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We review two important non-perturbative approaches for extracting the physics of low-
dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive
review of non-Abelian bosonization. This includes an introduction to the basic elements of confor-
mal field theory as applied to systems with a current algebra, and we orient the reader by presenting
a number of applications of non-Abelian bosonization to models with large symmetries. We then tie
this technique into recent advances in the ability of cold atomic systems to realize complex symme-
tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one
and two dimensions. For one-dimensional systems we provide the reader with considerable insight
into the methodology by reviewing canonical applications of the technique to the Ising model (and
its variants) and the sine-Gordon model. Following this we review recent work on the development
of renormalization groups, both numerical and analytical, that alleviate the effects of truncating
the spectrum. Using these technologies, we consider a number of applications to one-dimensional
systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-
modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to
consider truncated spectrum methods applied to two-dimensional systems. This involves combining
truncated spectrum methods with matrix product state algorithms. We describe applications of this
method to two-dimensional systems of free fermions and the quantum Ising model, including their
non-equilibrium dynamics.

Keywords: non-Abelian bosonization, truncated conformal space approach, numerical renormal-
ization group, matrix product states, integrability, cold atomic gases, non-equilibrium dynamics
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I. INTRODUCTION

Quantum systems have been under intense investiga-
tions for well over a century, following the pioneering
work of Max Planck at the very beginning of the 20th
century [1]. With the establishment of the new quantum
mechanics a number of important and well-known results
flowed forth in quick succession: blackbody radiation [1],
the photoelectric effect [2], predictions for the energy lev-
els of the electrons in the hydrogen atom [3], and so on
(see, e.g., Refs. [4–6]).
In the 1920s many-body quantum systems came under

an increasing amount of attention. Once Wolfgang Pauli
introduced the exclusion principle [7, 8] it was realized
that many-particle correlations might lead to fundamen-
tally new physics. Paradigmatic models, such as the Ising
model [9] and the Heisenberg model [10, 11] were estab-
lished, and Schrödinger developed his wave equation for
quantum mechanics [12]. Dirac emphasized the applica-
tion of Schrödinger’s formalism to many-electron prob-
lems [13], and shortly after Hylleraas [14] presented an
approximate solution of the helium atom via a variational
wavefunction. This simple calculation showed much of
the power of quantum theory, predicting the ground state
energy of helium to within one half of one percent of its
measured value.
Despite the successful description of the helium atom,

it was also apparent that interactions present a signifi-
cant challenge. In the case of helium, one is dealing with
a ‘simple’ few-body problem and even here an exact re-
sult is not known. For computing properties of helium it
is fortunate that the Coulomb interaction is weak1 and
perturbative techniques give reasonable results. On the
other hand, when we have a many-particle problem in
which interactions are not weak, there is a priori no ob-
vious route towards solving the problem. Furthermore,
careful study of the hydrogen atom revealed that interac-
tions can lead to subtleties in even the apparently trivial
case of the two-body problem. This is perhaps best ex-
emplified by the 1947 experiments of Lamb and Ruther-
ford, where a shift in the energy between the 2S and 2P
orbitals of hydrogen was observed [15]. This so-called
Lamb shift was not predicted by the exact solution of
the Dirac equation for hydrogen [16, 17], and was ex-
plained shortly afterwards by Bethe, who computed the
electron self-energy in the two orbitals and showed that
they differ [18].
So, even in the case of few-body problems, it is clear

that interactions are challenging in the theory of quan-
tum systems. Moving towards the many particle prob-

1 The weakness of the Coulomb interaction is controlled by the
value of the fine structure constant

α =
e2

4πε0�c
≈ 1

137
� 1.
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lem, it becomes important to develop a systematic un-
derstanding of the effect of interactions. At first blush,
such an aim may appear hopeless – our eventual goal is to
describe the behavior of macroscopic (∼ 1023) numbers
of interacting particles. From experimental observations,
we already know that depending on the precise details of
the system, we can realize a plethora of phases of matter
with strikingly different physical properties. Whilst for
the case of weak interactions (or another small parame-
ters) one can apply the extensive framework of perturba-
tive quantum field theory (see, e.g., Refs. [19–24]), in the
absence of a small parameter (so-called strongly corre-
lated systems) one must develop non-perturbative tech-
niques. This is perhaps one of the grandest challenges of
modern theoretical physics.

In pursuit of non-perturbative techniques to attack
strongly correlated problems, we turn our attention to-
wards low-dimensional quantum systems. At first glance,
it is not obvious that this is the easiest regime to con-
sider: particles confined to move on a line must scatter
in order to move past one another. As a result, strong
correlations and collective phenomena rule the roost in
low dimensional quantum systems. Yet despite this, a
number of exact results and methods peculiar to low-
dimensions exist, and these help guide the way.

Relatively early in the development of quantum me-
chanics, two important advances in the study of many-
body systems occurred. Firstly, Jordan and Wigner
suggested the transformation which establishes a rela-
tionship between fermionic and bosonic one-dimensional
quantum systems [25]. Secondly, Bethe presented his now
famous ansatz for the eigenstates of the one-dimensional
isotropic Heisenberg model [11] – a truly strongly cor-
related system in which no small parameter exists for
perturbative expansions.

These two important results existed in isolation for al-
most 30 years before an explosion of results for integrable
1+1-dimensional quantum models and closely related
2+0-dimensional statistical mechanics models, beginning
in the late 1950s: the Heisenberg XXZ chain [26–30],
the six-vertex model [31, 32], the eight-vertex model [33–
36], the Lieb-Liniger model [37, 38], the massive Thirring
model [39, 40], the sine-Gordon model [41], the Gross-
Neveu model [42, 43], and the SU(2)-Thirring model [44].
Whilst integrable models form a set of measure zero in
the space of all models, they provide a valuable starting
point for understanding strongly correlated systems and
they include a number of models of experimental interest
(see, for example, Refs. [45–49]).

Further to developments in integrable models, in the
mid-1970s there were parallel developments in the con-
densed matter and high-energy communities on the for-
mal one-to-one correspondence between fermionic and
bosonic models in 1+1D [50–53]. This formalized the
links between interacting fermion and boson systems,
as had already been realized with the noninteracting
Tomanaga-Luttinger liquid [54–56], which extended early
works by Bloch on describing the electron gas through its

sound waves [57, 58]. By exploiting this correspondence
between fermionic and bosonic theories, through a tool-
box now known as bosonization and refermionization, the
door was opened to studying nonintegrable strongly cor-
related problems [22, 59–62]. This framework remains
at the forefront of understanding of various exotic phe-
nomena, including the well-known spin-charge separa-
tion [59, 63–67].

As well as analytical approaches, based upon integra-
bility and bosonization, there are a number of power-
ful numerical techniques that shed light on the proper-
ties of low-dimensional strongly correlated quantum sys-
tems. Exact diagonalization [68, 69] is a useful tool for
one-dimensional models with small local Hilbert spaces
(such as spin-1/2 chains) allowing access to the eigen-
states of moderately large systems (up to ∼ 30 sites for
full and ∼ 40 sites for iterative diagonalization of a spin-
1/2 chain). Hamiltonian truncation methods can pivot
the power of exact diagonalization to tackle problems
with larger Hilbert spaces: Wilson’s numerical renormal-
ization group (NRG) [68, 70] and the truncated space
approach (TSA) [71, 72] both embrace the philosophy of
the renormalization group to work with restricted Hilbert
spaces. Beyond exact diagonalization, there is a prolif-
eration of techniques based upon matrix product states
and their tensor network generalizations (see the re-
views [73, 74]), which includes the ubiquitous density ma-
trix renormalization group (DMRG) algorithm [68, 75–
77]. For finite temperature properties and large systems,
quantum Monte Carlo (QMC) [78, 79] remains at the
forefront of available methods.
Despite this diverse range of methods, there is a

never-ending demand to advance and extend the non-
perturbative techniques available to us. In recent years
this has been driven by the desire to meet fascinating
new experimental challenges, such as describing materi-
als with large and complex symmetries (such as transition
metal [80, 81] and rare-earth [82, 83] compounds) and un-
derstanding ground-breaking studies of cold atomic gases
with enlarged symmetries [84–89]. We have already seen
that integrability can be a useful tool on this road, but
it by no means exhausts the problems which need to
be addressed. Indeed, in higher spatial dimensions in-
tegrability has little to directly say at all. In this review
we will present a number of techniques, some partially
based upon integrability, some partially based upon ma-
trix product states, which have been developed in an at-
tempt to overcome some of the challenges of the field and
address some of the experimentally relevant questions.

A. Overview

We will first discuss non-Abelian bosonization and its
application to systems with complicated symmetries. In
the course of our discussion, we will make explicit the
links to recent studies of condensed matter systems with
large symmetries (such as spin and orbital degeneracy),
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as well as experiments on cold atomic gases with symme-
tries hard to realize in the solid state (such as SU(N) spin
symmetry). Following this, we will review the truncated
space approach (TSA). Using exact information from in-
tegrability or conformal field theory, this method allows
one to compute the low-energy excitation spectrum and
correlation functions of perturbed integrable models (and
not necessarily weakly perturbed). At its base the TSA
is a numerical approach, and its realm of applicability
can be greatly extended with powerful renormalization
group improvements.

Two-dimensional quantum systems can be even richer
than their one-dimensional counterparts, and there exist
few methods which can accurately decipher their proper-
ties. In the third technique that we review, we attack a
number of two-dimensional problems by combining data
from integrability with matrix product state based nu-
merics. With such methods it is possible to glue together
one-dimensional integrable sub-units to form large two-
dimensional arrays, which we then study for several ex-
ample systems. By following such a path, we will show
that certain two-dimensional systems and their critical
points can be studied.

Throughout the review, we have tried to keep our use
of acronyms to a minimum; nevertheless, we provide a
glossary of those that we do use at the end of the main
body of the review.

The theory of strongly correlated low-dimensional
quantum systems is a vast and rapidly advancing field.
As a result, there are topics too numerous to name that
we do not have space to cover. However, in relation to
the topics of focus of this review, it would be remiss of
us not to mention a few particular examples.

(1) Recent experimental advances in the field of ul-
tracold atoms have stimulated a huge theoretical ef-
fort to understand the non-equilibrium dynamics of low-
dimensional quantum systems. Issues at the core of
understanding quantum mechanics are being addressed,
with the aim of addressing even basic questions such
as: Does thermalization emerge from unitary time-
evolution? How do conservation laws modify the dynam-
ics of a system? Can non-equilibrium systems relax to
states with properties very different to those accessible
in equilibrium? How does one describe non-equilibrium
steady states in which there are finite flows of currents?
An introduction to some of the theoretical techniques of
this field can be found in the recent review articles [90–
101] and references therein.

(2) As well as the non-equilibrium dynamics, over the
past decade there have been significant advances in the
computation of equilibrium dynamical correlation func-
tions. It is well known that Abelian bosonization (e.g.,
the Luttinger liquid) fails to capture the correct physics
of dynamical correlation functions at finite frequency and
momentum – in part due to the linearization of the spec-
trum, which only applies in the vicinity of the Fermi
points. To resolve this problem, the non-linear Lut-
tinger liquid formalism [102, 103] was developed, in which

Abelian bosonization is modified to include mobile im-
purities which allow one to capture the correct finite fre-
quency and momentum behavior. Combined with infor-
mation from integrability, exact results can be obtained
for threshold singularities (see, e.g., Refs. [104–108]) and
the real-time dynamics [109].
(3) Integrability is an important tool and corner-

stone of both the previously mentioned topics. In it-
self, there have been significant advances in studying in-
tegrable quantum systems, from the development of effi-
cient numerical routines for computing correlation func-
tions (such as abacus [110]) to new analytical results
for matrix elements in multi-component models [111–
118]. One of the most beautiful mathematical results has
been the development of the correspondence between in-
tegrable models (e.g., thermodynamic Bethe ansatz) and
ordinary differential equations, see for example the re-
view article [119] and references therein.
(4) There have also been significant advances in the

study of critical theories in higher dimensions, spurred
on by the development of the numerical conformal boot-
strap [120–122]. This has allowed for important quanti-
ties, such as the critical exponents, to be computed to ex-
tremely high accuracy in physically interesting systems,
such as the three-dimensional Ising model [123, 124].
(5) Also on the numerical methods front, there have

been recent interesting developments in the application
of machine learning methods to strongly correlated sys-
tems. This includes attempts to describe strongly corre-
lated states of matter [125–130] and suggest new materi-
als [131–133].

II. NON-ABELIAN BOSONIZATION

A. Background

1. Motivation

In physics it is frequently the case that making the
right choice of variables dramatically simplifies the prob-
lem, allowing the solution to be grasped. In the field
of condensed matter, we are often dealing with electrons
and so the original variables are fermionic fields. In many
problems of interest, these fields are strongly interacting:
the associated excitations of these fields become incoher-
ent and extracting the physics of the problem becomes
muddied. It is then that we seek new variables, whose
excitations are coherent, in which the physics is more
transparent. Bosonization, the topic of this section of
the review, provides us with one such reformulation: the
problem is expressed in terms of collective variables which
are bosonic or even fermionic, but different to the orig-
inal fields [22, 60–62, 134, 135]. Such a formulation in
many cases significantly simplifies the problem, helping
us to find the solution and understand the physics.
Non-Abelian bosonization, much like its Abelian coun-

terpart (see Appendix A for a brief discussion) is a
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mathematical procedure that establishes a formal equiva-
lence between fermionic and bosonic versions of the same
model in 1+1 dimensions. Our discussion of non-Abelian
bosonization will be applications driven2 – technical as-
pects will be explained in the context of models that ex-
hibit new and interesting physics. In particular, our fo-
cus will be on models with complicated symmetries that
may emerge, for example, when orbital degrees of free-
dom must be taken into consideration in an electronic
system. Examples of such systems include transition
metal [80, 81] and rare-earth compounds [82, 83], as well
as many cold atomic gas systems [84–89]. Our main fo-
cus will be on such systems in the vicinity of a quantum
critical point (QCP): the quantum aspect of the problem
is enhanced close to a QCP, and models with compli-
cated symmetries will be described by highly entangled,
strongly correlated states in this regime [137].
At the very core of non-Abelian bosonization is a math-

ematical theorem [135, 138, 139]: the Hamiltonian of
non-interacting massless fermions in (1+1) dimensions
that transform according to some symmetry group can
be written as the sum of Wess-Zumino-Novikov-Witten
(WZNW) models. Whilst at first glance such a refor-
mulation looks rather complicated, the fact that each
WZNW model commutes with the others allows us to
treat each symmetry sector independently (this is remi-
niscent of spin-charge separation in Abelian bosonization,
see Appendix A) and often makes the problem tractable.
The reformulation also enables us to incorporate vari-
ous interactions, and occasionally (if we are lucky!) the
problem can turn out to be exactly solvable, or at least
amenable to approximate methods.

2. Applications of non-Abelian bosonization

As we have mentioned in the previous section, our
discussion of non-Abelian bosonization will be focused
upon applications in condensed matter and cold atom
systems with complicated (e.g., high) symmetry. This is,
of course, not the only scenario in which one can apply
non-Abelian bosonization; in this section, we give (a cer-
tainly incomplete!) list of other applications which we do
not have space to cover.
1. Spin chains and ladders.— There is an extensive

literature on applications of non-Abelian bosonization to
spin chains and ladders, see the text books [22, 61]. The
manifest realization of non-Abelian symmetries serves
to make the physics much more transparent, as was
shown by the seminal early works of Polyakov and Wieg-
mann [140], Affleck [141, 142], and Affleck and Hal-
dane [143].
2. The Kondo problem and generalizations.— Non-

Abelian bosonization is a standard tool for attacking

2 The technique itself has been reviewed before, see Refs. [22, 61,
62, 135, 136] for some prominent examples.

the Kondo problem, starting from the work of Frad-
kin and collaborators [144] and subsequent works by Af-
fleck and Ludwig [145–148], much of which is reviewed
in Ref. [149]. Generalizations of the Kondo problem to
multiple channels [149–151], cluster impurities [152, 153]
or to the Kondo lattice [154] can also be treated.
3. Disordered fermions.— Problems featuring disorder

have also been the subject of intense study with non-
Abelian bosonization. These include: Dirac fermions in
a random non-Abelian gauge potential [155–161], disor-
dered d-wave superconductors [162–164], surface states of
disordered topological superconductors [165–169], non-
Hermitian theories with random mass terms [170],
and random potentials related to percolation transi-
tions [171].
4. Quantum Hall transitions and edge states.— Non-

Abelian bosonization also has various applications to
the quantum Hall effect. These include relations to
transitions between quantum Hall states [142, 171] and
the description of quantum Hall edge states [172–176].
More recently, non-Abelian bosonization has been exten-
sively used in the coupled-wire construction [177] of two-
dimensional non-Abelian fractional quantum Hall states
and chiral-spin liquid phases, where one starts from an
array of one-dimensional fermionic or bosonic wires [178–
185].
5. Quantum chromodynamics in 1+1-dimensions

and Quark-Gluon plasma in 1+3-dimensions.— Out-
side the realm of condensed matter physics, non-Abelian
bosonization is a powerful tool in high energy physics,
including for the description of toy models of quantum
chromodynamics, see for example Refs. [186–189], and
realistic models of dense quark-gluon plasma [190].

3. This section of the Review

The path for our discussion is as follows: we will begin
by introducing non-Abelian bosonization in quite some
detail, starting from the basic idea of linearizing the dis-
persion of a one-dimension quantum system, and mov-
ing on to discuss the current algebra, the conformal em-
bedding theorem, the diagonalization of WZNW mod-
els, and the Lagrangian formulation. To supplement
this discourse, we provide brief introductions to Abelian
bosonization and conformal field theory (CFT) in Ap-
pendices A and B, where we summarize some useful basic
concepts.
In Sec. III we move on to discuss a number of examples

of non-Abelian bosonization motivated by applications to
materials of current interest in solid state experiments,
such as transition metal and rare earth compounds. The
electrons in these models carry both spin and orbital de-
grees of freedom, leading to complicated symmetries such
as U(1)×SU(k)×SU(N) or U(1)×Sp(2N). Here we will
discuss some truly exotic physics, including topological
phases and emergent parafermions. We follow this with
Sec. IV, where applications of non-Abelian bosonization
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to cold atomic gases will be covered.

B. Linearizing the dispersion

To begin, let us briefly recap the standard field theo-
retical approach to (1+1)-dimensional quantum systems,
which starts with linearizing the dispersion [22, 60, 61].
In our discussion of non-Abelian bosonization, we will
assume that non-interacting fermions have a linear spec-
trum, which is a valid point of view for states sufficiently
close to the Fermi points in a condensed matter system.
The formal transition from a quadratic theory to a lin-
ear dispersion is achieved by writing the fermion fields as
a combination of a fast (oscillatory) exponent and slow
right- and left-moving fields R,L:

ψ(x) = eikF xR(x) + e−ikF xL(x), (1)

where kF is the Fermi wave vector (we work in units
where � = 1).3 Substituting (1) into the non-interacting
Hamiltonian with a quadratic dispersion relation we ob-
tain

H =
1

2m

∫
dxψ†

(
− ∂2

x − k2F

)
ψ,

≈ ivF

∫
dx

(
−R†∂xR+ L†∂xL

)
, (2)

where vF = kF /m is the Fermi velocity. In obtain-
ing (2) we have neglected terms that are oscillatory
(which are suppressed by the integration over x) and
second derivatives of the slow fields, which are assumed
to be small (hence the name “slow”). It is clear that
the linearization procedure will not capture the correct
physics for all energies and momentum: a cut-off energy
Λ ∼ k2F /2m (the Fermi energy) for the theory is in-
troduced to account for this. Under this linearization
procedure, low energy non-relativistic one-dimensional
fermions are transformed into relativistic Dirac ones; this
emergent Lorentz symmetry plays a very important role
in the theory of strongly correlated one-dimensional (1D)
systems [22, 61].

The Dirac Hamiltonian (2) will serve as a starting
point for the remainder of our discussions of non-Abelian
bosonization. The introduction of local degrees of free-
dom (e.g., higher symmetry) does not change the dis-
cussion: consider left- and right-moving fermion fields
Ljα, Rjα that carry both orbital (j = 1, . . . , k) and
spin (α = 1, . . . , N) indices. The fields are governed by
the Dirac Hamiltonian (cf. Eq. (2))

H = ivF

k∑
j=1

N∑
α=1

∫
dx

(
−R†jα∂xRjα + L†jα∂xLjα

)
, (3)

3 In doing the expansion (1) we neglect the presence of higher
harmonics, which may arise as a result of, e.g., interactions.

and obey the standard anti-commutation relations{
R†jα(x), Rj′β(y)

}
= δjj′δαβδ(x− y),{

L†jα(x), Lj′β(y)
}
= δjj′δαβδ(x− y),{

Rjα(x), Lj′β(y)
}
= 0.

(4)

Herein, we will set the Fermi velocity vF = 1 and measure
energy in appropriate units.

C. The Kac-Moody algebra

Let us now consider one of the most fundamental
concepts of low-dimensional quantum physics, the Kac-
Moody algebra [191, 192], and discuss its central role in
non-Abelian bosonization.

1. Current Operators

We consider the Hamiltonian (3) where the fermions
carry both orbital (j = 1, . . . , k) and spin (α = 1, . . . , N)
indices. We define the current operators

Ja
R = R†(I ⊗ sa)R, a = 1, . . . , N2 − 1,

F a
R = R†(ta ⊗ I)R, a = 1, . . . , k2 − 1,

(5)

with identical definitions for left-moving currents with
R → L. In Eqs. (5) we use the convenient short hand
notation

R†(ta ⊗ sb)R =

k∑
j,j′=1

N∑
α,β=1

R†jαt
a
jj′s

b
αβRj′β , (6)

while I is the unit matrix, sa are the generators of the
su(N) algebra associated with the local spin degrees of
freedom, and tb are the generators of the su(k) algebra
associated with the local orbital degrees of freedom. The
generators of the su(N) algebra are normalized according
to

Tr(sasb) =
1

2
δab, [sa, sb] =

∑
c

ifabcsc, (7)

where δab is the Kronecker delta and fabc are the struc-
ture constants of the Lie algebra (see, e.g., Ref. [193]).4

Similar relations hold for the generators ta of the su(k)
algebra.

4 For the case of N = 2, the generators of the su(2) algebra in this
normalization are sa = σa/2, with σa the Pauli matrices. The
structure constants are fabc = εabc, where εabc is the Levi-Civita
symbol.

Page 6 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



7

2. Commutation relations

The anti-commutation relations (4) imply that cur-
rents with different chirality (R or L) or from different
groups (SU(N) or SU(k)) commute. Currents which
have the same chirality and group structure compose
the Kac-Moody algebra [191, 192]. For the currents
featuring the generators of the su(N) algebra, we have
(� = R,L = 0, 1)

[Ja
� (x), J

b
� (y)] = ifabcJc

� (x)δ(x−y)−(−1)�
ik

4π
δ′(x−y)δab,

(8)
where summation over repeated indices is implied (hence-
forth we adopt this convention) and δ′(x) is the derivative
of the Dirac delta function.
The current Ja that satisfies (8) with fabc the struc-

ture constants of the su(N) algebra is called an SU(N)k
current, where k is called the ‘level’.5 It follows from the
definition (5) that F a is an SU(k)N current.6

The final term on the right-hand side of Eq. (8) is
often called the anomalous commutator or the Schwinger
term.7 It can be derived in a straightforward manner:
recall that commutation in a field theory is defined inside
of a time-order correlation function. For two operators,
A(x) and B(y), the commutators is defined as [197, 198]

〈[A(x), B(y)]...〉
= lim

τ→0+

〈[
A(τ, x)B(0, y)−A(−τ, x)B(0, y)

]
...
〉
, (9)

where the ellipses denote any other fields present in the
correlation function. Replacing A(τ, x) and B(0, y) in
Eq. (9) with the expressions for the SU(N)k currents

A(τ, x) = R†jα(τ, x)s
a
αβRjβ(τ, x), (10)

B(0, y) = R†j′γ(0, y)s
b
γδRj′δ(0, y), (11)

and using the well-known result for the correlation func-
tion of the fermion fields [135]〈

Rjα(τ, x)R
†
lβ(τ

′, x′)
〉
=

1

2π

δjlδαβ
(τ − τ ′)− i(x− x′)

, (12)

we obtain the anomalous commutator〈[
R†jα(x)s

a
αβRjβ(x), R

†
j′γ(y)s

b
γδRj′δ(y)

]〉
=

kδab
2

lim
τ→0+

1

4π2

{
1

[τ − i(x− y)]2
− 1

[τ + i(x− y)]2

}
,

=
kδab
8π2

∂x

(
1

x− y + i0+
− 1

x− y − i0+

)
= − ik

4π
δ′(x− y)δab. (13)

5 In the mathematics literature, k is known as the ‘central exten-
sion’ of the Kac-Moody algebra [194–196].

6 This should be read as “an SU(k) level N current”.
7 It is intimately related to the presence of a quantum anomaly,
see for example Refs. [197–199].

3. Fourier Components

It will often be convenient to work with the Fourier
components of the current operators, where one assumes
the system of fermions is placed in a box of length l with
periodic boundary conditions,

Ja(x) =
1

l

∞∑
n=−∞

e−2πinx/lJa
n . (14)

In terms of the Fourier components Ja
n , the Kac-Moody

algebra is

[Ja
n , J

b
m] = ifabcJc

n+m +
nk

2
δn+m,0δab. (15)

It is clear that the zeroth component of the currents con-
stitutes a subalgebra

[Ja
0 , J

b
0 ] = ifabcJc

0 , (16)

that is isomorphic to the global algebra (15).

D. Conformal embedding and the Sugawara
Hamiltonian

We now turn our attention to another important con-
cept that is at the core of non-Abelian bosonization: the
theorem that non-interacting fermions that transform ac-
cording to some symmetry in (1+1)-dimensions can be
written as a sum of WZNW models [139]. As the the-
ory of non-interacting massless Dirac fermions in (1+1)-
dimensions possesses conformal symmetry [200, 201], this
theorem is often called conformal embedding [135]. On
a basic level the conformal embedding defines a set of
fractionalization rules for breaking up the free fermion
Hamiltonian in terms of Hamiltonians of different criti-
cal models that commute with one-another.
To illustrate the conformal embedding, we consider the

Hamiltonian H defined in Eq. (3). The fermions possess
both orbital (j = 1, . . . , k) and spin (α = 1, . . . , N) in-
dices, so the Hamiltonian has the unitary group symme-
try U(1) × SU(N) × SU(k). The conformal embedding
for H takes the form

H = H[U(1)] +W [SU(N); k] +W [SU(k);N ], (17)

where W [G; k] is the WZNW Hamiltonian for the group
G at level k, which can be written in Sugawara form [202]

W [SU(N); k]

=
2π

N + k

∫ l

0

dx
(
: Ja

RJ
a
R : + : Ja

LJ
a
L :

)
,

=
2π

l(N + k)

[
Ja
d,0J

a
d,0 + 2

∑
n>0

Ja
d,−nJ

a
d,n

]
, (18)

where Ja are the SU(N)k currents and d = R,L. Nor-
mal ordering of an operator (denoted by colons) is defined
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such that Fourier components with n > 0 annihilate the
vacuum [203]. The U(1) Hamiltonian in (17) is the Gaus-
sian model, which may also be expressed in the Sugawara
form [202]

H[U(1)] =
π

Nk

∫
dx(: j2R : + : j2L :), (19)

with U(1) currents defined by

jR =: R†jαRjα :, jL =: L†jαLjα : . (20)

The conformal embedding (17) is, essentially, a field
theory analogue of the decomposition of kinetic energy
into radial and angular motion in classical mechanics:

mv2

2
=

m(ṙ)2

2
+

L2

2mr2
, (21)

where the first term on the right-hand side would corre-
spond to the Gaussian theory.

The most important point to take away from the con-
formal embedding (17) is that all three Hamiltonians on
the right-hand side commute with one-another. This
means that each symmetry sector can be treated sep-
arately – in many cases this leads to substantial sim-
plifications in calculations. The reader may be famil-
iar with a similar phenomenon in Abelian bosonization:
spin-charge separation [60, 61].8 Also in analogy to the
Abelian case, interactions that include solely Kac-Moody
current operators of a given group do not violate the
conformal embedding (17), often allowing for their treat-
ment. In terms of the mechanical analogy (21), this is
similar to the simplifications that occur when working
with a radially symmetric potential (for example). In
the examples and discussions below we will extensively
use this feature of the theory.

Analogies between non-Abelian and Abelian bosoniza-
tion cannot always be drawn. One prominent example
of this is to consider the problem of bosonization on the
level of operators. The situation here is more nuanced:
it well known (see Appendix A for a discussion) that
Abelian bosonization allows one to express fermionic op-
erators (including chiral ones, such as the L,R fermions)
as sums or products of local operators acting in the chiral
sectors of the Gaussian model (e.g., the free boson). Con-
sider, for example, a single species of massless fermion:
the bosonization rules states the fermion operators can
be written in terms of vertex functions (exponentials) of
the chiral bosonic field [60, 61, 135]

R =
1√
2πa0

eiϕ, L =
1√
2πa0

e−iϕ̄, (22)

8 See Appendix A for one such example of this phenomenon.

where a0 is the lattice constant, and the bosonic fields
are governed by the actions

SR =
1

4π

∫
dτdx ∂xϕ(i∂τ + ∂x)ϕ,

SL =
1

4π

∫
dτdx ∂xϕ̄(−i∂τ + ∂x)ϕ̄.

(23)

The convenient separation (22) of the operators into chi-
ral sectors is not a universal property of CFTs. In fact,
this can be seen even in the simplest CFT: the critical
Ising model [135]!9 In general, multi-point correlation
functions of CFTs cannot be factorized into products of
holomorphic functions (as would be implied by (22)), but
are instead expressed in terms of sums of products of holo-
morphic functions [135]

〈A(z1, z̄1) . . . A(zN , z̄N )〉
=

∑
j

CjFj(z1, . . . , zN )F̄j(z̄1, . . . , z̄N ), (24)

where z = τ − ix and z̄ = τ + ix. The holomorphic func-
tions F, F̄ are called conformal blocks and the coefficients,
Cj are fixed by the requirement that the entire correla-
tion function is single valued [135]. With this in mind, it
is generally not possible to speak about the factorization
of operators in theories such as the WZNW model, where
instead one can only speak of the factorization of confor-
mal blocks. We will discuss this further below, in cases
where we deal with perturbations of fermionic models.

1. Diagonalization of the Sugawara Hamiltonian

Let us return to the Sugawara Hamiltonian (18). This
appears to be rather complicated, so it is perhaps nat-
ural to think that the conformal embedding (17) is not
terribly useful. Fortunately, things are not so bad: it
is relatively straightforward to diagonalize the Sugawara
Hamiltonian (18).
Firstly, we should remember that (18) is formed from

two commuting pieces, which describe the left- and right-
moving excitations

W [G; k] = HR +HL, (25)

Hd =
2π

l(k + cv)

[
Ja
d,0J

a
d,0 + 2

∑
n>0

Ja
d,−nJ

a
d,n

]
. (26)

Here we have written the Hamiltonian in a more general
form in terms of cv, the quadratic Casimir in the adjoint
representation [193]

fabcfābc = cvδaā. (27)

The overall separation of the Hamiltonian into chiral
parts is reasonable: after all, the Hamiltonian describes a

9 We discuss this case in detail in Appendix B.
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sub-sector of the theory of non-interacting massless Dirac
fermions (3) where, indeed, right- and left-movers are in-
dependent. In fact, this decomposition of the Hilbert
space is a general property of CFTs [135, 204] and it
allows us to discuss the left- and right-moving sectors
independently.
Secondly, we can construct the lowest eigenstates

of (26) by starting with the vacuum states |h〉, which
are defined as the states which are annihilated by the
positive Fourier components of the currents:

Ja
n |h〉 = 0, n > 0. (28)

The lowest eigenstates |h〉 are then solutions of the
Hamiltonian of a quantum spinning top

Htop =
2π

l(k + cv)
Ja
0 J

a
0 , [Ja

0 , J
b
0 ] = ifabcJc

0 . (29)

The eigenvalues of the states |h〉 are proportional to the
quadratic Casimir invariants c2[h] of the group;10 focus-
ing on the case of the SU(N) group, we have

E[h]− E0 =
2π

l

c2[h]

N + k
. (30)

For the simple case of N = 2, the states realize ir-
reducible representations of SU(2) and the associated
quadratic Casimir invariants are numbered by the eigen-
values of the total spin operator, taking the familiar form
c2[j] = j(j + 1) with j = 1/2, 1, 3/2, . . . [203]. The low-
est energy states are degenerate, being characterized by
both the total angular momentum j and its projection
jz = −j,−j + 1, . . . , j: we denote each of these states
by |j, jz〉. All other eigenstates are constructed by acting
upon these states with the negative Fourier components
of the Kac-Moody currents

Ja1−n1
. . . J

ap

−np
|j, jz〉, (31)

where nq are positive integers. In the SU(2)k WZNW
model these states have eigenvalues [22]

E − E0 =
2π

l

[
c2[j]

2 + k
+

p∑
q=1

nq

]
. (32)

Thus we have knowledge of the eigenstates and eigenval-
ues of the Sugawara Hamiltonian.

2. The central charge

As the WZNW model is a CFT, another important
characteristic is the value of the central charge c [135].

10 Consider a representation h of a group with generators Ta[h].

The quadratic Casimir operator is Ĉ2[h] = Ta[h]Ta[h]. This
commutes with every element of the algebra, so it follows from
Schur’s Lemma [193] that Ĉ2[h] = c2[h]I, where c2[h] is a number
known as the quadratic Casimir invariant.

In a (1+1)-dimensional CFT with dispersion relation
ω = v|k|, the value of the central charge is related to
the specific heat Cv for a fixed volume l at temperature
T :

Cv

l
=

πc

6v
T . (33)

The central charge also appears in many other con-
texts, including the finite-size scaling of the free en-
ergy [205, 206], the finite-size scaling of the entangle-
ment entropy [207], and the algebra and operator prod-
uct expansion obeyed by the stress-energy tensor [200,
204, 208].11 In the WZNW model for the group G at
level k, the central charge is given by [139]

c =
kDG

k + cv
, (34)

where DG is the number of the generators of the alge-
bra of the group G and cv is the quadratic Casimir in
the adjoint representation (27). For the SU(N) group,
DSU(N) = N2 − 1 and cv = N .
The central charge provides a useful check of the valid-

ity of a given conformal embedding: the central charge of
the original Hamiltonian and the conformal embedding
should be equal. Consider an example: there are Nk
species of free fermions in the Hamiltonian (3) and hence
the central charge is c = Nk. Using Eq. (34), the sum of
central charges of the WZNW models in the conformal
embedding (17) is

1 +
k(N2 − 1)

N + k
+

N(k2 − 1)

k +N
= Nk, (35)

and hence the central charge of (17) is consistent with
that of (3).

3. The conformal dimensions of primary fields

In field theory there is a one-to-one correspondence
between operators in the theory and eigenstates of the
Hamiltonian [135]. This is established through the
Lehmann expansion of the two-point correlation func-
tions

〈O(τ, x)O†(0, 0)〉 =
∑
n

e(−Enτ+iPnx)|〈n|O(0, 0)|0〉|2 ,

(36)
where the sum is performed over the complete set of
eigenstates |n〉 of the Hamiltonian. In a CFT this cor-
respondence between operators and eigenstates signifi-
cantly simplifies: two-point correlation functions of pri-
mary fields are fixed solely by conformal invariance [135].
For an operator O with conformal dimensions Δ, Δ̄ the

11 For more details about this, and CFTs in general, we provide
some useful results in Appendix B.
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two-point correlation functions in a cylinder geometry
(with circumference r) are [135]

〈OΔ,Δ̄(τ, x)O†Δ,Δ̄
(0, 0)〉

=

{
π

r sinh[πr (vτ − ix)]

}2Δ{
π

r sinh[πr (vτ + ix)]

}2Δ̄

.

(37)

Expanding this correlation function for large τ and x,
and comparing to the Lehmann expansion, we obtain

En − E0 =
2πv

r
(Δ + Δ̄), Pn =

2π

r
(Δ− Δ̄). (38)

In WZNW models these formulae establish a correspon-
dence between the primary fields of the theory and
the eigenstates of the quantum spinning top Hamilto-
nian (29). Specifically, in the SU(N) WZNW model
primary fields transform as tensors with respect to
the SU(N) group and are labelled by its representa-
tion h; primary fields transforming according to the
h-representation thus have conformal dimensions (cf.
Eq. (30))

Δ[h] = Δ̄[h] =
c2[h]

k + cv
, (39)

with c2[h] the quadratic Casimir invariant of the repre-
sentation h of SU(N).

Higher representations can be obtained by arranging
tensor products of lower representations, see [193]. In
analogy, one may hope to generate primary fields in
higher representations through fusing fields from the fun-
damental representation. Indeed this is the case, with

some caveats: for a WZNW model at a given level k, the
fusion process will terminate at a certain representation,
with further fusing of primary fields leading not to new
primary fields, but instead descendants [135]. For exam-
ple, in the SU(2)k WZNW model there are only primary
fields with j ≤ k/2 [135].
It should also be noted that Eq. (31) implies that states

with non-zero nq are created through the fusion of current
operators with primary fields (which are in one-to-one
correspondence with |h〉). This is just another way of
saying that the corresponding fields are descendants of
the corresponding primaries.

E. The Wess-Zumino-Novikov-Witten Lagrangian

It will be useful to have a Lagrangian formulation of
the WZNW model. The action for the Sugawara Hamil-
tonian W [G; k], (18), is given by [135, 138–140, 209, 210]

S = kW (g), (40)

W (g) =
1

8π

∫
d2x Tr

(
∂μg−1∂μg

)
+ Γ(g), (41)

where g is a matrix from the fundamental representa-
tion of the Lie group G and Γ(g) is the famous WZNW
topological term [138, 211]

Γ(g) =
−i

12π

∫
B

d3y εαβγTr(g−1∂αgg
−1∂βgg

−1∂γg),

(42)
where yi (i = 1, 2, 3) are the coordinates of the three-
dimensional ball whose two-dimensional boundary is
identified with the space-time [138] and ∂α ≡ ∂yα

.
An important (and rather remarkable) identity for the

action (40) acting on a product of fields hg is [209, 210]

W (hg) = W (g) +W (h) +
1

4π

∫
dτdx Tr

[
g−1(∂τ − i∂x)gh(∂τ + i∂x)h

−1
]
. (43)

This can be thought of as a generalization of the simple
identity

[∂μ(φ+ χ)]2 = (∂μφ)
2 + 2∂μφ∂μχ+ (∂μχ)

2, (44)

which one can check by direction substitution of two sim-
ple SU(2) matrices, g = exp( i

2σ
zφ) and h = exp( i

2σ
zχ),

into Eq. (43).

F. Operator correspondence between bosonic and
fermionic sectors

We have already mentioned (in Sec. IID) that the op-
erator correspondence between the fermionic and bosonic
theories in non-Abelian bosonization is more nuanced
than in the Abelian case (cf. Appendix A). The simplest

identities concern the Kac-Moody currents. The currents
for the group G at level k are related to the matrix field
g (which is in the fundamental representation of G and
governed by the WZNW action) through [138, 139, 210]

JR = − k

4π
g(∂τ + i∂x)g

−1,

JL =
k

4π
g(∂τ − i∂x)g

−1 .

(45)

While currents from different symmetry sectors do not
talk to one another (as they commute), this is not true
for other simple fermionic operators. Take, for exam-
ple, the conformal embedding (17) and consider generic

fermion bilinears R†jαLlβ . These will feature matrix fields

g, U from the fundamental representations of SU(N) and
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SU(k):

R†jαLlβ =

{
eiΦ

√
1/NkgαβUjl

}
,

j, l = 1, ..., k; α, β = 1, ..., N.

(46)

The curly brackets {. . .} denote that this identity is not
valid in the operator sense, but applies at the level of
conformal blocks. To be precise, N -point correlation
functions of the fermion bilinear (46) can be constructed
from N -point conformal blocks of the primary fields of
SU(N)k and SU(k)N WZNW models and U(1) bosonic
vertex functions.
In order for the identity (46) to be valid, it must be

the case that the scaling dimensions of the operators of
the left- and right-hand sides are equal. Substituting the
values for the quadratic Casimir invariant in the funda-
mental representation of SU(N), c2[h] = (N2 − 1)/2N ,
into Eq. (39) we find

1

2
=

1

2Nk
+

N − 1/N

2(N + k)
+

k − 1/k

2(N + k)
, (47)

which is valid for all N, k as required.

1. The primary field in the adjoint representation

An operator that we will frequently encounter (and we
will discuss it in detail below) and that has a simple op-
erator correspondence is the primary field in the adjoint
representation

Φab
adj(x) =: Tr[tag(x+ ε)tbg−1(x)] : . (48)

In models with complicated symmetries, such an operator
is often symmetry-allowed and so generically appears in
the low-energy field theory description. Examples of this
scenario include the low-energy theories of SU(2n) two-
leg spin ladders [212], two-orbital SU(N) cold atomic
Fermi gases [213], and certain Kondo models [214]. We
will return to some of these examples later.
In the WZNW model for group Gk, the conformal di-

mension of this operator is [139]

Δadj = Δ̄adj =
cv

k + cv
. (49)

III. SOME EXAMPLES OF NON-ABELIAN
BOSONIZATION

In this section, we will discuss the application of non-
Abelian bosonization in several conformal embedding
schemes.12 These include the case discussed above (17)

U(Nk)1 = U(1)⊕ SU(N)k ⊕ SU(k)N , (50)

12 We note that there are two ways in which to write the conformal
embedding. Firstly, as in Eq. (50), it is presented as a direct sum

and two other cases [215]:

O(4nk)1 = Sp(2n)k ⊕ Sp(2k)n, (51)

SU(2)N = U(1)⊕ ZN , (52)

where ZN denotes the conformal theory of ZN

parafermions [216]. Applications to cold atomic gases
will be considered in detail in the subsequent section.

A. SU(2)× SU(k) model and its perturbations

Let us begin from a lattice model. Consider electrons
with orbital indices n = 1, . . . , k and spin index α = ↑
, ↓ hopping on a one-dimensional lattice of L sites and
interacting via Hubbard and Hund’s interactions

H = −t
L∑

j=1

k∑
n=1

∑
α=↑,↓

[
c†nα(j + 1)cnα(j) + H.c.

]

+

L∑
j=1

[
Un(j)n(j)− JS(j) · S(j)

]
. (53)

Here c†nα(j) is the creation operator for a spin-α electron
in orbital n of the jth lattice site, and we define the
number and spin operators

n(j) =
k∑

n=1

∑
α=↑,↓

c†nα(j)cnα(j), (54)

Sa(j) =

k∑
n=1

∑
α,β

c†nα(j)s
a
αβcnβ(j), (55)

where sa = σa/2 with σa the Pauli matrices.

1. Applications of the model

The Hamiltonian (53) is particularly simple, taking
into account onsite Hubbard and Hund’s interactions
for electrons with both orbital and spin degrees of free-
dom. As a result, (53) and closely related models13

have been well-studied in higher spatial dimensions, with
various application to condensed matter systems. The
model (53) with k = 3 at 1/3 filling has been studied on
the Bethe lattice [217] using dynamical mean field theory

(⊕) of symmetry groups, which can be thought of as applying
at the level of the Hamiltonian or the stress-energy tensor of the
theory. Alternatively, as in Sec. III A 6, it can be presented in
terms of the product (×), which is extremely useful for under-
standing the correspondence at the level of the fields appearing
within the equivalent theories. We will use both conventions
where appropriate.

13 For example, those with a modified band structure due to more
complicated hopping terms, often input directly from density
functional theory calculations.
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(DMFT) to gain insight into spin-orbital separation in
Hund’s metals. The case with k = 3 has also been stud-
ied in three spatial dimensions using DMFT [218] in an
attempt to explain the unusual frequency-dependence of
the optical conductivity in iron-chalcogenide and ruthen-
ate superconductors. A closely related three-dimensional
model (with band structure from density functional the-
ory (DFT)) with k = 5 has been studied with slave boson
mean field theory and DMFT [219] as a description of the
insulating iron selenide La2O3Fe2Se2.

2. Low-energy effective theory at weak coupling

We will focus on the weak coupling limit, t � |U |, |J |,
and we expand the fermionic fields in the vicinity of the
Fermi points (1). We obtain the U(1)× SU(2)× SU(k)-
invariant chiral Gross-Neveu model [220] with the most
general symmetry allowed current-current interaction.
The Hamiltonian density reads

H = −iR†jσ∂xRjσ + iL†jσ∂xLjσ + gcR
†
jσRjσL

†
j′σ′Lj′σ′

+go[R
†(ta ⊗ I)R][L†(ta ⊗ I)L]

+gso[R
†(ta ⊗ sb)R][L†(ta ⊗ sb)L]

+gs[R
†(I ⊗ sa)R][L†(I ⊗ sa)L], (56)

where sa (a = 1, 2, 3) and ta (a = 1, ..., k2 − 1) are gener-
ators of the su(2) and su(k) Lie algebras, respectively.14

In writing (56) we have neglected two classes of inter-
action terms.

