive research (Bamberger & Ang, 2016), but social scientists tend to be less 

inclined to ascribe causal relationship to the results of such analyses. However, there are many 

ways to create categorizations schemes of individual/group behavioral interaction (that can later 

be theorized and operationalized as variables) or show unexpected associations between 

variables. Such approaches are preferred when theory is nascent (i.e., there is little or no formal 

theory about a phenomenon; empirical description and categorization has just begun; 

Edmondson & McManus, 2007). 

Typically, inductive researchers collect data using direct observations and interviews 

(Lofland, Snow, Anderson, & Lofland, 2006), although many other types of archival data are 

also used (e.g., press coverage; historical records; Eisenhardt, Graebner, & Sonenshein, 2016). 

Inductive research does NOT purport to test or prove the theories derived from the inductive 

methodology; that is a task for future, deductive research (Chatman & Flynn, 2005). Methods for 

inductive social science groups research, such as grounded theory building (Glaser & Strauss, 

1967), are strongly influenced by sociology and anthropology, rather than psychology or 

economics. Further, inductive data typically involves detailed descriptions of phenomenon 
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including individual detailed accounts of the experience (Denzin, 1989). Because collecting such 

data is often dependent on the presence of the researcher and, as we will describe, is laborious 

and time-consuming to analyze, inductive researchers are typically limited to a relatively small 

number of cases. Inductive analyses are usually iterative—they occur concurrently with data 

collection, sometimes influencing what data are collected or how they are collected. The logic of 

such research is bottom up, meaning that insights that challenge the researchers’ assumptions 

emerge from the data and affect subsequent collection and analysis.  

When deciding among deductive, inductive, or mixed designs (involving both inductive 

and deductive aspects), groups research consider the research questions, aims, novelty of the 

phenomenon, and nascent nature of the domain (see Chatman & Flynn, 2005, and Edmondson & 

McManus, 2007 for additional details). 

Computer Scientist Workflow 

Computer scientists typically publish at quite a fast pace, many of these contributions are 

generally based on experiments completed on a computer, there can be a relatively quick 

turnaround to consider a hypothesis, implement it, and test it. In recent years, the pace of 

progress has been so great that researchers publish their work in open archives (e.g., Arxiv.org) 

to claim ownership of an idea rather than waiting for a conference deadline. The quality of new 

research papers are often determined using competitive reviewing process at yearly international 

conferences. The number of papers that can be presented is limited so acceptance rates at top 

international conferences can be much lower than for journals. Acceptance at a top international 

conference is often more prized than acceptance at a journal. Conference publications tend to 

have turnaround times of  months compared to journal manuscripts that can take months to years 

to be finalized. 



Workflows       12 

  

Research Design. Research design is seldom a concept that concerns computer scientists. 

There is no rigorous protocol to follow and more often than not, no hypotheses specified or 

research question expressed (see Vinciarelli et al., 2012 for exceptions and alternative 

perspectives). In general, a computer scientist’s research question is performance driven. The 

prevailing, but unstated, hypothesis is that his or her proposed model is superior to all other 

models. Since this is the implicit starting point in this field, hypotheses are rarely spelled out. A 

better approach tends to break down different aspects of the model and present a more detailed 

understanding of where different parts fails or succeeds relative to other models. To make 

comparisons with the state of the art, publicly available datasets are reused hundreds of 

thousands of times. Using publicly available datasets is considered as showing high impact to the 

research community because of the open replicability of the reported results. Therefore, the data 

often come first, and the research questions and corresponding hypotheses are generated 

implicitly afterwards. Good examples of this approach include large scale efforts such as the 

AMI corpus, which was generated by a European-funded project with collaboration from several 

project partners (Carletta et al., 2005 ).  