1. Those terms which are completely chiral, such as

[R†(ta ⊗ I)R][R†(ta ⊗ I)R]. (57)

2. Those terms which are not completely chiral, but
carry net chirality, such as

[R†(ta ⊗ I)R][R†(ta ⊗ I)L]. (58)

Neglecting such terms is justified in the following man-
ner. In the first case, the generated terms describe for-
ward scattering and, to leading order, generate a mode-
dependent renormalization of the Fermi velocity vF →
ṽjσ, which we neglect for weak coupling. In the sec-
ond case, these terms appear with oscillatory factors and
hence are suppressed by integration over x in the Hamil-
tonian.
This model has two integrable points. At one of them,

the symmetry of the low-energy theory is extended to
U(1) × SU(2k) [221] and the interaction term can be
written in the compact form

V = gs

(
R†jσLjσ

)(
L†pσ′Rpσ′

)
+ gc

(
R†jσRjσ

)(
L†pσ′Lpσ′

)
.

(59)

14 We remind the reader that normalization conventions are defined
in Eqs. (7).

This case is well understood —it is described by the
highly-symmetric SU(2k) Gross-Neveu model— so we
will mostly be interested in the case where integrabil-
ity is broken. A renormalization group (RG) analysis of
the model (56) suggests that the SU(2k) symmetry is re-
stored in the strong coupling regime – we will comment
in more detail on this case in the following.
The other integrable point corresponds to gso = 0,

where one can apply the conformal embedding (17) so
that the model (56) is written as the sum of three in-
dependent WZNW models perturbed by current-current
interactions:

H =
[ 2π

k + 2

(
: Ja

RJ
a
R : + : Ja

LJ
a
L :

)
+ gsJ

a
RJ

a
L

]
+

[ 2π

k + 2

(
: F a

RF
a
R : + : F a

LF
a
L :

)
+ goF

a
RF

a
L

]
+

[ π

2k

(
: jRjR : + : jLjL :

)
+ gcjRjL

]
, (60)

where Ja [F a] are the SU(2)k [SU(k)2] currents (5), and
jR,L are the U(1) currents (20). Each of the symmetry
sectors of the model (60) are WZNW models written in
the form (J should replaced by F or j as appropriate)

H[Gk] =
2π

cv + k

(
: Ja

RJ
a
R : + : Ja

LJ
a
L :

)
+ gJa

RJ
a
L, (61)

with Gk = SU(2)k, SU(k)2, U(1) to be explicit. Each
of these models (61) are integrable and exactly solv-
able [222, 223]. From such an analysis, it is known that
when the interaction parameter g is positive, excitations
are massive and have non-Abelian statistics. On the
other hand, when g < 0 the interaction scales to zero un-
der the RG, and the low-energy excitations of the model
are gapless – this is the case for the U(1) charge sector
of theory.
In the following, we will focus on the case with gs <

0, go > 0, and we treat the model (56) with a small
cross-coupling interaction gso, which can then be thought
of as a perturbation about the SU(2)k WZNW critical
point. We will find that this perturbation is relevant
(in the RG sense), and as a result the spectrum of low-
energy excitations is very different in the low-symmetry
case to the spectrum of the highly-symmetric SU(2k)
Gross-Neveu model.

3. Renormalization group and low-energy projection

We adopt the standard approach to low-energy effec-
tive field theories, starting with the RG equations [224–
226].15 Strong predictions have been made from such
analyses, in particular it has been argued that in some

15 See Ref. [227] for an example of the RG applied to a simple
one-dimensional system, the two-leg Hubbard ladder, using the
operator product expansion.
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simple models [227–229] the largest possible symmetry is
restored (in our case, this would be the U(1) × SU(2k)
symmetry of the integrable point). The reliability of such
approaches is not entirely evident – for models with more
than one coupling constant, the Gell-Mann-Low function
is universal only at first loop (but see the discussion of
Ref. [230]). Beyond this, it is expected that the details of
the RG flow depend upon the regularization scheme and
so forth. Keeping these points in mind, the RG equations
at first loop for (56) are

ġo =
k

2
g2o +

3k

32
g2so,

ġso =
k2 − 4

4k
g2so + gso(2gs + kgo),

ġs = g2s +
k2 − 1

4k2
g2so,

(62)

where the dots denote derivatives with respect to ξ =
1/2π ln(Λ/|E|), where E is the energy and Λ is the mo-
mentum cutoff.
As we mentioned previously, we focus on the case with

bare couplings go(0) > 0 and gs(0) < 0. When integra-
bility is preserved (gso = 0), the RG equations simplify
ġo = kg2o/2, ġs = g2s . The current-current interaction in
the spin sector scales to zero gs → 0 under the RG flow
and the sector is gapless. On the contrary, the orbital
sector flows to strong coupling go → O(1) and the exci-
tations in the sector are massive. The RG flow is cut-off
at the RG scale, ξo = (1/go(0)− 1)/k ≈ 1/go(0)k.
In the non-integrable case (gso �= 0) a marginally rel-

evant perturbation is added to the theory. If we as-
sume that the coupling gso is much smaller than gs, go
for the whole RG flow (that is gso(ξ) � gs(ξ), go(ξ) up
to ξ = ξo), we can extract the renormalized spin orbit
coupling parameter from the RG equations

gso(ξo) ≈ gso(0)

go(0) + 2|gs(0)|/k . (63)

Notice that such an assumption is valid if the bare cou-
pling gso(0) is sufficiently small. Consistent with this
assumption, herein we take |gso(ξo)| � 1 and treat the
spin-orbit current-current interaction as a perturbation.

4. The SU(2)k WZNW model perturbed by the adjoint
operator

We now focus on formulating a low-energy effective de-
scription of the model at energies smaller than the orbital
gap. This is done by projecting the spin-orbit term gso
onto the ground state of the perturbed SU(k)2 WZNW
theory. In Refs. [214, 221], it was argued that the result-
ing perturbation is described in terms of the primary field
of the SU(2)k WZNW model in the adjoint representa-
tion, Φab

adj introduced in Eq. (48). The main argument
for this was based upon the following observations:

(i) The scaling dimension of the spin-orbit coupling gso
term is 2.

(ii) The perturbing operator should be represented as
a product of conformal blocks of the SU(k)2 and
SU(2)k primary fields.

(iii) The primary fields in the adjoint representation of
the SU(k)2 and SU(2)k theories have scaling di-
mensions [214] (cf. Eqs. (49))

dadj[SU(k)2] =
2k

k + 2
, dadj[SU(2)k] =

4

k + 2
.

Hence the product of the primary fields in the ad-
joint representation of the two sectors produces an
operator with the correct scaling dimension.

(iv) The orbital sector of the theory flows to strong cou-
pling and becomes gapped. On the vacuum the
only operator which has a non-zero average is the
trace of the adjoint field TrΦadj[SU(k)2] [221].

(v) After integrating out high-energy degrees of the
freedom, the local operator TrΦadj[SU(2)k] will be
present in the spin sector of theory, emerging from
the entire product of the conformal blocks.

So, to describe the low-energy spin sector of the the-
ory we have a SU(2)k WZNW model perturbed by the
primary field in the adjoint representation

S = kW (g) + λ

3∑
a=1

∫
d2xTr[σagσag†], (64)

where W (g) is the WZNW Lagrangian defined in
Eq. (41). The mass scale in the orbital SU(k)2 sector,

Mo ∼ g
1/k
o exp(−2π/kgo), plays the role of the ultra-

violet cut-off in this theory.
In order to relate the action (64) to the original

fermionic model (56), we require that

λ ∼ gso(ξ0)
〈
TrΦadj[SU(k)2]

〉
. (65)

This statement is a little problematic: Eq. (65) is not
well-defined as the ground state of (61) is degenerate and
the expectation value can take multiple values. For the
purposes of the following, we will treat λ as an arbitrary
parameter, which can take either sign. In the physical
realization (56), we argue that the system will choose
the ground state that maximizes the energy gap in the
spin sector, and hence (65) is fine.
In the low-energy effective action (64), the perturbing

operator is strongly relevant with scaling dimension d =
4/(k+2). As a result, it generates a characteristic energy
scale

Λso ∼ |λ|1/(2−d)Mo. (66)

Before we consider the case of general k, we will first
discuss two particularly simple examples when there are
two or four orbitals per site.

Page 13 of 112 AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



14

5. Simple case (i) k = 2

For k = 2 orbitals per site, the model is equivalent to
three massive Majorana fermions [61, 203] with masses
Λso ∼ λ. This follows from a relation between the SU(2)2
currents and products of Majorana fermions [203]

Ja
R = − i

2
εabcχb

Rχ
c
R, F a

R = − i

2
εabcξbRξ

c
R. (67)

As a result of this relation, an equivalent reformulation
of the model (56) with k = 2 is

H =
i

2
(χa

L∂xχ
a
L − χa

R∂xχ
a
R + ξaL∂xξ

a
L − ξaR∂xξ

a
R)

+
1

2

∑
a>b

[
gs(χ

a
Rχ

a
L)(χ

b
Rχ

b
L) + go(ξ

a
Rξ

a
L)(ξ

b
Rξ

b
L)

]
+

∑
a,b

2gso(χ
a
Rχ

a
L)(ξ

b
Rξ

b
L). (68)

When gso = 0, the averages 〈χa
Rχ

a
L〉 and 〈ξaRξaL〉 do not

have a definite sign. It is also apparent that the sign
of the averages should not depend on the sign of cou-
pling gso, and so the system should choose signs self-
consistently.
When the model (68) with gs < 0, g0 > 0 is per-

turbed by the spin-orbit coupling gso the low-energy ef-
fective theory is formed from a triplet of massive Majo-
rana fermions χa with a current-current interaction. This
interaction can lead to the creation of bound states of the
fermions, see for example Ref. [231].

6. Simple case (ii) k = 4

An additional case of interest is k = 4, where the
conformal embedding is SU(4)2 × SU(2)4. This case is
special because the central charges of each of the two
WZNW models are integers (c = 5 and c = 2 respec-
tively). This indicates that they can be bosonized using
Abelian bosonization.
In particular, the action (64) for the SU(2)4 spin sec-

tor can be reformulated in terms of two bosonic fields
φ1,2 [203, 232]

S =

∫
d2x

[
1

8π

∑
a=1,2

(∂μφa)
2 + λ

3∑
i=1

cos
(
e(i)a φa

)]
,

(69)

with (
e(i)

)2

= 2/3,
(
e(i)e(j)

)
= −1/3.

Similarly, when perturbed by the trace of primary field
in the adjoint representation, the SU(4)2 orbital part
of the WZNW action can be expressed in terms of six

bosonic fields θa (a = 1, . . . , 6) [212]

S =

∫
d2x

{
1

8π

6∑
a=1

(∂μθa)
2 + λ̄

∑
a>b

cos
[√

2/3(θa − θb)
]}

.

(70)
One of the fields is redundant since in the perturbed
SU(4)2 theory, the non-linear part of the action does not
depend upon the center of mass field θ0 ≡ ∑

θa, which
can be factored out as a Gaussian theory.
The form (70) is convenient for refermionization:

S =

∫
d2x

[
R+

a (∂τ − i∂x)Ra + L+
a (∂τ + i∂x)La

+g0R
+
a RaL

+
b Lb − gR+

a LaL
+
b Rb

]
, (71)

where g0 = 2π/3 is chosen to change the compactification
radius of the fields and g ∼ λ̄. The fermionized action
can be more convenient for numerical calculations and
for the application of the 1/N -expansion.
The model (69) is related to the low-energy effective

theory for the four channel Kondo model (e.g., spin-half
electrons with four-orbital degrees of freedom coupled to
a spin-1/2 impurity), which shares its description with a
spin-half impurity coupled to a spin-one Fermi gas [232].
In the case of the impurity model, the nonlinear terms
in (69) are located at a single spatial point.

7. The semi-classical limit: k � 1

Having discussed two simple cases, let us now return
to general values for the number of orbitals k. Focusing
on the case when k � 1, we can treat the action (64)
semi-classically. To do so, we use the identity

3∑
a=1

Tr[σagσag†] = 2Tr[g]Tr[g†]− 2, (72)

and then we parameterize g, the SU(2) matrix, by

g = n0Î + iσana with n2
0 + n2 = 1. (73)

As the Pauli matrices are traceless, we see that the per-
turbation is of the form

V = λ̃n2
0 = λ̃(1− n2). (74)

When λ̃ < 0, the low-energy theory describes three
weakly interacting vector bosons governed by the La-
grangian density

Leff =
k

4π
(∂μn)

2 + |λ̃|n2 + ... , (75)

where the ellipses denote higher order terms, such as
interactions. The higher order terms are suppressed
with increasing k, as can be seen by rescaling the fields
na → na/

√
k. Due to the degeneracy in expanding about
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either n0 = ±1, the ground state is formed from two
degenerate massive triplets of vector bosons, which are
SU(k) singlets. The mass of the excitations (ignoring

renormalization due to interactions) is Mtr,− ∼
√
|λ̃|/k,

which is also the mass envisaged from the RG consid-
erations, see Eq. (66). Furthermore, the scaling of the
mass Mtr,− with k is supported by truncated confor-
mal space approach (TCSA) numerical calculations [221],
which also show that when k > 3 there exist bound states
of the vector bosons.

For λ̃ > 0 the situation is more interesting. For en-

ergies below
√
λ̃, the field component n0 is suppressed

and n becomes the unit vector (that is n · n = 1). As a
consequence the WZNW term in the action (42) becomes
a topological term [143, 233, 234]:

Γ(iσana) =
i

8

∫
d2xεμν

(
n · [∂μn× ∂νn]

)
≡ iπΘ, (76)

where Θ is an integer. This can be interpreted as the
number of points (x, τ) mapped to identical values of

n(x, τ) = (cos θ, sin θ cosψ, sin θ sinψ), (77)

for the transformation θ(x, τ), ψ(x, τ) [22].

For the particular case under consideration (64), the
topological term appears with coefficient kπ, so it con-
tributes non-trivially to the action only when k is odd:

S =
k

4π

∫
d2x(∂μn)

2 + iπkΘ, n2 = 1. (78)

This model is exactly solvable [235–238]; for k even the
triplet of vector bosons is gapped with mass

Mtr,+ ∼ kλ̃1/2 exp(−k/2). (79)

This structure agrees with the result for k = 2 (see
Sec. III A 5) and suggests that the same may be valid
for any even k. However, it worth keeping in mind
that the small scale (79) is much smaller than the RG
scale (66). For the case of odd k, the mass scale (79)
marks a crossover to a basin of attraction described by
the critical SU(2)1 WZNW model [239].

We see that the mass Mtr,+ < Mtr,− and as a con-

sequence, the system with λ̃ > 0 has a greater ground
state energy. This means that the fermionic model (56)
will energetically favor λ < 0 (recall that Eq. (65) is a
little problematic due to the degenerate ground states,
so the sign of λ is not given a priori in our analysis).
This assertion is supported by the TCSA calculations of
Ref. [221]. It is worth noting, however, that for small
k = 3, 4 the difference between the ground state energy
in the two phases (λ < 0 or λ > 0) is a small fraction of
the mass M2

tr,− per unit cell, and hence the λ > 0 phase
should be thought of as being metastable.

8. Comparing two limits: correlation functions and
quasi-long-range order

Let us now compare the maximally symmetric point
and the non-integrable case considered above in terms
of their correlation functions and the quasi-long-range
order.

1. The maximally symmetric U(1)× SU(2k) limit.

This is realized when the bare couplings go, gs, gso
are positive and of the same order: under the one-
loop RG flow, the symmetry is restored in the
strong coupling limit. The low-energy theory is the
SU(2k) chiral Gross-Neveu model, whose spectrum
of excitations is well known [220] and consists of
gapless U(1) collective modes and massive excita-
tions in the SU(2k) sector with masses [43]

Mj = M1
sin(πj/2k)

sin(π/2k)
, j = 1, . . . , 2k − 1. (80)

These excitations belong to multiplets which trans-
form according to a representation described by a
Young tableau consisting of a single column of j
boxes. In the low-energy limit, single fermions are
incoherent, made up of both a U(1) collective ex-
citation and an SU(2k) excitation with smallest
mass, j = 1.

2. The non-symmetric U(1)× SU(2)× SU(k) limit.

This is the case that we have described above,
where the coupling gso is small such that spin and
orbital sectors of the model are weakly coupled at
high energies. Due to the electron carrying charge,
spin, and orbital indices, the single electron exci-
tation is much higher in energy than the collective
modes of the spin sector.

In the non-symmetric case, the low-energy collective
spin modes can be seen in spectral functions of fermion
bilinears which are orbital singlets. There are two such
operators

O2kF
= R†(I ⊗ I)L, Sa

2kF
= R†(I ⊗ sa)L, (81)

which correspond to 2kF charge density wave (CDW)
and spin density wave (SDW) order parameters, respec-
tively. The operators can be expressed as products of
conformal blocks of the SU(k)2 and SU(2)k primary
fields, multiplied by a vertex operator of the bosonic
field Φ associated with the charge degree of freedom,
exp(i

√
2π/kΦ). The charge boson is governed by a Gaus-

sian action Sc = 1
2

∫
d2x(∂μΦ)

2. At low-energies, the
order parameters can be replaced by

O2kF
= Aei

√
2π/kΦTr(g),

Sa
2kF

= A′ei
√

2π/kΦTr(isag) , (82)
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where g is a matrix in the fundamental representation of
SU(2), cf. Sec. II E.

The ground state energy for the model (64) is lower
when λ < 0, and as a result the CDW order forms with
Tr(g) ∼ n0. Within the ground state the Z2 symmetry
between n0 = ±1 is broken and n0 acquires a finite aver-
age. The large distance x � M−1

tr,− asymptotics for the
two-point function of the CDW order parameter are〈

O2kF
(τ, x)O†2kF

(0, 0)
〉
=

Z

(τ2 + x2)1/2k
. (83)

This follows simply from the correlation function of the
bosonic exponents and Tr(g) developing a finite aver-
age. Z can be estimated by recalling that the oper-
ator Tr(g) has power law correlations at intermediate
distances M−1

o � |x| � M−1
tr,− and scaling dimension

3/2(k + 2). Hence

Z ∼
(
Mtr,−
Mo

)3/2(k+2)

. (84)

So, we see that the ground state in the non-symmetric
case has 2kF CDW quasi-long-range order, which is not
too different from the high symmetry case. One impor-
tant difference, however, appears when examining the
spin-spin correlation functions: the asymptotics of these
look very different in the two cases. In the high symme-
try SU(2k) Gross-Neveu model, there is both the ubiqui-
tous U(1) charge excitation continuum and a continuum
of single particle excitations [220], which in the present
case is dominated by the triplet modes

〈S2kF
(τ, x) · S−2kF

(0, 0)〉 ∼ K0(M1

√
τ2 + x2)

(τ2 + x2)1/2k
+ . . . ,

(85)
where K0(x) is the modified Bessel function of the second
kind, and the ellipses denote higher order terms corre-
sponding to emission of more than one massive particle.
The threshold energy for the spin spectral function is
M1, a much smaller energy scale than the threshold of
the particle-hole continuum.
Beyond the spin sectors of the two limits of model (56),

another difference that emerges is that the non-
symmetric limit has an orbital dynamical susceptibility
that is drastically different from the spin one (85), as a re-
sult of the large mass for orbital excitations, Mo � Mtr.
Spectral functions of operators that involve the emission
of orbital excitations thus have large spectral gaps, unlike
the symmetric case.

9. Alternative quasi-long-range order

As we have discussed, the phase with n0 = 0 is not the
ground state of model (56), but for small couplings gso
it is close in energy to the ground state. One can then
speculate what will happen if this phase is stabilized as

the ground state by the presence of additional interac-
tions not included within our model (56). In the state
with n0 = 0, the long distance |x| � M−1

1 asymptotics
of the two-point function of the SDW order parameter
are

〈S2kF
(τ, x) · S−2kF

(0, 0)〉 ∼ (τ2 + x2)−
1
2k

×F
(
M1(τ

2 + x2)1/2
)
,(86)

where F is the correlation function of the unit vector
fields n in the O(3) nonlinear sigma model (78) [22].
When the number of orbitals k is odd F(y) ∼ 1/y is
a power law, whilst for even k it decays exponentially.
At intermediate distances, M−1

o < |x| < M−1
1 , the corre-

lation functions for k even or odd are indistinguishable.
Due to the behavior of F the SDW susceptibility (cf.

Eq. (85)) is singular only when k is odd. However, there
is quasi-long-range order in the spin sector for even k, but
this is associated with a higher harmonic of the SDW, the
4kF component, whose operator is

S2
2kF

∼ ei
√

8π/kΦ. (87)

This behavior is rather reminiscent of the under-doped
phase of the high-Tc cuprate superconductors [240].

B. Generalization from SU(2) to SU(N)

We have focused on the model (56) which possesses
U(1)× SU(2)× SU(k) symmetry. The above results are
easily generalized to the case with higher spin symmetry,
replacing SU(2) by SU(N). The low-energy theory in
the spin sector will be of the same form as (64), with
SU(2)k Kac-Moody currents replaced with SU(N)k cur-
rents. Let us briefly discuss some results in this case.

1. The large k limit

We once again consider the semi-classical limit with
k � 1, where it is easy to see that some new features
emerge from the enlarged spin symmetry. To begin we
parameterize the SU(N) matrix g in the following man-
ner:

g = U†ΛU, Λ = diag(eiα1 , . . . , eiαN ), (88)

where U is an N × N matrix containing N(N − 1) real
parameters, and

N∑
j=1

αj = 0mod(2π) . (89)

It is then easy to see that the semi-classical limit of the
perturbing operator (72) becomes

Tr(g)Tr(g†) = 2
∑
k>l

cos(αk − αl). (90)
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When the coupling λ < 0, the lowest energy state
(e.g., the vacuum) maximizes the value of Tr(g). This
is achieved through fixing

αi = αj =
2πm

N
, m = 1, . . . , N, (91)

and the matrix g can then be approximated by

g = e2πim/N
[
(1− baba/2)Î + ibar

a +O(b4)
]
, (92)

where ra are the generators of the su(N) Lie algebra
(a = 1, . . . , N2 − 1). Under this parameterization, the
quadratic part of the action becomes

S ≈
∫

d2x
(
k(∂μba)

2 + c̃ baba

)
. (93)

This is a theory of N2 − 1 massive bosons ba, each of
which corresponds to a generator of su(N).

With knowledge of the ground state and low-energy ac-
tion in place, we can infer that the model has two types of
excitations: (i) kinks that interpolate between the N de-
generate ground states (corresponding to m = 1, . . . , N
in (91)); (ii) small fluctuations about the ground states.
The latter excitations will transform according to the
adjoint representation of SU(N). This picture consti-
tutes a straightforward generalization of the N = 2 case.
We note that it may so happen that the adjoint parti-
cles become unstable at small k and disappear from the
spectrum, but this is obviously beyond the semi-classical
analysis.
When the coupling λ > 0 and N = 2n, the vacuum

energy is minimized by

Λ = diag(1, . . . , 1︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

) . (94)

The SU(N) matrix g then becomes

g = iQe2πil/N , with Q2 = I, TrQ = 0. (95)

with l = 1, . . . , N corresponding to different ground
states, as in the λ < 0 case.

When the phase factor in Eq. (95) is absent, the
low-energy model would correspond to the Grassma-
nian sigma model on the U(2n)/[U(n)× U(n)] manifold
(N = 2n) [233]. In that case, the WZNW term is topo-
logical, kΓ = iπΘk, cf. Eq. (76). For N > 2, the theory
is in a gapped phase with a broken discrete (Z2) sym-
metry [233]. In the limit of n → 0, such a model de-
scribes the integer quantum Hall effect [241–245], whilst
for n → 1 it becomes the well-known O(3) nonlinear
sigma model with a topological term [142, 143]. The ex-
istence of a critical point for odd values of the topological
term is firmly established in these two cases: for n → 0
the universality class of the critical point is unknown,
whilst for n = 1 it is SU(2)1 [143].

2. Special case: k = N

In the special case N = k the model (64) is exactly
solvable: the central charge of the model is c = (N2−1)/2
(cf. Eq. (34)) and the SU(N)N WZNW model is equiva-
lent to the model of N2 − 1 massless Majorana fermions.
In this case, the operator corresponding to the primary
field in the adjoint representation takes a particularly
simple form – it is the Majorana mass term. This has
two consequences: (i) there are no kink excitations (as
the ground state is now non-degenerate); (ii) the sign of
λ does not make a difference to the spectrum for k = N ,
although it certainly affects correlation functions of the
fields.

C. Sp(2N) model: Competition between
superconductivity and charge density wave order

Let us now turn our attention to a different model of
spin-1/2 fermions with orbital degeneracy (N orbitals),
governed by the Hamiltonian

H = −t
L∑

j=1

N∑
n=1

∑
α=↑,↓

[
c†nα(j + 1)cnα(j) + H.c.

]
+V

∑
j

∑
α,β,γ,δ

[
c†nα(j)εαβc

†
nβ(j)

][
cmγ(j)εγδcmδ(j)

]
+U

∑
j

n(j)n(j), (96)

where εαβ is the Levi-Civita symbol, n(j) =∑N
m=1

∑
α=↑,↓ c

†
mα(j)cmα(j) is the number operator on

each site j. The fermions interact via an onsite Hubbard
interaction U and a pairing interaction V . We will con-
sider the model far from half-filling, such that umklapp
processes are negligible.

1. Low-energy effective theory at weak coupling

As with the previous case, we consider the weak-
coupling limit |U |, |V | � t, and proceed by linearizing
the spectrum [see, e.g., (1)]. The left- and right-moving
fermionic fields are governed by the following Hamilto-
nian density

H = −iR†nα∂xRnα + iL†nα∂xLnα − gcdwOcdwO
†
cdw

−gscOscO
†
sc + gcR

†
nαRnαL

†
mβLmβ , (97)

where we have explicitly written the interaction terms as
products of the charge density wave (CDW) and super-
conducting (SC) order parameters

Ocdw =
(
R†nαLnα

)
, Osc =

(
R†nαεαβL

†
nβ

)
, (98)

and the interaction parameters are given in terms of the
parameters of the microscopic model (96) by

gcdw = −2U, gsc = −4V, gc = 2U. (99)
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As usual, we have neglected terms which carry net chi-
rality [see the discussion following Eq. (56)].
The model (97) explicitly features both the SC pairing

and CDW order parameters in its interaction terms. This
feature of the model leads to direct competition between
these two types of order: when gcdw, gsc > 0 both the
interaction terms are relevant in the RG sense, whilst gc is
always marginal. Depending on which coupling is larger,
gcdw or gsc, the dominant fluctuations at low-energies are
of either CDW or SC type.
Although the competition between SC and CDW order

is a feature of the theory for N = 1, we will be interested
in its generalization to higher numbers of orbitals N . In
part, our interest in the multi-orbital case stems from the
facts that such a model may possess an enlarged Sp(2N)
symplectic group symmetry [246, 247], which we will dis-
cuss further below.

2. The symplectic group Sp(2N)

The symplectic group Sp(2N) is a subgroup of the spe-
cial unitary group SU(2N). Its generators T a change
sign under

Ω(T a)TΩ = −T a, (100)

where the 2N × 2N matrix Ω is

Ω =

(
0 IN

−IN 0

)
, (101)

with IN the N ×N unit matrix.
For our discussion, it will be useful to label each el-

ement of the matrix by a pair of numbers (α, n) with
α = ±1 and n = 1, . . . , N .16 Under such a relabeling, the
matrix Ω acts as the antisymmetric tensor on the greek
indices and trivially on the roman indices: Ω = ε ⊗ IN ,
cf. (101).
With this parameterization of the indices, the com-

pleteness relation for the generators of the sp(2N) Lie
algebra read

(T a)(α,m)(β,n)(T
a)(γ,o)(δ,p)

= δmpδnoδαδδβγ − δmoδnpεαγεβδ. (102)

3. Applications of the model

The Hamiltonian (96) can be seen as a straightforward
generalization (to fermions) of the model introduced in
Ref. [248] to describe the behavior of higher spin (e.g.,
spinor) bosonic gases studied in cold atomic gases. In

16 In the fermionic model, these indices will correspond to spin and
orbital quantum numbers, respectively.

particular, it is special case of another model, describ-
ing the most general Hamiltonian for fermions with half-
integer spin F with point-like interaction (the general
model contains F +1/2 parameters, rather than the two
present in our model [246, 247]).
This simplified model serves as a starting point for un-

derstanding the physics of many systems with higher spin
and orbital degeneracy. This includes ultra-cold gases of
fermions, such as 6Li, 40K, and 173Yb, where unusual su-
perfluid phases are expected to occur [249–255], including
superfluids composed from molecular bound states of the
constituent fermions. This is discussed further in Sec. IV.
As an aside, we also note that the type of pairing in (96)
has been studied in the context of frustrated spin-1/2
quantum magnets in two spatial dimensions [256]. Re-
cently it has been found that the enlarged Sp(2N) sym-
metry also emerges in the model of an interacting metallic
wire in a strong longitudinal field [257].
The model (96) has been studied using both RG and

CFT techniques [246, 247]. Related models with higher
orbital number have availed themselves of additional ap-
proximate techniques, such as the 1/N expansion – see,
for example, Ref. [258].

4. The quantum critical point between CDW and SC phases

A good starting point for our discussion of model (97)
is the special case of gcdw = gsc ≡ go, where the model
acquires an enlarged Sp(2N) symmetry and is integrable.
The interaction terms can be written in terms of the
Sp(2N)1 currents17

Ja = R†T aR, J̄a = L†T aL, (103)

and the SU(2)N currents

jz = R†nαRnα, j+ = R†nαεαβR
†
nβ , j− = (j+)†,

j̄z = L†nαLnα, j̄+ = L†nαεαβL
†
nβ , j̄− = (j̄+)†,

(104)

as the sum of two commuting WZNW models perturbed
by current-current interactions

H = HSp +HSU , (105)

HSp =
2π

2N + 1

(
: JaJa : + : J̄aJ̄a :

)
+ goJ

aJ̄a, (106)

HSU =
2π

2 +N

(
: jaja : + : j̄aj̄a :

)
+ gcj

z j̄z. (107)

This is a realization of the conformal embedding [135]

O(4Nk)1 = Sp(2N)k ⊕ Sp(2k)N , (108)

17 This can easily been seen from the completeness relation (102)
which implies

(
R†TaR

)(
L†TaL

)
= −OcdwO†

cdw −OscO†
sc .
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with k = 1

O(4N)1 = Sp(2N)1 ⊕ SU(2)N . (109)

As the interaction terms in (105) preserve the structure
of the conformal embedding (109) (e.g., they do not cou-
ple different symmetry sectors), the model remains inte-
grable [222, 223, 259].

If the perturbing current-current interaction in the
Sp(2N)1 ‘orbital’ sector of the theory (106) is relevant,
it generates a gap in the spectrum and the low-energy
orbital excitations are non-Abelian anyons [260] with
masses

Mn = M sin

[
πn

2(N + 1)

]
, n = 1, . . . , N. (110)

The anyons are formed from the kinks that interpolate
between the different ground states of the model (106)
(cf. Sec. III B 1) and parafermion zero modes that reside
upon these kinks. On the other hand, the SU(2)N sector
of the model (107) is gapless, and hence the model de-
scribes a QCP between phases with CDW and SC quasi-
long-range order.
The orbital excitations are not static – the kink and

its accompanying parafermion zero mode can propagate
through the system; the case where such excitations move
slowly was considered in Ref. [260]. In the following we
depart from the symmetric gcdw = gsc limit, so that the
ground state degeneracy in the orbital sector is lifted by
the presence of an external perturbation.

5. Away from the symmetric limit: emergent integrability,
ZN parafermions, and competing orders

We now want to consider small deviations from the
symmetric point, caused by inequality of the coupling
parameters. To undertake such a study, we need to iden-
tify and treat the most relevant operator that arises from
such a deviation. To do so, we will first consider the sym-
metric model and decouple the interaction term with a
Hubbard-Stratonovich transformation. The saddle point
of the resulting theory will suggest a natural order pa-
rameter matrix, which combines both SC and CDW order
parameters. In this basis, the perturbing operator will be
quite obvious. Our results will coincide with those found
in Refs. [246, 247] for the perturbing operator, despite
taking a rather different route.
To begin, we perform a Hubbard-Stratonovich trans-

formation on the interaction term described by the cou-
pled Sp(2N)1 currents (103):

Hint,o =
|Δ1|2 + |Δ2|2

go

+
(
Δ1R

†
nαLnα +H.c.

)
+
(
Δ2R

†
nαεαβL

†
nβ +H.c.

)
, (111)

where Δ1,2 are the scalar auxiliary fields introduced by
the Hubbard-Stratonovich transformation. At the weak-
coupling go � 1 saddle point, the auxiliary fields can be
approximated by

Δa = |Δ|za,
∑
a

|za|2 = 1. (112)

We obtain

Hint,o =
|Δ|2
go

− i
|Δ|
2

(
Ψ̄RĜΨL − Ψ̄LĜ

†ΨR

)
, (113)

with Ψ̄L = (L†n↑, − Ln↓, − L†n↓, Ln↑), Ψ̄ = Ψ†, and

Ĝ =

(
ĝ 0
0 ĝ

)
, ĝ = i

(
z1 z2
z∗2 −z∗1

)
. (114)

Integrating out the fermionic fields L,R we recover the
SU(2)N WZNW model, as required. The order parame-
ter combines both the CDW and SC order parameters.
Now, we consider the term that arises when the cou-

plings for the CDW and SC order parameters are slightly
different, gcdw − gsc = δgo. In the theory after the
Hubbard-Stratonovich transformation, this gives rise to
the perturbation

V =
δgo
g2o

|Δ|2
(
|z1|2 − |z2|2

)
= λΦadj

zz , (115)

where Φadj
ab is the SU(2)N primary field in the adjoint

representation (cf. Sec. II F) and λ ∼ δgo is its coupling
constant. Notice that this situation is different to that
considered in the previous sections: the perturbation con-
tains only one component of the adjoint field (which is a
3× 3 matrix).
The perturbing term (115) is relevant, but does not

break integrability. To see this, we can use an additional
conformal embedding [135, 216]

SU(2)N = U(1)⊕ ZN , (116)

to rewrite the action of the orbital sector

W (ĝ) + λΦadj
zz =

N

4π
(∂μφ)

2 +A[ZN ] + λΦadj
zz , (117)

where we denote the Lagrangian of the SU(2)N WZNW
model by W (ĝ), φ is the field associated with the U(1)
part of the embedding (116), and A[ZN ] is the La-
grangian for critical ZN parafermions [216, 239]. A de-
tailed discussion of parafermions will follow in the next
section.
The perturbing field Φadj

zz is described by the ther-
mal operator of the ZN theory; such a perturbation was
shown to be integrable in Refs. [261, 262]. For any sign
of the coupling λ in (117), the orbital excitations are
massive, and their scattering is governed by the diagonal
S-matrix [262]

[S(θ)]ā,b̄a,b =
sinh(θ/2 + iπ/N)

sinh(θ/2− iπ/N)
δāaδ

b̄
b . (118)
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The masses of the orbital excitations are given by [262]

mn = m
sin(πn/N)

sin(π/N)
, n = 1, 2, . . . , N − 1, (119)

m ∼ M

∣∣∣∣gcdw − gsc
gcdw + gsc

∣∣∣∣1/(2−dadj)

,

which follows from the pole structure of the S-
matrix (118).
The conformal embedding of the SU(2)N theory in

terms of U(1) and ZN degrees of freedom (116) sug-
gests that the components of the order parameter matrix
ĝ (114) can be expressed in terms of the primary fields
of the U(1) and ZN theories

z1 ∼ σeiφ, z2 ∼ μeiθ, (120)

where θ is a U(1) field dual to φ, while σ, μ are the
order and disorder parameters of the ZN parafermion
model [216]. Each of the bosonic exponents in (120) has
scaling dimension 1/2N . As already mentioned, the ex-
citation spectrum of the perturbed model (117) does not
depend on the sign of the coupling of the perturbation,
λ, but it does affect the vacuum averages of operators.
Depending on the sign of λ, either the order or disorder
parameter of the ZN parafermions acquires a finite vac-
uum average.18 These two scenarios would correspond
to either CDW (〈σ〉 finite) or SC (〈μ〉 finite) phases with
the corresponding quasi-long-range order.

6. Common features of the SU(2)× SU(k) model (56) and
the Sp(2N) model (97)

Model (97) and model (56) have different symme-
tries, but despite this they have certain physical fea-
tures in common. In the limit on which we have focused,
where the different symmetry sectors are weakly coupled,
the lowest massive modes describe collective bosonic de-
grees of the freedom. In the SU(2) × SU(k) symmet-
ric model (56), the 2kF CDW ground state has almost
coherent spin triplet excitations (85). Likewise, for the
Sp(2N) model (97), in the CDW phase where 〈σ〉 �= 0
the spectral function of the SC order parameter is

〈Osc(τ, x)O
†
sc(0, 0)〉 ∼ 〈z2(τ, x)z∗2(0, 0)〉

∼ 〈eiθ(τ,x)e−iθ(0,0)〉〈μ(τ, x)μ∗(0, 0)〉

∼ K0(m1

√
τ2 + x2)

(τ2 + x2)1/2N
+ . . . , (121)

where the ellipses denote terms involving emission of
higher numbers of excitations.19 Once again, we see that
we have quasi-long-range order as a result of the conden-
sation of a bosonic degree of freedom and almost coherent
excitations associated with a competing order parameter.

18 A similar scenario in the Ising field theory may be familiar to the
reader [135, 263].

19 Similarly, in the SC phase (〈μ〉 �= 0), the spectral function of the
CDW order parameter behaves as Eq. (121).

D. Parafermions and their zero modes

In the previous section, we have seen how parafermions
can emerge from a model which possesses SU(2)N sym-
metry. In this section, we will discuss parafermions in
detail and show some interesting results about their zero
modes.

1. General motivation for studying parafermions

The holy grail of topological quantum computing are
non-Abelian anyons [264–267] – excitations of a system
which have non-trivial braiding statistics,20 and whose
permutation transforms between two different ground
states which are locally indistinguishable [269–271]. Such
excitations are perhaps the most exotic known to man,
so an obvious question to ask is do such excitations arise
in physically meaningful systems, or are they simply a
theorist’s dream? Fortunately, nature seems to be on
the physicists’ side; anyons naturally arise in some par-
ticularly simple models of Majorana fermions, related to
spin chains and (unconventional) superconductors [264]
(see also the discussion of Ref. [267]), as well as in the ex-
otic setting of fractional quantum Hall states [267, 268].
Such realizations may have already been achieved in ex-
periments [272, 273].
A simple generalization of the Majorana fermion, pro-

moting the Z2 symmetry to ZN (N > 2), is the ZN

parafermion [216, 274–276]. These excitations have
multi-valued correlation functions [216, 274, 275], reflect-
ing their intrinsically non-local nature; this makes them
a great resource for information storage in quantum com-
putation – local perturbations, such as disorder, should
not effect such an excitation. Of course, one has to fig-
ure out how to obtain and manipulate the parafermions,
with numerous schemes having been proposed in recent
years [260, 276–279]. As part of such studies, it is impor-
tant to consider what happens when many anyons are
brought together – they may interact and the ground
state degeneracy may be lifted, leading to restrictions
on real-world devices – developing an understanding of
multi-anyon systems is an interesting subject in its own
right (see, for example, Refs. [280–283]).
In models composed of Majorana fermions, anyon ex-

citations generally reside on soliton-like “kinks” which
interpolate between ground states with different topo-
logical properties (see Ref. [278] for one such example).
However, ZN parafermions with N > 2 are interacting
objects [239]21 – considering a case where the state is in-
homogeneous (containing kinks between different ground

20 In CFT this is realized through the braiding of conformal
blocks [139, 204, 268].

21 In fact, non-interacting parafermions have a non-Hermitian
Hamiltonian, yielding complex energy eigenvalues [284]!
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states) is then exceedingly difficult. The existence of
anyons residing on the kinks was demonstrated for N = 3
in Ref. [278], a special case in which Abelian bosonization
can be applied.
In this section, we discuss how to define parafermions

in terms of the SU(2)N WZNW model currents, and we
discuss a simple Hermitian fermionic model which con-
tains anyon parafermion zero modes.

2. Parafermions from the SU(2)N currents

In relation to the material previously covered in the
review, the easiest way for us to define parafermions is
to ‘gauge away’ the U(1) subsector of the su(2)N Kac-
Moody algebra – this is easily achieve by factoring out the
U(1) part of the corresponding SU(2)N currents (104)

jz = −i

√
N

2π
∂zϕ, j+ =

√
N

2π
ei
√

8π/Nϕψ, j− = (j+)†,

(122)

j̄z = i

√
N

2π
∂z̄ϕ̄, j̄+ =

√
N

2π
e−i

√
8π/Nϕ̄ψ̄† , j̄− = (j̄+)†,

(123)

where we have defined the right/left moving parafermion
fields ψ, ψ̄. The U(1) part of the current is described by
the chiral components ϕ, ϕ̄ of the bosonic field Φ, which
is governed by the Gaussian action

S =
1

2

∫
d2x

(
∂μΦ

)2

. (124)

This construction essentially defines the conformal em-
bedding that we used in the previous section, see
Eq. (116).
From the expressions for the currents (122)–(123), one

can compute the multi-point correlation functions of the
parafermion fields, revealing their non-trivial braiding
statistics when N > 2. At the critical point, we have
the two-point correlation functions〈

ψ(z)ψ†(0)
〉 ∼ z−2(N−1)/N ,〈

ψ̄(z̄)ψ̄†(0)
〉 ∼ z̄−2(N−1)/N .

(125)

The 2n-point correlation functions are〈
ψ(1)...ψ(n)ψ†(n+ 1)...ψ†(2n)

〉
=

〈
j+(1)...j+(n)j−(n+ 1)...j−(2n)

〉
×

∏
i<j≤n

z
−2/N
ij

∏
n<i<j≤2n

z
−2/N
ij

∏
i,j≤n

z
2/N
i,j+n ,(126)

which reveal that for N > 2 parafermions do not sat-
isfy Wick’s theorem. We note that for N = 2, the
parafermion field is real, describing Majorana fermions
ψ = ψ†.

It is, of course, possible to introduce a mass term for
ZN parafermions by modifying the action as

S = A[ZN ]− λ

∫
d2x[ψψ̄ + ψ†ψ̄†], (127)

where A[ZN ] is the critical parafermion action. For
N > 2 this is an interacting theory, but it remains in-
tegrable [239]. The presence of such a term modifies
the long distance asymptotics of correlation functions,
such as (125)–(126), but the essential properties of the
parafermions, such as their braiding statistics, remain.

3. A fermionic model with parafermion bound states

Our aim is to consider a simple Hermitian model
of fermions which has parafermionic zero-energy anyon
modes on the boundary between topologically different
states. Our analysis will use non-Abelian bosonization
to construct a low-energy effective theory, and subse-
quently we use the integrability of this theory to provide
supporting evidence for the presence of parafermion zero
modes on the “kinks” which interpolate between topo-
logically different ground states.22 We also construct an
effective theory that describes a finite density of such ex-
citations, and through its exact solution study how the
parafermions interact.
The starting point for our study is a model of fermions,

carrying both spin α =↑, ↓ and orbital k = 1, . . . , N de-
grees of freedom, with Hamiltonian

Hf = i(−R†kα∂xRkα + L†kα∂xLkα)

+g‖jz j̄z +
g⊥
2

(
j+j̄− + j−j̄†

)
. (128)

The interaction term is written directly in terms of
the ja, j̄a SU(2)N Kac-Moody currents. This is an
anisotropic version of the spin sector of the model consid-
ered in Sec. III A, cf. Eq. (61), and as such it has many
features in common with it. The model is exactly solv-
able for generic values of g‖, g⊥ [286], but was first solved
at the isotropic point g‖ = g⊥ via the Bethe ansatz [222].
Our discussion will rely on the Bethe ansatz solution of
this model, and we will discuss this in some detail.
We begin by using the conformal embedding (17) to

separate the kinetic term of (128) into the U(1) charge
field and a critical SU(2)N WZNW model. The non-
Abelian sector is then described by the WZNW model
perturbed by anisotropic current-current interactions,
described by the Hamiltonian density

H =
2π

N + 2
(: jaja : + : j̄aj̄a :)

+g‖jz j̄z +
g⊥
2

(
j+j̄− + j−j̄+

)
. (129)

22 The arguments for the presence of parafermion modes can be
generalized to other simple Lie groups, such as SU(N)k (see,
e.g. [285]).
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We use formulae (122)–(123) to express the theory in
terms of an additional U(1) field Φ and ZN parafermions.
The Lagrangian density for the SU(2)N sector is then

L =
1

2
(∂μΦ)

2 +A[ZN ]− λ
(
eiβΦψψ̄ +H.c.