In describing typical workflows, computer scientists focus on social signal processing 

(e.g., Vinciarelli et al., 2012) and affective computing (e.g., Picard, 1997; Gunes & Schuller, 

2013; Gunes & Pantic, 2010; Sariyanidi, Gunes & Cavallaro, 2015). Researchers in these two 

fields develop computational models to analyze behavior as accurately as possible. Behavior 

analysis for computer scientists has historically been about developing automated methods to 

interpret behavior from video. Efforts with multimodal data often combine this with audio (see 

surveys Gatica-Perez, 2009; Gunes & Schuller, 2013; Gunes & Pantic, 2010; Otsuka, 2011), 

though other forms of behavioral sensing are starting to emerge (Gunes & Hung, 2016). 
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Moreover, computer scientists in social signal processing are increasingly shifting away from 

exclusive behavior analysis to a mixture of behavior analysis and perceptions and/or cognitive 

processes (see surveys on meeting analysis, Gatica-Perez, 2009; behavioral sychrony, 

Delaherche et al., 2012; or personality estimation, Vinciarelli & Mohammadi, 2014).  

Data Collection. For computer scientists, ecological validity refers to how closely the 

settings and the methods used in the computational studies replicate so-called real-world 

phenomena. Most past efforts focused on controlled lab-based data and settings, but recently, 

ecological validity has become a requirement for credible system evaluation and publication of 

the proposed work  (Salah, Hung, Aran, & Gunes, 2013; Sariyanidi et al., 2015;). This is 

achieved by giving the participants the freedom to interact naturally (e.g., Salam, Celiktutan, 

Hupont, Gunes, & Chetouani, 2017) or by working with found data (i.e., using data downloaded 

from the web, for example, YouTube videos, Facebook images). 

Sensors & Acquisition. An individual's socioemotional state may become apparent by 

subjective experiences (how the person feels about the other person or the situation, often 

assessed on a survey), by internal/inward expressions (biological signals), and by 

external/outward expressions (vocal/visual signals). The research problem here is to identify 

which of these different modalities and cues carry what communicative information to be used 

for continuous, fast, and efficient analysis (see Gunes & Pantic, 2010; Gunes, Piccardi, & Pantic, 

2008; Gunes & Schuller, 2013 for reviews).  

Annotation. Virtually all state-of-the-art computational methods for analyzing and 

understanding social signals and affect require labeled or annotated sets of training samples. 

These labels are referred to as the ground truth. However, there is no universal coding scheme 

for coding all possible individual, dyadic, or group interactions that all researchers accept and 
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use, and that can accommodate all possible communicative cues and modalities. Despite this, 

researchers obtain annotation using various tools in two ways: namely, subjective and objective 

evaluations. Subjective evaluations can be obtained either explicitly or implicitly. Explicit 

evaluations are self-report measures obtained via surveys and questionnaires (e.g.,  reporting the 

experienced emotion along the dimensions of valence, arousal, and power using the Self-

Assessment Manikin (SAM); see Gunes & Schuller, 2013 for a review). Implicit evaluations can 

be obtained by recording participants’ reactions to the displayed phenomena or to other 

participants (e.g., by computationally detecting their facial expressions).  

Objective evaluations can be obtained by asking independent experts or observers (e.g., 

asking a domain expert or opt for  crowd sourcing) to rate the recorded data/clip using a 

predefined protocol, such as the Facial Action Coding System (FACS) for Action Unit analysis 

(Sariyanidi et al., 2015). Labeling is done with either a discrete categorical approach (e.g., 

happy, sad; or personality trait categories, such as extrovert vs. introvert) or with a continuous 

dimensional approach for annotating the displays. Such annotations can be obtained using 

continuous traces in the dimensional space confined to (− 1, + 1); e.g., arousal and valence 

dimensions, or the big five personality dimensions; Gunes & Schuller, 2013; Çeliktutan, Eyben, 

Sariyanidi, Gunes, & Schuller, 2014). When using a discrete categorical approach, if subjective 

labels are used the ground truth is the self-assessed label; if objective labels are used the ground 

truth is the mean or the median among observer ratings. Dimensional approaches consider 

agreement, correlation measures, and the means of across observer ratings.  

Community efforts. For many years, the experimental results of different 

communicative behavior analysis systems could not be directly compared, which hindered 

progress (Sariyanidi et al., 2015). To address this issue, researchers have started to organize, 
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participate in, and support challenge and benchmarking events (e.g., Çeliktutan et al., 2014; 

Schuller, 2015). Benchmarking in this context is the process of making data publicly available in 

order to compare different automated analysis systems on the same data set (see Larson et al., 

2012). These events bring different communities together (e.g., researchers on speech and affect 

recognition, speech and vision) and encourage them to apply and compare their approaches on a 

pre-determined recognition task, under pre-defined and strictly comparable conditions. 

Data analysis. As data analysis is usually built on machine-interpreted strategies, there 

are no strong a priori assumptions on the mechanisms that generated the data, unlike most 

statistics. Social signal processing and affective computing employ pattern recognition  to 

develop machines that can observe data (e.g., objects, signals, images), identify distinguishable 

patterns of interest, and make decisions about the categories of patterns (Duda, Hart, & Stork, 

2001). For computer scientists, a pattern denotes a vector of numerical values that describe data. 

To obtain a p-dimensional vector, we measure p-features on data. For example, we consider that 

a good representation of an image could be the intensity of each pixel. Pattern recognition 

processing techniques, such as data comparison or matching, require a feature vector based 

representation.  

To classify data reliably, pattern recognition systems require that observed behavioral 

data undergo several processing steps: pre-processing, feature selection and/or extraction, 

classification of these features into categories called classes (e.g., discrete emotion), or 

prediction of a numerical value (e.g., valence of an emotion).  

Pre-processing. Sensor data collection usually generates heterogeneous signals with 

noise, missing and/or out-of-range values, which are errors usually called artifacts. Data pre-

processing reduces these artifacts and noise, and often includes mean and variance normalization 
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of data (i.e., translating data into z-scores to make data across collection contexts comparable). 

The issue is how to determine the relevant normalization schemes. For example, given a small 

group of people, if the research question addresses individual or group differences, computer 

scientists rely on adequate normalization schemes: individual level normalization or group level 

normalization of signals.    

Feature selection and extraction. Features are measurements on the data specified by 

the researchers.  For example, to recognize speakers’ intonation styles, computer scientists would 

leverage expertise in prosody linguistics-related components, such as analyzing the fundamental 

frequency of the speech signal. There is a growing need to improve the interpretation of such 

features in various domains such as clinical settings (Leclère et al., 2016), organizational 

psychology (Nguyen, Frauendorfer, Schmid-Mast, Gatica-Perez, 2014) and human-machine 

interaction (Salam, Celiktutan, Hupont, Gunes, & Chetouani, 2017). The challenge here is 

generate features that could be interpreted by humans. For example, to model human’s 

engagement during interaction, features such as head and body orientation are interpretable by 

researchers of various domains. 

Feature selection is a process that reduces the number of features by selecting a subset of 

the original features. Features that are not considered discriminant enough are then simply 

removed from the feature vector. Feature extraction is a process that reduces the number of 

features by transforming the original full set of available features into a small subset of features. 

The projection of the original feature vectors to a lower dimensional space is a common 

transformation technique. The transformation can be either a linear or nonlinear combination of 

features, so interpreting the extracted features is not always straightforward. For example, 

Principal Component Analysis (PCA) is a linear feature extraction technique that transforms the 
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original features into a set of linearly uncorrelated features. In computer vision, PCA is 

employed to generate eigenfaces, which are obtained by transforming an original set of images 

into a smaller set of basis images. This low-dimensional representation can be linearly combined 

to reconstruct the original set of images. An extension to speech with eigenvoices and behaviors 

with eigenbehaviors are also possible. 

Whether feature extraction belongs to the classification process or not is an old debate in 

the pattern recognition community. Renewing this debate, recently so-called end-to-end models 

have been proposed to jointly optimize feature extraction and classification (Graves & Jaitly, 

2014). End-to-end models have been developed to decrease the dependency on human a priori 

knowledge in the design of the feature extraction step by learning an adapted representation to 

the subsequent classification step. This approach is new trend in the computer science 

community. 