)
, (130)

where the coupling λ ∼ Ng⊥, and β is related to g‖ – for

small values of g‖ it satisfies β2 = (1 +Ng‖/π)−1.
From the exact solution of the model, we know that

when g‖ > 0 the model is massive, and its excitations
are solitons and antisolitons. The scattering S-matrix
for the soliton is a tensor product of the XXZ and re-
stricted solid on solid (RSOS) S-matrices [223]. For
sufficiently strong interactions g‖, there exist soliton-
antisoliton bound states, but these will not be of interest
to us here. The exact solution of the model will reveal
that each soliton/antisoliton carries a parafermion zero
mode which endows it with non-Abelian statistics.
Our model for parafermions (130) features a coupling

between the U(1) field Φ and the mass term for the
parafermions. This is reminiscent of a theory

S = A[ZN ] +

∫
d2xλ(x)

[
ψψ̄ + ψ†ψ̄†

]
, (131)

with a spatially dependent mass term.23 Instead, in the
theory (130), the role of a spatially dependent mass term
is played by a dynamical field exp[iβΦ(x)]. Importantly,
this field changes sign with a soliton configuration of the
field Φ(x), so one can use (130) as a substitute for the
model (131) with a coordinate-dependent mass gap pro-
viding certain requirements are met. Firstly, the soliton
configurations of the field Φ should be slow, in order to
be considered quasi-static. Secondly, the solitons should
be far from one another, on average. We will extract a
more precise criteria from the exact solution. Thirdly,
quantum fluctuations of the dynamical field exp[iβΦ(x)]
should be small in order that it can mimic a static λ(x)
in (131) – this essentially requires a small value of β.
The requirements on the dynamical field can be met

in the following manner. We apply a magnetic field H to

our system of fermions, this couples to the U(1) bosonic
sector of (130). The applied field breaks the symme-
try between soliton and antisolitons. We focus on a field
strength that is slightly below the soliton mass M thresh-
old, such that

T � M −H � M, (132)
where T is the temperature. In this limit, the system
is described by a dilute gas of thermally excited solitons
accompanied by a negligible number of antisolitons. The
velocity of the solitons is√

〈v2〉 =
√

2T/M � 1, (133)

whilst the average soliton density is

n ∼ e−(M−H)/T � 1. (134)

As a result, this can be thought of as a gas of slow soli-
tons which are undisturbed, due to the exponentially long
collision time scale τ ∼ exp[(M −H)/T ].

4. Bethe ansatz solution of the model (130)

Having established that in the limit (132) we have a gas
of quasi-static solitons, we now use the thermodynamic
Bethe ansatz (TBA) to establish that the solitons can
carry parafermion zero modes. The TBA equations for
the soliton sector of the theory in the limit (132) can be
extracted from Ref. [288], for example. They are part
of a more general system of equations which can contain
massive soliton-antisoliton bound states (see Ref. [289]),
but these are irrelevant for the current discussion.
The free energy F of the model (130) in the limit (132)

is

F

L
= −TM

∫
dθ

2π
cosh θ ln

(
1 + eεN (θ)/T

)
, (135)

where L is the system size, and the function εN (θ) is
determined from the system of non-linear integral equa-
tions

εj
T

= s ∗ ln
(
1 + eεj−1/T

)(
1 + eεj+1/T

)
+ s ∗ ln

(
1 + eεN/T

)
δj,N−1, j = 1, . . . , N − 1, (136)

εN
T

−K ∗ ln
(
1 + eεN/T

)
= −M

T
cosh θ +

H

T
+ s ∗ ln

(
1 + eεN−1/T

)
+O(e−H/T ), (137)

23 We remind the reader that in the N = 2 Majorana fermion the-
ory, there will be zero energy modes localized at the positions
{xi} where λ(xi) = 0. There, the mass term interpolates be-
tween topologically trivial (a conventional insulator of massive
fermions) and non-trivially phases. In the topological phase, ex-

ponentially localized Majorana fermions will appear on an edge,
as can be easily proved by solving the field equations, see e.g.,
Ref. [287].
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where we define the convolution a ∗ b(x) as

a ∗ b(x) =
∫ ∞

−∞
dy a(x− y)b(y), (138)

and the kernels

s(x) =
1

π cosh(x)
,

K(ω) =
sinh

[
π(ξ − 1)ω2

]
2 cosh

(
πω
2

)
sinh

(
πξω
2

) , 1

ξ
=

8π

Nβ2
− 1,

with ξ = 1/(8π/Nβ2 − 1).
As we are interested in the limit (132), a first approxi-

mation is to replace the quasi-energies εj (j = 1, . . . , N−
1) by their (constant) asymptotic values. Then, the cor-
responding integral equations (136) become algebraic,
with the solution

1 + eεj/T =
sin2

(
π(j+1)
N+2

)
sin2

(
π

N+2

) . (139)

Substituting this into (135) we obtain the following ex-
pression for the free energy:

F

L
= −2T cos

(
π

N + 2

)∫
dp

2π
e−

M−H
T − p2

2MT

+O
(
e−

2(M−H)
T

)
, (140)

This is simply the free energy of an ideal gas of particles
with mass M and chemical potential H. The prefactor

Q = 2 cos(π/(N+2)) arises from the degeneracy of the N
particles with a given energy: this degeneracy is equal to
QN and arises from the parafermionic zero modes which
live on the solitons. Notice that Q is not an integer – this
is a direct indicator that the zero modes attached to the
solitons do not commute. For N = 2, we find the well-
known result for the dimension of the Hilbert space with
N Majorana fermions: D(2)N = 2N/2 (this is simply the
dimensionality of the Clifford algebra representation of
N gamma matrices). In the case of N = 3, the obtained
dimensionality coincides with the large N asymptotic of
the Fibonacci numbers:

D(3)N =
φN − (−φ)−N√

5
,

φ = 2 cos
(π
5

)
=

1 +
√
5

2
,

where φ is the golden ratio.

As we have mentioned, (140) describes an ideal gas of
anyons (solitons + parafermions) when we neglect the
next order terms (the first order term corresponds to the
leading term in the soliton density expansion). Taking
into account higher order terms, from (136) one can move
towards equations for the interacting anyonic gas. Impor-
tantly, interactions will lift the ground state degeneracy.

At low temperatures, we can invert the matrix kernel
in Eq. (136) to obtain equations where the kernel acts on
terms which vanish in the T → 0 limit

T ln
(
1 + eεj/T

)
− TAjk ln

(
1 + e−εk/T

)
= Aj,N−1 ∗ s ∗ T ln

(
1 + eεN/T

)
, j, k = 1, . . . , N − 1, (141)

Ajk(ω) = 2 coth
(πω

2

) sinh
(
πω
2 [N −max(j, k)]

)
sinh

(
πω
2 min(j, k)

)
sinh(Nπω

2 )
.

At low temperatures T � M , the distribution on the
right hand side (RHS) of Eq. (141) is sharp – we approx-
imate it by a delta function

Aj,N−1 ∗ s ∗ T ln(1 + eεN (θ)/T ) ≈ ns(T )Aj,N−1 ∗ s(θ),
(142)

where ns is the number of solitons. Substituting (142)
into the right hand side of (141), the TBA equations
look very similar to those for the ferromagnetic XXZ
model with ns sites and anisotropy γ = π/N [290–
292]. One difference is that there is an additional re-
striction on the solutions of (141), where solutions with
rapidities shifted by iπ/2 are forbidden – such a set of
TBA equations in fact describe the critical restricted
solid-on-solid model [293, 294] with conformal charge
c = 2(N − 1)/(N + 2).

The right hand side of Eqs. (142) is proportional to the
soliton ns, which reflects that the excitation bandwidth
of the interacting anyon gas is proportional to the average
distance between the solitons � ∼ n−1

s . This is an inter-
esting result, as it contradicts the naive expectation that
the bandwidth is proportional to the overlap of the zero
mode wavefunctions (which will be exponentially small in
M�). Instead, we have a scenario where the bandwidth
is related to the collision time for the mobile solitons.

So, having started from a model of electrons with
orbital degeneracy (128), we have used non-Abelian
bosonization and the conformal embedding to obtain an
integrable low-energy effective theory of parafermions
coupled to a U(1) boson (130). Under a certain set
of physically reasonable requirements, the coupling be-
tween the U(1) boson and the parafermion acts like
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a spatially varying mass term for the parafermion
(cf. the action (131)). Such a term interpolates be-
tween topologically-distinguishable ground states when
the bosonic field has a soliton configuration. The TBA
equations suggest that on these solitons reside zero-
energy parafermions – the bound state of the soliton-
parafermion can be thought of as a non-Abelian anyon.
In the case when there is a finite density of solitons, these
anyons interact and the ground state degeneracy is lifted.
In the next part of the review we will explore some

physical manifestations of non-Abelian bosonization, in
the setting of ultra cold atomic gas experiments.

IV. APPLICATIONS TO COLD ATOMS
PHYSICS

A. High-symmetry and cold atoms

Thanks to the high level of control of interactions
and lattice geometries, recent experimental progress in
trapped ultracold atomic gases provides a great oppor-
tunity to explore the physics of strong correlations [295–
297]. The effect of spin degeneracy can also be probed in
these systems as the total angular momentum F of the
atom, which includes both electron and nuclear spins, can
be larger than 1/2 (resulting in 2F +1 hyperfine states).
In optical traps the 2F + 1 components are degenerate,
and as a result novel and interesting fermionic phases
may be stabilized [84–89, 246, 250, 298–300].

In the low-energy limit, the interaction between two
half-integer hyperfine spin-F fermionic atoms is governed
by s-wave scattering processes. For SU(2) rotation-
ally invariant problems, the interaction Hamiltonian Hint

takes the general form [248, 301]:

Hint =

∫
d3r

2F−1∑
f=0,2,...

gfPf (r)

=

∫
d3r

2F−1∑
f=0,2,...

gf

f∑
m=−f

P †fm(r)Pfm(r), (143)

where the total hyperfine spin f should be antisymmetric
according to Pauli’s principle and thus f = 0, 2, . . . , 2F−
1. In Eq. (143), Pf is the projection operator onto the
total spin-f sector and the coupling constants gf are
related to the corresponding s-wave scattering lengths
af [295, 296]. For instance, in the ground state of
173Yb (respectively 40K), we have F = 5/2 (respectively
F = 9/2) and thus three (respectively five) independent
coupling constants. In Eq. (143), the pairing operators

P †fm are defined through the underlying Clebsch-Gordan
coefficients:

P †fm(r) =
∑
αβ

〈fm|F, F ;αβ〉c†α(r)c†β(r), (144)

with c†α(r) (α = 1, . . . , 2F +1) being the fermion creation
operators corresponding to the 2F + 1 hyperfine atomic

states. The operators P †fm are also related to the density

operator n(r) =
∑

α c†α(r)cα(r) through the identity:∑
f,m

P †fm(r)Pfm(r) = n2(r). (145)

The SU(2) symmetry of the atom-atom interac-
tion (143) can be enlarged by fine-tuning the scattering
lengths. In this respect, when the couplings gf = g do
not depend on f (i.e., a0 = a2 = · · · = a2F−1) one has

Hint

∣∣∣
gf=g

= g

∫
d3r n2(r), (146)

which follows from Eq. (145). As the density operator is
invariant under the transformation cα → Uαβcβ , with U
being a unitary matrix, the two-body interaction (143),
cf. Eq. (146), enjoys an enlarged U(N) = U(1)×SU(N)
continuous symmetry with N = 2F + 1. While the U(1)
symmetry accounts for the conservation of the total num-
ber of atoms,24 the non-trivial part is the SU(N) sym-
metry which acts in the hyperfine spin subspace.
Such a symmetry enlargement may seem academic

but remarkably enough, the fine-tuning of all scattering
lengths is indeed possible for a specific class of atoms:
those where the total electron angular momentum J = 0
vanishes, such as in the 1S0 ground state of alkaline
earth and ytterbium atoms [86–88]. Then, for J = 0
the hyperfine state depends solely on the nuclear spin25

I and the nuclear-spin-dependent variation of the scat-
tering lengths is estimated to be smaller than ∼ 10−9

from perturbation theory [87]. Recent experiments with
87Sr (N = 10) and 173Yb (N = 6) atoms have measured
the scattering lengths and indeed confirm the presence of
the SU(N) symmetry in the hyperfine spin space [302–
304]. The cooling of such atoms below the quantum de-
generacy temperature has been achieved for 87Sr, 171Yb
and 173Yb, with I = 9/2, I = 1/2 and I = 5/2 respec-
tively [305–309]. With these examples, the experimental
exploration of exotic physics associated with fermions
possessing SU(N) hyperfine spin symmetry (where N
can be as large as 10) can be undertaken. Also of par-
ticular interest to us is the fact that these systems can
also be confined to a one-dimensional geometry, see e.g.,
Ref. [310].

Besides the SU(N) hyperfine spin symmetry, one can
also find another extended symmetry by fine-tuning of
the scattering lengths: a2 = . . . = a2F−1 �= a0. Here, the
atom-atom interaction (143) has two independent cou-
pling constants, g0 and g2, and it can be rewritten by
means of Eq. (144) as:

Hint =

∫
d3r

[
g2n

2(r) + (g0 − g2)P
†
00(r)P00(r)

]
, (147)

24 Herein we use the terminology of the U(1) ‘charge’ symmetry, as
is the jargon of condensed matter physics.

25 The total degeneracy N satisfies N = 2F + 1 = 2I + 1.
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where P00(r) is the spin-F singlet [e.g., Bardeen-Cooper-
Schrieffer (BCS)] pairing operator:

P †00(r) =
1√
N

c†α(r)Jαβc
†
β(r)

= − 1√
N

∑
α

(−1)
α
c†α(r)c

†
2F+2−α(r), (148)

where the N×N matrix J (with N = 2F+1 = 2n) is the
natural generalization of the familiar antisymmetric ten-
sor ε = iσ2 to half-integer (hyperfine) spin F > 1/2. The
interaction (147) enjoys an extended continuous sym-
metry as the singlet-pairing operator (148) is invariant
under the Sp(2n) group [311].26 In the F = 1/2 case
(N = 2n = 2) it reduces to the SU(2) Hubbard model
since SU(2) � Sp(2). Interestingly, in the F = 3/2 case
(i.e., N = 2n = 4) there is no need for fine-tuning and
the original model (143) enjoys an exact Sp(4) symmetry,
which is locally isomorphic to SO(5) [84, 85].
In this part, we will review the physics of one-

dimensional fermionic cold atoms with enlarged Sp(N)
and SU(N) continuous (hyperfine) spin symmetries that
can be investigated with non-Abelian bosonization, in-
troduced in Sec. II and III.

B. Sp(2n) ultracold fermions: a low-energy
approach

We first consider the interacting Hamiltonian (147)
with Sp(2n) symmetry and load the underlying atoms
into a one-dimensional optical lattice, resulting in the
following lattice model [246, 247, 311]:

H = −t
∑
i,α

[
c†α(i)cα(i+ 1) + H.c.

]
+
U

2

∑
i

n(i)2 + V
∑
i

P †00(i)P00(i), (149)

where c†α(i) (α = 1, . . . , 2F + 1 = 2n) is the fermion
creation operator on site i for spin state α, n(i) =∑

α c†α(i)cα(i) is the lattice density operator, and the

singlet-pairing operator P †00(i) on site i is given by
Eq. (148). The continuous symmetry of model (149) is
U(1) × Sp(2n), with the U(1) part being the standard
U(1) charge symmetry:

cα(j) → eiθcα(j). (150)

In the following we will focus on two particular cases:
(i) incommensurate filling; (ii) half-filling of the lattice,
and we will investigate the competition between the den-
sity and singlet pairing operators in the weak-coupling
regime, |U |, |V | � t.

26 Sp(2n) consists of unitary matrices U that satisfy U∗JU† = J .
See also Sec. III C 2

1. Molecular Luttinger liquids and Zn quantum criticality

Using the continuum description of the lattice
fermionic operators cα(i) in terms of left and right-
moving Dirac fermions Lα, Rα (see Eq. (1)), the non-
interacting part of the Hamiltonian in Eq. (149) is de-
scribed by the Hamiltonian density:

H0 = −i
(
R†α∂xRα − L†α∂xLα

)
, (151)

where the Fermi velocity has been set to unity. As in
Sec. IID, we use non-Abelian bosonization and introduce
a U(1) charge boson Φc and its dual Θc,

: R†αRα : =
√
n/2π ∂x

(
Φc −Θc

)
,

: L†αLα : =
√
n/2π ∂x

(
Φc +Θc

)
,

and chiral SU(2n)1 currents:

JA
R = R†αT

A
αβRβ , JA

L = L†αT
A
αβLβ , (152)

where TA (A = 1, . . . , 4n2 − 1) are the generators of
SU(2n) in the fundamental representation normalized
such that Tr(TATB) = δAB/2, as in Sec. II. The Sug-
awara form of the non-interacting Hamiltonian (151)
then reads:

H0 =
1

2

[
(∂xΦc)

2
+ (∂xΘc)

2
]

+
2π

2n+ 1

[
: JA

RJA
R : + : JA

L JA
L :

]
. (153)

Since the continuous symmetry group of the interaction
of Eq. (149) is generically Sp(2n), we need to introduce
the currents Ja

R(L), a = 1, ..., n(2n+1) which generate the

Sp(2n)1 CFT with central charge c = n(2n+1)/(n+2):

Ja
R = R†αT

a
αβRβ , Ja

L = L†αT
a
αβLβ , (154)

T a being the generators of Sp(2n) in the fun-
damental representation and normalized such that:
Tr(T aT b) = δab/2. The remaining currents, i.e., the
SU(2n)1/Sp(2n)1 currents, are denoted by: J i

L =
L†αT

i
αβLβ (i = 1, . . . , 2n2 − n − 1) with a similar defi-

nition for the right currents.
With these definitions, the low-energy effective Hamil-

tonian of model (149) can be derived for incommensurate
filling :

H = Hc +Hs, [Hc,Hs] = 0, (155)

Hc =
vc
2

[
1

Kc
(∂xΦc)

2
+Kc (∂xΘc)

2

]
Hs =

2πvs
2n+ 1

[
: JA

RJA
R : + : JA

L JA
L :

]
+ g1J

a
RJ

a
L + g2J

i
RJ

i
L,

where vc (respectively vs) is the charge (respectively
spin) velocity and Kc denotes the Luttinger parame-
ter. The continuum limit gives the identification: g1 =
−2a0(2V +nU)/n, g2 = 2a0(2V −nU)/n (with a0 being
the lattice spacing). In the F = 3/2 case, i.e., N = 4,
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one can express the non-Abelian part of model (155)
in a more transparent basis27 by exploiting the equiv-
alence SU(4)1 ∼ SO(6)1. By introducing six Majo-
rana fermions ξiR,L (i = 0, . . . , 5) as in the study of the

two-leg spin-1/2 ladder with four-spin exchange interac-
tions [313], the interacting part of model (155) simplifies
to

Hint
s = λ1(ξ

i
Rξ

i
L)

2 + λ2ξ
0
Rξ

0
Lξ

i
Rξ

i
L, (156)

which turns out to be exactly solvable [314]. The one-
loop RG equations for model (155) in the general n case
have been discussed in Refs. [246, 247].
a. Molecular Luttinger liquids. A first spin gap

phase is stabilized when U < 0 and V > nU/2, where
the long-distance physics of the RG flow is governed by
the symmetric ray g1 = g2 = g̃ > 0. The low-energy
(infrared) Hamiltonian for the (hyperfine) spin degrees
of freedom then takes the form of a chiral SU(2n) Gross-
Neveu model [220]:

Hint∗
s = g̃

(
Ja
RJ

a
L + J i

RJ
i
L

)
= g̃JA

RJA
L . (157)

This is an integrable massive field theory with the low-
energy spectrum (80) for g̃ > 0 [43]. The spin degrees of
freedom are thus fully gapped and a c = 1 critical phase
is formed, stemming from the gapless charge degrees of
freedom described by the bosonic field Φc in Eq. (155). It
is then natural to expect the emergence of a gapless 2kF
CDW phase due to the presence of the dynamical SU(2n)
symmetry enlargement. The corresponding lattice order
parameter is n2kF

(j) =
∑

α ei2kF xc†α(j)cα(j), (x = ja0)
which has the continuum limit

n2kF
= R†αLα ∼ exp

(
i
√

2π/nΦc

)
Tr g, (158)

where the non-Abelian bosonization identity (46) has
been used and g is the SU(2n)1 WZNW primary field
with scaling dimension (2n− 1)/2n. In the ground state
of the chiral SU(2n) Gross-Neveu model (157), we have
〈Tr g〉 �= 0, and as a result the equal-time density-density
correlation function is

〈n(x)n(0)〉 � A cos
(
2kFx

)
x−Kc/n − nKc

π2x2
, (159)

where A is a non-universal amplitude.
The restoration of the SU(2n) symmetry in the low-

energy limit means that there is no pairing instability to
compete with the 2kF CDW, in stark contrast to the F =
1/2 (n = 1) case [60, 61]. Indeed, a general superconduct-

ing pairing operator c†α(i)c
†
β(i) is not a singlet under the

SU(2n) symmetry when n > 1. In the continuum limit,

27 In this case, it is also possible to investigate the physical prop-
erties of F = 3/2 cold atoms by Abelian bosonization as in
Ref. [312].

its hyperfine spin part cannot sustain a non-zero expecta-
tion value in the gapped SU(2n) invariant model (157).
However, we may consider a molecular superfluid insta-
bility made of 2n fermions: Mi =

∏2n
α=1 c

†
α(i) which is

now a singlet under the SU(2n) symmetry. Its equal-time
correlation function can be determined in the SU(2n) re-
stored phase (157) [246, 247]:〈

M†(x)M(0)
〉 ∼ x−n/Kc . (160)

We thus see that 2kF CDW and molecular superfluid in-
stabilities compete. In particular, a dominant molecular
superfluid instability requires Kc > n. It was shown nu-
merically in Refs. [315–317] that such a scenario can be
achieved for local (on-site) attractive interactions in the
low-density regime, signaling the emergence of a molec-
ular Luttinger liquid phase. This is characterized by the
formation of bound states of N fermions (analogous to
baryons in high-energy physics) and the suppression of
Cooper pairs. A related phase has already been stabi-
lized in other one-dimensional systems [318–322].
b. BCS singlet pairing phase. A second spin-gapped

phase arises in the model (149) when V < 0 and V <
nU/2. The RG flow is now attracted towards the asymp-
tote g1 = −g2 = g̃ > 0. The low-energy Hamiltonian for
the (hyperfine) spin degrees of freedom again takes the
form of a chiral SU(2n) Gross-Neveu model:

Hint∗
s = g̃

(
Ja
RJ

a
L − J i

RJ
i
L

)
= g̃J̃A

R J̃A
L , (161)

where the duality transformation [323]

L̃α = JαβL
†
β , R̃α = Rα (162)

has been applied to the Dirac fermions, resulting in new
SU(2n)1 currents J̃A

L,R.
Besides the opening of a spectral gap, it is clear the

model possesses a hidden enlarged symmetry at low en-

ergy, which we denote as S̃U(2n) symmetry, which is

generated by the currents J̃A
R,L. The physical proper-

ties of the phase can be inferred from the transformation
of the CDW order parameter (158) and the BCS singlet
pairing operator under (162)

n2kF
→ JαβR̃

†
αL̃

†
β

P †00 ∼ R†αJαβL
†
β → R̃†αL̃α. (163)

We see that n2kF
is no longer a singlet under the hidden

S̃U(2n) symmetry, and as a result it is short-range (e.g.,
it has exponentially decaying correlation functions) in

the c = 1 critical phase described by the S̃U(2n) Gross-
Neveu model (161). On the other hand, the BCS sin-

glet pairing operator P †00 is now S̃U(2n) invariant and
exhibits power-law decay of the equal-time correlation
function: 〈

P †00(x)P00(0)
〉
∼ x−1/(nKc). (164)

As a result, the leading instability of the critical c = 1
phase is BCS singlet pairing.
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c. Zn quantum criticality. The nature of the quan-
tum phase transition (QPT) between the two discussed
phases, a spin-gapped CDW and a BCS phase, is gov-
erned by discrete soft modes. This can be revealed
through a conformal embedding approach: the coset
SU(2n)1/Sp(2n)1 CFT has central charge c = 2n − 1 −
n(2n + 1)/(n + 2) = 2(n − 1)/(n + 2). This is identical
to the central charge of the Zn parafermionic CFT [216],
and this signals that the SU(2n)1/Sp(2n)1 CFT is equiv-
alent to the Zn CFT [215]. The latter CFT describes
self-dual critical points of the two-dimensional Zn gener-
alization of the Ising model.
In the vicinity of the QPT, the Sp(2n) degrees of free-

dom have a large spectral gap, and the remaining Zn

degrees of freedom are governed by the effective action

Seff = A[Zn] + λ

∫
d2x ε1(x), (165)

where A[Zn] stands for the action of the Zn CFT and ε1
is the first Zn thermal operator with scaling dimension
dε = 4/(n + 2). Model (165) is a massive integrable de-
formation of the Zn CFT for both signs of the coupling
constant λ [262]. The order parameters of the CDW
and BCS phases can be expressed in terms of the Zn

fields [247]:

n2kF
∼ exp

(
i
√

2π/nΦc

)
μ1,

P †00 ∼ exp
(
i
√

2π/nΘc

)
σ1, (166)

where μ1 (σ1) is the disorder (order) parameter of the
Zn CFT with scaling dimension (n − 1)/n(n + 2). The
identification (166) is closely related to the one (120)
obtained within the Hubbard-Stratonovich approach of
Sec. III C 5. One thus observes that the CDW phase cor-
responds to λ > 0 where the Zn degrees of freedom are
disordered, whilst the BCS phase corresponds to λ < 0
with ordered Zn degrees of freedom. In the n = 2, 3 cases,
the QPT between these two phases is universal and be-
longs to the Ising (n = 2) and three-state Potts (n = 3)
universality classes, respectively. This has been con-
firmed numerically in the F = 3/2 (n = 2) case [316, 317].

When n ≥ 4, the second Zn thermal operator ε2 with
scaling dimension 12/(n+2) is generated in the Zn sector.
The field theory capturing the QPT between the CDW
and BCS phases is then

Stransition = A[Zn] + λ̃

∫
d2x ε2 (x) , (167)

which is also an integrable deformation of the Zn

CFT [262]. The nature of the phase transition now de-

pends on the sign of the coupling constant λ̃ [262]. When

λ̃ < 0, the field theory (167) is massive and there is a
first-order QPT between the two phases. On the other
hand, for λ̃ > 0 the action (167) flows under the RG to a
c = 1 phase. As a result, the critical theory at the QCP
is described by a c = 1 gapless theory for the Zn degrees

of freedom and a c = 1 gapless theory for the decoupled
charge theory, resulting in an overall c = 2 theory at the
QPT.

2. Haldane-charge insulator

So far we have concentrated on the case with incom-
mensurate filling. We now turn our attention to half-
filling; we consider the U(1) × Sp(2n) model (149) with
one atom per site (kF = π/2a0). At half-filling there is no
expectation of spin-charge separation (as found in (155))
for n > 1; the low-energy properties of (149) can be in-
vestigated via the conformal embedding [215] :

SO(4n)1 ∼ SU(2)n × Sp(2n)1, (168)

where the SO(4n) group is the maximal continuous
symmetry of the 2n Dirac fermions (151) of the non-
interacting limit.28 The SU(2)n currents of the embed-
ding (168) are [324]:

J†L =
1

2
L†αJαβL

†
β , JzL =

1

2
: L†αLα :, (169)

with a similar definition for the right currents. At half-
filling, we need also to introduce umklapp terms which
are built from

J i+
L = L†αT̃

i
αβL

†
β , J i+

R = R†αT̃
i
αβR

†
β , (170)

where the generators T̃ i
αβ (i = 1, . . . , 2n2 − n − 1), to-

gether with Jαβ , form the set of antisymmetric genera-
tors of SU(2n). The interacting part of the low-energy
Hamiltonian of model (149) at half-filling is then

Hint = g1J
a
RJ

a
L + g2J

i
RJ

i
L + g3J

z
RJ

z
L

+
g4
2
(J i+

R J i−
L +H.c.)

+
g5
2
(J+RJ

−
L +H.c.). (171)

A detailed RG analysis of (171) has been presented in
Ref. [324]. Two phases exhibiting dynamical symmetry
enlargement were found, with low-energy properties gov-
erned by the SO(4n) Gross-Neveu model up to duality
symmetries [323]. The SO(4n) Gross-Neveu model is a
massive integrable field theory, whose mass spectrum is
known exactly [235, 325]. The excitation spectrum con-
sists of elementary fermions of mass m, bound states of
these fermions, and kinks. The bound states have masses
(n > 1)

mp = m
sin

(
πp

2(2n−1)

)
sin

(
π

2(2n−1)

) , (172)

28 This can be simply realized by decomposing the Dirac fermions
into their real components, i.e. in the Majorana basis.
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with p = 2, . . . , 2n− 2, while the mass of the kinks is

mkinks =
m

2 sin
(

π
2(2n−1)

) . (173)

The two symmetry enlarged phases are fully gapped Mott
insulators with leading instabilities of the CDW and
Spin-Peierls (bond-ordering) type. The phases are two-
fold degenerate as a result of spontaneous breaking of the
one-site translation symmetry.
Interestingly, the RG analysis reveals that there is an-

other Mott insulator phase which displays no symme-
try enlargement. In stark contrast to the previous two
phases, the Sp(2n)1 current-current perturbation with
coupling constant g1 in (171) reaches the strong-coupling
regime before the others. Integrating out the resulting
massive Sp(2n) degrees of freedom, the low-energy field
theory of the third Mott insulator phase is expressed
in terms of the SU(2)n fields of the conformal embed-
ding (168) [324]:

Hint � λTrΦ(1), (174)

where λ > 0 and Φ(1) is the spin-1 (or adjoint) primary
field of the SU(2)n CFT with scaling dimension 4/(n+2)
(see the discussion of Sec. III A 4).

The effective Hamiltonian (174) is directly related to
the low-energy theory of the spin-n/2 SU(2) Heisenberg
chain derived by Affleck and Haldane in Ref. [143]. As
we have reviewed above, the model (174) has a spectral
gap when n is even, while it flows under the RG to the
SU(2)1 CFT when n is odd. This phenomenology is in
full agreement with Haldane’s conjecture for the Heisen-
berg spin chain [326, 327]. In the case of n even, there is a
gapped non-degenerate Mott insulating phase with prop-
erties similar to the spin-one Haldane phase. However, in
the definitions (169) we see that the SU(2)n currents are
singlets with respect to the hyperfine spin Sp(2n) sym-
metry, and as a result they depend only upon the charge
degrees of freedom. In this respect, the fully gapped Mott
insulating phase for even n is a Haldane-charge insula-
tor [324, 328].

The emergence of this exotic insulating phase can also
be understood from the strong coupling limit of the
lattice Hamiltonian (149) [328]. For strong attractive
U and V = NU/2, the model (149) becomes equiva-
lent to a (pseudo) spin-n antiferromagnetic Heisenberg
chain [324, 328, 329]:

Heff = Jeff
∑
i

Si · Si+1, (175)

with Jeff = 4t2

n(2n+1)|U | and pseudo spin operators which

carry charge and are Sp(2n) spin singlets

S†i =
√
n/2 P †00(i) Sz

i =
1

2
[n(i)− n]. (176)

These operators satisfy the SU(2) commutation relations
with S2

i = n(n + 2)/4. They generalize the η-pairing

operators introduced by Yang for the half-filled spin-1/2
(i.e., n = 1) Hubbard model [330] or those introduced by
Anderson in his study of BCS superconductivity [331].

The even/odd dichotomy revealed by the RG analysis
can also be simply explained within the strong-coupling
framework. For the case of even n, the pseudo spin is in-
teger and the Haldane-charge insulator phase is formed.
On the other hand, when n is odd, the pseudo spin is
half-integer and a metallic (i.e., gapless) phase is stabi-
lized. This is in complete analogy with Haldane’s con-
jecture for spin chains, where here the underlying spin
S is non-magnetic and carries charge. For this reason,
the even/odd behavior was coined the “Haldane-charge
conjecture” in Ref. [328].

C. SU(N) ultracold fermions

Let us now turn our attention to the low-energy prop-
erties of ultracold alkaline earth and ytterbium fermions
atoms loaded into a 1D optical lattice. For atoms in the
1S0 (i.e., g) state, the lattice Hamiltonian is a general-
ization of the well-known Fermi-Hubbard model where
the hyperfine spin degrees of freedom enjoy SU(N) rota-
tional invariance [89]

H = −t
∑
i

N∑
α=1

[
c†α(i)cα(i+ 1) + H.c.

]
+

U

2

∑
i

n(i)2,

(177)
where α = 1, . . . , N = 2I + 1 now describes the nu-
clear spin states of the underlying atoms, as discussed
in Sec. IVA. This model is invariant under the global
charge U(1) symmetry

cα(j) �→ eiθcα(j) (178)

and the SU(N) symmetry:

cα(j) �→ Uαβcβ(j) (179)

with U being an SU(N) matrix. As a result, the con-
tinuous symmetry group of the Hamiltonian (177) is
U(N) = U(1) × SU(N). When N = 2, model (177) is
exactly solvable by means of the Bethe ansatz [332, 333].
However, for N > 2 the Hamiltonian (177) is not inte-
grable for arbitrary U and filling n. In the absence of a
lattice, the model is again integrable and its properties
have been described in Ref. [49].

1. Mott transition

The continuum description of model (177) was studied
by Affleck in Refs. [142, 233]. At incommensurate filling,
there is spin-charge separation and the Hamiltonian den-
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sity decomposes into two commuting parts, [Hc,Hs] = 0:

H = Hc +Hs,

Hc =
vc
2

[
1

Kc
(∂xΦc)

2
+Kc (∂xΘc)

2

]
Hs =

2πvs
N + 1

[: Ja
RJ

a
R : + : Ja

LJ
a
L :] + gJa

RJ
a
L, (180)

where vc (vs) is the charge (spin) velocity, Kc the Lut-
tinger parameter, and g = −2a0U . In the Hamiltonian
density (180), Ja

R,L (a = 1, . . . , N2 − 1) are the chiral

SU(N)1 currents defined in Eq. (152) in terms of the
Dirac fermions of the non-interacting Hamiltonian (151).
For a repulsive interaction U > 0, which is the case in
the experiments of Ref. [310], the interaction in the spin
sector is marginally irrelevant and thus scales to zero in
the far infrared (low energy) limit. As a result, for incom-
mensurate filling and repulsive interaction, all modes are
gapless and the central charge is c = N . In this respect,
a N -component metallic Luttinger liquid phase emerges
with 2kF CDW oscillations and non-universal power-law
exponents in the density-density and SU(N) spin-spin
correlation functions [142, 233, 334, 335].

The most interesting situation to consider is commen-
surate filling with one atom per site, such that kF =
π/Na0. In contrast to the N = 2 case, the umklapp term
is always strongly irrelevant for N > 2 for sufficiently
small U [233, 334]. The leading umklapp contribution,
which is in fact generated at higher order in perturba-
tion theory, leads to a sine-Gordon model for the charge
degree of freedom [334]

Hc =
vc
2

[
1

Kc
(∂xΦc)

2
+Kc (∂xΘc)

2

]
+ gc cos(

√
4πNΦc).

(181)
Here the sine-Gordon potential term has scaling dimen-
sion NKc, and as a result it becomes a relevant perturba-
tion whenNKc < 2 and a Mott insulating phase emerges.
For the spin-1/2 Fermi Hubbard model (N = 2) one has
Kc < 1 for arbitrarily small repulsive interactions and a
charge gap opens, leading to a Mott insulating phase with
a single gapless spin mode [60, 61, 333]. For fermions with
SU(N) spins with N > 2, the sine-Gordon term in (181)
is irrelevant at small U , with a Mott transition occurring
at finite U = Uc �= 0. On the Mott insulator side of the
transition, one expects gapless SU(N)1 spin modes de-
scribed by a c = N − 1 CFT [334]. The Mott transition
has been numerically investigated forN = 3, 4 with QMC
and DMRG [334–336]. The existence of a Mott transi-
tion at finite U was reported in Refs. [334, 335], while the
DMRG calculations of Ref. [336] concluded that Uc = 0
for all N ≥ 2. The latter DMRG results [336] are in
strong disagreement with the irrelevance of the umklapp
term for weak U and N > 2 found in Refs. [233, 334].
They also disagree with more recent DMRG results from
Manmana et al. [335], where the Mott transition was
identified through the minima of the fidelity susceptibil-
ity.

In the large U limit and with one atom per site, the
physical properties of the model (177) are governed by
the N − 1 gapless spin modes. In direct analogy with
the N = 2 Hubbard model [333], (177) reduces to the
SU(N) Heisenberg antiferromagnetic spin chain, i.e., the
Sutherland model [337]:

Hspin = J
∑
i

N2−1∑
a=1

Sa
i S

a
i+1, (182)

where J = 4t2/U is the antiferromagnetic spin exchange
and Sa

i is the spin operator at site i which transforms
in the fundamental representation of the SU(N) group.
Model (182) can be solved exactly by means of the
Bethe ansatz [337]. The low-energy spectrum is gap-
less with N − 1 relativistic modes, each of which has
the same velocity vs = πJ/N . The critical theory is
the SU(N)1 CFT perturbed by a marginally irrelevant
current-current interaction (cf. Eq. (180))

Hspin =
2πvs
N + 1

[
: Ja

RJ
a
R : + : Ja

LJ
a
L :

]
+ gJa

RJ
a
L. (183)

In the low-energy limit, SU(N)1 quantum critical behav-
ior with central charge c = N − 1 is stabilized and the
marginally irrelevant current-current interaction leads
to logarithmic corrections in correlation functions [338,
339]. In turn, the continuum SU(N) spin operator can
be expressed in terms of the gapless fields [142, 233]

Sa
j ∼ Ja

L + Ja
R + ie2ijπ/NλTr(gT a) + H.c., (184)

where g is the SU(N)1 WZNW primary field and λ is a
real non-universal constant which depends on the gapped
charge degrees of freedom.29 The low-lying gapless ex-
citations of the Sutherland model occur in pairs with
individual dispersion relations covering a fraction of the
Brillouin zone [340]. The elementary excitations of the
model are then a generalization of the spinons of the
spin-1/2 Heisenberg chain and carry fractional quantum
numbers. They display fractional statistics with angle
θ = π/N and transform in the conjugate N̄ representa-
tion of the SU(N) group [341, 342]. In this respect, they
may be viewed as an analogue of antiquarks in quantum
chromodynamics.

2. Mott insulating phases

The nature of the SU(N) Mott insulating phases for
other commensurate fillings can also be investigated in
the weak-coupling regime by means of bosonization [343].
Alternatively, one can directly consider the large U limit

29 An analogous non-universal factor that depends upon the charge
degrees of freedom appears in the Abelian bosonization identities
of spin operators.
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and study the leading relevant perturbation, which de-
scribes the departure from the SU(N)1 fixed point [233].
In this respect, let us consider a filling of m/N (m =

1, . . . , N − 1) where a Mott insulator with m atoms per
site is formed. In the large-U limit, it is described by
the SU(N) spin chain Hamiltonian (182) where the spin
operators transform under the antisymmetric m-tensor
representation of SU(N) with the Young tableau:

m times

⎧⎪⎨⎪⎩ . (185)

A field theory analysis of this problem can be obtained by
finding the leading relevant perturbation to the SU(N)1
CFT which obeys all the symmetries of the lattice model.
The SU(N)1 CFT has N − 1 primary fields Φm (m =

1, . . . , N − 1) which transform in the antisymmetric rep-
resentation (185) of the SU(N) group. Their scaling
dimensions can be determined as a result of Eq. (39):
dm = m(N − m)/N . From the point of view of the
SU(N)1 WZNW model and its field g, the primary field
Φm can be obtained through m fusions of g with it-
self [135].
An important symmetry constraint stems from the

one-site translation symmetry of the lattice model, which
acts as follows on the WZNW field g for the filling m/N
(i.e,. kF = πm/Na0) [233]:

g → e2iπm/Ng. (186)

As a result, when m and N have no common divisor, a
relevant SU(N)1 primary field is not allowed by one-step
translational symmetry (186).30 With no symmetry al-
lowed relevant perturbations, a gapless SU(N)1 WZNW
QCP emerges, as in the Sutherland model (182). On the
other hand, when N is divisible by m (N = mp) the pri-
mary field Φp is symmetry allowed and may appear in the
low-energy theory. The low-energy effective Hamiltonian
density then reads

HN=mp
eff � 2πvs

N + 1

[
: Ja

RJ
a
R : + : Ja

LJ
a
L :

]
+κ

(
Trg

)p

+H.c.

(187)
The added operator is strongly relevant when p(N −
p)/N < 2, i.e., when N(m − 1) < 2m2. Then,
a fully gapped bond-ordered phase emerges with a p-
fold degenerate ground state with spontaneously bro-
ken one-site translation symmetry. A paradigmatic ex-
ample of this is the self-conjugate representation where

30 This can easily be seen from the fact that Φm (m = 1, . . . , N−1)
is constructed from fusing g with itself m times. Then un-
der one-site translation the primary field must transform as

Φm → e2iπm2/NΦm which cannot equal Φm if m and N have
no common divisors. Thus all primary fields Φm are symmetry
forbidden.

m = N/2 with N even. There a fully gapped dimer-
ized phase is stabilized, corresponding to the Mott in-
sulating phase of the half-filled SU(2m) Fermi-Hubbard
model (177) [213, 229, 343–346]. On the other hand,
when N(m − 1) > 2m2 the SU(N)1 QCP is realized.
Recently these predictions have been checked to high ac-
curacy by variational QMC calculations [347].

3. Orbital effects

Beyond the existence of the SU(N) symmetry, another
interesting aspect of alkaline-earth-like atoms stems from
the fact that one can incorporate an additional orbital de-
gree of freedom into the system [87]. Indeed by consider-
ing the metastable 3P0 state ‘e’ of alkaline earth atoms,
the interplay between orbital and SU(N) symmetries can
be investigated. A paradigmatic model for this competi-
tion in one dimension is the g− e SU(N) model which is
defined by the Hamiltonian [87, 89]

Hg-e = −t
∑
i

∑
m=g,e

N∑
α=1

[
c†mα(i)cmα(i+ 1) + H.c.

]
+
U

2

∑
i

n(i)2 + V
∑
i

ng(i)ne(i)

+Vex

∑
i,α,β

c†gα(i)c
†
eβ(i)cgβ(i)ceα(i), (188)

where the index α labels the SU(N) nuclear-spin states
(as before) and m = g, e labels the two atomic states
of alkaline earth atoms (1S0 and 3P0, respectively). In
Eq. (188), nm,i denotes the density of the m = g, e

fermions at each site: nm(i) =
∑N

α=1 c
†
mα(i)cmα(i).

On top of the U(N) symmetry discussed for the pre-
vious model, the g − e model (188) is invariant under a
U(1)o orbital symmetry:

cgα(j) �→ eiθocgα(j), ceα(j) �→ e−iθoceα(j), (189)

which reflects the fact that the total fermion numbers for
g and e are conserved separately.
The continuum description of the g−e model (188) can

be derived as before by introducing 2N left-right moving
Dirac fermions Lmα and Rmα. The resulting low-energy
approach has been investigated for incommensurate fill-
ing [348–350] and at half-filling [213, 351]. In this re-
spect, non-Abelian bosonization can be used alongside
the conformal embedding (50) of Sec. III. The conformal
embedding for the g − e model reads

U(2N) → U(1)c × SU(2)N × SU(N)2. (190)

The non-Abelian left currents, Ja
L and jaL, for the SU(N)2

(nuclear) spin and SU(2)N orbital sectors are defined as

Ja
L = L†nαT

a
αβLnβ jiL =

1

2
L†mασ

i
mnLnα, (191)
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with T a (a = 1, . . . , N2 − 1) and σi (i = x, y, z) being,
respectively, the SU(N) generators and the Pauli matri-
ces.
At half-filling, several Mott insulating phases have

been found within the bosonization approach [213]. Per-
haps the most interesting is a symmetry-protected topo-
logical phase which occurs in the large U regime [89,
213, 351–354] with a symmetry based on the PSU(2n) =
SU(2n)/Z2n projective unitary group.