Decision, classification, and prediction. Making a decision, either using classification or 

prediction, is essential for the machine-based approach. Using a classification approach provides 

automatic categorization of the patterns into classes following the discrete categorical approach 

(e.g., six basic emotions). When using a prediction approach, estimating continuous dimensions 

(e.g., valence), regression or other predictive models are used.  

Classification separates patterns into classes using mathematical functions and machine-

learning techniques provide an automatic way to optimize it. For example, the minimum-distance 

classifier estimates a single representative by class (usually the mean of all feature vectors of the 

class). Then, the classification is simply performed by assigning the unlabeled patterns to the 

nearest representative. The mathematical properties (e.g., linear, polynomial, recurrent) of the 

functions highly impact the performance of the classifier and they are usually set-up by the 
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researcher. However, this step is complex, as oversimplified models (e.g., free of parameters) 

omit key aspects of the data’s key structures (underfitting), while excessively complex models 

capture irrelevant structures in the data (overfitting). For example, setting very low or high 

number of representatives for each class necessarily impacts the performance and is empirically 

performed. 

Evaluation. The appropriate manner to evaluate the quality of a computational model is 

to optimize it using training data and evaluate the generalization capabilities using testing data. 

For example, regarding the minimum-classifier distance, training data will be employed to 

estimate the representatives of each class (e.g., mean of each class). Testing data will be 

employed to estimate the performance of the classifier using unseen data. 

Partitioning data into learning and testing subsets is challenging. Cross-validation approaches, 

which allow distinct partitions of training and testing data are preferred. Natural and common 

metrics to evaluate classification and prediction tasks include error rate (e.g., accuracy) and mean 

squared error (MSE). For example, the accuracy measures the fraction of all feature vectors that 

are correctly categorized by the minimum-classifier distance.  

Similarities and Differences between Social and Computer Scientists’ Workflows 

  Through a review of the previous sections, several similarities and poignant differences 

emerge. As the previous sections were not intended to be comprehensive, neither is this section 

intended to be exhaustive in its treatment of similarities and differences in the workflows of 

social and computer scientists. Instead, the purpose of this section is to simply share some of the 

similarities and differences that likely exist and point to how these similarities and 

complimentary differences can be leveraged toward a win-win approach. It must also be noted 

that our identification of similarities and differences is heuristic and may not always hold. That 
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is, we suggest that many social and computer scientists share these similarities and many share 

these differences. However, not all social scientists and computer scientists will necessarily fit 

within these generalizations, and there will certainly be exceptions on both sides. The purpose is 

to capture some of the tendencies and trends, corroborate some of ours and others’ experiences, 

and help plot a way forward for collaboration at the highest level. 

The workflows of both social and computer scientists have important similarities that 

should enable collaboration. First, both share the goal of modeling human behavior, seeking to 

understand why people do what they do, and how they interact with each other and their 

environments using rigorous and replicable methods. Second, both workflows often rely on 

video recordings of social interactions that are coded/annotated by independent raters, with the 

goal of obtaining reliable and objective observations. Third, both social and computer scientists 

often use interactants’ self-reports of their internal states via surveys. Fourth, both have some 

commonality in the analytic tools which they typically use, such as factor analysis and measures 

of agreement, albeit with different purposes in mind. Additionally, both disciplines face the 

challenge of how to synthesize the results of different studies to obtain generalizable knowledge. 

In other words, social scientists and computer scientists share a remarkable amount of 

similarities as they both seek to understand human behavior. These similarities can help them to 

overcome or integrate the differences that make interdisciplinary collaboration challenging. 

In other ways, the workflows of social and computer scientists have important differences 

in research design, data detail and validity, analyses, and publications. Whereas social scientists 

spend more effort on research design and data collection, computer scientists often spend little 

time on data collection or research design and instead focus their efforts on iterative processes of 

analysis. Whereas social scientists emphasize hypothesized associations between different 
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phenomena or variables (often with a concern for group performance), computer scientists 

emphasize the efficiency of predictive models in matching annotations and self-reports.  

The detail of the data and concerns about their validity also differ across fields. Computer 

scientists tend to use more different types of sensing modalities to record human behavior than 

social scientists, who have focused mostly on audio or video recordings. As a result,  computer 

scientists focus on fine-grained aspects of social behavior (e.g., facial expressions, behavioral 

mimicry), while social scientists tend to focus more on more general aspects of interaction (e.g., 

complaining cycles, socioemotional interaction). As such, social scientists will use audio or 

video recordings whereas a computer scientist may want additional, more nuanced recording 

tools such as accelerometers to capture additional detail from the interaction. While social 

scientists emphasize inter-rater agreement and internal validity for survey and observational 

measures (i.e., whether they actually measuring our target construct), computer scientists are less 

concerned with this, and instead embrace some subjectivity in the data as capturing the real 

messy and subjective world. 

Importantly, the types of publications and timelines differ widely between the fields, 

which can create conflicting incentives, especially for early career researchers. Social and 

computer scientists tend to publish in different venues and the time to publication varies 

dramatically. For a computer scientist, one completed paper could easily have been the result of 

50 to 100 iterations of different ideas tested on the same data. Social scientists on the other hand, 

usually collect unique data for each set of hypotheses, often including multiple datasets in the 

same paper. Reusing data for the same analyses is considered unethical by most social science 

journals. Hence, negotiating between these differences creates one of the largest practical 

obstacles to synergistic collaboration.  
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As these similarities and differences illustrate, collaborations between computer scientists 

and social scientists offer potentially fruitful opportunities but will require understanding and 

patience. The similarities can facilitate mutual understanding, and the differences may require 

patience as the ambiguity created by inexperience with each other’s workflow can create 

questions or constructive conflict.  

Towards a Win-Win Approach 

Despite the challenges presented by differing workflows, we believe that social science 

and computer science researchers can make inroads toward long-lasting and synergistic 

interdisciplinary collaborations. These collaborations can involve differing types of 

interdependence between researchers for the two disciplines (see Figure 1). The producer-

consumer model to which we referred earlier involves pooled interdependence (Thompson, 

1967). In such a setup, there is little direct interaction between disciplines, but rather each 

discipline relies on the other to produce adequate resources for the other. This means that no 

collaboration between researchers occurs; producers and consumers publish independently of 

one another and benefit from each other only via publications or other publicly shared resources 

(e.g., Hung & Gatica-Perez, 2010; Jayagopi, Hung, Yeo, & Gatica-Perez, 2009).  

Although the producer-consumer model is not considered collaboration, it is an important 

basis for considering where entry points of collaboration could occur. Such an approach enables 

researchers to identify potential interdisciplinary partners via common research questions or data. 

Finding out about the tools and practices in the other disciplines and implementing them in one’s 

own research is a critical first step toward more complex collaborations. We argue that social 

scientists should use available computer science tools when possible, and that computer 

scientists should seek out social scientists producing annotated videos. Further, social scientists 
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should use recording equipment of a higher quality which makes it possible for computer 

scientists to use the recorded data. To facilitate this, computer scientists can aggregate and list 

what tools are available, and what dimensions can be automatically coded.  

Interdisciplinary collaboration can also occur when a paper written for one discipline  has 

minor contributions in the other discipline. A scholar from the other discipline may then become 

a co-author (e.g., Sanchez-Cortes, Aran, Jayagopi, Schmid-Mast, & Gatica-Perez, 2013). This 

implies sequential interdependence, in which work is analogous to an assembly line where each 

person contributes and hands off the product to the next (Thompson, 1967). In this model, social 

scientists and computer scientists each contribute to the same project, each fulfilling discrete 

tasks, and then passing off to the other group. For instance, social scientists collecting new data 

on meetings in organizations could annotate video recordings for behaviors of interest to 

computer scientists (while also annotating for other behaviors or states specific to their own 

research). Those annotated videos could be passed off to the computer scientists, who then use 

them for training and evaluation, but might also help the social scientists implement automated 

coding of emotions from facial expressions or vocal prosody for use in their project. In such an 

arrangement, each discipline benefits from the other and circumvents potential problems related 

to the different pace at which both disciplines go from research to publication. This model is 

open to a broad range of computer scientists and social scientists who may not be familiar with 

interdisciplinary collaboration.  