When Vex > 0 and N = 2n, the strong-coupling (large
U) Hamiltonian is given by [213, 351]:

Heff = J

N2−1∑
a=1

Sa
i Sa

i+1 , (192)

where the SU(2n) spin operators transform under the
self-conjugate representation with the Young tableau:

n times

⎧⎨⎩ . (193)

When n = 1, model (192) is the spin-1 Heisenberg
chain with the Haldane phase as a ground state. In
the general n case, on general grounds, it is expected
that model (192) in the representation (193) displays a
non-degenerate fully gapped phase [355, 356]. In this
respect, a MPS state has been constructed to describe
the properties of the ground state [213, 351, 353, 354].
The latter is SU(2n)-symmetric and featureless in the
bulk and has exponentially decaying spin-spin correlation
functions with a very short correlation length. The hall-
mark of this phase is the existence of edge states which
transform in the antisymmetric self-conjugate represen-
tation with dimension N !/[(N/2)!]2 of the SU(2n) group.
The topological nature of this phase can also be revealed
by numerical investigation of the entanglement spectrum:
for N = 4 this exhibits a six-fold degeneracy [353], which
marks the emergence of a symmetry-protected topologi-
cal phase with edge state that transform under the pro-
jective representation of the PSU(4) group [89, 352].
The symmetry-protected topological phase, found as

the ground state of the spin model (192), is the nat-
ural generalization of the spin-1 Haldane phase to the
PSU(2n) group. DMRG calculations for the g − e
model (188) show that this PSU(2n) Haldane phase oc-
curs in the large-U regime [213, 351]. In contrast to
the n = 1 case, it is not adiabatically connected to
the weak-coupling regime where one finds a spin-Peierls
phase with bond-order. A QPT occurs at finite inter-
action strength, which can be inferred from the confor-
mal embedding (190). In the vicinity of the QPT, the
U(1) charge and SU(2)N orbital degrees of freedom have
large spectral gaps. The low-energy degrees of freedom,
which control the nature of the phase transition, are the
SU(N)2 nuclear spin states. In order to discuss the QPT,
we then need to identify the primary fields of the SU(N)2
CFT which are strongly relevant and allowed by the sym-
metry of the underlying lattice model (188) (cf. the

discussion of the previous section). The SU(N)2 CFT
has N(N +1)/2 primary fields and they are obtained by
fusion of the WZNW g field, which has scaling dimen-
sion (N2 − 1)/N(N + 1). Under the one-site translation
symmetry of the lattice Hamiltonian, the WZNW field g
transforms as: g → −g at half-filling. There are three
possible relevant perturbations that can be considered as
a result, which may describe the theory in the vicinity of
the QCP between the PSU(2n) Haldane phase and the
spin-Peierls phase:

Φ± ∼ (Tr g)
2 ± Tr g2 +H.c.

Φadj ∼ |Tr g|2. (194)

The scaling dimensions of these perturbations are, re-
spectively,

d+ =
2(N − 1)

N
,

d− =
2(N + 1)(N − 2)

N(N + 2)
,

dadj =
2N

(N + 2)
.

(195)

For even N = 2n, the general low-energy effective field
theory that governs the properties of the model in the
vicinity of the QCP is

SQCP = S[SU(N)2; g]

+

∫
d2x

[
λ̃+Φ+ + λ̃−Φ− + λ̃adjΦadj

]
. (196)

Following the semiclassical approximation of Ref. [233],
one can show that the PSU(2n) Haldane phase and
the spin-Peierls phase appear in the space of parame-
ters of the action (196). When λ̃±,adj < 0, minimiza-
tion of the perturbation leads to g = ±I (N even) and
one has 〈Trg〉 �= 0. The ground state is two-fold de-
generate as a consequence of the spontaneously broken
translation symmetry (g → −g). This corresponds to
the spin-Peierls phase identified in the weak-coupling
limit [213, 351]. On the strong coupling side, for instance

when λ̃+ = λ̃− > 0 and λ̃adj > 0, the semiclassical anal-
ysis now gives an SU(N) matrix of the form:

g = U0 diag(i, . . . , i︸ ︷︷ ︸
n times

,−i, . . . ,−i︸ ︷︷ ︸
n times

)U †0 , (197)

with U0 being a unitary matrix. The ground state is now
non-degenerate and invariant under one-site translations
as g → −g can be absorbed in a redefinition of U0. The
resulting effective field theory is known to be the Grass-
mannian sigma model on the U(N)/[U(N/2)× U(N/2)]
manifold with a θ = 2π topological theta term [233]. The
latter is known to be massive and describes the semiclas-
sical field theory of the SU(N) Heisenberg spin chain
in self-conjugate representations (193), see Ref. [357].
Thus, we conclude that the QCP between the spin-
Peierls and PSU(2n) Haldane phases should belong to
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the SU(N)2 WZNW universality class as predicted in
Ref. [351]. In the special N = 2 case, one recovers the
well-known SU(2)2 quantum critical behavior of the inte-
grable Babujian-Takhtajan model [358, 359] which is the
QCP between the Haldane and dimerized phases [360].

D. SU(N) two-leg spin ladder

1. Introduction

Two-leg spin ladders have been a focus of much the-
oretical and experimental work over more than two
decades. This strong interest stems from the desire to
understand the crossover between one and higher dimen-
sions, as well as being motivated by their experimen-
tal realizations [60, 61]. These simple magnetic quan-
tum systems might also be employed as quantum simula-
tors for fundamental theories of particle and many-body
physics [361, 362]. In this respect, the problem of con-
finement of fractional quantum number excitations can
be investigated in a simple two-leg spin ladder which con-
sists of two spin-1/2 antiferromagnetic Heisenberg chains
coupled by an interchain spin-exchange interaction. Gap-
less fractional spin-1/2 excitations (spinons) of individ-
ual chains turns out to be confined into gapped spin-1
(triplon) excitations even by an infinitesimal interchain
coupling [234].
One generalization of this confinement problem in two-

leg spin ladders is to consider spins where the internal
symmetry group is enlarged to SU(N). Such problems
can be experimentally investigated by considering ultra-
cold alkaline earth or ytterbium atoms loaded into a
double-well optical lattice, with the lattice Hamiltonian

H = J‖
∑
i

N2−1∑
a=1

(
Sa
1,iS

a
1,i+1 + Sa

2,iS
a
2,i+1

)
+ J⊥

∑
i

N2−1∑
a=1

Sa
1,iS

a
2,i, (198)

where Sa
l,i (a = 1, . . . , N2 − 1) denote the SU(N) spin

operators, which transform in the fundamental represen-
tation of the SU(N) group, on the i-th site of the chain
(leg) and the index l = 1, 2 stands for a leg of the ladder.
The intrachain and interchain spin exchange interactions
are antiferromagnetic for applications to ultracold alka-
line earth or ytterbium atoms. When J⊥ = 0, the Hamil-
tonian (198) describes two decoupled SU(N) Sutherland
models, with quantum critical behavior in the SU(N)1
WZNW universality class as reviewed above. The ele-
mentary gapless excitations of the model are the gener-
alization of the spinons of the spin-1/2 Heisenberg chain
with fractional statistics with angle θ = π/N [341, 342].
The two-leg SU(N) spin ladder (198) is thus a paradig-
matic model for studying the confinement or deconfine-
ment of these excitations with fractional quantum num-

bers upon switching on an antiferromagnetic interchain
spin-exchange (J⊥ > 0).

2. The strong-coupling limit

Some insights into this problem can be gained by con-
sidering the strong-coupling regime J⊥ � J‖ where the
Hamiltonian (198) reduces to a single SU(N) spin chain
model (182). The underlying SU(N) spin operator now
transforms in the antisymmetric representation described
by the Young’s tableau

. (199)

As discussed in Sec. IVC2, when N is odd, an SU(N)1
quantum critical behavior is expected and the SU(N)
spinons are still deconfined, in contrast to the case
with N = 2. For example, when N = 3 the strong-
coupling limit of the ladder (198) again gives a Suther-
land model (182), where the SU(3) spin operators belong
to the conjugate 3̄ representation. The SU(3) spinon ex-
citations are gapless and incoherent, and they transform
in the 3 representation of the SU(3) group, not the 3̄
representation as is the case in the limit J⊥ = 0.

When N is even (i.e., N = 2n), the strong-coupling
Hamiltonian is described by the effective field the-
ory (187) with p = n. A fully gapped phase with an
n-fold degenerate ground-state is stabilized when the per-
turbation (187) is relevant, i.e., for n ≤ 4 (N = 4, 6).31

The spinons now correspond to the gapped domain walls
between the Zn degenerate ground states. Finally, when
N is even and N > 8, the interacting part of model (187)
is strongly irrelevant and SU(N)1 quantum criticality is
restored in the strong-coupling limit, leading to gapless
deconfined spinon excitations.

3. Weak-coupling approach

We now consider the opposite limit of weak-coupling,
J⊥ � J‖, and investigate the low-energy physics of the
two-leg ladder (198). Using Eq. (184), the SU(N) oper-
ators in the continuum limit are described by:

Sa
l,j

a0
� Ja

lL(x)+Ja
lR(x)+ iei2πx/Na0λ Tr

(
gl(x)T

a
)
+H.c.,

(200)
where x = ja0 and Ja

lL,R are the left and right SU(N)1
currents. In Eq. (200), gl is the SU(N)1 WZNW field

31 In the N = 8 case, the perturbation of Eq. (187) is marginal and
the sign of the coupling constant κ is important. However, the
latter cannot be fixed within the symmetry argument that leads
to Eq. (187). The variational QMC calculations of Ref. [347]
found critical behavior in the SU(8)1 universality class.

Page 32 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



33

with scaling dimension (N − 1)/N corresponding to the
l-th chain. The continuum limit of the two-leg SU(N)
spin ladder is then described by the action [212]:

S = S[SU(N)1; g1] + S[SU(N)1; g2]

+

∫
d2x

[
λ1Tr(g1g

+
2 ) + λ2Trg1Trg

+
2 +H.c.

]
,

(201)

where S[SU(N)k; gl] denotes the action of the SU(N)k
WZNW model for the l-th chain and λ1 = J⊥λ2/2, λ2 =
−λ1/N . Model (201) thus describes two SU(N)1 WZNW
models perturbed by two strongly relevant operators with
the same scaling dimension, 2(N − 1)/N < 2.
a. Field theory strong coupling approach. Under the

RG, the perturbations of (201) flow towards strong cou-
pling, where one can undertake a strong coupling ap-
proach when |λ1| � |λ2|, i.e., N � 1. Minimizing the
λ1 term (λ1 > 0) in the action (201) gives g1 = −g2 = g
when N is even, or g1 = e±i2π/Ng2 = g when N is odd.
In both cases, the WZNW topological term in Eq. (201)
is doubled and the low-energy effective action is:

Seff = S[SU(N)2; g] + 2λ̃2

∫
d2x |Tr g|2

= S[SU(N)2; g] + λ̃2

∫
d2x Tr Φadj, (202)

where Φadj is the SU(N)2 primary field transforming
in the adjoint representation with scaling dimension
2N/(N + 2). In Eq. (202), we have λ̃2 > 0 for all N and
J⊥ > 0. The perturbation present in Eq. (202) is strongly
relevant and a mass gap may open. However, in Ref. [363]
it was argued that the effective action (202) displays a

massless flow to SU(N)1 when N is odd and λ̃2 > 0. The
result is then in perfect agreement with the conclusion
obtained from the direct strong-coupling limit of the lat-
tice model (198). When N is even, there is no known re-

sult for the infrared limit of the action (202) with λ̃2 > 0
except when N = 2. As reviewed in Sec. III A 4, the
perturbation is integrable in that case and a mass gap
opens.
b. Conformal embedding approach. To shed light on

the possible phases, a conformal embedding analysis
based on the symmetries of model (201) can be per-
formed. In the decoupled limit, the CFT governing
the low-energy properties of model (201) is SU(N)1 ×
SU(N)1. However, when J⊥ �= 0 the continuous symme-
try group is reduced to SU(N), making it more natural
to consider the following conformal embedding [135]:

SU(N)1 × SU(N)1 ∼ SU(N)2 × ZN . (203)

The action, Eq. (201), can be expressed in terms of the
fields of this conformal embedding [212]:

S = S[SU(N)2; g] +A[Zn]− g̃

∫
d2x

(
ψψ̄ +H.c.

)
+λ2

∫
d2xTrΦadj

(
σ2 + σ†2

)
, (204)

with g̃ = −Na0J⊥λ2/8π2 and λ2 = −a0J⊥λ2/N . In
Eq. (204), ψ, ψ̄ stand for the first parafermion currents
with conformal weights Δ, Δ̄ = (N−1)/N which generate
the ZN CFT and σ2 denotes the second spin field with
scaling dimension 2(N − 2)/N(N + 2) [216].
The effective field theory (204) contains two different

sectors, the SU(N) singlet sector described by the ZN

parafermions, and the magnetic one which depends on
the SU(N) degrees of freedom. The main difference be-
tween SU(2) and SU(N > 2) cases stems from the fact
that for N = 2 there is no σ2 spin field which couples the
two sectors of the theory [234]. In that case, model (204)
separates into two parts which can be expressed in terms
of four massive Majorana fermions. This describes the
non-denegerate gapped phases for both signs of J⊥ when
N = 2 [234]. The situation is much more involved in
the N > 2 case due to the coupling of the magnetic and
singlet sectors in Eq. (204).
The low-energy properties of model (204) can be

deduced by exploiting the integrability of the ZN

parafermionic model of Fateev [239, 262]:

SFateev = A[Zn]− g̃

∫
d2x

(
ψψ̄ +H.c.

)
. (205)

This model was already introduced in Sec. IIID in the
context of ZN parafermionic zero mode.

The low-energy properties of this integrable model de-
pend upon the parity of N . When N is even a spectral
gap is generated for the ZN modes for both positive and
negative coupling g̃. The analysis for the SU(N) modes
of Eq. (204) takes place in Ref. [212]: a spin-gapped phase
with a N/2-fold degenerate ground-state was predicted
for J⊥ > 0. When N = 4, this gives rise to a plaquette
phase with a two-fold degenerate ground-state which has
been identified numerically [364, 365].
On the other hand, when N is odd the low-energy

properties of (205) depend on the sign of the coupling g̃.
Interestingly, for J⊥ > 0 (i.e., g̃ < 0) the model (205)
displays an integrable massless RG flow from the ZN

ultraviolet fixed point to the infrared one governed by
the minimal model MN+1 CFT with central charge
c = 1 − 6/(N + 2)(N + 1) [239]. In the simplest case
of N = 3, the resulting massless degrees of freedom are
described by the c = 7/10 tricritical Ising model (TIM)
CFT. As discussed in Ref. [365], the low-energy limit of
model (204) for N = 3 can be written in terms of the
TIM×SU(3)2 CFTs as:

S = S[SU(3)2; g] + STIM + κ

∫
d2x εTIMTrΦadj, (206)

where STIM is the action of the TIM CFT and εTIM is
the thermal operator with scaling dimension 1/5 of the
TIM CFT [135]. The interacting part of model (206)
is a strongly relevant perturbation with scaling dimen-
sion 7/5 < 2, which opens a mass gap for the TIM de-
grees of freedom. By a simple mean-field decoupling of
the SU(3)2 and TIM sectors, a fully gapped trimerized
phase is revealed when the interchain spin-exchange is
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weak, J⊥ > 0 [365]. The latter phase has a three-fold de-
generate ground state and spontaneously breaks one-site
translation symmetry. Taking into account the conclu-
sion of the strong-coupling analysis, with the emergence
of the gapless c = 2 phase of the Sutherland model, a
quantum phase transition should occur for an interme-
diate J⊥. This transition has recently been numerically
identified and it seems to be a generic feature of the two-
leg SU(N) spin ladder (198) when N is odd [365]. These
results pave the way for its experimental observation in
the context of ultracold alkaline earth or ytterbium atoms
loaded into a double-well optical lattice.

E. Summary: non-Abelian bosonization

In the previous three sections, we have introduced non-
Abelian bosonization and applied it to a number of in-
teresting scenarios, both in condensed matter (Sec. III)
and cold atom systems (Sec. IV). We focussed on mod-
els with extended symmetries, including electrons that
carry both spin and orbital indices, as well as cold atoms
with multiple internal states (such as hyperfine levels). In
each case, we have applied the conformal embedding to
split the non-interacting part of the model into separate
WZNWmodels for each symmetry sector. We then intro-
duced interactions that preserve the symmetry structure,
allowing us to study each symmetry sector separately and
use appropriate tools (such as integrability, the renormal-
ization group, and semi-classical analyses) to understand
the low-energy phase diagram and correlation functions.
In our example applications, we have seen some truly

exotic physics: from competing CDW and SC orders (as
is well known in higher dimensions, such as the high-
Tc cuprates) to non-Abelian anyons – excitations of low-
dimensional systems that do not conform to the usual
fermion/boson classification of particles. There is the
tantalizing possibility that such exotic excitations may
arise in the Zn quantum phase transition that occurs
between the spin-gapped CDW and the BCS phase of
Sp(2n) cold atoms. SU(N) cold atoms and spin lad-
ders have also been revealed as rich sources of intriguing
physics, including phase transitions in the SU(N)2 uni-
versality class and low-energy theories described by the
well-studied minimal model conformal field theories.
Nevertheless, despite its wide-ranging applications and

versatility, non-Abelian bosonization can only get one so
far. Scenarios where one applies the RG are controlled
only when interactions are weak; semi-classical analyses
apply in some large N limit; away from these, it is neces-
sary to use other tools and techniques. Indeed, we have
already mentioned some of these in our discussions; nu-
merical approaches such as DMRG [75] play a large role
in our understanding of physics away from analytically
tractable limits. Studies using the TCSA have been cited
throughout the previous sections for providing support-
ing evidence to non-Abelian bosonization analyses, or in-
terpreting results away from analytically tractable limits.

Now we turn our attention away from non-Abelian
bosonization (although we will use it in some of our
discussions) to numerical methods for tackling low-
dimensional strongly correlated systems. In the next
four sections we will introduce and discuss truncated
space approaches for studying low-dimensional field the-
ories. These methods, and their numerical renormal-
ization group extensions, will then be used to study a
number of interesting applications, including some of the
theories that we have discussed above, such as perturbed
WZNW models and the tricritical Ising model.

V. BEYOND INTEGRABILITY I: TRUNCATED
SPACE APPROACH (TSA)

A. Introduction to the approach

The aim of this section is to present a comprehensive
methodology, the truncated space approach, that per-
mits the study of perturbations of integrable and con-
formal models in one spatial dimension. While such un-
perturbed models form a relatively small (i.e. a mea-
sure zero) subset of all one-dimensional theories, they are
remarkably well distributed throughout ‘theory’ space.
Thus if one is able to study their perturbed variants, one
will be able to understand the physics of much of this
space.
The TSA methodology was first developed by V. Yurov

and Al. Zamolodchikov in two papers, one treating per-
turbations of the scaling Yang-Lee model [71], and one
treating the critical Ising model perturbed by a mag-
netic field [72]. These initial two papers sparked a sus-
tained period of work on perturbed (both unitary and
non-unitary) conformal minimal models where the TSA
was used to elucidate a wide variety of the properties of
these models: see, for example, Refs. [278, 366–399]. Be-
yond this work on conformal minimal models, the TSA
has also been used to study variants of sine-Gordon mod-
els [400–416]. These papers all concern perturbed c = 1
compact free bosons with the notable exception of Ref.
[403] which considered a perturbation of the c = 3/2 su-
persymmetric generalization of sine-Gordon and is the
first paper to consider a model where the underlying un-
perturbed theory had c > 1. It also has been used exten-
sively to study perturbations of conformal theories with
boundaries [404, 417–429].
The vast majority of the early works using TSA studied

perturbations of theories with central charge no greater
than one. However, more recently the TSA has been
used to study more complicated cases, including multi-
boson theories [430, 431] as well as perturbed WZNW
theories [189, 432, 433]. In part the study of more com-
plicated theories has become possible due to the devel-
opment of renormalization group techniques, both nu-
merical and analytical, that alleviate the consequences
of the truncation in the TSA [383, 434–437]. In the past
few years the TSA has been used to study a number of
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non-traditional models and quantities, including Landau-
Ginsburg theories [438–442], the fractional quantum Hall
effect [278, 443–445], entanglement properties [446, 447],
quantum chromodynamics [189, 448], non-equilibrium
dynamics [410, 449–451], as well as the properties of non-
relativistic continuum field theories (such as the Lieb-
Liniger model) [450, 451]. Perhaps the most exciting di-
rection for the TSA in recent research is its extension to
higher dimensional theories [452, 453].

In all of the cases, the basic problem the TSA treats
is easy enough to state. The TSA enables the study of a
Hamiltonian of the following form:

H = Hknown + λVpert. (207)

Here Hknown is either an integrable or conformal theory,
and Vpert is some perturbing operator, which need not be
of a form that renders the full Hamiltonian H integrable
or exactly solvable in any fashion. Hknown is a “known”
theory in the sense that we have a complete understand-
ing of its spectrum and matrix elements in finite volume.

We will see that the size of the system is a control
parameter for the TSA, the varying of which allows us
to explore different regimes of the theory, from the deep
UV to far IR. In conformal theories, understanding the
spectrum in finite volume poses no difficulty [135], whilst
in an integrable model understanding the spectrum in
infinite volume typically allows one to understand the
spectrum in finite volume. However, unlike the confor-
mal case, in integrable theories there is some additional
work involved, inasmuch as we have to solve Bethe-type
quantization relations that are present for an integrable
system in finite volume.

For the purpose of the TSA, it is important that we
understand the spectrum in the finite volume (as opposed
to the infinite volume) as here the spectrum is discrete
(we will shortly see why this is important). We do note,
however, that there are conformal theories that possess a
continuous spectra even in finite volume, for example the-
ories involving non-compact bosons. There are ways to
treat perturbations of such conformal theories (amount-
ing to correctly handling the bosonic zero mode), but for
now we will restrict our attention to theories whose spec-
trum is discrete for finite volume. We will denote this
spectrum by {|Ei〉}∞i=1, and portray it schematically in
Fig. 1.

Having knowledge of the spectrum, the next ingredi-
ent that we require is an understanding of the matrix ele-
ments of the perturbing operator relative to unperturbed
basis. That is, we need to know

〈Ei|Vpert|Ej〉. (208)

If the theory is a conformal theory, such matrix elements
are readily computable. For example, the states |Ei〉 will
(at least) have a representation as a sum of products
of the Virasoro generators, L−n, acting on some highest

FIG. 1. (a) A schematic depiction of the spectrum of Hknown

in the infinite volume (left) and the finite volume (right). In
the infinite volume, there is a continuum of states, whilst
in the finite volume the spectrum is discrete (and possibly
with finite degeneracy). (b) A cartoon illustration of the TSA
procedure; a cutoff energy Ec is introduced and states in the
spectrum of Hknown above this energy are discarded.

weight state |Δ, Δ̄〉,32 i.e.

|Ei〉 =
∑
j

cj

Mj∏
kj=1

L−nkj

M̄j∏
k̄j=1

L−nk̄j
|Δ, Δ̄〉, (209)

with nkj
, nk̄j

> 0. As we know how the Virasoro gener-
ators L−nj

, L−nj̄
commute with the perturbation Vpert,

as well as how they commute with one another, we are
able to compute 〈Ei|Vpert|Ej〉 in principle. In practice,
we may need to compute these commutators numerically.
For continuum relativistic integrable models, such matrix
elements can be computed in infinite volume via the form
factor bootstrap, i.e. Ref. [454]. Under the bootstrap,
they are computable by applying analyticity constraints
based on the two-particle S-matrix, crossing symmetry,
and unitarity. For states in an integrable model with a
relatively small number of particles, the matrix elements
take on a tractable form. For matrix elements involving
states with many particles, the matrix elements can be
formidable and, while analytic expressions are available,
they are typically not easily evaluated. There however
exceptions – typically integrable theories with so-called
diagonal S-matrices have matrix elements that are far
more accessible. Like with the spectrum, having the
matrix elements in infinite volume gives one the abil-
ity to write down the matrix elements in finite volume,
although here the path from infinite to finite volume is
much more involved [370, 371, 434].

32 A brief discussion of the Virasoro algebra and its generators is
given in Appendix B; a detailed discussion can be found in, e.g.,
Ref. [135].
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Supposing that we have full knowledge of both the un-
perturbed spectrum and the matrix elements of the per-

turbing operator, we can represent the full Hamiltonian
in matrix form:

H =

⎡⎢⎢⎢⎣
E1 + λ〈E1|Vpert|E1〉 λ〈E1|Vpert|E2〉 λ〈E1|Vpert|E3〉 . . .

λ〈E2|Vpert|E1〉 E2 + λ〈E2|Vpert|E2〉 λ〈E2|Vpert|E3〉 . . .
λ〈E3|Vpert|E1〉 λ〈E3|Vpert|E2〉 E3 + λ〈E3|Vpert|E3〉 . . .

...
...

...
. . .

⎤⎥⎥⎥⎦ . (210)

As it stands H is an infinite dimensional matrix. So
what to do? The most crude thing we can imagine doing
is simple truncating the space of states in energy. All
states whose unperturbed energy exceeds a cutoff, Ec,

we toss away, as pictured in Fig. 1(b). This leaves us
with a finite number of states (say N) and a truncated
Hamiltonian matrix, HN that is finite:

HN =

⎡⎢⎢⎢⎢⎣
E1 + λ〈E1|Vpert|E1〉 λ〈E1|Vpert|E2〉 λ〈E1|Vpert|E3〉 . . . λ〈E1|Vpert|EN 〉

λ〈E2|Vpert|E1〉 E2 + λ〈E2|Vpert|E2〉 λ〈E2|Vpert|E3〉 . . . λ〈E2|Vpert|EN 〉
λ〈E3|Vpert|E1〉 λ〈E3|Vpert|E2〉 E3 + λ〈E3|Vpert|E3〉 . . . λ〈E3|Vpert|EN 〉

...
...

...
. . .

λ〈EN |Vpert|E1〉 λ〈EN |Vpert|E2〉 λ〈EN |Vpert|E3〉 . . . EN + λ〈EN |Vpert|EN 〉

⎤⎥⎥⎥⎥⎦ (211)

This Hamiltonian we can easily diagonalize (e.g., numer-
ically) and extract the spectrum.
In this crude truncation scheme, we simply ignore the

effects of the unperturbed high energy Hilbert space; this
works remarkably well for a surprisingly large number of
cases! We will now consider three of them: i) the con-
tinuum limit of the transverse field quantum Ising model
perturbed by a longitudinal field; ii) the tricritical Ising
model, a conformal minimal model, perturbed by its en-
ergy operator; and iii) a compact free boson perturbed
by the cosine of the boson, i.e. the sine-Gordon model.
The essential reason why the truncation may not strongly
affect the results is found in the relevancy (in the RG
sense) of the perturbing operator. A strongly relevant
perturbing operator will not strongly mix the low and
high energy Hilbert spaces of the unperturbed theory and
so the truncation goes unfelt in the low energy sector of
the full theory. This is not to say that the states in the
low-energy sector are not mixed strongly amongst them-
selves: indeed, they are. In this procedure we are not
doing something akin to perturbation theory!

B. The transverse field Ising model perturbed by a
longitudinal field

As the first presented example of the TSA, we will
consider the quantum Ising model perturbed by a lon-
gitudinal field. Our presentation is modeled after the
treatment of Ref. [455]. Ref. [455] represents the first
time that the TSA was used to study perturbations of a

FIG. 2. Phase diagram of the one-dimensional quantum Ising
model with h = 0. Order is only possible at T = 0, with g = 0
separating an ordered phase (J < 0 ferromagnet, J > 0 anti-
ferromagnet, shown as a solid orange bar) from a disordered
phase.

massive integrable model.
On a one dimensional lattice, this theory has a Hamil-

tonian given by

H =
∑
i

(
Jσz

i σ
z
i+1 + J(g + 1)σx

i + hσz
i

)
. (212)

For h = 0 the theory has the phase diagram pictured in
Fig. 2. For g < 0 the system is in its ordered phase, i.e.
at T = 0, σz has an expectation value. For g > 0, the
system is instead in its disordered phase, and 〈σz〉 = 0.
To apply the TSA to this model, we need to first take

its continuum limit. In this limit, the theory is equivalent

Page 36 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



37

to a theory of a Majorana fermion (see, for example, [135,
263]). The Hamiltonian then takes the form

H = ivF

∫ R

0

dx

(
ψ̄(x)∂xψ̄(x)− ψ(x)∂xψ(x)

+imψ̄(x)ψ(x) + hσz(x)

)
, (213)

where the various parameters of this continuum Hamil-
tonian can be expressed in terms of their lattice counter-
parts via

vF ∼ Ja; m ∼ gJ ; h ∼ ha−7/8. (214)

Here a is the lattice spacing, ψ and ψ̄ are left and right
moving Majorana Fermi fields, and R is the system size.
Herein we set vF = 1, but it is straightforward to re-
store it on dimensional grounds in any quantity. We will
largely follow the conventions of Ref. [455].
In order to apply the TSA, we need both the spectrum

of the model unperturbed by hσz and matrix elements
of the perturbing field, σz, with regards to this basis.
First we consider the spectrum. The spectrum consists
of two sectors, Ramond and Neveu-Schwarz. In the Ra-
mond sector, the Fermi fields obey periodic boundary
conditions, i.e.

ψ(x+R) = ψ(x), ψ̄(x+R) = ψ̄(x), (215)

and hence have mode expansions given by

ψ(x) = i
∑
n∈Z

(
ε(kn)− kn
Rε(kn)

) 1
2 (

eiknxakn − e−iknxa†kn

)
;

ψ̄(x) =
∑
n∈Z

(
ε(kn) + kn
Rε(kn)

) 1
2 (

eiknxakn + e−iknxa†kn

)
,

where kn = 2πn/R and ε(k) =
√
k2 +m2. The modes

a, a† satisfy the anti-commutation relations{
ak, a

†
k′
}
= δk,k′ . (216)

On the other hand, in the Neveu-Schwarz sector the
Fermi fields obey anti-periodic boundary conditions, i.e.

ψ(x+R) = −ψ(x), ψ̄(x+R) = −ψ̄(x), (217)

and consequently have mode expansions with half-integer
moding:

ψ(x) = i
∑

m∈Z+ 1
2

(
ε(qm)− qm
Rε(qm)

) 1
2 (

eiqmxaqm − e−iqmxa†qm
)
,

ψ̄(x) =
∑

m∈Z+ 1
2

(
ε(qm) + qm
Rε(qm)

) 1
2 (

e−iqmxa†qm + eiqmxaqm
)
.

The half-integer modes aq, a
†
q satisfy the same anti-

commutation relations as their integer moded counter-
parts, Eq. (216).

States spanning the complete Hilbert space can be con-
structed from the modes. However, the Hilbert space of
the model differs depending on whether the Ising chain
is in its ordered (m < 0) or disordered (m > 0) phase. In
the ordered phase, there are two near degenerate vacua
(differing up to e−mR corrections), with one lying in the
Ramond (R) sector, |R〉, and one in the Neveu-Schwarz
(NS) sector, |NS〉. In the ordered phase, the Hilbert
space is spanned by states with an even number of modes
built above these two vacua:

a†k1
a†k2

· · · a†k2N
|R〉, kni =

2πni

R
, ni ∈ Z,

a†q1a
†
q2 · · · a†q2M |NS〉, qmi

=
2πmi

R
, mi ∈ Z +

1

2
.

This is a simple realization of the physical requirement
that there must be an even number of domain walls: the
fermions represent domain walls between ordered seg-
ments of the chain, and in the presence of periodic bound-
ary conditions there must be an even number of domain
walls (and hence an even number of fermions). The en-
ergy of these states is given by

ER(k1, · · · , k2N ) =

2N∑
i=1

ε(ki) +
Rm2

8π
log

(
a2m2

)
,

ENS(q1, · · · , q2M ) =

2M∑
i=1

ε(qi) +
Rm2

8π
log

(
a2m2

)
,

respectively, where the constant term is Onsager’s singu-
larity [456].
In the disordered phase, there is a unique vacuum state

that is found in the NS sector, |NS〉. As with the or-
dered phase, excited states in the NS sector are built
from even numbers of excitations above this vacua. On
the other hand, in the R sector, states are now built from
odd numbers of excitations. As a result, we have the
following states in the Hilbert space for the disordered
phase:

a†k1
a†k2

· · · a†k2N+1
|R〉, kni

=
2πni

R
, ni ∈ Z;

a†q1a
†
q2 · · · a†q2M |NS〉, qmi =

2πmi

R
, mi ∈ Z +

1

2
.

The construction of this state space reflects, in part, the
conditions that perturbing by σz places on the theory.
The operator σz(x+R) = σz(x) is periodic and connects
the two sectors, R and NS, through 〈NS|σz(0)|R〉 �= 0.
However, because 〈NS|σz(0)|NS〉 = 〈R|σz(0)|R〉 = 0,
the half-integer modes of theNS sector must only appear
in even numbers. In the disordered phase, the R sector
is inequivalent to the NS sector [263], and so it must
involve odd numbers of (integer-moded) fermions. Such
modes can exist in the disordered phase as the fermions
do not correspond to domain walls (as they do in the
ordered phase).
With the spectrum in hand, we now consider the ma-

trix elements of the perturbing operators on these states.
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The (unperturbed) quantum Ising model is good in this
way, as it is one of the few theories where all the matrix
elements can be written down explicitly in a rather sim-
ple form. We will not discuss how these matrix elements
are (analytically) arrived at in detail but merely state

them. The reader can however find derivations in an ap-
pendix of Ref. [455] as well as via a lattice formulation
of the problem in Ref. [457].
The matrix elements take the general form (regardless

of phase, and remembering that σz connects only states
in different NS and R sectors)

〈NS|aql · · · aq1 |σz(0)|a†k1
· · · a†kn

|R〉 = S(R)

l∏
j=1

g̃(θqj )×
n∏

i=1

g(θki
)× Fl,n(θq1 , · · · , θql |θk1

, · · · , θkn
), (218)

where the variable θ

θqi = sinh−1

(
qi
|m|

)
, θkj

= sinh−1

(
kj
|m|

)
, (219)

is a convenient parameterization of the momenta and g(θ) = exp[κ(θ)]/
√|m|R cosh(θ) and g̃(θ) =

exp[−κ(θ)]/
√|m|R cosh(θ), are normalization factors related to working in finite volume, R. The factor S(R), first

derived by Subir Sachdev in Ref. [458], is close to 1 for |m|R much greater than 1; we will write the expression
nonetheless to emphasize the remarkable fact that the matrix elements of σz are known exactly for any volume R:

S(R) = exp

(
(mR)2

2

∫ ∞

−∞

dθ1
2π

dθ2
2π

sinh θ1 sinh θ2

sinh
(
mR cosh θ1

)
sinh

(
mR cosh θ2

) log

∣∣∣∣coth(
θ1 − θ2

2

)∣∣∣∣ ). (220)

The factor κ(θ) is given by

κ(θ) =

∫ ∞

−∞

dθ′

2π

1

cosh(θ − θ′)
log

[
1− e−|m|R cosh θ′

1 + e−|m|R cosh θ′

]
. (221)

It now remains to specify the function Fl,n that carries the non-trivial dependence on the modes’ momenta:

Fl,n(θq1 , · · · , θql |θk1
, · · · , θkn

) = i
l+n
2 σ̄

n∏
i<j

tanh

(
θki − θkj

2

) l∏
r<s

tanh

(
θqr − θqs

2

) n∏
i

l∏
r

coth

(
θqr − θki

2

)
. (222)

Here σ̄ = s |m|1/8, where s can be given in terms
of A, Glaisher’s constant,33 by s = 21/12e−1/8A3/2 =
1.35783834 . . ..

C. The Expected Spectrum: From Mesons to E8

Before applying the TSA to the quantum Ising Hamil-
tonian, we first review the spectrum of the model. For
the purpose of this discussion, we will restrict ourselves to
the ordered phase of the model, i.e., m ≥ 0. We first con-
sider the unperturbed h = 0 limit; here the fundamental
excitations of the theory are free fermions. In the spin-
chain description, these free fermions are domain walls
in an ordered background, see Fig. 3. As we work with
periodic boundary conditions, the domain walls necessar-
ily come in pairs, and in the region between the domain

33 A itself is related to the Riemann zeta function through ζ′(1) =
1/12− ln(A).

walls the spins are overturned. When h = 0, the size D
of this overturned region can be arbitrary.
However, let us now consider adding h �= 0: the re-

gion of overturned spins now costs an energy state is pro-
portional to hD. As a result, the domain walls become
confined (in the two-particle problem, two domain wall
fermions experience an interaction potential that grows
linearly in their separation). The energies of such con-
fined states were first analyzed by McCoy and Wu in
Ref. [459]. The behaviour of the model in the (h, T ) was
first discussed in the context of a TSA computation in
Ref. [366]. In the continuum limit (in which we work),
the energies of the confined states can be computed us-
ing an elegant Bethe-Salpeter analysis, as described in
Ref. [455].34 In this later analysis, the assumed wave-

34 For an extension of this Bethe-Salpeter analysis to other mod-
els exhibiting confinement, such as the three state Potts model,
see Refs. [460, 461]. The predictions in these papers were subse-
quently verified in Ref. [387] using the TSA.
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FIG. 3. (a) A sketch of two domain walls (dashed lines) in an
ordered background of the quantum Ising chain. We see that
the spins between the domain walls are overturned relative to
the system’s overall order. (b) In the presence of a longitu-
dinal magnetic field, the domain walls are linearly confined
(energy cost ΔE grows with domain size D).

function of the confined states has only a two-fermion
contribution; taking a page from QCD, these states can
be thought of as ‘mesons’ and the underlying fermions
‘quarks’. The energies, Ei, of the mesons (i = 1, 2, 3, . . .)
are given in terms of the zeroes, zi, of the Airy function,
Ai(y):

Ei = 2m+mt2
(
− zi + δ2t

2 + δ4t
4 +O(t6)

)
, (223)

where

t =

(
2σ̄2h

m2

)1/3

, δ2 = −μz2i
5

,

δ4 =

(
84μ2

350
− 2μ2

25
− ν

7

)
z3i −

(
2μ2

5
− 4ν

7
+

ρ

2

)
,

μ =
1

4
; ν =

1

8
; ρ =

1

2
.

These energies are computed in the limit that h � m.
This nominally infinite (i = 1, 2, 3, . . .) sequence of en-
ergies of the ‘bound’ states must, for m �= 0, be un-
derstood to terminant. Physically, the reason for this is
simple: when a bound state with energy En crosses the
two-particle threshold (i.e., En > 2E1), the bound state
has a decay channel (into two lower energy bound states)
and hence is unstable and not a true (e.g., long-lived) ex-
citation of the system.
From Eq. (223), it is clear to see that as m → 0 some-

thing special occurs. At m = 0 and h �= 0, the continuum
quantum Ising model becomes integrable; it has been
shown to have a sequence of non-trivial conserved quan-
tities (beyond those of energy and momentum). Through
a remarkable application of the S-matrix bootstrap [462],
knowledge of the Lorentz spin of these conserved charges
was exploited to deduce the full spectrum of the model
with m = 0. The spectrum consists of eight excitations

whose mass ratios correspond to the ratios of the com-
ponents Si of the Perron-Frobenius vector of the Cartan
matrix of the E8 Lie algebra.35 The excitation energies
at zero momentum are given by [462]

m1 = Ch8/15;

m2 =
1

2

(
1 +

√
5
)
m1 = 1.61803 . . .m1;

m3 = 2 cos

(
π

30

)
m1 = 1.98904 . . .m1;

m4 = 2 cos

(
7π

30

)
m2 = 2.40486 . . .m1;

m5 = 2 cos

(
2π

15

)
m2 = 2.95629 . . .m1;

m6 = 2 cos

(
π

30

)
m2 = 3.21834 . . .m1;

m7 = 4 cos

(
π

5

)
cos

(
7π

30

)
m2 = 3.89115 . . .m1;

m8 = 4 cos

(
π

5

)
cos

(
2π

15

)
m2 = 4.78338 . . .m1.

The first energy, m1, gives the fundamental excitation
scale for the system. By dimensional analysis, it is a
function of h8/15 and the dimensionless proportionality
constant, C, can be determined exactly [463]:

C =
4 sin(π5 )Γ(

1
5 )

Γ( 23 )Γ(
8
15 )

(
4π2Γ( 34 )Γ

2( 1316 )

Γ( 14 )Γ
2( 3

16 )

) 4
5

= 4.40490 . . . . (224)

In this integrable limit, there exist stable excitations
with energies that exceed the two-particle threshold, i.e.
m4,5,6,7,8 > 2m1. The stability of these excitations is
guaranteed by the existence of the non-trivial conserved
quantities.
These excitations have been observed in the quasi-1D

Ising spin chain, CoNb2O6 [464, 465]. In Ref. [464], the
first five stable mesons were observed by measuring the
spin-spin response (dynamical structure factor) through
inelastic neutron scattering. There, by adjusting an ap-
plied transverse magnetic field, the spin chain was able
to be tuned towards its critical point (i.e., m = 0) where
the E8 spectrum emerges. Due to both the smallness of
certain matrix elements in the E8 Ising theory, as well
as the finite value of m and the integrability breaking
terms that will necessarily be present in a real mate-
rial, they were able to clearly observe only the first two
of the eight E8 excitations. Nevertheless, as one tunes
towards the critical point, the emergence of the golden
ratio m2/m1 = (1 +

√
5)/2 is clearly observed. In later

terahertz spectroscopic measurements [465] carried out

35 To then say that the E8 symmetry is not explicitly manifest in
the quantum Ising chain is an understatement.
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FIG. 4. Raw TSA data for the lowest lying energy levels of
the Hamiltonian in Eq. (213) for h = (2m)15/8, m = 1, and
a cutoff of N = REc/(2π) = 30 plotted against the dimen-

sionless system size, Rh8/15. The presented data focuses on
the zero-momentum (ground state) sector. One sees that the
energy levels all roughly have a constant negative slope. The
dashed black line that has a positive slope corresponds to a
false vacuum state (equal to one of the linear combinations,
|NS〉+ sign(h)|R〉 – see text).

at zero transverse field, the increased energy resolution
of the technique allowed the observation of all nine stable
mesons below the two-particle threshold.

D. TSA Results

We now move to discussing the TSA results for this
model. We will walk the reader through different aspects
of how the TSA data typically presents itself; we start
with the behavior of the ground state energy.

1. TSA Raw Data and Behavior of Ground State

In Fig. 4 we plot the lowest lying set of energies coming
from the TSA (the parameters chosen for the computa-
tion are given in the figure caption). We see that for
sufficiently large system size R all of these energies de-
crease linearly with increasing R (for smaller values of
R, the energies evolve into their unperturbed (h = 0)
forms). This linear decrease reflects the negative energy
density of the ground state, i.e.

Egs = −f(m,h)R, (225)

where f(m,h) can be written as [455]:

f(m,h) =
m2

8π
log(m2a2) +m2Φ(mh−8/15), (226)

where Φ(η) is a universal scaling function. In the pres-
ence of a magnetic field, h � m15/8, the dominant contri-
bution to the ground state comes from a particular linear
combination of the near degenerate R and NS vacua,

|Egs〉 ∼ |NS〉 − sign(h)|R〉+ . . . , (227)

where the ellipses denote states with finite fermion num-
ber. The ground state energy Egs then reduces to

Egs ∼ −2σ̄m1/8hR. (228)

That is, the ground state represents spins aligned in a
direction anti-parallel to the applied magnetic field.
However, what of the state with its spins parallel to

the applied field? In the infinite volume (R = ∞), this
state would have infinite energy and hence would not
exist in the theory. In the finite volume (where we work
when using the TSA), however, this state indeed exists.
It has finite positive energy, 2σ̄m1/8hR ≡ −Egs (at least

for h � m15/8) and in terms of the unperturbed basis is
given roughly by

|Efalse vac.〉 ∼ |NS〉+ sign(h)|R〉. (229)

The presence of this false vacuum state in the TSA data,
Fig. 4, can be inferred by regions where the energy of a
particular state increases with system size R (say the sec-
ond excited state between R = 1 and R = 2). As we are
typically interested in low-energy excitations about the
true vacuum, we have to be sure to note mistake a state
that is the false vacuum (or an excitation about the false
vacuum) for one that is of direct interest. This is always
an issue in models where the unperturbed Hamiltonian
has a discrete spontaneous (near-) symmetry breaking
where the perturbation explicitly breaks this symmetry.

2. Behavior of Excited States

We now consider the behavior of the excited states. In
Fig. 5 we plot the excited state energies relative to the
ground state energy. We now see clearly that there are
regions in the finite volume R where the lowest excited
states are unchanging. This region in R is the region in
which we want to work within the TSA. We furthermore
see that the energies can be determined with relatively
high precision (with small errors in the fourth significant
digit). We note that the data presented here is taken
outside the region of validity of the Bethe-Salpeter anal-
ysis (223) (as h = (2m)15/8). In the final subsection we
will, however, make a more detailed comparison between
the predicted energies from Bethe-Salpeter and those of
the TSA analysis.
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FIG. 5. The same data as presented in Fig. 4 with the ground
state energy subtracted.

One point to stress here is that different excitations
have different “stability regions”: the first bound state,
E1,bd, becomes stable after the dimensionless system size

Rh8/15 exceeds 2.4, while the third meson state E3,bd sta-

bilizes when Rh8/15 > 4.5. For the particular choice of
m and h presented, only the first three mesons are sta-
ble. States higher in energy coming from the TSA rep-
resent multi-meson states (marked as two-particle states
in Fig. 5). We will discuss the behavior of two-particle
states in what is to come – however, roughly speaking,
their energy as a function of R should behave as

E2−particle state = Ei,bd + Ej,bd +
α

R2
, (230)

that is, its energy should be the sum of the energies of
two different bound states plus a term going as 1/R2 that
indicates the two mesons may have finite (and opposite)
momentum. This will be true for sufficiently large sys-
tem sizes R; at smaller values of R we can see regions in
Fig. 5 where the energy is constant. These regions rep-
resent finite volume resonances in the model that corre-
spond to metastable mesons. The existence of such states
in certain regions of R again requires the TSA data to
be treated with interpretational care (see, for example,
Ref. [415]).

3. Cutoff Dependence of Excited State Energies

One of the key aspects in analyzing TSA data is to
understand the effects of the cutoff. Typically we work
at fixed dimensionless cutoff N = EcR/(2π). But this
means that as R increases the cutoff Ec is decreasing.
Thus, at large R we expect to see deviations in the data
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E
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/h

8/
15
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E
3,
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/h

8/
15

FIG. 6. Energies for the first, second, and third (upper to

lower panels) vs. the dimensionless system size Rh8/15 for
four different values of the cutoff L ≡ N = EcR/(2π).

from results based on the absence of a cutoff. We make
a study of such deviations in Fig. 6 for the first three
mesons excitation energies.
In Fig. 6 we plot the meson energies for four different

values of the dimensionless cutoff. In each case, the cutoff
effects are manifest at large R through upward deviations
in the energies. Cutoff effects are more pronounced for
states higher in energy; for the first meson, the lowest
cutoff, N = 18, leads to a 0.17% error in the meson
energy at Rh8/15 = 8. However the third meson at this
same value of R has an error of 0.29%. More crucially,
one can see that at any given cutoff the first meson has
a wider region where its energy is (almost) independent
of R than the third meson. Even at the highest value of
the cutoff N = 30 employed in the TSA, its energy does
not see a true plateau in R.
In general, this demonstrates a general need to account

for the effects of cutoffs in TSA data. Reducing these
effects forms the major thrust of Sec. VI.

4. Evolution of Spectrum with m

The final piece of analysis that we will perform for the
quantum Ising model in the presence of a longitudinal
magnetic field is the evolution of the spectrum as one in-
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FIG. 7. The bound state energies as a function of the original
fermion mass (scaled to be dimensionless). Energies evolve
from their value in the integrable E8 limit (at m = 0) to their
values as predicted by the Bethe-Salpeter analysis, Eq. (223),
as given by the dashed lines.

creases m, the mass of the unperturbed fermions, from 0.
As we have explained, at m = 0 the full Hamiltonian is
integrable and has a spectrum consisting of eight stable
excitations whose energies are related to the E8 Lie al-
gebra. At finite m, integrability is broken and we expect
the E8 spectrum to evolve into one composed of bound
domain walls, the mesons. We can observe this evolution
in Fig. 7.
Figure 7 presents the six lowest lying energies as a

function of the dimensionless scaling parameter, η =
m/h8/15. At η = 4, we see that all six excitations can be
treated as meson bound states: we have plotted the ener-
gies of mesons as predicted in Eq. (223) and we see that
we obtain good agreement.36 We know that these states
are indeed stable mesons because they lie below the two-
particle threshold (dashed-dotted green line in Fig. 7).
As η decreases the two-particle threshold decreases more
rapidly than the meson energies with the result that cer-
tain mesons cease to meet the stability criterion of being
below threshold37. Once above, they become two-particle
states; as we have indicated above, this evolution is com-
plicated by working at finite R. A meson state that finds
itself above the two-particle threshold only becomes a
two-particle state at sufficiently large R, and there may
be regions in R where the meson is metastable.

By the time we reach η small but still finite, only
three of the mesons remain below the two-particle thresh-

36 This is to be expected: large η corresponds to small h, where
the Bethe-Salpeter analysis of Ref. [455] is expected to be most
robust.

37 For a comprehensive analysis of the decay of mesons that find
themselves above the two-particle threshold, see Ref. [397].

old. These three mesons are the first three excitations of
the E8 spectrum. Above the two-particle threshold, the
first two mesons have evolved into two-particle (e.g., two-
meson) excitations, whilst the third excitation above the
two-particle threshold corresponds to the four excitation,
m4 of the E8 spectrum.
One might be wondering if it is possible to see all eight

of the excitations of the E8 spectrum using the TSA. In-
deed, one can, however the massive basis that we have
employed here is suboptimal for doing so as the expres-
sion for the matrix elements of the spin operator (218)
requires one to work at finite m (that is, with finite
integrability breaking). It is possible to instead work
with a massless basis from the start, as was done in
Ref. [72, 366]. In the massless limit, cutoff effects are
remarkably small, and using a basis of just 39 states (a
cutoff of N = 10), estimates good to a few percent of the
E8 mass spectrum for the first five excitations were ob-
tained. With a massless basis, using the cutoffs that the
data in this section were computed under (up toN = 30),
all eight excitations are readily found. The massless ba-
sis is, however, less intuitive and closed form expressions
for general matrix elements are not available, unlike the
massive case. Nevertheless, in the next two examples of
applying the TSA, we will focus on perturbations about
a massless conformal field theory.

E. Tricritical Ising perturbed by the energy
operator

We now consider applying the TSA to a conformal field
theory perturbed by a relevant operator. This class of
problems form the widest range of problems studied using
the TSA.38 We will focus on a particular subclass of such
theories here: perturbed conformal minimal models (see,
e.g., Ref. [24, 135] for further information about minimal
models). Specifically, we will consider a moderately non-
trivial example: the tricritical Ising model perturbed by
its leading energy operator ε:

H = Htricritical Ising + g2

∫ R

0

dxε(x). (231)

All of the TSA results presented in this section are
computed using the TruSpace code [466], developed in
part by one of the authors. TruSpace is able to study
generic relevant perturbations of generic conformal min-
imal models. Making this code publicly available recalls
the practice of G. Mussardo and M. Lassig, two of the
first scientists to employ the TSA following its introduc-
tion by V. Yurov and Al. Zamolodchikov, making their
code [467] available to the community.

38 Indeed, it is often referred to as truncated conformal space ap-
proach (TCSA) in this setting.
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phase 
transition

2nd order

FIG. 8. The phase diagram in the g2 − g4 plane for the
Landau-Ginzburg representation of the tricritical Ising model
including the vacuum structure of the theory in the different
quadrants. Crossing the positive g4 axis (bold solid line) leads
to a second order phase transition (in the Ising universality
class) between an ordered and disordered phase. Crossing
the negative g4 axis (dashed line) leads to a first order phase
transition. The model has a hidden E7 symmetry along the
line g4 = 0. The tricritical point of the theory is found at
g2 = g4 = 0. This figure is adapted from Ref. [379].

The tricritical Ising model and its perturbations were
one of the earliest targets of the TSA [399], since its in-
troduction by Yurov and Zamolodchikov. There have
been extensive follow-on studies where the TSA was
used to elucidate various aspects of the tricritical Ising
model [379, 390, 398, 399, 468]. Furthermore, it is
a good example for describing the capabilities of the
TSA because some of its perturbations lead to inte-
grable models whose properties have also been well stud-
ied [381, 385, 398, 468–476].

1. Overview of the tricritical Ising model

The tricritical Ising model has a number of realiza-
tions. It can be written as a two-dimensional classical
statistical mechanics model of an (classical) Ising model
with vacancies. Here the Hamiltonian is

H = −
∑
〈ij〉

(K + σiσj)titj − μ
∑
i

ti; (232)

where σi = ±1 are the standard Ising variables at site i
of a two-dimensional square lattice and ti = 0, 1 indi-
cates whether the site is vacant (ti = 0) or not (ti = 1).
The energy of a pair of nearest-neighbor aligned spins
is K + 1 while those that are anti-aligned have energy
K − 1. μ is a chemical potential which determines the
number of vacancies in the system. As a function of the
three parameters (β,K, μ) this model is known to have a

tricritical point where a line of second order phase tran-
sitions terminates [477].
Another useful representation of the tricritical Ising

model is the Φ6 Landau-Ginzburg (LG) theory with an
action of the form [478]

S =

∫
d2x

(
1

8π
∂μφ∂μφ+ g2φ

2 + g4φ
4 + g6φ

6

)
. (233)

This representation is useful inasmuch as one can read-
ily understand the vacuum structure of the theory and
hence the possible excitations, including those that are
kink-like. At the tricritical point, g2 = g4 = 0. In our
application of the TSA to this model, we are going to be
interested in turning on a finite g2, in part because this
perturbation is integrable – hence we will present analyt-
ical results to which we will compare the TSA analysis.
However, in Fig. 8 we present all different the phases in
the g2− g4 plane and their associated vacuum structures
in the LG framework.
Finally, there is also a representation as a quan-

tum spin chain, in terms of the spin-1 Blume-Capel
model [479–482]. The spin chain has the Hamiltonian

H = ξ
L∑

i=1

(
α(Sx

i )
2 + βSz

i + γ(Sz
i )

2 − Sx
i S

x
i+1

)
, (234)

where Sz
i and Sx

i are spin-one operators acting on site i
of an L site lattice:

Sz
i =

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠ ;Sx
i =

1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠ . (235)

The spin chain can be tuned to its critical point by set-
ting [480, 482, 483]

α = 0.910207(4); β = 0.415685(6), ξ−1 = 0.56557(50).
(236)

For this choice of normalization of the Hamiltonian, the
level spacing in a given Verma model is ‘conformal-like’,
given by 2π/L.
This model has a Z2 symmetry with an associated

charge, Q:

Q =
∑
i

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠
i

. (237)

Under such a Z2 transformation Sx
i is an odd operator,

i.e. eiπQSx
i e
−iπQ = −Sx

i . The spectrum of the model
correspondingly has an even and an odd sector. The ac-
tion of the Z2 symmetry in the classical 2D lattice model
is to take σi → −σi, while in the LG representation it is
φ → −φ.

2. Conformal field theory description of the tricritical Ising
model

The CFT that corresponds to the tricritical Ising
model is the second in the series of unitary conformal
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CFT scaling LG action
operator dimension, Δ + Δ̄ representation under Q

I 0 I even
ε 1/5 φ2 even
ε′′ 3 φ6 even
t 6/5 φ4 even
σ 3/40 φ odd
σ′ 7/8 φ3 odd

TABLE I. The six scaling operators of the tricritical Ising
theory together with their scaling dimensions, their Landau-
Ginzburg (LG) representation, and their action under Q, the
Z2 symmetry transformation. I is the identity operator, ε
is the leading energy operator, ε′′ is the sub-leading energy
operator, t is the vacancy density, σ is the spin operator (pro-
portional to Sx on the lattice), and finally σ′ is the sub-leading
spin operator.

minimal models (it is the first in the sequence of unitary
minimal models with N = 1 supersymmetry). It has cen-
tral charge c = 7/10 and has six scaling operators. Four
of the operators are even under Q while the remaining
two are odd. The four even operators include the identity
operator, I, and three “energy-like” operators, ε, t, ε′′.
In the classical statistical mechanics picture, these three
operators correspond to the three different terms in the
Hamiltonian (232); in the LG picture ε = φ2, t = φ4,
and ε′′ = φ6. Alternatively, in the quantum spin chain
representation, we have direct expressions for ε and t in
terms of the spin variables [482]

ε =
L∑

i=1

(
sin(θ)(Sx

i )
2 + cos(θ)Sz

i

)
;

t =

L∑
i=1

(
− cos(θ)(Sx

i )
2 − sin(θ)Sz

i

)
, (238)

with θ = tan−1(2.224). The two odd operators, σ and σ′,
are related to the σi degrees of freedom in the classical
lattice picture while in the LG formulation they are given
by σ = φ and σ′ = φ3. The scaling dimensions of these
operators, their action under Q, and their representation
in the LG formalism are summarized in Table VE2.

Knowledge of the scaling operators is key to being able
to writing down the unperturbed spectrum of the theory,
one of the two requirements for applying the TSA to
a model. For every scaling operator there is a highest
weight state |Δ, Δ̄〉 where the total scaling dimension of
the operator is given by Δ+Δ̄. The highest weight states
are formed (on the plane) by the action of the operator
field at z = 0 on the vacuum39

|Δi, Δ̄i〉 ≡ φplane

Δi,Δ̄i
(0)|0〉. (239)

39 This can also be pictured as a state at time t = −∞ by applying
the conformal transformation that maps the plane to a cylinder.

The full Hilbert space is then spanned by the list of states
formed by the Virasoro generators acting on the highest
weight states:

M∏
j=1

L−nj

M̄∏
j̄=1

L̄−nj̄
|Δi, Δ̄i〉, (240)

where i = 1, . . . , 6 label the six scaling operators, and
nj , nj̄ > 0. The energy and momentum of such a state is
given by

E =
2π

R

(
c+Δi + Δ̄i +

M∑
j=1

nj +
M̄∑
j̄=1

nj̄

)
, (241)

P =

M∑
j=1

nj −
M̄∑
j̄=1

nj̄ , (242)

where here the central charge is c = 7/10. Due to the
translational invariance of the Hamiltonians in which we
are interested, we can perform the TSA computations in
subsectors with fixed values of the momentum P .
One technical, but important and unfortunate, point is

that not all states of the form (240) are linearly indepen-
dent. One has to remove so-called “null states” from this
list. This is most easily done numerically through com-
puting the Gram matrix (the matrix of the overlaps of
such states), diagonalizing it, and dropping linear combi-
nations of such states which have zero eigenvalues. This
leaves one with a set of states formed from linear combi-
nations of states of the form (240) that are orthonormal
and form a complete basis. This procedure is numeri-
cally implemented in the TruSpace code [466]. We do
note however that Ref. [484] has suggested a means to
generate a complete basis analytically.
The next requirement for applying the TSA to per-

turbations of the tricritical Ising model is the ability to
compute matrix elements of the perturbing field. Thus
we are forced to compute matrix elements of the perturb-
ing field between two states |1〉 and |2〉 of the form found
in Eq. (240):∫ R

0

dx〈1|Φpert(x)|2〉 = δP1,P2R〈1|Φpert(0)|2〉. (243)

The integral over space enforces that the momenta,
P1, P2, of the two states be equal in order for the ma-
trix element to be non-zero. To compute this matrix el-
ement, two ingredients are needed: (i) the commutation
relations of the Virasoro modes,

[Ln, Lm] = (n−m)Ln+m + n(n2 − 1)
c

12
δn+m,0;

[L̄n, L̄m] = (n−m)L̄n+m + n(n2 − 1)
c

12
δn+m,0;

[L̄n, Lm] = 0,

as well as (ii) the commutation relationship of the Vira-
soro modes with the perturbing field itself:

[Ln − L0,Φpert(0)] = nΔΦpert
Φpert,
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[L̄n − L̄0,Φpert(0)] = nΔΦpert
Φpert,

We see that this latter commutation relationship with
Φpert is completely determined by the field’s scaling di-
mension, ΔΦpert .

With these two ingredients in hand, all the matrix el-
ements can be reduced to those involving two highest

weight states with the perturbing field. These matrix el-
ements are no more than the structure constants of the
theory associated with the three point functions, i.e.

〈Δ1, Δ̄1|Φpert(0)|Δ2, Δ̄2〉 ≡
(
2π

R

)ΔΦpert+Δ̄Φpert

CΦ1ΦpertΦ2 ,

(244)
where the associated three point function on the plane is
given by

〈Φ1(x)ΦΔpert(y)Φ2(z)〉 =
CΦ1ΦpertΦ2

|x− y|2Δ1+2Δpert−2Δ2 |x− z|2Δ1−2Δpert+2Δ2 |y − z|−2Δ1+2Δpert+2Δ2
, (245)

where here we have assumed that Δ = Δ̄ in all cases.
For conformal minimal models the structure constants
are in general available [485]. In Table II we explicitly
list the structure constants for the perturbation that we
are interested in, the leading energy operator ε.

�
�
�

Φ1

Φ2 I ε ε′′ t σ σ′

I 0 1 0 0 0 0
ε 1 0 0 c 0 0
ε′′ 0 0 0 3/7 0 0
t 0 c 3/7 0 0 0
σ 0 0 0 0 3c/2 1/2
σ′ 0 0 0 0 1/2 0

TABLE II. The structure constants CΦ1εΦ2 involving the
leading energy operator ε. Here the constant c is given by

c = 2
3

√
Γ(4/5)Γ3(2/5)

Γ(1/5)Γ3(3/5)
.

3. The E7 spectrum of Htricritical Ising + g2
∫ R

0
dxε(x)

Before analyzing the numerical data coming from the
TSA, we first discuss the available analytic results for
this model. As this model is integrable [470, 486, 487],
these are considerable. As illustrated in Fig. 8, finite g2
drives the model into a massive phase, which may possess
either order 〈0|σ|0〉 �= 0 (g2 < 0) or disorder 〈0|σ|0〉 = 0
(g2 > 0). Remarkably, in both cases the massive spec-
trum is related to the E7 Lie algebra, with the ratio
of the masses in the spectrum being equal to the ratios
of the components of the E7 Perron-Frobenius eigenvec-
tor associated with the E7 Cartan matrix (in much the
same way as the spectrum of the critical quantum Ising
model perturbed by the spin operator is related to the
E8 algebra). The spectrum consists of 7 particles with

masses [470, 487]

m1 = Cg
5/9
2 ≡ 2Γ( 29 )

Γ( 23 )Γ(
5
9 )

(
4π2Γ( 25 )Γ

3( 45 )

Γ3( 13 )Γ(
3
5 )

)5/18

g
5/9
2

= 3.74537 . . . g
5/9
2 ; (246)

m2 = 2 cos

(
5π

18

)
m1 = 1.28557 . . .m1,

m3 = 2 cos

(
π

9

)
m1 = 1.87938 . . .m1,

m4 = 2 cos

(
π

18

)
m1 = 1.96961 . . .m1,

m5 = 4 cos

(
π

18

)
cos

(
5π

18

)
m1 = 2.53208 . . .m1,

m6 = 4 cos

(
2π

9

)
cos

(
π

9

)
m1 = 2.87938 . . .m1,

m7 = 4 cos

(
π

18

)
cos

(
π

9

)
m1 = 3.70166 . . .m1.

Here, in Eq. (246), we have given the relation of the fun-
damental mass scale, m1, in terms of the strength of the
perturbation g2 [463]. These excitations have definite
parity under Q: m2,m4,m5 and m7 are even excitations,
while m1,m3, and m6 are odd. The masses are the same
for both signs of the coupling g2 because, as in the Ising
model, there is a Kramers-Wannier duality that maps the
ordered phase onto the disordered [379, 398, 399, 468],
akin to that of the standard Ising model [263]. While the
masses are the same, the nature of the excitations are
different. In the ordered phase some of the excitations
(the odd ones) are kinks, i.e. they interpolate between
the two available vacua. We will, for the sake of conve-
nience, only present TSA data for the disordered sector.

Beyond the masses, the scattering matrices of the the-
ory are known. As the theory remains integrable in the
presence of the perturbing operator ε, all scattering in
the theory is encoded in the two-body S-matrices. These

can be expressed most compactly as follows. If A†i (θ) cre-
ates a particle with mass mi, energy E and momentum
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State, |i〉 FΘT
i = 〈0|ΘT (0)|i〉/m2

1

|0〉 1.18388. . .

A†
2(θ)|0〉 0.9604936853. . .

A†
4(θ)|0〉 0.4500141924. . .

TABLE III. The exact matrix elements of the trace of the
stress energy tensor involving the vacuum and the first two
even one-particle states.

p described by

p = mi sinh(θ), E = mi cosh(θ), (247)

the scattering matrices are defined by the generalized
commutation relations,

A†i (θi)A
†
j(θj) = Sij(θi − θj)A

†
j(θj)A

†
i (θi). (248)

Here the rapidity, θ, parameterization of the energy-
momentum of a particle is convenient as it leads to an
S-matrix that depends on the difference of the particles’
rapidities (as dictated by Lorentz invariance). We have
written down a simplified form of the S-matrix where
there are no processes that interchange particle species;
this follows from each of the E7 masses being different:
integrability together with kinematic constraints forbid
such processes. The full list of the S-matrices are avail-
able in Refs. [470, 475, 487]. To analyze the TSA data,

we will only need one S-matrix, S11(θ), which is given by

S11(θ) = f2(θ)f10(θ); (249)

fa(θ) =
tanh( 12 + iπa

18 )

tanh( 12 − iπa
18 )

.

Within the TSA framework, we can do more than com-
pute the particle spectra of a theory. For example, matrix
elements of the various operators in the theory can also
be computed. We will show such computations in the
sections that follow: we will consider matrix elements
that involve zero, one, and two-particle states. As a par-
ticular operator to consider, we will focus our attention
on the leading energy operator, ε, the perturbation itself.
As the perturbation of a critical theory, this operator is
closely related to the trace of the stress energy tensor

ΘT (x) = 2πg2(2− 2Δε)ε(x). (250)

The vacuum expectation value of ΘT (x), 〈0|ΘT (x)|0〉,
together with its one particle-matrix elements,

〈0|ΘT (x)A
†
i (θ = 0)|0〉 can be computed exactly

from the integrability of the E7 theory. The matrix
elements are given in Table III.
Beyond the one-particle matrix elements, the TSA can

also access two-particle matrix elements. Matching the
TSA data onto the analytics is more involved because
of the need to take into account non-trivial finite-size ef-
fects on the matrix elements. To illustrate this matching,
we will make a detailed study of the two-particle matrix
element

〈0|ΘT (0)A
†
1(θ1)A

†
1(θ2)|0〉. (251)

Its analytic form in the infinite volume is given by [475]

〈0|ΘT (0)A
†
1(θ1)A

†
1(θ2)|0〉 = −2πim2

1 sinh

(
θ12
2

)
F11,min(θ12)

D11(θ12)
, (252)

with θ12 = θ1 − θ2 and the functions

F11,min(θ) = G

(
10

18
, θ

)
G

(
2

18
, θ

)
, G(a, θ)=exp

[
2

∫ ∞

0

dx

x

cosh
(
x
(
a− 1

2

))
sin2

(
x(iπ−θ)

2π

)
cosh

(
x
2

)
sinh(x)

]
,

D11(θ) = P

(
10

18
, θ

)
P

(
2

18
, θ

)
, P (a, θ) =

cos(πa)− cosh(θ)

2 cos2(πa)
. (253)

One arrives at this form through a non-trivial applica-
tion of the form factor bootstrap, a set of analytic con-
straints based on Lorentz invariance and consistency with
the scattering matrix that the matrix elements must sat-
isfy [454, 475]. A detailed explanation of the bootstrap
can be found in a number of different references. See, for
example, Refs. [454, 488]. We will show in the sections
that follow how to connect this form factor in infinite vol-

ume to their finite volume counterparts available through
the TSA. The theory on how to make this connection was
first worked out in generality in Refs. [370, 371].
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2.8
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-E
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C
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m1=1.0001(2)Cg2
5/9

m2=1.285(1)m1

m3=1.879(1)m1

m4=1.967(5)m1

2p: m1+m1

2p: m1+m2

2p threshold

FIG. 9. The dimensionless excited state energies (Ei/Cg
5/9
2 )

as a function of the dimensionless system size, RCg
5/9
2 , com-

puted with the TSA. Lower panel: The first six excited states
consisting of four single particle states and two two-particle
states. Upper panel: The next fifteen excited states includ-
ing the fifth and sixth single particle states. For the single
particles, we give the best estimate, including error, of their
masses [to be compared with the exact masses in Eq. (246)].
The dimensionless cutoff used for this computation is N = 22
and involves 8810 states from all 6 Verma modules (here we
do not work individually in the even and odd sectors of the
theory).

4. TSA analysis of E7 spectrum

Let us now turn to presenting the TSA analysis of the
E7 model. This spectrum was first computed using the
TSA in Ref. [399]. We first consider the model’s low-
lying excitation spectrum, which we present in Fig. 9.
We have plotted the data in terms of dimensionless en-

ergies, Ei/m1 = E/(Cg
5/9
2 ) and dimensionless volume

RCg
5/9
2 where the constant C is defined in Eq. (246).

While this data has been computed at g2 = 1/(2π), the
data for any choice of g2 will rescale on to these curves
(provided the same cutoff is employed) once recast in
these dimensionless variables.
In the lower figure we present the energies of the low-

est six excited states (with the ground state energy sub-
tracted). We see that we obtain the expected masses of
the first four one-particle states to better than 0.5%. We
note, however, that the excitations have different stabil-
ity regions. The first excited state, m1, has a much wider
range in R where it equals its infinite volume value than
the m4 excitation. The fifth excited state (the brown

curve for RCg
5/9
2 > 14) is a two-particle state consisting

of two m1 particles. It is easy to identify as such be-
cause of its 1/R2 decay to a value of 2m1. This 1/R2

term in its energy comes from the constituent particles
of the state having finite (and opposite) momentum.40

The sixth state in the lower panel (grey curve) is also
a two-particle state, but is formed from one m1-particle
and one m2-particle. The curve is flat, because unlike the
two-particle state of two m1 particles, here the m1 and
m2 particles both have zero-momentum. As the two par-
ticles are different, they are allowed to have their other
quantum numbers, such as momentum, equal. In general,
there is typically a Fermi-like exclusion principle in the
allowed quantum numbers for the constituent particles
in multi-particle states. We will turn to a more detailed
analysis of the energy of the two-particle states shortly.
In the upper panel of Fig. 9 we present fifteen ex-

cited states whose energies are greater than the two-
particle threshold, 2m1. Among these fifteen are the
single-particle m5 and m6 excited states. We see that
the accuracy at which we obtain these energies is less
than the first four, at roughly 1%. We also see that the
spectrum is populated by a variety of two-particle exci-
tations; at the bottom of this panel are the same two
two-particle states that appear in the lower panel. How-
ever, as we consider a larger range of R, we see that the

grey curve for RCg
5/9
2 > 26 is a 2-m1 state (it is such

because it experiences the characteristic 1/R2 decay in
energy of a two-particle state when the two particles each

carry finite momentum), while for 14 < RCg
5/9
2 < 26 it

is a m1-m2 state.

In the region RCg
5/9
2 > 26, we thus have two different

2-m1 states. How do these differ? They differ in terms
of the momentum quantum numbers assigned to each of
the particles. We can make this notion more precise. The
momentum of each particle is subject to a quantization
rule; this rule recognizes that the two particles in the
state interact via their S-matrix (Eq. (249)):

1 = eRm1 sinh(θ1)S11(θ1 − θ2);

40 The two particles have opposite momentum as we work in the
zero-momentum sector of the theory.
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1 = eRm1 sinh(θ2)S11(θ2 − θ1). (254)

Here p1 = m1 sinh(θ1) and p2 = m1 sinh(θ2) are the two
momenta of the particles. If S11 is trivial (i.e. S11 = 1),
these quantization conditions are those of free particles,
i.e. pi = 2πni/R. They are derived by taking the particle
‘around the world’: in doing so the wavefunction picks
up both a geometric phase proportional to the system
size and a phase due to the interaction of the two parti-
cles, which is encoded in S11. In logarithmic form, these
quantization relations can be written as

2πn1 = Y (θ1, θ2), 2πn2 = Y (θ2, θ1), (255)

where n1, n2 are integers or half-integers forming the
quantum numbers that describe the state, while

Y (θ1, θ2) =Rm1 sinh(θ1) +
1

i
log

(
S11(θ1 − θ2)

)
. (256)

The log of the S-matrix can be written as

1

i
log

(
S11(θ)

)
=
1

i
log f

(
θ,

2

18

)
+

1

i
log f

(
θ,

10

18

)
,

1

i
log f(θ, a) =− 2 tan−1

(
tanh( θ2 )

tan(πa36 )

)
− 2 tan−1

[
tanh

(
θ

2

)
tan

(
πa

36

)]
.

The total momentum of the state is 2π
R (n1+n2) and as we

work in the zero momentum sector, n1+n2 = 0.41 These
equations can be readily solved for θ1, θ2. The energy of
the state is then

E2−particle = m1 cosh(θ1) +m1 cosh(θ2). (257)

Using this analysis, in Fig. 10 we plot the analyt-
ically computed energies against those derived from
the TSA for two two-particle states, one correspond-
ing to (n1, n2) = (1/2,−1/2) and one corresponding to
(n1, n2) = (3/2,−3/2). The ni are half-integers because
two-particle states reside in the Neveu-Schwarz sector for
the disordered phase of the model (i.e. g2 > 0), as in
the ordinary Ising model. We see that there is excellent
agreement between the TSA numerics and the analytical
result.

5. TSA analysis of matrix elements of the stress-energy
tensor ΘT for the E7 spectrum

Having considered the E7 energies using the TSA, we
now turn our attention to the matrix elements of the

41 As we mentioned previous, n1 �= n2 for two identical particles,
as the quantization conditions satisfy a Pauli-like exclusion prin-
ciple.

16 18 20 22 24 26 28 30
RCg2

5/9

2

2.2

2.4

2.6

2.8

(E
-E

gs
)/(

C
g 25/

9 )

Analytics 2p = (1/2,-1/2)
TSA 2p = (1/2,-1/2)
Analytics 2p = (3/2,-3/2)
TSA 2p = (3/2,-3/2)

FIG. 10. Energies of the first two two-particle states as a func-
tion of the dimensionless system size. We compare our TSA
data to an analytic calculation where the energies are deter-
mined by solving the two-particle quantization condition, see
Eq. (255).

stress-energy tensor ΘT (250). In Fig. 11 we first consider
the vacuum expectation value (VEV) of ΘT , as well as
the first two one-particle matrix elements involving even
single-particle states (i.e. m2 and m4). For the VEV,

FΘT
0 ≡ 〈0|ΘT (0)|0〉, we see that the matrix elements

plateau over an intermediate range of system sizes, R.
It is in this plateau region that we want to compare the
value of the VEV to its infinite volume value presented
in Table III. For small systems, the VEV is dominated
by finite size effects (for a analysis of such effects in the
context of critical Ising perturbed by the spin operator
see Ref. [489]). On the other hand, at large values of
R, the VEV begins to change its value as cutoff effects
appear. The intermediate region of R is then the sweet
spot.
To compare the one-particle matrix elements,

FΘT
i ≡ 〈0|ΘT (0)A

†
i (θ)|0〉, (258)

computed using the TSA to the infinite volume versions
in Table III, one must take into account the different
normalizations of the particle states assumed in the two
cases. This amounts to the finite and infinite volume
matrix elements differing by a factor of (miR cosh(θ))1/2

(where θ is the rapidity of the particle):

FΘT
i

∣∣∣
R=∞

=
√
miR cosh(θ)FΘT

i

∣∣∣
R
. (259)

This scaling has been performed for the data presented
in Fig. 11. We again see that there is a region of R
where a plateau exists. However, compared to the VEV,

this region is smaller (and at least for 〈0|ΘT (0)A
†
4(0)|0〉
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T i/m
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i=0
i=2
i=4

1.180(5)

0.959(2)

0.44(2)

FIG. 11. The matrix elements of the stress energy tensor (pro-
portional to the leading energy operator) between the vacuum
and the first three even one-particle states as a function of the
dimensionless system size Rh8/15. For the one-particle matrix
elements we have adjusted, according to Eq. (259), the TSA
values to accord to their infinite volume counterparts. The
cutoff used here is again N = 22.

could be said to not strictly exist at all). To expand
the plateau region we can employ a higher cutoff, N .
However as we will see, the plateau only expands slowly
with increasing N ; in the next section we will consider
renormalization group strategies to maneuver around this
difficulty without paying a heavy numerical cost.
Let us now consider the two-particle matrix elements.

In particular, we focus upon

FΘT
11 (θ1, θ2) ≡ 〈0|ΘT (0)A

†
1(θ1)A

†
1(θ2)|0〉. (260)

Here the comparison between the TSA numerics and the
analytics from the form-factor bootstrap is considerably
richer, because the matrix elements have a genuine de-
pendence on the rapidities θ of the constituent particles,
see Eq. (252). If we plot a two-particle matrix element
against R, we are in fact plotting the matrix element
against the center of mass momentum-energy

Ec.o.m ≡ (E1−E2)
2−(p1−p2)

2 = 2m2
1(1−cosh(θ1−θ2))

(261)
because as we vary R we vary θ1 − θ2 via quantization
relation (255). Thus unlike the one-particle matrix ele-
ments, we expect a plot vs. R for two-particle matrix
elements to reveal their non-trivial energy-momentum
dependence. We see precisely this in Fig. 12 where we
plot the matrix elements for two different 2-m1 states
[(n1, n2) = (1/2,−1/2), (3/2,−3/2)] against the system
size.
Comparison of the TSA data with the infinite volume

bootstrap result, Eq. (252), is more complicated for a

5 10 15 20 25 30 35 40 45
m1R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

FΘ
T 11

/m
12

analytics FΘT
11(n1=1/2,n2=-1/2)

TCSA FΘT
11(n1=1/2,n2=-1/2)

analytics FΘT
11(n1=3/2,n2=-3/2)

TCSA FΘT
11(n1=3/2,n2=-3/2)

FIG. 12. The infinite volume matrix elements of the stress en-
ergy tensor between the vacuum and the first two two-particle
states as a function of the dimensionless system size Rm1.
Both the analytic bootstrap result for the matrix element,
Ref. [475], as well as the value inferred from the TSA using
the relation in Eq. (263) are shown.

number of reasons. At small R where Ec.o.m. is large, we
expect to encounter finite size effects due to the smallness
R. We clearly see these deviations in Fig. 12. As with
the one-particle matrix elements, we also expect large R
to be dominated by cutoff effects. Indeed, we see sharp
deviations between the TSA numerics and the analytics
in Fig. 12 for m1R > 30.
One subtlety here is that in order to compare the

TSA numerics with the bootstrap, we need to again take
into account the different state normalizations. For two-
particle states this normalization is not merely the prod-
uct of two

√
m1R cosh(θ) factors, but takes into account

that the normalization is affected by the interaction be-
tween the particles. If we define ρ2(θ1, θ2) through

ρ2(θ1, θ2) = Det

[
∂θ1Y (θ1, θ2) ∂θ2Y (θ1, θ2)
∂θ1Y (θ2, θ1) ∂θ2Y (θ2, θ1)

]
, (262)

where Y (θ1, θ2) is defined in Eq. (256), then the finite
volume and infinite volume matrix elements are related
via

FΘT
11 (θ1, θ2)

∣∣∣
R=∞

= ρ
1/2
2 (θ1, θ2)F

ΘT
11 (θ1, θ2)

∣∣∣
R
. (263)

In the absence of interactions, i.e. S11 = 1, we have
ρ2(θ1, θ2) = m2

1R
2 cosh(θ1) cosh(θ2). The relation in

Eq. (263) was used in Ref. [434] to obtain agreement be-
tween the TSA data and the analytical result, for a two-
particle matrix element of the spin operator for the criti-
cal Ising model perturbed by a magnetic field. However,
the differing normalizations of matrix elements in finite
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and infinite volume (together with how to handle discon-
nected terms in matrix elements) were first elaborated
upon comprehensively for general matrix elements in gen-
eral integrable models in two papers, Refs. [370, 371].

F. Applying the TSA to the sine-Gordon model

We now turn to the last detailed example we use to
illustrate the TSA: perturbations of a compact free bo-
son by vertex operators, with a particular focus on the
sine-Gordon model. Systems represented by such per-
turbations are ubiquitous in low dimensional strongly
correlated condensed matter and cold atomic systems
(see, for example, Refs. [22, 60, 61] for discussions of
applications to condensed matter systems; one example
of a cold atoms scenario can be found in Ref. [490]).
Compact free bosons, Θ, in themselves describe a re-
markable number of one-dimensional systems including
Heisenberg spin chains, doped one-dimensional Hubbard
models, Luttinger liquids, metallic carbon nanotubes,
etc [22, 24, 60, 61]. The various relevant perturbations
of such systems typically take the form of ‘vertex oper-
ators’,42 i.e. eiαΘ or eiαΦ, where Φ is the boson dual to
Θ. The ability to study all such systems using the TSA
makes it an extremely versatile tool. As a specific ex-
ample, we will consider the sine-Gordon model, as it is
integrable [491, 492] and there exists a large body of re-
sults computed analytically exploiting this integrability.
These will then provide a benchmark to compare TSA
numerical results against. While we present TSA data
here on the sine-Gordon generated specifically for this
review, the sine-Gordon was first studied using the TSA
in a set of three papers by G. Feverati, F. Ravanini, and
G. Takács (Refs. [400–402]).

The sine-Gordon model has an action given by

S =

∫
dxdt

( 1

8π
∂μΘ(x, t)∂μΘ(x, t)

− λ cos
(
βΘ(x, t)

))
. (264)

The model has a U(1) current given by jμ =
εμν∂νΘ(x, t), whose form is independent of the cosine
perturbation. The excitation spectrum of the sine-
Gordon model consists of two solitons with U(1) charge
±1 whose classical counterpart are “kinks” in the field
that interpolate between two different adjacent minima
of the cosine potential. These solitons have mass m given

42 This terminology comes from high energy physics, and has been
adopted by the condensed matter physics community working on
one-dimensional quantum systems.

by [493]

m = Csgλ
1

2−β2 , (265)

Csg =
2Γ

(
ξ
2

)
√
πΓ

(
1
2 + ξ

2

)
⎛⎝πΓ

(
1− β2

2

)
2Γ

(
β2

2

)
⎞⎠

1
2−β2

(266)

ξ =
β2

2− β2
. (267)

For β < 1, there exist bound states of solitons, known
as breathers. For a given β, it is known that there are
n = 1, . . . , [1/ξ] (here [O] denotes the integer part of O)
such bound state excitations with masses

mn = 2m sin

(
πnξ

2

)
. (268)

To illustrate the use of the TSA, we will focus on the
specific value of β2 = 1/2. Here the spectrum is two
solitons and two breathers. One of the breathers is de-
generate with the two solitons. In fact, at this point in
phase space (β2 = 1/2) the sine-Gordon model has an
SU(2) symmetry, with the two solitons and breather of
mass m forming a spin-one representation of SU(2). The

remaining breather, of mass
√
3m, is a singlet under this

SU(2) symmetry. Additionally, for this value of β the
sine-Gordon model is equivalent to the SU(2)1 WZNW
model perturbed by the trace of the fundamental WZNW
field.
As with the E7 perturbed tricritical Ising theory, we

can write down the two-particle scattering matrices for
these excitations. Defining the S-matrices that ap-
pear in the generalized commutation relations (see, e.g.,
Eqs. (248), (249), for the analog of this in the E7 de-
formation of the tricritical Ising model as studied in
the previous section) for the creation operators of the
four β2 = 1/2 sine-Gordon excitations (we label these
by s, s̄, b1, b2 for the soliton, antisoliton, and the two
breathers)

mass U(1) charge
A†s(θ) m +1

A†s̄(θ) m −1

A†b1(θ) m 0

A†b2(θ)
√
3m 0

(269)

we then have

S0(θ) ≡ Sss(θ) = Sss̄(θ) = Ssb1(θ) = Ss̄b1(θ)

=
sinh(θ) + i sin(π3 )

sinh(θ)− i sin(π3 )

Ssb2(θ) = Ss̄b2(θ) = Sb1b2(θ)

= S0

(
θ + i

π

6

)
S0

(
θ − i

π

6

)
;

Sb2b2(θ) =
(
S0(θ)

)3

.

These S-matrices will be necessary in understanding the
finite size corrections to both the ground state and ex-
cited state energies.
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1. Overview of the massless compact boson

To study the sine-Gordon model using the TSA we
need to specify the spectrum of the unperturbed com-
pact boson as well as how to compute matrix elements of
vertex operators relative to this basis. This case is con-
siderably easier than conformal minimal models (such as
the tricritical Ising model considered in the previous sec-
tion) as we do not have to worry about null states.

Let us first consider the spectrum. To delineate it, it is
useful to consider the mode expansion of the boson [135]

Θ(x, t) = Θ0 +
4π

R
Π0t+

2πm

βR
x

+i
∑
l �=0

1

l

(
ale

2πil
R (x−t) − ā−le

2πil
R (x+t)

)
. (270)

This mode expansion assumes the boson has compacti-
fication radius 2π/β, i.e. Θ(x + R, t) = Θ(x, t) + 2π

β m,

where m denotes the winding number, which is related
to the U(1) charge of the sector. The operator Θ0 is the
‘center of mass’ of the Bose field and Π0 is its conjugate
momentum, which has permitted values nβ, with integer
n. These obey the commutator [Θ0,Π0] = i.

The bosonic Hilbert space emerges from an infinite set
of highest weight states marked by the bosonic winding
number and the value of conjugate momentum

|n,m〉 = einβΘ(0)+i m
2βΦ(0)|0〉. (271)

These highest weight states |n,m〉 are defined by acting
with vertex operators involving the boson and its dual
on the vacuum |0〉. The dual boson, Φ, can be defined
via the relation

∂xΘ(x, t) = ∂tΦ(x, t). (272)

The full Hilbert space is then recovered by the acting
with the right and left moving modes (an and ān) of the
field on the highest weight states:

|s〉 =
M∏
j=1

akj

M̄∏
j̄=1

ākj̄
|n,m〉. (273)

The energy and momentum of such a state is

Es =
2π

R

(
n2β2 +

m2

4β2
+

M∑
j=1

kj +

M̄∑
j̄=1

kj̄ −
1

12

)
,

Ps =
2π

R

(
(n−m) +

M∑
j=1

kj −
M̄∑
j̄=1

kj̄

)
.

The 1/12 term in Es reflects the fact that the vacuum
energy in the conformal limit on the cylinder does not

vanish if it is assumed to be zero on the plane. The
an/ān satisfy the following commutation relations:

[an, am] = nδn+m,0;

Lz

Ly

FIG. 13. A sketch of the toroidal space-time employed in the
TSA when (imaginary) time is periodic. By viewing the two
periods of torus (here denoted by Ly and Lz) as alternatively
space or time, we can derive an expression for the finite size
correction to the ground state energy.

[ān, ām] = nδn+m,0;

[an, ām] = 0. (274)

These commutators, together with the relation governing
commuting the modes with vertex operators

[an, e
iβΘ(0)] = −βeiβΘ(0), (275)

allow one to compute generic matrix elements of the
states (Eq. (273)) with the vertex operators appearing
in the sine-Gordon Hamiltonian.

2. sine-Gordon ground state energy at β2 = 1/2

We now turn to the TSA results for the ground state
energy. Analytically the ground state energy can be char-
acterized completely and is given by

Egs = −εbulkR+ ETBA(R). (276)

The bulk contribution to the ground state energy, Egs,
is given by [491, 494]

εbulk = −m2

4
tan

(
πξ

2

)
. (277)

The contribution ETBA takes the form of a coupled set
of integral equations known as the thermodynamic Bethe
ansatz (TBA) equations involving the S-matrices of the
various excitations in the model [495]:
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ETBA(R) = −
∫ ∞

−∞
dθ

∑
i=s,s̄,b1

log(1 + e−Rεs(θ))m cosh(θ)−
∫ ∞

−∞
dθ log(1 + e−Rεb2 (θ))

√
3m cosh(θ), (278)

εi(θ) = m cosh(θ)−
∑

j=s,s̄,b1

∫ ∞

−∞
dθ log

(
1 + e−Rεj(θ)

)
Kij(θ − θ′)−

∫ ∞

−∞
dθ log

(
1 + e−Rεb2 (θ)

)
Kib2(θ − θ′),

εb2(θ) =
√
3m cosh(θ)−

∑
j=s,s̄,b1

∫ ∞

−∞
dθ log(1 + e−Rεj(θ))Kb2j(θ − θ′)−

∫ ∞

−∞
dθ log(1 + e−Rεb2 (θ))Kb2b2(θ − θ′),

Kkl(θ) =
1

i
∂θ logSkl(θ),

where i = s, s̄, b1 in the second equation. For large system sizes, R, this considerably simplifies and we obtain

ETBA(R) = −3m

∫ ∞

−∞

dθ

2π
cosh(θ)e−mR cosh(θ) −

√
3m

∫ ∞

−∞

dθ

2π
cosh(θ)e−

√
3mR cosh(θ) +O(e−2mR). (279)

The large R expression can be understood in a simple
intuitive manner. To do so, let us imagine that we are
working in imaginary (periodic) time and so our space-
time is a torus (see Fig. 13). The torus has two periods,
Ly and Lz, with m−1 � R = Lz � Ly. First we suppose
Lz corresponds to space and Ly to time (i.e. Ly = T−1

where T is the temperature). The partition function for
the system in this picture is

Z = e−Egs(R)Ly + · · · (280)

where the ellipses denote terms that are suppressed by
working at low temperature in a gapped system. Alter-
natively, we can take the view that Lz = R is the inverse
temperature and Ly is the volume of space. Here, the

computation of the partition function must take into ac-
count states beyond the ground state:

Z = e−Egs(Ly)R

(
1 +

∑
i=s,s̄,b1,b2

∑
p

e−R(p2+m2
i )

1/2

)
+two particle contributions. (281)

However, because the inverse temperature R in this pic-
ture is such that Rm � 1, higher particle contributions
to the partition function are suppressed and can be ig-
nored.
Now, if we compare the logarithm of the two different

ways of computing the partition function of the system,
we see that

Egs(R)Ly = Egs(Ly)R+
∑

i=s,s̄,b1,b2

∑
p

e−R(p2+m2
i )

1/2

+ . . . ,

= Egs(Ly)R+
∑

i=s,s̄,b1,b2

Lymi

∫ ∞

−∞

dθ

2π
cosh(θ)e−R(m2

i sinh2(θ)+m2
i )

1/2

+O(e−2mR). (282)

In the second line, the factor Lymi cosh(θ)/(2π) ap-
pears through making the sum over modes with momenta
2πn/Ly an integral. The ground state energy Egs(Ly) in
the picture with Ly space must be proportional to Ly

(i.e. the vacuum must have a uniform energy density)

Egs(Ly) = εbulkLy. (283)

Hence we see how rather simple considerations re-
cover the asymptotically large R form of ETBA(R), see
Eq. (279). We also see how to interpret the large R cor-
rection to the ground state energy: at finite R, the vac-
uum is modified by virtual processes where excitations
are created, travel around the system, and are then an-
nihilated. These virtual processes are suppressed expo-
nentially in the size of the system.