At the next level of collaboration, joint research questions are formed in which the 

producer-user roles are more heavily interwoven with resources provided by the producer. For 

instance, a social scientist could take the lead in providing research questions and hypotheses and 

code for behaviors, whereas the computer scientist would provide novel automated approaches to 
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test or verify the hypotheses. The data analysis step would therefore use the expertise of both 

computer scientists and and social scientists. A similar level of integration could be reached 

when a common data set is collected, but both disciplines publish independently from the data as 

well as together.   

The highest level of interdisciplinary collaboration—reciprocal  interdependence—is the 

most challenging to obtain. Reciprocal interdependence involves the actions of both parties being 

tightly interwoven and requires constant mutual adjustment, as in a basketball team or jazz 

ensemble (Thompson, 1967). This is likely to be best undertaken by senior researchers who 

already have some experience working in pooled or sequential interdependence arrangements. 

Because neither field is organized to accommodate the other (e.g., in terms of journals, 

promotion/tenure procedures), such interdisciplinarity involves large risks. Specifically, what 

counts as a publication in a reputable outlet and therefore supportive a tenure portfolio is 

different for each discipline and potentially unique to each department/university. However, 

seeking opportunities after undertaking the looser forms of interdependence, and developing 

research questions and approaches through these processes will eventually result in outcomes 

that have mutual benefit (e.g., each publishing in their respective disciplines’ journals). The 

expectation here, and one of the initial motivations for the Lorentz workshop and for this 

resulting special issue, is that the mutual benefits at this level will be so sufficiently ground-

breaking for each discipline in its own right that the time investment will be worth it. Essentially, 

starting the conversation about the opportunities for truly collaborative interdisciplinary research 

will bear fruit soon. 

It is our hope that as computer scientists and social scientists come together and start to 

observe the high gain that both sides can accomplish, this higher level of mutual understanding 
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will become the norm of an integrated community rather than pockets of interdisciplinary 

collaborations. Through our review of the workflows, several barriers to and synergies towards 

collaboration were identified. The identification of these barriers and synergies is a necessary 

first step for the mutually beneficial collaboration described here.  Specifically, as collaborations 

form, we hope that researchers will invest the time, energy, and resources necessary to arrive at 

the highest level of integrated collaboration in a true interdisciplinary and ground breaking 

fashion.   
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Table 1: Summary of Workflows for Social and Computer Scientists 

Workflow Domain Social Scientist Computer Scientist 

1. Research Design 

 
 Deductive or inductive designs 

typically using 

quantitative/qualitative data with the 

intent of test or developing theory 

 

 Typically performance-driven; the 

author's proposed model is better 

than anyone else's. 

2. Data Collection 

 
 Gather data from adequate number of 

groups using survey tools, 

audio/video recording equipment, or 

some combination of collection tools 

 

 Focuses on acquisition of sensor 

data of human behavior. Typically, 

data and associated annotations are 

shared and reused in the research 

community. 

 

3. Data Analysis  Typically involves quantitative 

analysis via computer software.  

 Often includes coding of behaviors 

recorded using audio/video files.   

 Inter-rater agreement on coded 

behavior is expected.  

 Takes the form of hypothesis test for 

deductive designs or theory building 

for inductive designs. 

 

 Typically, automated methods to 

estimate the label of sensor data 

are developed.  

 The proposed methods are always 

tested using different data than the 

data used for training the model. 

 Performance is expected to be 

validated using cross-validation. 
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Figure 1: Interdisciplinary Collaboration via Interdependence Level and Time 
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