With these considerations out of the way, we now can
consider how the analytic expressions for the ground state
energy of the sine-Gordon model compare to the TSA
data. In Fig. 14 we show the ground state energy com-
puted using the TSA alongside the full TBA expression
and the asymptotic form (279). We see that the full an-
alytic expression agrees well over the entire range of R
shown in the figure. However, for the very largest values
of R shown, deviations can begin to be seen, reflecting
cutoff effects in the TSA. The asymptotic form of the en-
ergy only begins to agree with the TSA data for R > 2.5.
For small systems the TSA ground state energy must
return to its conformal value,

Egs

(
R � m−1

)
= −2π

R
c+ . . . , (284)
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0 1 2 3 4 5 6 7
R

-1

-0.8

-0.6

-0.4

E
gs

TCSA data
Analytics at Leading Order
Full TBA Analysis

FIG. 14. The ground state energy as a function of system
size for the sine-Gordon model at β2 = 1/2. TSA data is
compared to analytic computations, both the full TBA anal-
ysis [see Eq. (278)] as well as the analytic expression for the
ground state energy valid at large R, see Eq. (279). For the
TSA data we have chosen a value of the coupling λ such that
m = 1 (using Eq. (265)). The truncation level employed for
the TSA is N = 18 and involved 6917 states in the charge 0
ground state sector.

where, for a boson, the central charge c = 1. For
Eq. (278) to agree with the TSA data, the complicated
non-linear integral equations for ETBA(R) must reduce
to

ETBA(Rm � 1) = εbulkR− 2π

R
c+ . . . (285)

This was established in Ref. [495].

3. sine-Gordon excitations at β2 = 1/2

Having analyzed the ground state energy of the sine-
Gordon model, we now turn to its one-particle excita-
tions. There are four: two solitons and one breather of
mass m and one breather of mass

√
3m [see Eq. (269)].

We plot the excitation energies in Fig. 15, where we see
the masses of the two solitons and the first breather are
degenerate (numerically they agree to five significant dig-
its) for all system sizes and obtain the expected value of
m = 1 (we have chosen the coupling constant through
Eq. (265) such that m = 1) for R > 8. The TSA pre-
diction of the mass of the second breather however shows
marked finite size corrections and only approaches its ex-
pected value of

√
3 for a value of R ≈ 12. Even here,

it overshoots the expected value for larger values of R,
which indicates significant cutoff effects in the TSA data.

2 4 6 8 10 12 14
R

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

E
-E

gs
 (m

)

Eb1
Eb2
Esoliton

31/2m=1.73205...m

1.0m

FIG. 15. The single particle excited state energies as a func-
tion of system size for the sine-Gordon model at β2 = 1/2.
The truncation level employed for the TSA was again N = 18
and involved 6917 states in the charge 0 ground state sector
and 7917 states in the charge ±1 sectors. The different charge
sectors of the theory were treated separately so as to reduce
the numerical burden.

ΓΓ

FIG. 16. The process that leads to the so-called μ-term contri-
butions to the finite size corrections to the excitation energies,
whereby an excitation experiences a virtual decay with am-
plitude Γ into two other particles [71]. These two excitations
then travel around the system and recombine into the original
excitation.

We will now analyze the finite size corrections to the
energy of the second breather, b2, in more detail. Finite
size corrections come in two flavors. The first results
from a particle undergoing virtual decay into two other
particles and subsequently reforming after having trav-
elled around the system. This is sketched schematically
in Fig. 16. The b2 breather has two possible decay chan-
nels, as it can be a bound state of a soliton-anti-soliton
as well as a bound state of two b1 breathers. The first
process is proportional to (Γb2

ss̄)
2 while the second is pro-

portional to (Γb2
b1b1

)2, where (Γb2
ab)

2 is the imaginary part

of the residue in the S-matrix Sab

(
θ = iub2

ab

)
at the value

of imaginary rapidity that corresponds to a, b forming a
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S

β

θ = iπ
2

FIG. 17. The process that leads to the so-called F -term con-
tributions to the finite size corrections to the excitation ener-
gies [71]. Here an excitation interacts via its scattering am-
plitude S with particles that have been virtually created from
the vacuum.

b2 bound state:

m2
b2 = m2

a +m2
b + 2mamb cos

(
ub2
ab

)
. (286)

For both the considered processes ub2
ab = π/3 and

(Γb2
ab)

2 = 2
√
3.

The full expression for this finite size correction to the
mass of the excitation is then

Δμmb2 =
∑

(a,b)=(s,s̄),(s̄,s),(b1,b1)

(Γb2
ab)

2μb2,abe
−μb2,abR

= 3
√
3e−

mR
2 . (287)

Here μb2,ab = mamb

mb2
sin(ub2

ab) = 1/2. The μ index affixed

to the correction (Δμm) indicates that this term is often
referred to as a “μ-term” correction to the mass [496].
We see that this correction is exponentially suppressed
in the system size R.

The second type of finite size correction is illustrated in
Fig. 17 and is known as an F -term [496]. This correction
arises because, in the finite volume particles are virtually
created from the background and can interact with a real
excitation, thus altering its mass. This correction takes
the form

ΔFmb2 = −
∑
a

′P
∫ ∞

−∞

dθ

2π
e−maR cosh(θ)maR cosh(θ)

×
(
Sab2(θ + iπ/2)− 1

)
, (288)

where P indicates the principle value of the integral

should be taken and the prime on the sum
∑′

a indicates
that the S-matrix Sab2(θ+ iπ/2) should not have a mul-
tiple pole for real θ [496]. The only value of a for which
this is true is a = b2 and hence the F -term is of order

e−
√
3mR and is much smaller than Δμmb2 . As a result,

we will ignore it. In general, the problem of determin-
ing the error one is making in including only the μ-terms
and F -terms is complex; a full discussion can be found
in Ref. [496].
In Fig. 18 we show the TSA results for the second

breather with the analytic prediction for its energy in-
cluding the μ-term; we see the agreement is reason-
able. If we treat mb2 as a fitting parameter and fit

2 4 6 8 10 12 14
R

1.4

1.5

1.6

1.7

1.8

E
b2

-E
gs

 (m
)

Eb2 analytic
Eb2 TCSA

31/2m=1.73205...m

Eb2,fit=1.737±0.002

FIG. 18. An expanded view of the TSA energy of the second
breather for the sine-Gordon model at β2 = 1/2. Here we plot
the leading order finite size corrections to its mass vs the TSA
data. If we fit this leading order form to the data treating the
mb2 as a fitting parameter we find mb2 = 1.737(5) where the
primary source of the uncertainty comes from different choices
of the fitting region.

the analytic expression against the TSA data we obtain
mb2 = 1.737(5), a roughly 0.2% error from its true value

of
√
3.

VI. REMOVING THE EFFECTS OF THE
CUTOFF FROM THE TSA

In this section we consider strategies for removing the
effects of the cutoff on TSA computations. These will
go in two directions: one primarily numerical [434], and
one analytical [383, 435–437, 452]. We first consider the
numerical approach.

A. The numerical renormalization group and TSA

The first strategy [434] we employ to alleviate the ef-
fects of the cutoff is based on the numerical renormal-
ization group (NRG), as developed by Kenneth Wil-
son [70]. The NRG is a tremendously successful tech-
nique (see [497]) for the study of generic quantum impu-
rity problems. It is based on the realization that there is
a hierarchy of energy scales in a quantum impurity prob-
lem that can be exploited to find solutions. The NRG for
quantum impurity problems comes in two parts. In the
first part the quantum impurity problem, that of a sin-
gle localized spin or electron interacting with a fermionic
bath, is mapped to an equivalent lattice model. For a spin

Page 54 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



55

t1  >   t2    >  t3   >  t4   >  t5     

t1  >   t2   t1  >   t2   t1  >   t2    >  t3 t1  >   t2    >  t3

FIG. 19. A schematic representation of the NRG algorithm for quantum impurity problems and for TSA.

interacting with a Fermi sea, this lattice model takes the
form

HKondo = −JS̄ · c†1σσ̄σσ′c1σ′ +

∞∑
i=1,σ

tic
†
iσci+1σ, (289)

where σ̄ = (σx, σy, σz) are the Pauli matrices. This model
consists of a spin-1/2 degree of freedom, S̄, living at the
end of a half-infinite lattice. The spin interacts with elec-
trons that are able to hop along the lattice. The hierarchy
of scales arises because the hopping parameters, ti, de-
crease in strength the further one goes along the lattice.
Roughly speaking ti behaves as Λ−i where Λ > 1 is a
parameter that arises in a logarithmic discretization of
the Fermi sea of electrons. The mapping of the quantum
impurity problem to this lattice model involves various
non-trivial details [70]. However these are not relevant
for our purposes and we will suppose we begin with a
Hamiltonian of the form in Eq. (289).

Wilson’s key insight was that this Hamiltonian can
be diagonalized in a set of iterative steps. Because the
hopping parameters fall off as one moves away from the
impurity, the electrons living on sites close to the spin
impurity interact most strongly with it. If we are inter-
ested in finding the ground state energy, a first (crude)
approximation would be to truncate the lattice to a small
finite number of lattice sites. In this way we capture the
portion of the Hamiltonian with the couplings that are
largest in magnitude. After this truncation, the size of
the Hilbert space of lattice is small and the energies can
easily be found through a numerical exact diagonaliza-
tion (ED). This is the first step of Wilson’s numerical

renormalization group, and is shown as step 1 in the top
part of Fig. 19.
In the second step we begin to account for the sites that

we threw away in the first step. We take the states (Ns+

Δ1 in total) obtained with the ED in step 1, {|E1
s 〉}Ns

s=1

and order them by energy:

E1
1 < E1

2 < · · · < E1
Ns

. (290)

As we are interested in low energy properties of the
model, we only keep Ns of these states, throwing away
the remainder. This is step 2 in Fig. 19. In step 3, we add
a site to the truncated lattice. The Hilbert space of this
augmented finite lattice then consists of a tensor product
of states in Eq. (290) with the states of the added lattice
site:

|e2ij〉 = |E1
i 〉 ⊗ |i〉 (291)

In the third step of Fig. 19, we represent the tensor struc-
ture of the Hilbert space by picturing the initially trun-
cated lattice in red and the added site in black. This new
Hilbert state has Ns+Δ2 states. In step 4 we diagonalize
this new problem, obtaining a new set of eigenstates with
energies that we have ordered:

E2
1 < E2

2 < · · · < E2
Ns

. (292)

We can then proceed to repeat the procedure: we throw
away the Δ2 most energetic states, add a site to obtain
an expanded basis, reformulate the Hamiltonian in this
new basis, and perform an ED. Because we keep only Ns

states from each diagonalization, the size of Hilbert space
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for each ED does not grow. Yet the iterative procedure
allows sites far away from the spin impurity to influence
its physics. It works because the sequence of EDs take
into account the portion of the lattice with the largest
hoppings first, leaving weaker couplings to later in the
procedure.
While Wilson had to map the spin impurity interacting

with a Fermi sea to a half-line lattice with varying hop-
pings, we in a sense start in this position when we perform
the TSA on a Hamiltonian H0 perturbed by a relevant
operator. A relevant perturbation will not strongly mix
high and low energy states (although states about a given
energy will be mixed strongly). We can then imagine ap-
plying the same iterative procedure employed by Wilson.
We begin with states in our unperturbed Hilbert space,
ordered by their energies:

|0〉, |1〉, . . . . (293)

As a first step we take the Ns + Δ of the states lowest
in energy. We form the full Hamiltonian (both H0 and
perturbation) in this truncated basis of Ns + Δ states.
Just as with the ordinary TSA, we numerically diago-
nalize the problem and obtain the Ns + Δ eigenvalues,
E1

1 , · · · , E1
Ns+Δ, and eigenvectors, |E〉11, · · · , |E〉1Ns+Δ.

This step of the TSA+NRG is pictured in the bottom
part of Fig. 19. As Wilson did for the NRG in the quan-
tum impurity problem, in the next step (step 2), we order
these Ns +Δ states in ascending order of their energies
and toss away the top Δ states. We express the remain-
ing eigenvectors in terms of the unperturbed basis, {|m〉}
as follows:

|E〉1k = A1
km|m〉+B1

km′ |m′+Ns〉; k = 1, · · · , Ns, (294)

where A1 is an Ns × Ns matrix and B1 is an Ns × Δ
matrix and repeated indices are summed on. To these
Ns eigenstates we add the next Δ states from the unper-
turbed theory,

|m+Δ+ 1〉, · · · , |m+ 2Δ〉. (295)

This leaves us again with a truncated Hilbert space of
Ns + Δ states (step 3). We reform the Hamiltonian in
this new basis and then re-diagonalize to extract a new
set of Ns +Δ energies, E2

1 , · · · , E2
Ns+Δ, and eigenstates,

|E〉21, · · · , |E〉2Ns+Δ. We again order the eigenstates in
energy and toss away the top most Δ states. If we re-
express the remaining eigenstates, |E〉2k in terms of the
original conformal basis we obtain

|E〉2k = A2
km|E〉1m +B2

km|m+Ns +Δ〉

=
(
A2A1

)
km

|m〉+ (
A2B1

)
km′ |m′ +Ns〉

+B2
km′ |m′ +Ns +Δ〉, (296)

where again A2 is an Ns×Ns matrix and B2 is an Ns×Δ
matrix. Here the index m runs from 1 to Ns while the
index m′ runs from 1 to Δ.

We can repeat this procedure ad libitum: we order the
new set of Ns+Δ states, toss away the topmost Δ states,
add the next Δ unperturbed states from the CFT, reform
the Hamiltonian, re-diagonalize, etc. In this way, we al-
low the higher energy states of the unperturbed CFT to
mix in with eigenstates of the full (but truncated) theory.
As we keep Ns+Δ fixed at each step, the associated com-
putational problem grows only as the square of the total
number of states kept [owing to the need to manipulate
states (albeit only Ns +Δ of them) which are expressed
in terms of an ever growing basis as the NRG proceeds].
At the nth-iteration, the eigenstates have the form

|E〉nk =
(
An · · ·A1

)
km

|m〉+ (
An · · ·A2B1

)
km′ |m+Ns〉

+
(
An · · ·A3B2

)
km′ |m′ +Ns +Δ〉+ · · ·

+
(
AnBn−1

)
km′ |m′ +Ns + (n− 2)Δ〉

+Bn
km′ |m′ +Ns + (n− 1)Δ〉. (297)

We see that each term in the above sum has a matrix
product state form. The approximation encoded in the
NRG is then one where we study a Hamiltonian arrived
at by projecting the original Hamiltonian onto a space
composed of matrix product states of the above form.
What we are in effect are doing is constructing a vari-

ational wavefunction for the true eigenstates of the full
Hamiltonian. The quality of the variational ansatz is
controlled by Ns (the number of states kept at the end of
each step) and Δ (the number of states thrown away in
each step). The larger Ns and Δ are, the more accurate
the results of the NRG procedure. Typically we have
found that taking Ns ∼ 1000− 4000 and Δ ∼ 500− 1000
leads to robust results (answers that are accurate to 3-4
significant digits).43

As an example, in Table IV we present data for the
ground state and first two excited energies of the sine-
Gordon model at β2 = 1/2, in its charge zero sector, as
computed using the NRG for different values of (Ns,Δ).
We allow the NRG to proceed so that states with energies
below a (dimensionless) cutoff of N = 22 are accounted
for (39279 in total). We compare our NRG results to a
straight ED for this same cutoff. For the smallest pair of
values (Ns,Δ) = (500, 250) we obtain 4 significant digit
agreement between the NRG and the ED. For the largest
(Ns,Δ) = (1500, 500) this has improved to 5 significant
digit agreement. Here we have limited ourselves to a
relatively small cutoff (N = 22 with 39279 states in the
Hilbert space) so that we could compare it to an ED. In
principle the NRG can go to cutoffs far higher (up to 106

states) [430, 431, 450, 451].
While the NRG allows one to go to higher cutoffs than

the plain TSA, it can only do so much. The size of the

43 Although we must stress that the exact values of (Ns,Δ) needed
to produce a given accuracy from the NRG+TSA is a model
dependent statement.
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ED Ns = 500,Δ = 250 Ns = 500,Δ = 500 Ns = 1000,Δ = 500 Ns = 1500,Δ = 500

R = 10
Egs -1.41824 -1.41813 -1.41814 -1.41817 -1.41819
Eb1 1.00126 1.00122 1.00123 1.00123 1.00124
Eb2 1.69959 1.69955 1.69956 1.69956 1.69957

R = 15
Egs -2.10451 -2.10350 -2.10361 -2.10387 -2.10404
Eb1 1.0018 1.00173 1.00174 1.00172 1.00172
Eb2 1.73396 1.73440 1.73434 1.73410 1.73401

TABLE IV. Effects of the choice of Ns and Δ upon the TSA+NRG results for the low lying energies of the sine-Gordon model
at β2 = 1/2 at two different values of R. The overall NRG cutoff used here is N = 22. The number of states falling below this
cutoff is 39279. We compare the different NRG results with an exact diagonalization (ED) which serves as a reference point.

Hilbert space grows exponentially with the cutoff, which
then puts a limit on the cutoff that the NRG can be
pushed to. However as a natural output of the NRG
algorithm, we obtain the flow of the energy of a state as
a function of cutoff. Provided the cutoff is large enough
then this flow can be described by a one-loop-like RG
equation [434]

dΔE

d logN
= −αΔE, (298)

where ΔE = E(N) − E(N = ∞) is the deviation of the
energy from its value in a theory with no cutoff. The
numerical NRG data can then be fit to this equation,
allowing us to obtain a value for E(N = ∞), in effect re-
moving the cutoff entirely. There are two issues in using
this procedure: 1) knowing if you are in a regime where
this one-loop equation is valid; 2) the value of α. In gen-
eral, 1) is a difficult question to answer as the subleading
terms to Eq. (298) will depend on the particular model.
We will see this more clearly in the next section, where we
will see that subleading terms arise from operator prod-
uct expansions (OPEs) of the perturbing operator with
itself. Practically, however, we have found that provided
the NRG procedure is within 5% of the exact value, the
one-loop extrapolation encoded in Eq. (298) can reduce
the error to well below 1%.

The second question concerns the appropriate value of
α. For the energies, second order perturbation theory
relates α to the scaling dimension of the perturbing op-
erator. However for perturbation theory to be accurate
we need λ(R/N)2−2Δφp to be a small parameter, where
Δφp

is the chiral scaling dimension of the perturbing op-
erator and λ is the strength of the perturbation. We may
well be forced to work at system sizes R where this pa-
rameter is not small (i.e., where higher order terms in the
perturbation theory are not sufficiently small). In these
cases, we have found that taking α = 1 as a heuristic
leads to robust results [434].
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FIG. 20. The ground state energy at three different val-
ues of the system size, R (R = 10, 15, 20, upper to lower),
computed for the sine-Gordon model at β2 = 1/2 as deter-
mined using the NRG. The energies are plotted as a func-
tion of the cutoff energy (effectively the NRG step). In red
are presented the raw NRG data and in blue the fits to this
data. The black squares mark the region over which the
fit is made. The exact value of the ground state energy is
Egs,β2=1/2 = − 1

4
tan

(
π
3

)
m2R = −0.144338m2R.

1. Applying the NRG and its extrapolations to the ground
state energy for the sine-Gordon model at β2 = 1/2

We will now consider some specific examples where we
apply the NRG together with the extrapolation encoded
in Eq. (298). In Fig. 20 we plot the evolution of the
ground state energy as a function of the cutoff N for
three different system sizes (one in each panel). We run
the NRG to a cutoff energy of N = 28. We then use
the region of energy flow marked by the boxes in each
panel to extrapolate the energies to N = ∞. For these
extrapolations, we use the value of α determined from
the leading order term (corresponding to the identity op-
erator in the OPE of the cos(βΘ) with itself) arising in
second order perturbation theory [see Eq. (323)]. With
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this value of α, the analytic fitting form is dictated to be

Egs,β2= 1
2
(N) = Egs,β2= 1

2
(N = ∞) +

γλ2R2

N
. (299)

Nominally the perturbation theory of the next section
gives γ = 1/2. However, here we treat γ as a fitting
parameter and find γ = 0.70 at R = 10 to γ = 0.90
at R = 20. That the value of γ overshoots the analyt-
ically expected number indicates that at these values of
R higher order terms are non-negligible. In allowing γ
to be a fitting parameter, we see that the energies so ex-
trapolated to N = ∞ agree well (within three to four
significant digits) with the exact answer, Egs,β2=1/2 =

−0.144338...m2R. This also provides heuristic insight
into why taking α = 1 in [434] produced accurate ex-
trapolations: by assuming the approach of E(N) to its
N = ∞ counterpart was slower than predicted by sec-
ond order perturbation theory, it mimicked the effects of
higher order terms. In general, the second order correc-
tions lead to underestimates in the energies as we will see
in greater detail in the next section.

2. Applying the NRG and its extrapolations to the matrix
elements of the E7 deformation of the tricritical Ising model

We have discussed heretofore the application of the
NRG and its one-loop extrapolations to the problem of
eliminating the cutoff dependence to TSA energies. This
approach is not simply restricted to energies, but works
for matrix elements of operators as well. The one-loop
equation in Eq. (298) has a similar form as before, but
now arises from first order perturbation theory. The co-
efficient α in the equation differs from that appropriate
to the energies; from first order perturbation theory α
will depend upon the scaling dimension of the perturb-
ing operator, the operator whose matrix element is being
considered, as well as operators appearing in the OPE of
the two.
To study how to apply the NRG to the computation of

matrix elements we consider the VEV, two one-particle
matrix elements, and a single two-particle matrix element
of the stress energy tensor in the E7 deformation of the
tricritical Ising model (cf. the discussion of the previ-
ous section). We first analyze the VEV and one-particle
states in Fig. 21. There we plot the values of matrix ele-
ments as a function of the system size for different cutoffs
under the NRG, as well as an extrapolated value using a
one-loop RG equation. As we explained in Sec. VE5, all
four of the matrix elements should nominally be indepen-
dent of R. However, at small R we have significant finite
size corrections and at large R there are cutoff effects.
We thus want to see how the large R TSA+NRG results
for the matrix elements deviate from their (analytically)
expected values. In Fig. 21 these values are shown as
dot-dashed lines; we see that as we increase the cutoff,
the NRG values of the matrix elements bend upwards to-
wards their exact value. We also see that this approach
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T 2/m
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0 5 10 15 20 25 30 35 40 45
m1R

0.35

0.4

0.45

0.5

FΘ
T 4/m

12

0.96049...

0.45001...

1.18387...

N=22 N=26 N=30 N=∞

FIG. 21. TCSA data for the matrix elements FΘT
i (with

i = 0, 2, 4) in the tricritical Ising model perturbed by the
leading energy perturbation as a function of the system size,
R. The upper panel (i = 0) is the vacuum expectation value
of the stress-energy tensor, ΘT , whilst i = 2, 4 describes the
matrix elements of the operator with the first and second
even excitations. Three values of the cutoff, N = 22, 26, 30,
are shown alongside extrapolations to the N = ∞ limit (see
text). The extrapolated values have error bars indicating the
uncertainty arising from different choices of the energy region
over which one performs the extrapolation. The dot-dashed
horizontal lines denote the exact values of the matrix ele-
ments.

is relatively slow, although we obtain much better results
when we extrapolate the NRG results using the one-loop
equation:

dδ〈0|ΘT (0)|i〉
d logN

= −αδ〈0|ΘT (0)|i〉, (300)

with α = 2 − 4Δε − 2ΔI = 8/5. In all three cases we
see that the extrapolated value [using Eq. (300)] greatly
improves the agreement between the numerics and the
expected analytical value of the matrix elements; in par-
ticular, it all but eliminates any dependence on system
size at large R.
We find much the same behavior for the large R behav-

ior of two-particle matrix elements. In Fig. 22 we see that
at large R the TSA+NRG values of the matrix elements
deviate from the exact value. As the cutoff is increased,
the TSA+NRG curve approaches the exact curve, but
only slowly. Once again extrapolating the value of the
matrix element to N = ∞, we find that the result agrees
(within the error of the extrapolation) with the exact
curve.
The improvement that using the
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FIG. 22. TSA data for the two-particle matrix element of the
trace of the stress-energy for the tricritical Ising model per-
turbed by the leading energy perturbation as a function of the
system size, R. Data is presented for different TSA cutoffs,
N , and we plot the extrapolated value for the matrix element
at N = ∞. To compare, we also present the matrix element’s
exact analytical value computed using the form factor boot-
strap (dashed line). At small values of the system size R the
agreement between the numerics and the analytical result is
imperfect due to finite size effects not taken into account in
the analytical treatment. For large systems, there are devi-
ations due to cutoff effects in the TSA, but we see that the
extrapolated N = ∞ values agree well with the analytical
result.

TSA+NRG+extrapolation offers is clearly more
significant for matrix elements than for the ground state
energies. This is largely due to the greater sensitivity of
matrix elements to cutoff effects.

B. An analytical renormalization group for the
TSA

In the previous section we considered how to adapt the
NRG (first developed to study quantum impurity prob-
lem) to alleviate the effects of the cutoff in TSA com-
putations. In this section we turn our attention to a
complementary analytical approach by which we can re-
move the effects of the cutoff. The idea behind this was
first introduced in [435] and then further elaborated and
clarified on in [383, 436–438, 452].

To see how we can do this, we follow the discussion in
Ref. [438] which provides a particularly clear exposition
on the use of an analytic RG for the TCSA. We first
take our Hilbert space, H, and divide it into two parts:
H = Hl ⊗ Hh. Here Hl consists of all states whose
unperturbed energies are equal to or lower than Λ, while

Hh consists of all states whose unperturbed energies are
greater than Λ. Then, we can write our Hamiltonian in
the following manner:

H =

[
Hll Hlh

Hhl Hhh

]
, (301)

where Hij (i, j = h, l) corresponds to the Hamiltonian
matrix restricted to the two subdivisions of the Hilbert
space. If we have an eigenstate[

cl
ch

]
, (302)

with energy E, we can write the Schrödinger equation as

Hllcl +Hlhch = Ecl,

Hhlcl +Hhhch = Ech. (303)

By eliminating ch from the above set of equations, we
have(

Hll+Hlh
1

E −Hhh
Hhl

)
cl = (Hll+δH)cl = Ecl. (304)

In doing so, we have reformulated the eigenvalue problem
in terms of coefficients of states that live in the low energy
Hilbert space alone. The Hamiltonians we are studying

take the form H = H0+λV where V =
∫ R

0
dxφp(x). We

can then expand δH in powers of λ, giving

δH = −λ2Vlh
1

H0 − E
Vhl

+λ3Vlh
1

H0 − E
Vhh

1

H0 − E
Vhl +O(λ4). (305)

Introducing the (imaginary) time dependence of opera-
tors in the interaction picture,

O(τ) = eH0τO(0)e−H0τ , (306)

we can rewrite Eq. (305) as

δH = −λ2
∑
c∈Hh

∫ ∞

0

dτ e(E−H0)τV (τ)|c〉〈c|V (0) +O(λ3)

≡ δH2 +O(λ3). (307)

Evaluating the matrix elements of δH2 with respect to
the states |a〉, |b〉 in the unperturbed basis, we end up
evaluating expressions of the form

Dab(τ) =

∫ R

0

dx1dx2

∑
c∈Hh

〈a|φp(x1, τ)|c〉

×〈c|φp(x2, 0)|b〉. (308)

The key to readily computing this quantity is the use of
OPEs.
The OPE of the perturbing field (assuming a spacetime

geometry of an infinite cylinder) can be written as
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φp(x1, τ)φp(x2, 0) =
∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp
|z1 − z2|−4Δφp+2Δϕ |z1|2Δφp |z2|2Δφp−2Δϕϕ(x2, 0) + . . . , (309)

where

z1 = e−
2π
R (τ+ix1), z2 = e−

2π
R ix2 , z̄i = z∗i , (310)

and Δφp/Δϕ is the chiral scaling dimension of φp/ϕ,
Cϕφpφp is the structure constant for 〈ϕφpφp〉. Here the
sum

∑
φ is a sum over all primary fields that appear in

the OPE. The ellipses then denote less singular terms in
the OPE. We assume here that the left, ΔO, and right,
Δ̄O scaling dimensions for all operators O are the same.

However, the OPE (309) is not quite what we want;
instead, we would like to evaluate a modified OPE∑

c∈Hh

φp(x1, τ)|c〉〈c|φp(x2, 0), (311)

where a partial resolution of the identity involving high
energy states has been inserted between the fields. To
see how one can evaluate such a quantity, we ask the
following question: what is the temporal dependence of
Dab(τ)? We see that Dab(τ) can be rewritten as

Dab(τ) =
∑
c∈Hh

e−(Ec−Ea)τ

×
∫ R

0

dx1dx2φpac(x1, 0)φpbc(x2, 0), (312)

where φpac = 〈a|φp|c〉. We also see that Dab(τ) only

involves terms e−Ecτ with Ec > Λ ≡ 2πN/R, where
we have introduced N as a dimensionless cutoff. Thus
our strategy will be to evaluate D(τ) using the original,
unrestricted OPE and then throw away terms involving
powers of e−2πτ/R smaller than N . Identification of these
powers will be possible through the Taylor series expan-
sion:

(1− z)−a =

∞∑
n=0

1

n!

Γ(a+ n)

Γ(a)
zn ≡

∞∑
n=0

S(n, a)zn. (313)

With this at hand, we are able to write D(τ) as

Dab(τ) =

∫ R

0

dx1dx2

∑
c∈Hh

〈a|φp(x1, τ)|c〉〈c|φp(x2, 0)|b〉,

=
∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp

∑
2n>N

S2(n, 2Δφp
−Δϕ)e

− 2π(2n+2Δφp
)τ

R R

∫ R

0

dx2〈a|ϕ(x2, 0)|b〉+ · · · . (314)

In the above, we see that our sum is restricted so that 2n > N , which corresponds to our restricted OPE (311). The
ellipses in the second line of the above equation indicate that we kept only the leading terms in the OPE in Eqn. 309.
Taking the form (314) for Dab(τ), and using it to evaluate (δH2)ab we obtain

(δH2)ab ≈ −λ2R2
∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp

∫ ∞

0

dτeτ(E−Ea)δPa,Pb
〈a|ϕ(0, 0)|b〉

∑
2n>N

S2

(
n, 2Δφp

−Δϕ

)
e−

2π(2n+2Δφp
)τ

R

≈ −λ2R2
∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp

∑
2n>N

S2

(
n, 2Δφp

−Δϕ

)
δPa,Pb

(
1

Ea − E + 2π
R (2n+ 2Δφp

)

)
〈a|ϕ(0, 0)|b〉,

(315)

where δPa,Pb
indicates that the momentum of states |a〉

and |b〉 must be the same. Thus, we have succeeded in
writing δH2 as a sum over single fields. Here the ≈ indi-
cates we are only keeping primary fields that arise in the
OPE. As written, we can compute the correction to the

eigenstate
∑

a∈Hl
ca|a〉 with energy E via

δE =
∑

a,b∈Hl

cacb(δH2)ab. (316)

However if we approximate δH2 by dropping the depen-
dence on E − Ea (which is weak provided Λ � E), we
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can use δH2 much more expeditiously. We can study
the theory H0 + λVll + δH2 equipped with the cutoff Λ.
This theory is no harder to diagonalize than the original.
However, by doing so we find the the entire low-lying
spectrum of the theory, H0 + λV without cutoff, mak-
ing relative errors of O(λ(RN )2−4Δφp ), O(EΛ ). The reader
may note that matrix (δH2)ab is not symmetric in a, b.
This is a consequence of our choice in Eq. (307), where
manifest Hermiticity is lost, together with dropping less
singular terms in the OPE. If instead of Eq. (307), we

represent δH2 via

δH2 = −λ2
∑
c∈Hh

∫ ∞

0

dτeEτV (τ)|c〉〈c|V (0)e−H0τ ,

(317)
and take the OPE of the perturbing field with itself to
read (this essentially involves a different choice of sub-
leading terms in the OPE)

φp(x1, 0)φp(x2,−τ) =
∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp
|z1 − z2|−4Δφp+2Δϕ |z1|2Δφp |z2|2Δφp−2Δϕϕ(x1, 0) + . . . , (318)

with z1 = e−i 2π
R x1 , z2 = e−

2π
R (−τ+ix2), we obtain instead

(δH ′
2)ab ≈ −λ2R2

∑
ϕ

(
R

2π

)2Δϕ−4Δφp

Cϕφpφp

∑
2n>N

S2

(
n, 2Δφp

−Δϕ

)
δPa,Pb

(
1

Eb − E + 2π
R (2n+ 2Δφp

)

)
〈a|ϕ(0, 0)|b〉.

(319)
This is the same expression as in Eq. (315) with Ea replaced with Eb (we mark (δH2)ab with a prime to indicate this
swap). This rewriting of δH2 then opens up the possibility of studying the fully Hermitian Hamiltonian H0 + λVll +
1
2 (δH2 + δH ′

2) as a model that is free of cutoff effects [to O(λ2)]. If instead of dropping E − Ea, E − Eb in δH2 and

δH ′
2 respectively, we replace them with Hll −H0 = λV , we would remove O(EΛ ) errors we were making by ignoring

the E − Ea dependence previously of δ(H2)ab.

C. Third order contributions to δH

One can also consider the third order contribution to δH. This has been done for a φ4 Landau-Ginzburg theory in
Ref. 442. While looking at higher order corrections to δH can lead to improved results, it comes with some pitfalls.
It was pointed out in Ref. 442 that the expansion of δH in Eqn. 305 was not necessarily perturbative because even
at second order certain matrix elements of δH2 were unbounded (at least in the case of Landau-Ginzburg theories).
Some of these difficulties were overcome very recently in Ref. 498. We will not discuss details here of this, but instead
be content in giving the general form of δH3 appropriate for perturbed CFTs. δH3 can be put in a similar form to
Eq. (307):

δH3 =
∑

c,d∈Hh

∫ ∞

0

dτ1

∫ 0

−∞
dτ2e

(E−H0)τ1V (τ1)|c〉〈c|Vhh(0)|d〉〈d|V (τ2)e
−(E−H0)τ2 . (320)

Manipulations, along the same lines as those for δH2, allow us to rewrite this in the form

δH3 ≈ λ3R3
∑
ϕ,ϕ′

Cϕφpφp
Cϕ′ϕφp

(
R

2π

)2+2Δϕ′−6Δφp ∑
n,m>N/2

S2

(
n, 2Δφp −Δϕ

)
S2

(
n,Δϕ +Δφp −Δ′ϕ

)
× 1

R
2π (H0 − E) + 2Δφp

+ 2n
ϕ′(0, 0)

1
R
2π (H0 − E) + (4Δϕ + 2n+ 2m)

, (321)

where again we have limited ourselves in the OPEs to
terms involving primary operators (and hence ≈). Now,
provided we once again drop the (H0−E) dependence in
the denominators, we can add it to the Hamiltonian as
a Hermitian ‘counter term’ to eliminate errors of O(λ3)
arising from our use of the cutoff. As at the end of the last

section, if we are willing to play with the representation
of δH3 (as an integral over time dependent operators, as
well as the exact form of the OPE), we can arrive at a
Hermitian form for δH3 where the (H0−E) terms in the
denominators are kept.
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D. Dependence on cutoff

Despite writing explicit forms for δH2 and δH3, we
have not exhibited their dependence on the dimensionless
cutoff N . To do so, we note that for large n, S(n, a) is
given by

S(n, a) ∼ na−1. (322)

As a result, δH2 has the form

δH2 ∼ λR1−2Δφp × λ

(
R

N

)2−2Δφp

×
∑
ϕ

CϕφpφpN
2Δφp−2ΔϕR2Δϕ〈ϕ〉, (323)

where the last term, R2Δϕ〈ϕ〉, is a dimensionless O(1)
number. The size of δH2 is controlled by a factor,
λR1−2Δφp , that sets the energy scale of the correction
multiplied by a dimensionless factor, λ(RN )2−2Δφp , that
characterizes how convergent the perturbation theory (in
λ) is for a particular system size, R, as well as the dimen-
sionless cutoff N . There is an additional cutoff depen-
dence, N2Δφp−2Δϕ , whose exact effect depends on the
relevancy of the perturbing operator relative to the op-
erators, ϕ, that appear in the OPE of φp with itself.

Similarly we see that δH3 is of the order

δH3 ∼ λR1−2Δφp × λ2

(
R

N

)4−4Δφp

×
∑
ϕ,ϕ′

Cϕφpφp
Cϕ′ϕφp

N2Δφp−2Δϕ′R2Δϕ′ 〈ϕ′〉. (324)

This can continued to the nth order contribution:

δHn ∼ λR1−2Δφp × λn−1

(
R

N

)2n−2−2(n−1)Δφp

, (325)

where here we have dropped the dependency on the di-
mensional factor arising from the operators that appear
in the OPE of φp with itself.

E. Examples of perturbative improvement upon
the TSA+NRG

We will now consider two examples where Eq. (315) is
used to improve upon the raw TSA+NRG results. In the
first example, we study the corrections to the energies of
the ground state and first two excited state energies for
the sine-Gordon model at β2 = 1/2. In Fig. 23 we plot
these energies as a function of system size for a number of
different cutoffs. The solid lines are the energies arrived
at using the TSA+NRG and the dashed lines are those
energies plus the correction coming from Eq. 315. We
also plot the exact values (i.e. without cutoff) of the
energies (blue line with circle symbols) for comparison.
While the correction coming from Eq. (315) in all cases
improves the answer, it does not completely eliminate the
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FIG. 23. The perturbative energy corrections for the sine-
Gordon model at β2 = 1/2. In the three panels we show TSA
energy data as a function of system size, R, both without
(solid lines) and with (dashed lines) the perturbative correc-
tion accounting for the effects of the cutoff. The top, middle,
and bottom panels consider the ground state energy, the first
breather energy, and the second breather energy, respectively.
The blue line with circle symbols is the exact energy of these
states at a given R. The data is given for three different di-
mensionless cutoffs, N = 14, 18, and 22.

effects of the cutoff. This is not surprising: Eq. (315) is
perturbative in nature and so clearly we see that O(λ3)
(and above) corrections are non-negligible. We also see
that these higher order corrections grow in importance
with system size R. Again this reflects the fact that
Eq. (315) works best when the perturbing operator φp

leaves the theory close to its conformal UV fixed point,
i.e. when R is small.

This behavior is not particular to the sine-Gordon
model. It can also be seen in Fig. 24 where we plot
the correction Eq. (315) makes to the ground state en-
ergy of the tricritical Ising theory perturbed by the lead-
ing energy operator. The correction, while improving
the results towards the exact value of the ground state
energy, is both small as well as relatively smaller than
that seen for the sine-Gordon model (where the correc-
tion term makes up roughly half the distance between the
raw TSA+NRG data and the exact value of the ground
state energy).

F. Perturbative corrections for matrix elements

When discussing the analytical derivation of correc-
tions, we have focused on the perturbative corrections to
the energy levels. We can also analyze such corrections
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FIG. 24. The perturbative energy corrections for the tricriti-
cal Ising model perturbed by the leading energy perturbation.
We present data for the ground state energy (with its exact
analytical value subtracted off) for three different values of
the dimensionless cutoff, N = 6, 10, and 18. The uncorrected
TSA data is shown with solid lines while the corrected data
is presented with dashed lines.

for matrix elements; we will not do so in detail here, but
will give the dependence on cutoff N and system size R
that first order perturbation theory predicts. If we con-
sider the matrix element

MO
ab = 〈a|O(0)|b〉, (326)

of an operator O between two states |a〉 and |b〉, then
the correction to the matrix element that comes from
taking into account states above the cutoff to first order
in perturbation theory is

δMO
ab ∼ λ

∑
ϕ

CϕOφp
R2+2Δϕ−2ΔO−2Δφp

×N−2−2Δϕ+2ΔO+2Δφp 〈a|ϕ(0)|b〉. (327)

Here we see that the correction involves a sum over oper-
ators that appear in the operator product expansion of O
with the perturbing field φp. In the previous section we
have used this scaling form in combination with the nu-
merical renormalization group to dramatically improve
the predictions of the values of matrix elements by the
TSA. Eq. (327) was worked out in detail in Ref. [499], but
the dependence on N alone can be deduced by a simple
scaling analysis [434] provided the OPE of O and φp is
known.

G. Resummation of higher order terms:
Development of an RG equation

So far we have only considered the leading order per-
turbative corrections to the energies and matrix elements
coming from introducing a cutoff. However, it is possible
to resum this perturbation theory [435–437] by deriving a
one-loop RG equation. To see how, suppose for the sake
of simplicity that the only field appearing in the OPE of
φp with itself is φp, i.e. Cφpφpϕ = δϕ,φpCφpφpφp . Then
matrix elements of the correction Hamiltonian take the
form [see Eq. (315)]

(δH2)ab = −αλ2(2π)2ΔφpR1−2Δφp
R2−2Δφp

N2−2Δφp
Dab,φp ,

(328)
where α and Dab,φp are dimensionless constants and
Dab,φp depends on the states |a〉 and |b〉. Here we have
assumed the denominators in Eq. (315) can be approxi-
mated by

1

Ea − E + 2π
R (2n+ 2Δφp

)
→ R

4πn
. (329)

This is a valid approximation (in the sense that the cor-
rection terms for the approximation are suppressed by a
power of the inverse cutoff) if the dimensionless energy
RE/2π is far below the cutoff.
Now compare this matrix element with the matrix el-

ements of the original Hamiltonian:

(Hpert)ab = λR1−2Δp(2π)2ΔpDab,φp . (330)

Here it looks like the effect of accounting for the states
above the cutoff in second order perturbation theory is
equivalent to simply replacing the coupling λ in the orig-
inal Hamiltonian by

λ → λ− αλ2 R
2−2Δp

N2−2Δp
. (331)

Instead of asking what all the states above the cutoff
N contribute, we can instead consider only the contribu-
tions arising from states within an energy shell [N,N+1]

(δH2)ab(N)− (δH2)ab(N + 1) =

−αλ2R3−4Δp(2π)2Δp(2− 2Δp)N
2Δp−3Dab,φp

.(332)

So, if we want to compute energies in a theory with cutoff
N +1 and coupling λN+1, we can simulate a theory with
cutoff N and simply choose the coupling λN given by

λN = λN+1 − α(2− 2Δp)λ
2
N+1

R2−2Δp

N3−2Δp
. (333)

In which case, we expect to obtain identical results, up to
λ3 errors. This statement can be written as a differential
equation:

dλN

dN
= α(2− 2Δp)λ

2
N

R2−2Δp

N3−2Δp
. (334)
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FIG. 25. The approximate perturbative energy corrections for
the sine-Gordon model at β2 = 1/2 where the state energy de-
pendence is ignored, i.e. the denominator in Eq. (323) is sim-
plified by dropping Ea−E. In the three panels we show TSA
energy data for the cutoff N = 18 as a function of system size,
R, for: i) the TSA data without the energy correction (red
solid line); ii) the TSA data with the exact perturbative cor-
rection accounting for the effects of the cutoff (black dashed
line); and iii) the TSA data with approximate perturbative
correction (green dotted line). As in Fig. 23, the top, middle,
and bottom panels consider the ground state energy, the first
breather energy, and the second breather energy respectively.
The blue line with circle symbols is the exact energy of these
states at a given R. We see that the approximate correction
does slightly better in improving the ground state energy to
its exact value in comparison to the exact correction with the
full energy denominator. However for the two breathers, the
approximate correction does considerably worse than its exact
counterpart.

Integrating this equation, we find

λN =
λ∞

1 + αλ∞R2−2ΔpN2Δp−2
(335)

Physically, this should be understood in the following
manner. A theory with cutoff N and coupling λN is
equivalent to a theory with no cutoff and coupling λ∞.
This is a rather powerful formula, inasmuch as it allows
us to compute contributions from very high energy states
with finite numerical effort.
Having said this, a note of caution is needed. A key

approximation in the development of this RG equation is
the rewriting of the denominator in Eq. (329). The qual-
ity of this approximation is, however, a model dependent
statement. We give an an example of this in Fig. 25; we
recompute the perturbative corrections to the low lying
energy states coming from Eq. (315) by making the ap-
proximation in Eq. (329). We see that the improvement

in the ground state energy due to adding in the perturba-
tive correction is largely unchanged by making this ap-
proximation. However, this approximation renders the
corrections to the first two excited states coming from
Eq. (315) negligible, whereas before the improvement was
notable (compare Fig. 23 to Fig. 25). The detailed reason
for this is that in sine-Gordon model the operator in the
sum

∑
ϕ dominating Eq. (315) is the identity operator.

In making the approximation in Eq. (329), the correction
term due to the identity operator is then the same for all
states, leaving the relative energies of the ground state
and excited states unchanged.

VII. OTHER IMPROVEMENTS ON THE TSA

A. Sweeping

The RG improvements on the TSA described in the
previous section are mostly geared towards extracting
low energy information. However, there will be occa-
sions where knowledge of the low energy states together
with their matrix elements is insufficient and where in-
formation for states with extensive energy is needed. An
important example of where such information might be
needed is the description of a system after a quantum
quench (see, e.g., Refs. [90–101]). Suppose one initializes
a system in the ground state, |gs〉, of a Hamiltonian, H.
Then, at time t = 0, one non-trivially changes the Hamil-
tonian H to H ′ such that |gs〉 is no longer an eigenstate
of the system. The old ground state is now some non-
trivial linear combination of the new eigenstates of H ′,
|E′s〉:

|gs〉 =
∑
s

cs|E′s〉 (336)

The time-evolution of the state post-quench is easily de-
scribed in this representation:

|gs(t)〉 =
∑
s

cse
−itE′

s |E′s〉 (337)

If the quench injects sufficient energy into the system, the
coefficients of the expansion cs will have non-zero weight
at energies E′s mid-spectrum. Hence in order to describe
the post-quench dynamics of the system, we need to un-
derstand states, |E′s〉, that lie mid-spectrum.
In order to obtain mid-spectrum states in the fully per-

turbed system with good accuracy we add a sweeping
procedure to the NRG, which is not dissimilar to the fi-
nite volume algorithm in DMRG [75]. Or equally good,
this procedure may be considered as an extended set of
Jacobi transformations done to diagonalize a symmet-
ric matrix (extended in the sense that we are zeroing
blocks not individual elements of a matrix). While this
technique was first developed to understand level spac-
ing statistics in perturbed conformal field theories [500],
it was crucial in work for the study of quenches of the
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FIG. 26. The evolution of the first 1000 energies of the sine-
Gordon model at β = 1/2 and R = 15 after successive sweeps.

Lieb-Liniger model where a one-body integrability break-
ing perturbation was added [451].
The procedure works as follows. Suppose we have com-

pleted the NRG procedure described in Sec. VIA for M
iterations. In doing so, we run through the first N+MΔ
states of the conformal basis. We now begin anew, but
instead of working with N + MΔ conformal states we
work with a basis formed from the eigenstates generated
in the first NRG procedure. This basis is given by

|E〉M1 , . . . , |E〉MN , |E〉1N+1, . . . , |E〉1N+Δ,

|E〉2N+1, . . . |E〉2N+Δ, . . . |E〉M−1
N+1 , . . . , |E〉M−1

N+Δ,

|E〉MN+1, . . . , |E〉MN+Δ. (338)

We see that this basis is formed from taking the first N
states coming from the last NRG iteration (and so the
best guess we have at the N lowest energy states in the
theory), followed by the M × Δ states we discarded in
the M iterations of the NRG (those with upper indices
1, . . . ,M and lower indices N+1, . . . , N+Δ). This basis
is much closer to the true eigenstates of the system than
the initial conformal basis was. Using this basis, we re-
peat the NRG iterations; this set of iterations constitutes
a single sweep. We typically find that the eigenenergies
converge rapidly after only a handful of sweeps.
To test this procedure we compared the results of an

exact diagonalization for the first 1000 eigenenergies of
the β2 = 1/2 sine-Gordon model with a cutoff of N = 22
(with this cutoff there were 39279 states in Hilbert space)
with the same 1000 eigenenergies as computed using the
NRG where N = 1000 and Δ = 500 + different numbers
of sweeps. This is shown in Fig. 26. With no sweeps,
we see that the lowest lying eigenenergies from the NRG
agree with those of the ED at the 10−3 level (the eigen-

FIG. 27. The numerical values of the expansion coefficients of
the ground state of the sine-Gordon model at β2 = 1/2 and
R = 10 in terms of the basis of the massless compact boson.
The majority of basis states make only a small contribution
to the ground state eigenstate.

values themselves are roughly O(1)). However we see
that by the 500th eigenvalue, this disagreement is at the
10−2 level. If we now perform two sweeps, we see a dra-
matic improvement between the ED and NRG+sweeps.
Up to the 500th eigenvalue, we obtain agreement that is
no worse than 10−4. If we perform six sweeps, we find
the agreement improves to 10−8. Further sweeps do not
improve on this (although they do increase the agree-
ment for higher energy eigenstates). This floor of 10−8

is likely a result of inherent numerical noise. To reduce
this would require greater precision numerics than that
offered by C++ doubles.

B. Metrics for the Hilbert space other than energy

A fundamental assumption of the TSA and the NRG
is that low energy states in the unperturbed eigenbasis of
H0 are the most important for determining the physics
of the low energy states in the full theory, H0 + λVpert.
In turn this is tied in to the assumption that Vpert is a
relevant operator. However it is worthwhile to question
just how valid this assumption is in one particular case.

We do so for the ground state of the sine-Gordon model
at β2 = 1/2, R = 10. We compute the ground state
using the NRG+TSA with (Ns,Δ) = (1000, 500) and
dimensionless cutoff N = 26. In this example, a basis
of 135,901 unperturbed eigenstates of the massless boson
is employed. In Fig. 27 we present the coefficients of
expansion, {ci}, for the ground state coming from this
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computation, i.e.

|Egs〉 =
∑
i

ci|i〉massless boson. (339)

We see two trends in the size of these coefficients. Firstly,
we see a general trend (as determined by either the mean
or the median) where the size of the coefficients decay
exponential with the unperturbed energy of the state
(we roughly expect that the unperturbed energy of the
ith state |i〉massless boson ranked in energy to behave as
Ei ∼ log(i) as the size of the Hilbert space grows expo-
nentially in energy). However while this is the general
trend, there is tremendous scatter in the magnitudes of
the coefficients. For any given energy range there are a
set of states that are orders of magnitude more impor-
tant than the mean/median and similarly a set of states
whose coefficients are orders of magnitude smaller than
the mean/median. It would greatly improve numerically
efficiency if the latter could be identified before any cal-
culation was done and excluded from the computation.
While there is no general principle by which this can be

done (at least none of which we know), there is a practical
way of accomplishing this aim [430, 431, 450, 451]. There
is a heuristic expectation that the high energy states,
|high en.〉, that are important for low-energy properties
will have a matrix element of appreciable magnitude with
the ground state, i.e. the matrix element

〈high en.|Vpert|g.s.〉, (340)

will be large. Here the relevant ground state |g.s.〉 is not
the unperturbed one but the full ground state. However
if one has to compute the full ground state of the theory
before determining which high energy states are impor-
tant, one is no further ahead. Crucially, however, one can
compute a (rough) approximate ground state of the full
theory using, e.g., a low cutoff with little numerical effort.
With the rough approximant at hand, one computes the
above set of matrix elements for all unperturbed states
up to a much higher energy cutoff. Ordering the un-
perturbed eigenstate by the size of 〈high en.|Vpert|g.s.〉,
rather than by energy, provides a much more efficient
way of moving through the Hilbert space of the theory.
To illustrate this, we present the ground state en-

ergy of the sine-Gordon model at β2 = 1/2 under the
TSA+NRG with the conformal basis of states ordered
by energy (i.e., the traditional TSA) and by matrix el-
ement overlap (as described above) in Fig. 28. In par-
ticular, we consider the overlap matrix elements for the
first three low-lying states (not just the ground state)
of the theory computed with much lower cutoff (cor-
responding to roughly 2000 states, as opposed to the
≈ 135, 000 states considered with cutoff N = 26). We
see that the TSA+NRG with the reordered set of states
converges much more quickly to the final answer than
the TSA+NRG with the original energy ordering of the
states. This reflects that the reordering by the size of
matrix elements does a good job of identifying the states
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FIG. 28. The ground state energy as a function of NRG step
size for both the basis ordered in terms of energy (the tradi-
tional TSA approach) and the reordered states. In the second
case, the basis is reordered according to the size of the overlap
of the perturbation (cos(βφ)) between a state and the three
lowest energy states (which is obtained through a TSA com-
putation with a much smaller cutoff, consisting of roughly
2000 states). This reordering captures, in some sense, the rel-
ative importance of a state. The NRG converges much more
quickly to its final answer with the reordered basis than with
the basis ordered in terms of energy.

of greatest importance. In fact with the reordered set
of states, we could terminate the TSA+NRG at step
100, obtaining the same answer (to the fourth signifi-
cant digit) as the TSA+NRG performed with the list of
states ordered by energy.

Using lists of states ordered by metrics other than en-
ergy was important in TSA studies of the Lieb-Liniger
model [450, 451] and in TSA studies of the single-particle
sector of gapped carbon nanotubes [430, 431]. In both
cases, one had to work at cutoffs corresponding to trun-
cated Hilbert spaces with sizes of order 106. By reorder-
ing the states with this method one was left, typically,
with a space of ‘important’ states of size 105.

VIII. APPLICATIONS OF THE TSA

To close our discussion of the TSA, in this final section
we briefly consider a variety of relatively recent applica-
tions of the TSA. But reader be warned: these appli-
cations are not a comprehensive summary, rather they
reflect the particular interests of the authors.
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A. Semiconducting carbon nanotubes

We begin with an application that involves direct com-
parison with experimental data. One consequence of
making contact with experimental data here was the need
to take into account the effects of the TSA cutoff in a
non-trivial way. In everything we have discussed before,
we have been wanting to remove the effects of having a
cutoff in the theory. But real experimental systems al-
ways have a finite bandwidth and so a finite cutoff. Thus
in this work we faced the challenge of connecting a TSA
cutoff with a physical bandwidth.
Even beyond questions of the role of the cutoff, the

study of semiconducting carbon nanotubes in Refs. [430,
431] represent a non-trivial application of the TSA. These
quasi-one dimensional quantum systems, can be shown to
be equivalent to a generalized sine-Gordon model of four
bosons [431, 501], a much more complicated theory than
typically studied with the TSA:

H = H0 +Hgap,

H0 =

∫
dx

∑
i=c+,c−,

s−,s+

vi
8π

(
Ki(∂xΘi)

2 +K−1
i (∂xΦi)

2
)
,

Hgap =

∫
dx

4Δ̃0

π

[∏
i

cos

(
Θi

2

)
+

∏
i

sin

(
Θi

2

)]
.

The four bosons arise from the Abelian bosonization of
the fermions in a particular subband of the nanotube
(see, for example, Appendix A). In each subband the
electron has a four-fold degeneracy, arising from the two
spin and two valley degrees of freedom; this leads to four
bosons. Whilst the electronic degrees of freedom carry
charge, spin, valley and chirality quantum numbers, the
bosonic fields in the Hamiltonian represent particular lin-
ear combinations of these; in particular, Θc+ is the total
charge boson.
The electronic interactions are characterized by Ki,

the Luttinger parameters for each of the bosons. The
long-range Coulomb interaction that is present between
charges in the nanotube strongly renormalizes the total
charge Luttinger parameter, Kc+, whilst the remaining
three remain close to one. Kc+ can be determined from
various parameters of the tube

Kc+ =

(
1+

8e2

πκ�v0

[
− log(kminRtube)+c0

])−1/2

. (341)

This expression for Kc+ takes into account all of the key
parameters of the tube: (i) κ is the dielectric constant
of the medium surrounding the tube and is the factor
that determines most strongly the effective strength of
the Coulomb interaction, i.e., how much Kc+ deviates
from 1; (ii) kmin is the minimum allowed wave vector in
the tube, which is necessarily larger than 2π/L (where
L is the length of the tube). In principle kmin can be
much larger than this minimal scale, say, on the order
of the inverse mean free path in the tube; (iii) c0 is an
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FIG. 29. The scaling functions in the limit of infinite band-
width for the Eii,exc excitons (excitons formed as a bound
state of a hole in the ith valence subband and a particle in
the ith conduction subband) and the particle-hole continuum,
Econt. At Kc+ = 1 (the noninteracting point) these functions
converge to the value 2. Inset: Sketch of Eii,exc and Econt ex-
citations. Reprinted figure with permission from R. M. Konik,
M. Y. Sfeir, and J. A. Misewich, Phys. Rev. B 91, 075417
(2015). Copyright (2015) by the American Physical Society.

O(1) constant that depends on the wrapping vector [the
vector (n,m) that identifies how a graphene sheet is rolled
up to form a particular tube], and has been derived in
Refs. [502, 503]; and (iv) Rtube is the radius of the tube.
Typically in carbon nanotubes, the total charge Lut-

tinger parameter is strongly renormalized with Kc+ tak-
ing values in the range of ∼ 0.2. We also note that be-
cause the Luttinger parameters for each of the bosons is
different, their velocities are also different as vi = v0/Ki,
where v0 is bare Fermi velocity in the subband.
The coupling Δ̃0 in Hgap is a function of the bare gap

Δ0 of the subband through the relation

Δ̃0 = Δ0

(
Λtube

vc+

)(1−Kc+)/4

, (342)

where Λtube is the effective bandwidth of the tube (not
to be mistaken for the TSA cutoff).
One key aim of the work [430] was to determine the

energies of optically active excitons (electron-hole bound
states) in the carbon nanotubes. By dimensional analysis
the energies of the excitons take the form

Eexc = fΛtube
exc (Kc+)Δ̃

4/(5−Kc+)
0 v

(1−Kc+)/(5−Kc+)
c+ , (343)

where fΛtube
exc is a dimensionless scaling function that de-

pends in part on the total charge Luttinger parameter
Kc+. However it also depends on the effective tube band-
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FIG. 30. (a) The function A(Kc+) giving the size of the fi-
nite bandwidth correction to Eii,exc. (b) The size of this cor-
rection, δEii,exc, for the excitons, E33,exc and E44,exc, of the
four tubes studied in Ref. [504]. Note that here p = i + 1
is a subband index. Reprinted figure with permission from
R. M. Konik, M. Y. Sfeir, and J. A. Misewich, Phys. Rev. B
91, 075417 (2015). Copyright (2015) by the American Phys-
ical Society.

width Λtube. This dependence has the following form:

fΛtube
exc = f∞exc

[
1 +A(Kc+)

(
Δ̃0

v0

)2(
v0

Λtube

)(5−Kc+)/2
]
.

(344)
The first term in this equation for the excitonic energy
scaling function involves f∞exc, the scaling function in the
absence of a cutoff. The second involves, A(Kc+), a di-
mensionless constant that gives the first correction to the
exciton energies coming from the presence of a finite cut-
off. In Ref. [430], the relationship between the bandwidth
cutoff of the tube Λtube and the TSA cutoff was argued
to be:44

Λtube =
eγ

4
ΛTSA. (345)

Once this relation was established, it was possible to use
the TSA to determine the experimental excitonic ener-
gies. As we will see, taking into account the correction
to these energies induced by a finite cutoff was important
in obtaining a good match between the TSA result and
those measured in experiments, such as Refs. [504, 505].
In Fig. 29 we present the infinite bandwidth TSA-

derived scaling functions, f∞, as a function of K−1
c+ for

both the excitons that form within the i − th subband,
f∞ii,exc, as well as the scaling function for the continuum
f∞cont (this is twice the single particle gap). The differ-
ence in energy between the continuum and the exciton
is the excitonic binding energy, typically large in carbon
nanotubes.
In the left panel of Fig. 30 we plot the constant A(Kc+)

as a function of Kc+, determined with the TSA. In the

44 This was argued on the basis of how the cutoff modifies the
normal ordering of vertex operators.
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PRB 82, 195424 (2010)
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E11, p=1

E22, p=2

(Kc+ = 0.24, κ = 2.45)

E33, p=4

E44, p=5

(Kc+ = 0.16, κ = 1)

FIG. 31. Comparison of the measured exciton gaps in the first
four subbands, Eii, i = 1, 2, 3, 4 (p = 1, 2, 4, 5 in the notation
of Ref. [504] to that obtained using the TSA with the cor-
rections to finite bandwidth included. Reprinted figure with
permission from R. M. Konik, M. Y. Sfeir, and J. A. Mis-
ewich, Phys. Rev. B 91, 075417 (2015). Copyright (2015) by
the American Physical Society.

right panel, we also show the corrections in energy (given
in physical units of eV) for excitons in the third and
fourth subbands as measured in Ref. [504]. These correc-
tions turned out to be substantial, on the order of 10% of
the measured excitonic energies. Without having taking
into account the finite bandwidth corrections, the agree-
ment between theory and experiment found in Ref. [430]
would have been substantially worse. We present in
Fig. 31 the agreement between TSA and experiment for
the data for all four subbands presented in Ref. [504].
While we refer the reader to Refs. [430, 431] for details

of the TSA implementation, the techniques introduced
in Section VIIB were crucial to this study. In particular,
to get reasonably robust results for f∞cont it was necessary
to work with large systems, in order to suppress finite
size corrections. Finite size corrections were considerable
for the single particle excitations because of the strong
renormalization of the charge velocity by the Coulomb
interaction. This meant in turn that it was vital to work
at a large dimensionless cutoff in the TSA. This resulted
in Hilbert space sizes on the order of 106. It would not
have been possible to deal with such large Hilbert spaces
without determining which of the unperturbed states in
the four boson Hilbert space actually contributed to the
energies in the single particle sector.

B. Non-equilibrium behavior of the Lieb-Liniger
model perturbed by one-body potentials

Another non-traditional application of the TSA has
been to study one-body perturbations of the Lieb-Liniger
model. The TSA is normally focused upon the study of

Page 68 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



69

theories with Lorentz invariance; the Lieb-Liniger model,
however, is not a relativistic theory. Moreover, the
ground state of this model is not the typical vacuum state
that we encounter in relativistic field theories, but is in-
stead a state that knows of the number of particles in the
theory. This presents its own unique challenges for using
the TSA.
The Lieb-Liniger model has a Hamiltonian given by

HLL =

∫ R

0

dx
(
∂xψ

†(x)∂xψ(x) + cψ†(x)ψ†(x)ψ(x)ψ(x)
)
,

(346)
where ψ†(x) are Bose field operators satisfying the canon-
ical commutation relations:

[ψ(x), ψ†(x′)] = δ(x− x′), (347)

c describes the strength of the interaction (repulsive if
c > 0), running from c = 0 (free bosons) to c = ∞
(hardcore bosons or, equivalently, free fermions). In this
Hamiltonian � = 1 and the mass of the bosons m has
been set to 1/2.

We will be interested in describing one-body perturba-
tions to the Lieb-Liniger model, i.e., perturbations that
involve the density operator:

Vpert =

∫ R

0

V (x)ρ(x), (348)

where ρ(x) = ψ†(x)ψ(x) is the density operator. We
have studied the Lieb-Liniger under two different per-
turbing potentials: one where Vpara(x) = mω2x2/2 was
a harmonic trapping potential and one where Vcos(x) =
A cos(2πnx/R) with n ∈ Z is a cosine potential commen-
surate with the system size, R.

In our work on the Lieb-Liniger model, we were pri-
marily interested in studying quantum quenches. In this
context, a quantum quench is a situation where we pre-
pare the system in its ground state corresponding to one
potential, Vpre(x), which at time t = 0 is switched to
a different potential, Vpost(x). Having done so the sys-
tem is no longer in its ground state, but is instead in
some complicated superposition of eigenstate states of
the post-quench Hamiltonian: {|Ei,post〉}, i.e.

|Egs,pre〉 =
∑
i

ci|Ei,post〉. (349)

Because the post-quench (t > 0) state of a system is not
(in general) an eigenstate, it begins to execute non-trivial
time evolution. In Refs. [450, 451], it was our goal to de-
scribe such evolution. In general our strategy is to use
the TSA to determine both the ground state, |Egs,pre〉,
with respect to the pre-quench one-body potential and
then to determine, again with the TSA, a sufficient num-
ber, M , of post-quench eigenstates {|Ei,post〉} such that
two conditions held:

1. M was large enough so that the sum of expansion

coefficients satisfied
∑M

i=1 |ci|2 > 0.99.

2. The energies of these M eigenstates were estimated
to be determined with a relative accuracy of 10−3.

If we could do so, we would then be able faithfully to
reproduce the time evolution of the state, given by

|Egs,pre〉(t) =
∑
i

cie
iEi,postt|Ei,post〉, (350)

out to times (at least) many multiples of the fundamental
time scale, tF , of the gas (where tF = 1/EF , EF = k2F ,
and kF = πN/R). We note that this is only one pos-
sible strategy for computing time evolution following a
quantum quench within the TSA framework. Recently
Ref. [449] showed that one could use expansions of the
time evolution operator, eiHpostt, in terms of Chebyshev
polynomials to study quenches in the quantum Ising field
theory. It would be interesting to explore this technique
for quenches in the Lieb-Liniger model or other integrable
field theories.
We now will consider some of the implementation de-

tails in the first step in our strategy, the TSA deter-
mination of |Egs,pre〉. As a computational basis for the
TSA, we employ the eigenstates of the unperturbed Lieb-
Liniger model. These states are considerably more com-
plicated to construct and delineate than the cases we
have considered previously, all of which involved manip-
ulations of the states of either a CFT or a free massive
model. Each eigenstate of the Lieb-Liniger model is char-
acterized by a set of N rapidities, {λi}Ni=1, where N is the
number of particles in the system. These rapidities are
the solution of a set of N so-called Bethe ansatz equa-
tions:

eiλiR =

N∏
j=1

λi − λj + ic

λi − λj − ic
, (351)

where i = 1, . . . , N . The different states are marked by
differentN -sets of quantum numbers {ni}Ni=1 that appear
after the Bethe equations are put in logarithmic form,

2πni = λiR− 1

i

N∑
j=1

log

(
λi − λj + ic

λi − λj − ic

)
, (352)

for each i = 1, . . . , N . These sets of λi’s completely char-
acterize the state. For example, the momentum P and
energy E of a state is given in terms of these rapidities
by

P =
N∑
i=1

λi, E =

N∑
i=1

λ2
i . (353)

To solve the Bethe equations, we employed abacus, a
set of highly optimized C++ routines written by Jean-
Sebastien Caux [110] for this express purpose. abacus
also readily enables the computation of the matrix ele-
ments of the density operator needed by the TSA. The
matrix elements can be expressed in the numerically ef-
ficient form of a matrix determinant [506, 507].
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FIG. 32. The density profile of the ground state of the Lieb-
Liniger model in a harmonic potential Vpara(x) = mω2x2/2
with ω = 0.16. Here the gas has N = 56 particles and is in a
system of size R = 56. We consider the gas at two values of
its interaction parameter, c = 7200 and c = 10. We plot both
the analytic computation of the density using a 1/c expansion
about the hardcore limit (for some details see Ref. [450]) as
well as the density as computed using the TSA. Adapted from
Ref. [450].

Beyond the relative computational complexity of the
states and the matrix elements for the Lieb-Liniger
model, the Hilbert space one must handle is larger than
in the case of relativistic field theories. This is in part
a consequence of having to work with reasonably large
numbers of particles, N , and system size, R, in order to
limit finite size effects. For large N and R, it proved
suboptimal to truncate the Hilbert space through the in-
troduction of an energy cutoff. Instead, we found that
the Hilbert space was better classified by the number
of particle-hole excitations a state contained relative to
the ground state. States consisting of many particle-hole
excitations typically were less important and had only
negligible matrix elements involving the density opera-
tor. In truncating the Hilbert space, we never considered
states with more than five particle-hole excitations. Even
with this constrained Hilbert space, the number of states
remains immense, but many states only weakly influence
the low energy physics of the ground state. To determine
which states were important, we employed the method-
ology described in Sec. VIIB: i) we first constructed the
ground state using a relatively small number of low en-
ergy eigenstates of the Lieb-Liniger model; ii) we com-
puted the matrix element of ρ(0) with respect to this
ground state and all the unperturbed states; iii) we then
truncated the states according to this weighting. In this
way we were able to study systems with up to N = 56
particles and obtain accurate results.

In the first Lieb-Liniger quench studied with the TSA,
see Ref. [450], we initialized the system in a parabolic

t>0 

FIG. 33. This sketch shows the quench of the 1D Bose gas
prepared in the ground state of a parabolic potential and then
released at t = 0 into a cosine potential. The shaded green
regions represent equilibrium density profiles of the gas in the
presence of the confining potentials. Adapted from Ref. [451].

trap, Vpre(x) = Vpara(x), and subsequently quenched it
by simply removing the trap Vpost(x) = 0. To demon-
strate that we could successfully construct the ground
state of the Lieb-Liniger model in a parabolic potential,
we considered the gas in its large c limit. In this limit,
the model is equivalent to free fermions perturbed by
a four-fermion term whose strength is proportional to
1/c [508–510]. In this case the density of the gas can be
computed analytically. In Fig. 32 we see that the density
of the gas in the trap computed using the TSA compares
well against the 1/c analytic computation.

Having constructed with the TSA, as described above,
the ground state in the parabolic potential, the subse-
quent post-quench time evolution was straightforward to
describe. As the post-quench eigenstates are the same set
of states as the computational basis, the two conditions
for the construction of the post-quench eigenstates stated
previously are automatically satisfied. In particular, the
expansion of the pre-quench ground state in terms of the
post-quench eigenbasis is completely saturated and, as we
know the energies of the computational basis to arbitrary
accuracy (as it is possible to solve the Bethe equations to
arbitrary accuracy), we can time evolve the t = 0 initial
state to arbitrary times.

In our second work on quenches in the Lieb-Liniger
model, Ref. [451], we studied a more complicated quench:
a quench from a parabolic potential, Vpara(x), to a co-
sine potential, Vcos(x) (see Fig. 33). The pre-quench use
of the TSA to construct the ground state in the trap
was the same as in Ref. [450]. But now we needed to
use the TSA to construct a large number of the post-
quench eigenstates of the gas in a cosine potential. To
do so we employed the sweeping mechanism discussed in
Sec. VIIA, an adaptation necessary to compute states
with finite energy density. In Fig. 34 we plot the energies
of the first 365 levels of a gas in a cosine potential in
the hardcore limit; we found that the TSA was able to
determine these energies to within 10−3.

In Fig. 35 we provide an example of the time evolution
induced by quenching the gas from a harmonic potential
to a cosine potential. In this case we consider a gas with
N = 14 particles for the same parameters as in Fig. 34.
While we only show the gas’s evolution out to t = 43tF ,
we are able to describe time evolution out to t = 85tF
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FIG. 34. A plot of the energy spectra for N = 14 par-
ticle gas with c = 7200 in a cosine potential of amplitude
A/EF = 0.35. The analytically computed results are given in
red, while in black are the corresponding numerics. On the
r.h.s., we expand a range of energy with a dense number of
states so as to better exhibit agreement between the numerics
and the analytics. We can determine the first 365 states (up
to energies of E = 65) with accuracy of 10−3 . Adapted from
Ref. [451].

before 1% of the wavefunction of the gas has dephased.45

Here we have focused on presenting results for the gas
at large c (in order to compare it to large c analytic com-
putations), but the TSA appears to work equally well
down to values of c = 1. While our ability to quantify
this is limited, as we do not have direct checks at finite
c, the convergence of the TSA as a function of Hilbert
space truncation behaves similarly. However, once we
start to look at c < 1 gases, we can see that the numeri-
cal performance becomes degraded at a given truncation
and that, in general, more states from the unperturbed
Lieb-Liniger Hilbert space are needed to describe a given
perturbation of the gas.

C. Perturbed Wess-Zumino-Novikov-Witten
models

Another class of models that have recently been stud-
ied with the TSA are perturbed WZNW models [189,
432, 433]. Such models have been the topic of extensive
discussions in Secs. II–IV of this review, and we refer the
reader to these for an introduction.
To study these models using the TSA, we find our-

selves in a similar situation as to the study of perturbed

45 For the appropriate definition of dephasing, see Appendix A of
Ref. [451].
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FIG. 35. The density profile of N = 14 particle gas in
a system of size R = 14 at selected times after a quench
from a parabolic to a cosine potential. This time dependence
is computed after releasing the gas prepared in a parabolic
potential with mω2L2/2EF = 10.36 (shown with a green
dashed line in the t = 0tF frame) into a cosine potential
Vcos(x) = 0.35EF cos(4πx/L) (plotted with a dashed line in
the t = 43tF frame). In the t = 0 frame, we show the density
profile as computed analytically in the hard-core limit. While
we only show the gas out to t = 43tF , we can run the time
evolution as far out as t = 85tF before dephasing exceeds 1%.
We see, however, that by t = 43tF the density profile of the
gas has already come close to its long time average (black
dashed line in the final panel). Adapted from Ref. [451].

minimal models. However, because WZNW models have
central charge c > 1, their Hilbert spaces are generically
larger and more difficult to handle numerically. Another
difference between the minimal models and WZNWmod-
els is that the structure coefficients which determine the
three-point functions (and are thus necessary for the de-
termination of matrix elements) are not generally known.
The only complete classification of such structure coef-
ficients is for the SU(2)k theories [203]. It is then not
surprising that all of the examples of perturbed WZNW
models treated so far involve perturbations of SU(2)k.
The unperturbed space of states, {|sWZNW〉}, that

forms our computational basis here is created by acting
on highest weight states (formed themselves by acting
with the primaries of the WZNW theory on the vac-
uum) with the modes of the current algebra operators
[see Eq. (14)]

|sWZNW〉 =
M∏
i=1

Jai
ni
|Δ, Δ̄〉, (354)

where here |Δ, Δ̄〉 is a highest weight state created by
OΔ,Δ̄(0, 0) (see Section IID 3). Like with the minimal
models, the set of states of the form of Eq. (354) are not
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all linearly independent, so we need to project out null
states using the Gram matrix from the different linear
combinations of the states in Eq. (354).

1. The Nambu-Jona-Lasinio model

While we refer the reader to Refs. [189, 432, 433] for
further details of the implementation of the TSA in these
models, we will discuss briefly the most interesting appli-
cation of the TSA to a perturbed WZNW model, a study
of the Nambu-Jona-Lasinio model, a model of 1 + 1 di-
mensional QCD. In its original form, the Hamiltonian de-
scribes six fermions interacting with one another through
current-current terms

H = i
(
−R†jσ∂xRjσ + L†jσ∂xLjσ

)
+m

(
L†jσRjσ +H.c.

)
+gJAJ̄A + gfJ J̄ , (355)

where Rjσ, Ljσ are annihilation operators of the right-
and the left moving quarks, j = 1, 2, 3 are color indices
and σ =↑, ↓ are flavor indices corresponding to up and
down quarks (heavier quarks are neglected in this treat-
ment). The speed of light has been set to one and a
summation over repeated indices is implied henceforth.
It is worth noting, although we will not discuss it in

any detail, that the TSA has previously been applied to
a 1+1D description of QCD where the effect of the gauge
field had not been reduced to an effective current-current
interaction, see Ref. [448]. However, in that case, the
gauge field was coupled to a single fundamental fermion
and so it is not possible to directly compare the results
of this work to those obtained with the Nambu-Jona-
Lasinio model.
In Ref. [189], we treated this Hamiltonian through re-

course to non-Abelian bosonization (again, see Section II
for an elaboration of this technique). To this end we ex-
plicitly write down SU(3)2 Kac-Moody currents of right
and left chirality

JA =: R†jσT
A
jkRkσ :, J̄A =: L†jσT

A
jkLkσ :, (356)

where TA
jk (A = 1, . . . , 8) are the generators in the fun-

damental representation of the SU(3) group, as well as
the chiral U(1) currents

J =: R†jσRjσ :, J̄ =: L†jσLjσ : . (357)

Here we stress that the U(1) symmetry does not corre-
spond to electric charge, but instead to conservation of
baryon number (i.e., baryonic charge). To analyze (355)
using non-Abelian bosonization, we used the fact that the
Hamiltonian density of free Dirac fermions with symme-
try U(1)×SU(N)×SU(M) can be represented as a sum
of a Gaussian U(1) theory and WZNW models of levels
k = M and k = N respectively [22, 139, 142].
When g > 0, the model (355) is asymptotically free and

acquires a mass gap, Mq = Λg2/3 exp(−2π/3g) (where Λ

is the UV cut-off), in the color sector even if the bare
mass m is zero. We focus on the scenario where this
dynamically generated quark mass, Mq, is the largest
energy scale in the problem. Then, the corresponding
effective Lagrangian density for low energies, E � Mq,
(that is, the color singlet sector of the theory) is writ-
ten in terms of the Abelian and non-Abelian Goldstone
modes. It takes the form of a sigma model [22, 186, 511],

L =
1

8π
∂μΘ∂μΘ+ λ cos

(
2Θ/

√
6K

)
+W [SU(2)3;G] +m∗Tr

(
eiΘ/

√
6KG+H.c.

)
, (358)

for a compact boson with radius (6K)1/2 that is cou-
pled to an SU(2)3 WZNW model [described by the La-
grangian W [SU(2)3;G], see Secs. II–IV, for the field G].
The effective mass m∗ is proportional to the bare quark
mass [m in (355)], K is a Luttinger parameter related to
the Abelian current-current coupling in the full unpro-
jected model (K = 1+αgf if gf � 1 where α is an O(1)
constant), and λ is a ’t Hooft instanton term [512].
In Ref. [189] the masses of a large portion of the excita-

tion spectrum in this model were determined numerically.
These excitations include (for simplicity we set K = 1 in
these descriptions):

1. Nucleons, Lorentz spin-1/2 bound states of three
quarks carrying isospin I = 1/2. These have the
field representations

nj
1/2 = C

1/2
δ,αβγε

abcRaαRbβLcγ

∼ exp
[
i
√

1/6(2ϕ− ϕ̄)
] [

F (1)
2/5F̄ (1/2)

3/20

]
, (359)

where j = ±1/2, and C
1/2
j,αβγ is an appropriate coef-

ficient projecting three isospin-1/2 representations
to one of an isospin-1/2. ϕ and ϕ̄ are the chiral
components of the bosonic field, Θ = ϕ + ϕ̄, and

F (j)
hj

, F̄ (j̄)

h̄j̄
denote the SU(2)3 holomorphic and anti-

holomorphic conformal blocks with isospin j, j̄ =

0, 1/2, 1, 3/2 and weights hj =
j(j+1)

5 .

particle species K = 0.4 0.6 0.8 1.0 1.2 1.4
nucleon 4.5 4.3 4.5 4.8 5.1 5.4
isoscalar meson 5.5 3.9 3.2 2.8 2.5 2.3
isovector meson 3.6 3.1 2.9 2.8 2.7 2.7
isoscalar deuteron 6.7 7.4 8.2 8.9 9.7 10.2
isovector deuteron 8.2 8.3 8.7 9.2 9.7 10.2

TABLE V. Masses of the low-energy particles at λ = 0 and
zero particle density determined from TSA in units M =
(m∗)1/(2−dm∗ ). We have estimated the error to be 0.5M and
1M in the meson and deuteron sectors, respectively, inde-
pendent of K, and a relative accuracy to be one order of
magnitude smaller. Adapted from Ref. [189].
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Their counterparts with opposite Lorentz spin are
given by similar expressions with barred quantities
interchanged with their unbarred counterparts.

2. Δ-baryons, Lorentz spin-3/2 particles carrying
isospin I = 3/2. These have field representations

Δj
3/2 = C

3/2
j,αβγε

abcRaαRbβRcγ

∼ exp
(
i
√

3/2ϕ
)
F (3/2)

3/4 , (360)

where now j = ±3/2,±1/2, and C
3/2
j,αβγ is a coeffi-

cient projecting the three isospin-1/2s onto isospin-
3/2.

3. Mesons, bounds states of two quarks with Lorentz
spin 0. There are two possibilities here: we have
both isosinglet mesons,

M0 = i(R†jαLjα −H.c.)

∼ ie−i
√

1/6ΘTr G+ h.c., (361)

and isospin-1 mesons,

Ma = R†jασ
a
αβLjβ

∼ e−i
√

1/6ΘTr
[
σa

(
G−G†

)]
. (362)

4. Finally there are dibaryonic states, formed from
bound states of six quarks, also known as
deuterons. These can exist both with isospin 0

d0 =
(
R1αεαβL1β

)(
R2γεγδL2δ

)(
R3ηεηρL3ρ

)
∼ exp

(
i
√

3/2Φ
)
Tr

(
G+G†

)
, (363)

and with isospin 1

da ∼ i exp
(
i
√

3/2Φ
)
Tr(σa(G−G†)), (364)

where Φ is the field dual to Θ.

The masses of these six types of excitations are given in
Table V for six different values of the Luttinger parameter
K. Reference [189] was the first time these masses were
determined in a non-perturbative fashion.

D. Landau-Ginzburg theories in 1 + 1D and higher

1. Landau-Ginzburg theories in 1 + 1D

The final recent application of the TSA that we will
discuss in this review is to Landau-Ginzburg theories,
i.e. free bosons perturbed by polynomial interactions,

H =
1

8π

(
(∂xΘ)2 + (∂xΦ)

2
)
+m2Θ2 + λΘ4 + . . . (365)

One might have thought that this canonical theory would
seemingly be a target for early studies using the TSA, but
in fact has only been treated in the past few years [438–
442]. There are two reasons that make this particular
application of the TSA of technical interest. The first
concerns how the zero momentum mode of the Bose field
is handled. If we think of the Landau-Ginzburg the-
ory as a perturbation of a massless free boson, we see
that we immediately run into a problem: unlike the pre-
viously discussed sine-Gordon model, the boson here is
non-compact. This means that the massless theory has
a continuum, rather than a discrete, spectrum of high-
est weight states. Thus no matter the truncation used,
one will alway end up with an uncountable number of
states. To deal with this difficulty several different strate-
gies were employed.
In the first study, Ref. [439] treated the zero mode of

the Bose field as periodic with some large period. Thus,
roughly speaking, the polynomial interaction (or at least
the zero mode portion of it) was approximated by a peri-
odic function. This gave reasonably well behaved results
for small coupling constants.
In the second strategy, employed in Ref. [438], the non-

interacting part of H included the mass term while the
Θ4 term was alone treated as the perturbation:

H0 =

∫ R

0

dx

(
1

8π

(
(∂xΘ)2 + (∂xΦ)

2
)
+m2Θ2

)
,

Vpert = λ

∫ R

0

dxΘ4. (366)

By using the massive non-interacting basis, the difficul-
ties of dealing with a massless non-compact boson and
its continuous spectra were avoided. The only limitation
in this approach is the need to consider perturbations
around the unbroken phase of the model. However, the
authors of Ref. [438] demonstrated that they could reach
the broken phase of the Θ4 theory with sufficiently strong
λ. They were able to do so, in part, through the use of
an analytic renormalization group of the type discussed
in Sec. VIB of this review.
In the final strategy employed, Refs. [440, 441], the

zero momentum mode of the theory was singled out for a
mini-superspace treatment analogous to that used in the
study of the Liouville theory [513–515]. This innovation,
in particular, enabled the study of the theory deep in
its broken phase. The basic idea here is to divide the
Hamiltonian of theory into three pieces:

H = Hzero +Hnon−zero +Hzero,non−zero (367)

where Hzero is the Hamiltonian for the zero mode a0, a
†
0

alone:

Hzero = απ2
0 + βa20 + γa40, (368)

here π0 is the momentum conjugate to a0 and α, β, γ
are constants depending on the system size, R, mass, m,
and Θ4 coupling of the theory. Hnon−zero involves the
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non-zero modes alone {an �=0, a
†
n �=0}, while Hzero,non−zero

involves coupling between the two sectors.
To proceed, one first solves the zero-mode piece of the

Hamiltonian. This amounts to solving a quantum me-
chanics problem. One can do this by looking for solutions
of the form

|ψ0〉 =
M∑
n=1

cn(a
†
0)

n|0〉 (369)

In practice the size M of the Hilbert space one searches
for solutions is on the order of 500 [440] to a few thou-
sand [441] states. Once one solves the zero-mode portion
of the Hamiltonian, one performs a standard TSA on the
full problem, but with the computational basis consisting
of states of the form

|ψ0〉 ⊗
K∏
i=1

a†ni<0|0〉 (370)

Having solved the zero-mode portion of the theory ‘ex-
actly’, the number of eigenstates |ψ0〉 of Hzero one needs
to include is small (less than 10 [440]).
The basic idea when using this approach to study the

broken symmetry states is that it is the zero mode sector
of the theory that is most sensitive to a negative bare
mass, i.e. it is the zero mode that gets localized around
a new field minima whereas the non-zero modes fluctu-
ate around their unbroken vacuum. So, if we first solve
this sector of the theory with high accuracy, the numer-
ical effort needed to solve the remaining full theory is
considerably reduced.

2. Landau-Ginzburg theories in higher spatial dimensions

One of the most interesting recent developments in
the use of the TSA to study field theories has been the
study in Ref. [452], where the Landau-Ginzburg model
was studied in higher (albeit fractional) dimensions.46 It
would be tremendously exciting if the extensive body of
work using the TSA to study continuum theories in 1+1
dimensions could be extended to higher dimensional field
theories. Indeed, Ref. [452] represents a promising start
here: the authors were able to observe the various phases
(broken, conformal, and unbroken) of the Θ4 theory and
were even able to make estimates for the critical expo-
nents of the theory. One question that will need to be
addressed in detail for TSA studies in higher dimensions
will be the choice of computational basis. One natural
extension of the work of Ref. [452] (discussed but not
implemented by these authors) would be to use a mas-
sive basis to study Landau-Ginzburg theories in higher

46 The authors here worked in fractional dimensional in order to
avoid null states that appear at integer dimension for free scalar
theories.

dimensions. In this vein, there has already an intriguing
proposal to use light-cone quantization in infinite volume
to provide a basis of states for the TSA in arbitrary di-
mensions [453].

E. Summary: the truncated space approach

In this part of the review, we have provided a com-
prehensive introduction to the TSA through its appli-
cation to two canonical examples: the quantum Ising
model and sine-Gordon model. Following this, we dis-
cussed recent work to extend the TSA, using analyti-
cal and numerical RG methods, to ameliorate the effects
of the Hilbert space truncation. Our discussions high-
lighted the strengths and deficiencies of the method, as
well as points where one needs to take care when ana-
lyzing the results. The TSA+NRG methods were then
applied to a wide variety problems: excitons in carbon
nanotubes, non-equilibrium dynamics of the Lieb-Liniger
model, 1+1D quantum chromodynamics, and Landau-
Ginzburg models.
Through the example applications, we saw how the

TSA+NRG can be directly applied to scenarios of exper-
imental interest (see, for example, Fig. 31 where we di-
rectly compare TSA+NRG results to experimental data),
as well as those of a more theoretical interest (see, e.g.,
Sec. VIII C). In Sec. VIIID we also presented a dis-
cussion of applications of the TSA to Landau-Ginzburg
theories, an important class of problems that underpin
much of our phenomenological understanding of phases
of matter. Extending such studies to higher dimensions
is at the forefront of current research with the TSA, see
Refs. [452, 453].
In the following section, we discuss an alternative route

to higher dimensional problems. By blending information
from TSA analyses of continuum one-dimensional quan-
tum systems with matrix product state technologies, we
can study (discrete) arrays of continuum systems.

IX. BEYOND INTEGRABILITY II: MATRIX
PRODUCT STATES FOR ARRAYS OF

INTEGRABLE CHAINS

A. Introduction

When there is no systematic analytical recipe to tackle
a many-body problem, we must turn to explicitly numer-
ical methods.47 Nevertheless even these methods must
introduce some form of approximation to make progress:
an exponential growth in the Hilbert space dimension
with the number of degrees of freedom limits exact di-
agonalization treatments to systems of O(10) interacting

47 In contrast to approaches where analytical expressions can be
written down, but still must be evaluated numerically, e.g. [110].
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objects. Here the largest numbers are possible only when
the local Hilbert space is small and symmetries exist that
reduce the Hamiltonian to block diagonal form. An ef-
ficient, yet accurate, approximate basis for representing
many-body states is therefore highly desirable. Such a
basis is now known for ground and low lying excited
states of 1D quantum Hamiltonians, yielding algorithms
which in many cases are numerically exact.48 These ma-
trix product states (MPS) constitute a variational ba-
sis over states with restricted entanglement, where the
maximum possible entanglement between two parts of a
system is controlled by the so-called bond (or matrix)
dimension.
A key development in understanding the usefulness of

MPS was the introduction of the density matrix renor-
malization group method, by White [75, 516]. This al-
gorithm allows one to find low energy eigenstates in 1D
quantum systems, though the elucidation of the relation
between DMRG and MPS came somewhat later [517–
519].
The particular efficacy of MPS representations in 1D

is a consequence of the behaviour of many-body en-
tanglement, a useful measure of which is the von Neu-
mann entanglement entropy, SE . As shown by Holzhey,
Larsen and Wilczek [520], and later by Calabrese and
Cardy [521], SE for many-body ground states (of Hamil-
tonians with short range interactions) in 1D grows only
logarithmically with system size in critical (gapless) sys-
tems and saturates at a scale set by the correlation length
in massive (gapped) systems. While similar behaviour is
expected for low lying excited states, an arbitrary state
can have much larger entanglement entropy, up to a max-
imum of ∼ logN in a system with N degrees of freedom.
As the bond dimension necessary to accurately repre-
sent a state grows with SE , the worst-case logarithmic
growth implies that MPS are numerically well suited to
studying the low energy spectrum of 1D problems: even
critical systems can be studied by a suitably controlled
extrapolation of results with bond dimension [522].
A major benefit of using MPS is that they allow for ro-

bust, stable and precise algorithms; besides DMRG there
are also algorithms for (real and imaginary) time evolu-
tion: time-evolving block decimation (TEBD and vari-
ants) [523] and a separate method based on the time-
dependent variational principle (TDVP) [524]. These
techniques can often be applied directly in the thermo-
dynamic limit, via the so-called iTEBD [525, 526] and
iDMRG [527] algorithms. They are also equally applica-
ble to fermionic, bosonic and spin systems, and can be
extended to finite temperatures [528–530]. Evaluation of
local expectation values is highly efficient: by using ma-
trix product operators (MPOs) and ‘canonical’ forms of
MPS these can be reduced to operations on one or few
sites. By construction matrix product states have the

48 This indicates that an algorithm can find the exact solution, to
a specified precision.

ability to directly access important quantum information
measures, including SE .
MPS have been applied to a diverse range of problems

in 1D quantum systems, with studies including:

1. Detailed mapping of the phase diagram of many
models;

2. Examination of stripes in the t − J model, moti-
vated by high-temperature superconductors [531];

3. The calculation of dynamical correlation functions
in quantum magnets [529, 532];

4. Simulation of non-equilibrium dynamics following
a ‘quantum quench’ [533–535];

5. Identification of topological order through the en-
tanglement entropy [536];

6. Describing high-energy eigenstates in many-body
localized phases [537, 538]

7. Construction of Floquet eigenstates in problems
with periodic time-dependent Hamiltonians [539];

amongst many other (see, for example, [540] for a list of
manuscripts where MPS technology is used).
One would like to translate these successes to strongly

correlated problems in 2D and above, not least because
of deficiencies in other available methods. Relative to
MPS methods, Quantum Monte Carlo [78] famously suf-
fers from a fermionic ‘sign problem’, requires careful
treatment of statistical uncertainties, and does not pro-
vide such easy access to quantum information measures
(though calculation of some generalised entropies is still
possible [541]). On the other hand, dynamical mean field
theory (DMFT) [542] is well suited to higher dimen-
sions (becoming exact in the infinite limit), but lacks
the spatial resolution of DMRG, and still requires the
solution of a complicated interacting impurity problem
by some other means (such as ED, QMC or an MPS
method [543]).
Unfortunately MPS algorithms are considerably less

powerful in 2D than in 1D. Why this is the case can again
be understood in the context of entanglement. Quan-
tum information theory indicates that the entanglement
of low-lying states obeys an area law [544, 545], with SE

for a bipartite system proportional to the size (area) A
of the interface between the two regions.49 In 2D this
entails much faster growth of SE with system size and
hence lower accuracy for a given bond dimension, even
for gapped systems.
The above notwithstanding, MPS techniques have

been fruitfully applied to two-dimensional systems. The
canonical two-dimensional approach to DMRG is to map

49 A known exception is critical fermions, for which an extra mul-
tiplicative logarithm gives A logA scaling [546].
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FIG. 36. Bipartite systems and area laws. a) The entangle-
ment between two partitions (red and blue) of a low energy
state in a gapped 2D system is proportional to the length of
boundary between them. b) In 1D the boundary reduces to
a finite number of points.

the 2D lattice to a 1D system with long range inter-
actions [547–549] (see Fig. 41). This mapping can be
chosen in a variety of ways, with different 1D paths
through the 2D system possibly being better (in the
sense of requiring smaller bond dimension for a given
accuracy) depending on the structure of the state or
Hamiltonian. A few among the many applications of
this method are: establishing the spin liquid ground
state of the spin half Heisenberg antiferromagnet on the
kagome lattice [550, 551], stripe formation in Hubbard
models [552, 553], and identifying toplogical orders [554]
(see Ref. [549] for a more complete list).
To overcome the lingering 1D character of MPS, sev-

eral generalizations have been proposed that aim to
represent states in higher dimensions in a direct way.
These fall under the moniker of tensor methods and
include projected entangled pair states (PEPS) [555–
557], their thermodynamic limit variant ‘iPEPS’ [558–
560] and the multiscale entanglement renormalization
ansatz (MERA) [561–563]. Both methods have proven
useful for analysing 2D systems, but they also have weak-
nesses. PEPS constitute a genuine variational basis for
higher dimensions, and can be applied in the thermo-
dynamic limit yet they are computationally expensive.
Furthermore the actual evaluation of expectation values
within PEPS requires approximations to be made, ruin-
ing the variational nature. MERA allows for exact eval-
uation of observables, however there is an even higher
numerical burden than with PEPS, and it is not vari-
ational, requiring particular choices to be made which
could in principle prevent convergence to the true state.
Hence, in comparison to 1D, there is still no single

‘best’ approach to strongly correlated physics in 2D, and

instead we must choose the most appropriate method
based on the model of interest and the quantities we wish
to measure.

The use of DMRG, MPS and tensor algorithms has
been a well established field for some time, and thorough
review articles on almost all aspects already exist. The
purpose of this section is not to replicate these works,
but to review a specific flavour of 2D MPS that has a
close connection to integrability, shares many of the ad-
vantages of 1D MPS, and is especially apt for analysing
anisotropic systems [564–566]. In essence these ‘chain
array matrix product states’ (ChainAMPS) form a two-
dimensional system as an array of one-dimensional quan-
tum chains. This may appear to negate the original ben-
efit of MPS, namely the transformation of an exponential
number of complex numbers into a linear number of finite
dimensional matrices. In fact, when an exact strongly
correlated basis for the 1D chains is already known, and
the entanglement between them is limited in some man-
ner, this arrangement can be highly beneficial.

We first provide a brief overview of MPS in 1D and
the canonical approach to 2D in IXB, in order to pro-
vide context. In IXC we describe the reasoning behind,
and the formulation of, ChainAMPS. Finally in IXD and
IXE we provide example applications of ChainAMPS
to two strongly correlated systems in 2D: free fermions
and the quantum Ising model, covering both DMRG and
TEBD algorithms. We also point the interested reader
to a software implementation of the various ideas dis-
cussed in this section, available at https://bitbucket.
org/chainamps.

We conclude this introduction by pointing the inter-
ested reader to but a small sample of the extant refer-
ence literature. Perhaps the most comprehensive review
is that due to Schöllwock [567] which covers the structure
of MPS and their relation to DMRG; and many other al-
gorithms including those for time evolution; itself being
an excellent source of references. Earlier reviews by the
same author [568] and by Hallberg [569], focus on DMRG
in its original (density matrix) implementation and its
applications. McCulloch gives a much more compact de-
scription of the MPS formulation of DMRG [570], but
also covers the distinction between algorithms employ-
ing Abelian and Non-Abelian symmetries. The canoni-
cal (zig-zag) extension of MPS to 2D is the subject of a
thorough review by Stoudenmire and White [549]. Ten-
sor methods and their application in higher dimensions
are discussed in Refs. [557, 560, 571].

B. A very brief guide to matrix product states

1. MPS as a variational basis with limited entanglement

Consider a many-body system consisting of N local
Hilbert spaces, each with a basis |σ〉 of dimension dσ.
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FIG. 37. Graphical depiction of an MPS. Each blue square
represents a set of matrices, Mσi , black bonds represent the
(summed over) matrix indices, while the red lines indicate the
physical (local) indices, σ.

Any state of this system can be written as

|Ψ〉 =
∑
σ

cσ1σ2···σN
|σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σN 〉 ,

=
∑
σ

cσ |σ〉 . (371)

In general, for physically interesting values of dσ and N ,
calculating, storing or operating on the dNσ complex num-
bers cσ is not possible. Instead we rewrite the c’s as prod-
ucts of matrices (hence the name matrix product state):

|Ψ〉 =
∑
σ

Mσ1Mσ2 · · ·MσN |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σN 〉 ,

=
∑
σ

∏
i

Mσi |σi〉 , (372)

where we have dropped the explicit tensor product, and
the first and last matrices are understood to be row
and column vectors respectively, in order to recover a
scalar (we assume open boundary conditions, for periodic
boundary conditions it is necessary to take the trace in-
stead). A graphical depiction of this construction is given
in Fig. 37.
The set of dσ matrices Mσi can also be usefully viewed

as a tensorMσi
ai−1,ai

. In MPS parlance the σi labelling the
local basis states is termed a ‘physical index’ to distin-
guish it from the standard matrix indices. Any state can
be written in the form of Eq. (372), but for a generic state
the necessary matrix dimensions would grow as large as

d
N/2
σ . In practice the matrix dimension must be trun-

cated at some numerically feasible value, χ, termed the
‘bond dimension’ because it applies to the bond between
two partitions of the system. This truncation implies
some loss of information relative to the exact wave func-
tion: we keep up to Ndσχ

2 complex numbers only, in-
stead of dNσ .

To best understand the nature of this approximation,
we first introduce two canonical forms of matrix. Left
canonical matrices Aσi obey∑

σi

Aσi†Aσi = I, (373)

while right canonical matrices Bσi obey∑
σi

BσiBσi† = I. (374)

We can view each set of local matrices Mσi as a single
matrix M(σim)n or Mm(σin), where the parentheses indi-
cate the collection of multiple indices into a single super-
index. This allows us to decompose them into a unitary

matrix and an auxiliary matrix, for example using a QR
or LQ decomposition:

M(σim)n = U(σim)n′Rn′n,

Mm(σin) = Lmm′V †m′((σin)
,

with U and V unitary. Using this property we form
canonical matrices

U(σim)n → Aσi
mn and V †m((σin)

→ Bσi
mn. (375)

In the context of the full MPS, the auxiliary matrix R
(L) can be absorbed by multiplying to the right (left)
with Mσi+1 (Mσi−1). Performing these steps in sequence
(for example starting at i = 1 and QR decomposing each
matrix in turn until we reach i = N) transforms a general
MPS into one that consists entirely of left or right canon-
ical matrices (with a multiplicative scalar that gives the
normalization and an overall phase). Generically, work-
ing inwards from the left and right leads to a mixed state:

|Ψ〉 =
∑
σ

Aσ1 · · ·Aσi−1MσiBσi+1 · · ·BσN |σ〉 , (376)

with Mσi not canonical.
We now elucidate the importance of the bond dimen-

sion by performing a singular value decomposition (SVD)
on the reshaped matrix, M(σim)n:

M(σim)n = U(σim)�Λ��′V
†
�′n. (377)

According to the properties of the SVD, the matri-
ces U and V are unitary, while Λ is a rectangular,
dim(m)×dim(n), diagonal matrix with non-negative real
entries known as singular values, sj (j = 1, . . . ,m). The
structure of Λ allows us to safely discard all but the first
min(dim(m), dim(n)) columns of U and V without los-
ing any information about |Ψ〉. Furthermore, if any of
the singular values are zero, we can discard the columns
of U and V they correspond to as well. After doing so,
we identify U(σim)� as Aσi and multiply by V†Bσi+1 to

form a new right canonical matrix B̃σi+1 . The state is
now in the form of a Schmidt decomposition:

|Ψ〉 =
∑
σ

Aσ1 · · ·Aσi−1AσiΛBσi+1 · · ·BσN |σ〉 , (378)

with Λ a D × D diagonal matrix, D being the number
of nonzero singular values, or Schmidt coefficients. Us-
ing the canonicity conditions, Eqs. (373) and (374), the
Frobenius norm of the mixed state, Eq. (376), is

〈Ψ|Ψ〉 = TrMσi†Mσi = TrΛ2 =

D∑
m=1

s2m. (379)

For the state to be normalised we require

D∑
m=1

s2m = 1. (380)
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The effect of truncating the matrix dimensions is now
apparent. If the singular values are ordered from largest
to smallest and we retain only the first χ < D of them,
then this is the optimal approximation to the exact state
for matrix dimension χ (in the sense of the Frobenius
norm). If we wish to keep the state normalised we must
rescale the truncated singular values accordingly. By re-
peated use of SVD, the truncation can be carried out on
all bonds, so that all the matrices are χ× χ or smaller.
An important feature of Eq. (378) is that the distribu-

tion of Schmidt coefficients describes the entanglement
across the bond i, i + 1 because their squares are equal
to the eigenvalues of the system’s reduced density ma-
trix. The von Neumann entanglement entropy encodes
this information as a single number:

SE = −
D∑

i=m

s2m log s2m, (381)

which is zero for a product or separable state (s1 = 1)
and achieves its maximum value, SE = logD, when the
singular values are all equal, sm = 1/

√
D. Therefore an

MPS with bond dimension χ has a maximum possible en-
tanglement entropy of SE = logχ for any bipartitioning
of the system.
Clearly one cannot construct an MPS directly from

Eq. (371), as this would entail first calculating cσ. In-
stead Eq. (372) is treated as a trial wave function in some
variational scheme and optimized by iteratively sweep-
ing back and forth through the local matrices, Mσi , with
canonization and truncation carried out as necessary.
The performance of these variational methods can

be dramatically improved by incorporating Abelian and
non-Abelian symmetries into the MPS [567–570, 572–
576], because enforcing such symmetry sectors ensures
a block structure which generally leads to a heavily com-
pressed matrix representation. It is also possible to study
infinite translationally invariant systems, using an MPS
composed of a repeating unit cell of matrices, so-called
uniform MPS (uMPS) [517, 518].
When an MPS algorithm requires some initial input,

this can be provided by growing an MPS iteratively from
a small exactly solvable system, as with infinite volume
DMRG; making an educated guess; or choosing a com-
pletely random set of matrices. The latter is probably a
bad idea as it is unlikely to respect any conservation laws.
Finally, it is sometimes possible to derive a useful MPS
analytically, as with the famous AKLT state [577, 578].

2. Entanglement and dimensionality

The structure of an MPS, Eq. (372), immediately lends
itself to describing 1D lattice problems, with each of the
local Hilbert spaces describing a single lattice site, but
this does not guarantee a useful representation. Instead
the success of MPS in 1D is best understood through
the scaling of the entanglement with system size. For

a system of total length L in its ground state the en-
tanglement entropy of a (contiguous) region of length x
generally scales as [520, 521],

SE = A c

6
logLeff,

Leff =

{
L
πa sin

(
πx
a

)
, critical, or x ≤ ξ

ξ
a gapped, x > ξ,

(382)

where c is the central charge of the system, and a is
the short distance cut-off of the theory (e.g., the lattice
spacing). Equation (382) indicates that SE saturates for
a gapped 1D system at a scale set by the correlation
length ξ/a (where a is the lattice constant), while for a
critical 1D system the entanglement grows at worst as
the log of the system size. The factor A is equal to 1
or 2, depending on the number of boundary points that
separate the region x from the rest of the system. In
agreement with Eq. (382), explicit studies of the density
matrix eigenvalues in exactly solvable cases show that
they fall off exponentially for gapped 1D systems [579–
581], hence the efficacy of MPS with bond dimension χ
and SE ≤ logχ. On the other hand, the slow logarithmic
growth at criticality in 1D means that useful results can
be obtained through finite size or finite bond dimension
scaling [522, 582] even when the system is gapless.

A corresponding result does not exist in 2D and above,
but the general expectation is that ground states (and to
a large extent low-lying excited states) of short ranged
many-body Hamiltonians should obey an area law, such
that the entanglement between two regions scales with
the size, A, of the partition between those two regions,
SE ∼ A [545]. An exact result for critical fermions in
a D-dimensional (hyper)cube with side length L shows
that they obey an area law with logarithmic correction:
SE ∼ LD−1 logL [546]. Therefore in 2D one expects
the entanglement to grow strongly with the size of the
system being studied, and the spectrum of singular values
will not fall off quickly enough for an MPS with finite
bond dimension to represent even a gapped system in the
thermodynamic limit. It should be noted, however, that
this does not preclude MPS (and in particular DMRG)
from being used to study small or highly anisotropic 2D
systems.

3. MPS algorithms

MPS algorithms fall into two main categories: eigen-
solvers and time evolution, with some overlap because
imaginary time evolution can be used to find eigenstates.
Though it was originally developed without recourse to
an explicit MPS representation, DMRG is the primary
example of the former, while TEBD is the seminal MPS
time evolution algorithm. Mirroring the MPS structure,
an operator Ô on the Hilbert space of the system can be
described by a tensor network termed a matrix product
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FIG. 38. Diagrammatic representation of a matrix product
operator (green) applied to a matrix product state (blue),
Fig. 37. Each tensor in the matrix product operator has two
physical (e.g., external) indices shown in red and two internal
indices (shown in black). The exception is at the ends of
the system where the tensors have only one internal index.
Contracting (summing over) the connected physical indices
yields a new MPS.

operator (MPO),

Ô =
∑
σ′,σ

Wσ′
1σ1Wσ′

2σ2 · · ·Wσ′
NσN |σ′〉 〈σ| , (383)

where the matrices (or four index tensors), Wσ′
iσi , are la-

belled by two physical indices, σ′i, σi (in addition to their
matrix indices), as opposed to the single physical index
for an MPS matrix. The action of an operator on an
MPS (such as the Hamiltonian in DMRG, or the unitary
time evolution operator in TEBD) is then evaluated in
an iterative manner, by contracting (summing over) the
corresponding physical and matrix indices of the MPO
and MPS networks. Note that the MPO has its own,
separate, bond dimension, χW . Applying an MPO to an
MPS, by contracting the matching physical indices, re-
sults in another MPS (here the ⊗ tells us that the matrix
indices of the MPO and MPS live in different spaces, and
so we sum over their tensor product)

Ô |Ψ〉 =
∑
σ′,σ

∏
i

Wσ′
iσi ⊗Mσi |σ′i〉

=
∑
σ′,σ

∑
a,b

∏
i

W
σ′
iσi

bi−1bi
Mσi

ai−1ai
|σ′i〉

=
∑
σ′

∑
a,b

∏
i

M̃
σ′
i

(bi−1ai−1)(biai)
|σ′i〉

=
∑
σ′

∏
i

M̃σ′
i |σ′i〉 , (384)

with new matrices M̃σi , which have larger bond dimen-
sion, χW ×χ, and which will not in general be canonical.
This is shown in the diagrammatic notation of Fig. 37 in
Fig. 38.
DMRG usually consists of two stages. In the infinite

system algorithm stage, an MPS approximation is grown
iteratively by adding sites to the centre of a system that is
initially small enough to be solved exactly. Each growth
step consists of solving an eigenvalue problem for the one
or two new sites coupled to the rest of the system, fol-
lowed by an SVD to compress the answer. This process
is shown schematically in Fig. 39, and it is stopped when
the required system length is reached. In the second finite

FIG. 39. Schematic of the DMRG “infinite system” growth
procedure (full tensor network not shown). A pair of sites is
added at the centre of the chain (black circles, first panel) and
the new wave function found (subject to the other matrices
being held constant). An SVD is then performed on the en-
larged problem, and the new reduced basis is constructed by
discarding states with small Schmidt coefficients. The result-
ing state is the new DMRG approximation (second panel).
The system is then divided (third panel) and two new sites
are added (fourth panel) and the process proceeds iteratively
until the required system size is achieved. Following this, a
sweeping procedure is performed, see Fig. 40.

size sweeps stage (Fig. 40), the finite length MPS is im-
proved by sweeping back and forth through the system,
again using an eigensolver for each site (or pair of sites).
The second stage is important for removing unphysical
effects produced by the edges of the system during the
growth phase.
As already alluded to, DMRG traditionally takes two

site or single site forms. The former is numerically less
efficient, by a factor of approximately dσ, but the latter
is liable to converge to a local, rather than the global,
minimum and requires amendment in the form of a mod-
ified density matrix with noise term [583], or subspace
expansion [584].
To perform DMRG on a two-dimensional lattice, the

standard procedure is to map the 2D lattice Hamilto-
nian to a 1D Hamiltonian with long range interactions,
as shown schematically in Fig. 41. Usually a 2D lat-
tice with cylindrical geometry is considered, because the
open boundary conditions along the cylinder are benefi-
cial for MPS, while periodic boundary conditions lead to
reduced finite size effects along the shorter, circumferen-
tial, direction. Some bonds that were nearest neighbor
(or short range) in the 2D system will necessarily connect
distant sites of the new 1D chain, and this incurs a cost
in terms of enhanced entanglement, and therefore the
need for larger bond dimension. Choosing a particular
mapping can offset this to some extent (if, for example,
the lattice or wave function has certain symmetries) by
keeping strongly entangled bonds of the 2D lattice model
nearest neighbor in the DMRG path. The issue becomes
more acute as circumference increases, requiring expo-
nentially increasing bond dimension, and can be viewed
as a manifestation of the entanglement area law. For

Page 79 of 112 AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



80

FIG. 40. Schematic of the DMRG finite size algorithm (full
tensor network not shown). After the required system size is
reached using the “infinite system” DMRG algorithm, Fig. 39,
edge effects are still present due to the small initial system
size. These are removed by repeatedly sweeping right and left
through the system, in an iterative manner, locally optimizing
a few sites (black circles) of the wave function at a time.

FIG. 41. Two-dimensional lattice and mapping to 1D. The
green line shows the 1D path through the system. The red
dashed line marks the boundary between two partitions (red
and blue sites) at a particular step of an MPS algorithm.
Note that the system is assumed to be cylindrical, with the
dangling bonds at the top (black) connecting to sites at the
bottom. The black nearest neighbor bonds are transformed
into long-range bonds for the 1D path.

cylinders with small circumference this is still a numer-
ically efficient method compared to PEPS and MERA,
with most of the benefits of 1D DMRG.

One drawback of the mapping to a 1D DMRG path is
that it does not take advantage of certain useful quantum
numbers, primarily the momentum in the circumferential
direction, which one would expect to be particularly use-
ful for compressing the MPS matrices. Recently a mixed
real-momentum space approach has been developed that

allows the circumferential momentum to be used as a
quantum number [585]. As expected this leads to a sig-
nificantly improved algorithm, with the main additional
cost being construction of a somewhat complicated ma-
trix product operator for the Hamiltonian.
For time evolution with TEBD the underlying Trotter-

Suzuki decomposition of the time evolution operator re-
quires splitting the Hamiltonian into a sum of local (short
ranged) terms. This means that the mapping cannot
be used at all, with more elaborate treatments having
to be developed for long-ranged Hamiltonians [586, 587].
We will, however, avoid this issue altogether by using a
method that does not require the mapping to an effective
1D chain with long-range interactions.

C. ChainAMPS

1. Large physical dimension

A key ingredient in MPS algorithms is knowledge of a
set of local Hilbert spaces of dimension dσ and the action
on them of all local operators that appear in the Hamilto-
nian. Often we choose a basis for each local Hilbert space
that diagonalises the corresponding local part, hlocal

i , of
the full Hamiltonian, H, although this is not required.
The full system consists of many of these subunits cou-
pled together,

H =
∑
i

(
hlocal
i + hcoupling

i,i+1

)
. (385)

In the 1D and 2D approaches described in Sec. IXB3,
the local Hilbert spaces represent objects (lattice sites)
with spatial dimension zero, but there is no a priori rea-
son why this must be so. The ability to use larger sub-
units is attractive because they generally allow the use of
extra conservation laws; in particular if the subunits are
1D chains with periodic boundary conditions, then chain
momentum is a good quantum number. Additionally,
if the system is anisotropic in the sense that the inter-
subunit entanglement is weaker than the intra-subunit
entanglement (if a subunit has spatial extent we can
think about the entanglement between different regions
of it), then we avoid the need to perform singular value
decompositions on the most strongly entangled parts of
the system. A related, heuristic, benefit is that the basis
of a subunit may already reflect genuine strongly cor-
related physics, so that our initial variational ansatz is
already closer to the true state of the total system. Fi-
nally, by suitably coupling subunits of spatial dimension
Ds we can build a model inDs+1 spatial dimensions. For
example, setting Ds = 1 we can couple multiple chains
together to construct a system that is spatially 2D, but
which can still be represented as a 1D MPS with short
ranged interactions, unlike the ‘snaking path’ method de-
scribed in Fig. 41.
There are two immediate concerns when using ‘large’

objects as the subunits: (i) we must have accurate knowl-
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edge of the basis states and matrix elements of the sub-
units; (ii) MPS algorithms generally scale with some
power p ≥ 1 of the subunit basis size dσ, which itself
will increase exponentially with the spatial extent of a
subunit. If the subunits are not too large, the first is-
sue might be dealt with by numerical means, such as
exact diagonalization, or even DMRG, performed on the
Hamiltonian for a single subunit. However, if dσ is large
ED cannot be applied, and DMRG can only accurately
probe the low energy sector of the subunit spectrum. To
avoid these restrictions, we will only consider subunits
with local Hamiltonians that we can solve analytically,
which for Ds = 1 means integrable 1D quantum models.
As discussed in Sec. V this is not too severe a restriction;
although most 1D quantum models are not integrable,
there is a large catalogue of models that are, and these
represent a multitude of physical systems, including in-
teracting models of spins, bosons and fermions. Hence, in
principle, many different regimes and universality classes
can be explored.

The second issue with the use of large subunits is
very serious, especially when we consider approaching the
thermodynamic limit, where dσ → ∞. Clearly we must
truncate the physical basis of each subunit for practi-
cal purposes, and a simple way to implement this is via
an energy cutoff Ec, applied to the spectra of the lo-
cal Hamiltonians, hlocal

i . Under what conditions can we
hope to justify this course of action, without dramati-
cally compromising the accuracy of the method? In Sec.
V on the TSA, we saw that it is possible to study inte-
grable theories with a perturbing term using a truncated
spectrum, and still compute low energy features with ex-
cellent accuracy, as long as the perturbation is relevant
(in the RG sense). Remember that the existence of the
‘perturbing term’ does not imply that the TSA is a per-
turbative method. Guided by this insight, we take the
uncoupled system of exactly solvable (by analytic or nu-
merical means) subunits as our ‘integrable’ system and

introduce couplings, hcoupling
i,i+1 , (perturbing terms) that

are relevant. Perhaps counterintuitively, the more rel-
evant the perturbation the better, because this implies
even less mixing between different energy sectors of the
local spectra.

Alternatively, and in the spirit of most theories in
many-body physics, we can view the truncated model
as an effective model that captures the low energy sec-
tor of the true system of interest. The caveat is that
we must not set the cutoff so low that we throw out
states with a non-negligible contribution to the low en-
ergy physics. Any numerical study will therefore have
to include a careful analysis of results at different values
of Ec to ensure proper convergence. Useful quantities in
this regard are the occupations of the states in the local
basis and the reduced density matrix of a subunit (the
latter can be found by tracing over all other subunits in
the system). If the occupations or the subunit’s reduced
density matrix indicate that local states near the cutoff
play a significant role, then Ec must be increased.

FIG. 42. Construction of the chain array matrix product state
system. Here we use chains (red) with periodic boundary
conditions, yielding a cylindrical geometry.

One may worry that the value of dσ required for accu-
rate results will be too high for a useful algorithm. For ex-
ample a ‘one site’ DMRG algorithm scales as O(dσχ

3χW )
(where χW is the bond dimension of the Hamiltonian
MPO) with subleading terms (assuming χ � χW � dσ)
that scale as O(d2σχ

2χ2
W ). What is not explicit in this

analysis is that for most implementations many entries in
the MPS and MPO tensors are constrained to be zero by
conservation laws (i.e., the existence of ‘good’ quantum
numbers). Knowledge of these quantum numbers allows

the large tensors Mσi
ai−1,ai

and W
σ′
i,σi

bi−1,bi
(for the MPS and

MPO respectively) to be stored as smaller blocks of (pos-
sibly) non zero elements, and it is the number and size of
these blocks that dictate the efficiency of an algorithm.
More conserved quantities will generically produce more
blocks, and for given dσ and χ this means that they must
be reduced in size, leading to increasingly sparse tensors.
For momentum-like Z symmetries (or ZNx for a lattice
of Nx sites) the multitude of different values the quan-
tum numbers can take has a similar effect. Therefore the
deciding factor in whether this approach is numerically
feasible is not the value of dσ per se, but the symme-
tries of the model of interest. In Sec. IXE we examine
a model that has both Z and Z2 symmetries, and see
that we can obtain accurate results near criticality, even
though χ � dσ.

2. Arrays of chains

We now concentrate on the Ds = 1 implementation
of these ideas: taking an array of integrable quantum
chains, we couple them together through nearest neigh-
bor interchain interactions (for DMRG somewhat longer
ranged interactions are also possible, but they are not
compatible with TEBD) as depicted in Fig. 42. Suitable
integrable theories include certain spin chains, free field
theories, Luttinger liquids, Lieb-Liniger and Sine-Gordon
models. By using these exactly solvable theories we avoid
any issues with ED or inaccuracies that might arise from
an initial DMRG calculation of the chain spectrum (es-
pecially for the excited states of the chain).

Page 81 of 112 AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



82

An important advantage occurs if the 1D chains we
use are defined by massive continuum field theories with
periodic boundary conditions: in such cases finite size
effects associated with the chain length R (using the
same notation as Sec. V) are exponentially suppressed
∼ exp(−ΔR). Conversely, for a discrete lattice chain of
Nx sites we expect a slower, power law, decay of finite
size terms ∼ N−α

x . It is still possible to truncate the
spectrum of the continuum theory, because for finite R
the chain spectrum will be discrete. Consequently we
can approach the thermodynamic limit (in terms of the
chain physics) using a relatively small R. And because R
in the ChainAMPS geometry plays the role of the area in
the eponymous law (see Fig. 42), its smallness will also
restrict the growth of entanglement and bond dimension.

The standard ChainAMPS system is then highly
anisotropic: continuous, finite and periodic in the cir-
cumferential direction, while discrete and with open—or
possibly infinite—boundary conditions along the cylin-
der. If we are interested in universal physical properties
this is usually not an issue, beyond the finite size effects
implied by R or a finite number of chains Ny. Equally,
we can envision studying direct manifestations of this
anisotropy, such as coupled quantum wires or tubes of
ultra cold atomic gas.
To be explicit, consider a chain of length R = Nxax,

described by a 1D quantum Hamiltonian, hchain, with
a spectrum consisting of dσ states (either exactly or af-
ter truncation). We take Ny such chains, label them
i = 1, · · · , Ny, and couple them together with nearest
neighbor interactions of the form,

hcoupling
i,i+1 =

∫ R

0

dxAi(x)Bi+1(x) + h.c., (386)

for continuum limit chains or

hcoupling
i,i+1 =

Nx−1∑
j=0

Ai,jBi+1,j + h.c., (387)

for lattice chains. Here Ai(x) and Bi(x) (Ai,j and Bi,j for
the lattice case) are operators on the local Hilbert space
of chain i. For chain theories with periodic boundary
conditions we may invoke translational invariance to find
the action of the operator at position x along a chain:

Ai(x) = e−ik̂x,ixAie
ik̂x,ix, (388)

where k̂x,i is the momentum operator on chain i. In-
tegrating the coupling term matrix elements over x (or
summing in the lattice case) then yields〈

σ′iσ
′
i+1

∣∣hcoupling
i,i+1 |σiσi+1〉

=Rδ(kσ′
i
+ kσ′

i+1
− kσi − kσi+1)

× 〈σ′i| Ai |σi〉
〈
σ′i+1

∣∣Bi+1 |σi+1〉+H.c., (389)

and a similar result for lattice chains. As expected, the
δ-function indicates that total chain momentum is con-
served by the coupling, and we build this information
into the Hamiltonian MPO.

With the definitions above the MPS wave function
reads

|Ψ〉 =
∑
σ

Mσ1Mσ2 · · ·MσNy |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ ∣∣σNy

〉
,

(390)

where the set of dσ matrices Mσi parametrizes chain i.
A trivial example is the ground state of a system of

uncoupled chains, which is just a tensor product of the
individual chain ground states, |σi〉 = |0i〉. In this case
the bond dimension χ = 1 and the matrices, Mσi , reduce
to scalars equal to 1 if σi = 0i or 0 otherwise,

Mσi = δσi,0i × 1,

|Ψ〉uncoupled = |01〉 ⊗ |02〉 ⊗ · · · ⊗ ∣∣0Ny

〉
. (391)

For coupled chains the necessary bond dimension, χ, will
generically be > 1 and an increasing function of the chain
length, R, as discussed above.

3. Infinite cylinders

Both DMRG and TEBD can be applied to infinitely
long systems (termed iDMRG and iTEBD respectively),
by working with a translationally invariant MPS or
uMPS, represented by a unit cell consisting of a few sites
(typically one or two). Working directly in the infinite
volume limit removes the (probably unwanted) effects of
the open boundary conditions used in finite MPS algo-
rithms, and avoids the problems associated with using
MPS with periodic boundary conditions.
These algorithms are very convenient when applied to

ChainAMPS, because their relative efficiency—being ap-
proximately a factor of Ny faster than studying a finite
length system—helps to offset the effect of using large
dσ. For uniform ChainAMPS, the unit cell consists of
one or two chains and the total system has the geome-
try of an infinitely long cylinder (if the individual chains
have periodic boundary conditions) or strip (if the chains
are open).
One issue with iDMRG is that the usual projector

method for calculating excited states (see e.g. [549]) can-
not be applied in the infinite limit. Some excited states
can still be found if the values of some of their quan-
tum numbers differ from those of the ground state, and
if those quantum numbers can be written as a rational
number p/q where q is the number of chains in the unit
cell. Otherwise we must turn to a ‘post matrix product
state’ method along the lines of a single mode approxi-
mation [588].

4. ChainAMPS summary

At this point we have still not provided any evidence
that the ChainAMPS approach works in practice. To
remedy this, in Sections IXD and IXE we will cover two
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concrete examples. Before doing so let us summarize the
discussion thus far. A 2D quantum system can be re-
alized as an array of coupled quantum chains, and such
a system can be written as an MPS with large physical
dimension dσ. In order to make further progress we need
a highly accurate (or exact) basis for each chain, and
any matrix elements that appear in the Hamiltonian of
the complete system. This is best achieved by studying
integrable chain theories. Furthermore, it is usually nec-
essary to truncate the spectrum of the chain so that dσ
is not too large for numerical implementations. This is
possible if the chain spectrum is discrete (which it will
be for finite length chains), in which case we can trun-
cate by applying an energy cutoff to the spectrum of each
chain’s Hamiltonian. We expect that such a truncation
will not affect the physics too strongly if we are working
with interchain couplings that are relevant under renor-
malization group transformations. There are advantages
to working with chains represented by massive, contin-
uum limit, field theories: we can throttle the growth of
entanglement by working with short chains, and still ob-
tain results that reflect the thermodynamic limit.
Software implementing the ideas discussed in this sec-

tion is available at https://bitbucket.org/chainamps.
The software includes drivers for performing DMRG on
infinite and finite systems (the latter can also find excited
states); for real time evolution using TEBD or iTEBD;
and for performing measurements by post-processing out-
put. Several example continuum limit chain models, suit-
able for coupling together, are provided (Ising chains, free
fermions and Luttinger liquids), although user defined
models can also be studied.

D. Free fermions in 2D

To demonstrate some of the concepts above, and to
introduce time evolution of an MPS, we first consider
a trivial theory that is exactly solvable, even in 2D. In
principle we could use lattice chains for this purpose, but
in order to make contact with the rest of this section,
and particularly the 2D quantum Ising model we discuss
next, we will take the continuum limit of the chains.
Our starting point is the theory of a free Majorana field

on a ring (i.e., periodic boundary conditions) of length
R. This field is represented by two components ψ and ψ̄
with fermionic anticommutation relations

{ψ(x, t), ψ(x′, t)} = δ(x− x′),

{ψ(x, t), ψ̄(x, t)} = 0.
(392)

The Lorentz invariant action is most conveniently ex-
pressed in complex coordinates, z = t − ix, z̄ = t + ix,
and derivatives

∂z ≡ ∂ =
1

2

(
∂t + i∂x

)
and ∂z̄ ≡ ∂̄ =

1

2

(
∂t − i∂x

)
.

(393)

With these definitions the action of the Majorana field is

S =

∫
d2z

2π

(
ψ∂̄ψ + ψ̄∂ψ̄ + iΔψ̄ψ

)
(394)

where Δ > 0 is the fermion mass (we change notations
here slightly from Sec. VB, setting the mass as Δ = m).
The two field components have mode expansions in

terms of fermion creation and annihilation operators

{an, a†n′} = δn,n′ :

ψ(x, t) =
∑
n

√
Δ

2εnR
eθn/2

×
(
ωane

−i(tεn−xpn) + ω∗a†ne
i(tεn−xpn)

)
,

ψ̄(x, t) =−
∑
n

√
Δ

2εnR
e−θn/2

×
(
ω∗ane−i(tεn−xpn) + ωa†ne

i(tεn−xpn)
)
,

with the parameterizations ω = eiπ/4, and εn =
Δcosh θn, pn = Δsinh θn. The momentum and energy
associated with mode n are pn = 2πn/R (for integer n),

and εn =
√
Δ2 + p2n respectively. Employing these ex-

pansions we obtain the Hamiltonian for chain �:

H1D
� =

∑
n

εna
†
n,�an,�. (395)

We combine Ny of these chains into an array and al-
low for fermions to hop between nearest neighbor chains,
resulting in the Hamiltonian

Hfree =
∑
�

H1D
� +Hhop

�,�+1, (396)

Hhop
�,�+1 = −t⊥

∑
n

Δ

εn

(
a†n,�an,�+1 + h.c.

)
, (397)

with hopping parameter t⊥. If we assume our 2D system
is a torus, then the Hamiltonian, Hfree, is easily solved
by Fourier transforming from chain index � to momentum
km = 2πm/Ny (note this momentum is transverse to that
indexed by n along the chains):

a†n,� =
1√
Ny

Ny∑
m=1

eikm�a†n,m, (398)

{akm
, a†km′ } = δkm,km′ , (399)

Hfree =
∑
n,m

(
εn − 2Δt⊥

εn
cos km

)
a†n,man,m. (400)

This diagonal Hamiltonian can be viewed as Ny uncou-
pled 1D bands indexed by m, or infinitely many 1D
bands, indexed by n. For Δ > 2t⊥ the ground state
is the vacuum (no occupied modes).
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FIG. 43. The difference (note the logarithmic scale) between
a DMRG calculation of the lowest energy two particle state
of Eq. (402) and the exact solution, with t⊥ = 0.2, R = 10,
Ny = 100, plotted against the number of finite size sweeps.
The sweep 0 value is the result of an ‘infinite system’ DMRG
growth process. Convergence tails off near the precision limit
of the numerical implementation.

A similar result holds for an open cylinder, with κm =
πm/(Ny + 1), m = 1, · · · , Ny and

a†n,� =

√
2

Ny + 1

Ny∑
m=1

sin
(
κm�

)
ã†n,m, (401)

Hfree =
∑
n,m

(
εn − 2Δt⊥

εn
cosκm

)
ã†n,mãn,m. (402)

As the energy levels of this 2D system can be calcu-
lated trivially, we can use it as a test case: apply the
DMRG procedure to it, and study the implementation’s
convergence properties. An example is shown in Fig. 43.

1. Time evolution

The free fermion Hamiltonian Eq. (396) is more inter-
esting when we consider using it to time evolve a state
that is not an eigenstate. Such a situation occurs in a
quantum quench: a system is prepared in an eigenstate
of a Hamiltonian and subsequently the Hamiltonian pa-
rameters are suddenly changed, with the state being left
to evolve under the new Hamiltonian. If the quench is
instantaneous and the post quench HamiltonianH is con-
stant in time, then the state at time t is given by applying
the time evolution operator exp(−iHt) to the initial (pre
quench) state |φ(0)〉:

|φ(t)〉 = e−iHt |φ(0)〉 . (403)

For a many-body system this evolution is generally very
difficult to calculate analytically, including for a free

Hamiltonian unless the initial state can be written as
a simple superposition of eigenstates of H.
TEBD and iTEBD have been extensively used in the

study of quantum quenches in 1D because they are re-
markably accurate and allow direct access to the time
evolved wave function. These algorithms introduce two
types of error: one originates in breaking up the time
evolution operator into manageable pieces by discretiz-
ing time and using Trotter-Suzuki decompositions, while
the second occurs because the MPS must be compressed
back to dimension χ after each time step. Errors of the
first kind can be managed by using smaller time steps,
δt, and higher order, r, Trotter decompositions, because
they scale as O(

(δt)r
)
. The second type of error is ul-

timately fatal, as the entanglement can increase linearly
in time after a general quench [589–591], requiring an
exponentially increasing bond dimension to preserve ac-
curacy. Consequently, for a fixed χ, there is a maximum
time up to which reliable results can be computed.
With the ChainAMPS anisotropy it is most convenient

to consider quenching the parameters governing the in-
terchain couplings. A quench of the parameters in the
1D chain Hamiltonians is also possible, but requires that
the overlaps between the initial and final chain bases are
known to high accuracy (preferably analytically).
For quenches ofHfree in which only t⊥ is changed, there

is a dramatic simplification: the absence of any interac-
tions (either on or between the chains) means that only
the fermionic chain modes that are occupied in the initial,
t = 0, state participate in the evolution. In this special
case we can restrict our local (physical) bases to include
only chain states that do not feature initially unoccupied
modes. Beyond this, the chain cutoff Ec does not play
any role.
As an example, the initial state

|Φ0〉 =
Ny
2 −1∏
i=0

1√
2

( |vac〉2i |n = 0〉2i+1

+ |n = 0〉2i |vac〉2i+1

)
, (404)

is an eigenstate when t⊥ = 0, in which alternating pairs
of chains are entangled, with a superposition of chain
vacua (|vac〉i) and lowest excited states (|n = 0〉i). It is
not an eigenstate when t⊥ �= 0, but its evolution under
Hfree does not involve any other states from the chain
spectrum, and the problem reduces to a 1D model of
hopping fermions.
A useful global measure of the quench dynamics is the

Loschmidt echo (or return probability), G(t), namely the
absolute value squared of the overlap of the state at time
t with the initial state. For a quench to a finite value of t⊥
with the initial state (404), it is possible to calculate G(t)
on a torus formed from Ny chains, using a determinant
method [566]:

G(t) =
∣∣〈Φ0| exp

[− iHfreet
] |Φ0〉

∣∣2 ,
=

∣∣∣det(M + (1−M)Q exp{−iht}Q)∣∣∣2, (405)

Page 84 of 112AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



85

0 1 2 3 4 5 6 7
t⊥  t 

0

0.05

0.1

0.15

0.2

0.25
-ln

(G
(t)

) /
 N

y

iTEBD
Exact (Ny=800)

10-9

10-8

10-7

Step Truncation

6 6.5 7
t⊥  t 

0.217

0.218

0.219

0.22

-ln
(G

(t)
) /

 N
y

FIG. 44. Comparison of the logarithm of the return probabil-
ity per chain for the quench starting from the one-dimensional
initial state (404) and time-evolved with t⊥ = 0.5, calculated
using iTEBD (χ=1000) and the exact method. Inset: en-
larged region showing the difference as the truncation error
(right axis) increases.

with Ny ×Ny matrices,

M = diag(0, 1, 0, 1, 0, · · · ),

Q =

√
1

2

⎛⎜⎜⎜⎜⎝
1 1
1 −1

1 1
1 −1

. . .

⎞⎟⎟⎟⎟⎠ , h =

⎛⎜⎜⎝
Δ −t⊥

−t⊥ Δ
.. .

. . .
. . .

⎞⎟⎟⎠ .

(406)

Figure 44 displays a comparison between iTEBD and the
result of evaluating Eq. (405). While the determinant
method is exact for any time t, it is somewhat limited in
terms of which quantities can be computed, which initial
states can be used, and to finite numbers of chains, Ny.
Conversely, with iTEBD the time evolution of the wave
function (and therefore all the interesting physical infor-
mation) can be calculated directly in the thermodynamic
limit, Ny → ∞, but only up to a time tmax (dependent on
the bond dimension, χ) before errors become significant.

As already stated, the dynamics of this quench are ef-
fectively one-dimensional. In fact, precisely because the
model is non interacting and the individual mode occupa-
tions are all conserved, it is difficult to engineer a quench
of Hfree in which the chain length, R, has a non-trivial ef-
fect. In the next section we look to an interacting model
to see truly 2D many body quantum phenomena.

E. Application to the 2D quantum Ising model

The quantum Ising chain (or transverse field Ising
model in 1D) is a paradigmatic strongly correlated sys-

FIG. 45. The zero temperature phase diagram for the 2D
quantum Ising model (407), in terms of the ratio Δ/ |J⊥|.
The critical point is marked by an open circle. Note that the
transition occurs for Δ < 0.

tem, with two massive phases separated by an order-
disorder transition. As described in detail in Sec. VB,
in the continuum limit the Hamiltonian of the quantum
Ising chain reduces to the field theory of a free Majorana
fermion with a mass Δ (c.f. Eq. 213: we set h = 0 as
we do not consider a perturbing longitudinal field, and
define Δ = m to connect with the notation in Sec. IXD
above). We remind the reader that the mass can be pos-
itive (Δ > 0), negative (Δ < 0) or zero, corresponding
to an ordered, disordered or critical chain, respectively.
Henceforth we shall refer to this Hamiltonian as H1D(Δ).
One complication, relative to the Majorana chains con-

sidered in Sec. IXD, is that the Jordan-Wigner mapping
from Ising spins on a ring to fermions introduces both
periodic and anti-periodic boundary conditions. While
this makes the chain spectrum more intricate, as it
separates into Neveu-Schwarz and Ramond sectors (see
Sec. VB), the chain Hamiltonian nevertheless remains
non-interacting.
We form a two-dimensional quantum Ising model by

coupling an array of these chains together with Ising spin-
spin interactions:

H2D =

Ny∑
�=1

H1D(Δ) + J⊥
Ny−1∑
�=1

∫ R

0

dx σz
� (x)σ

z
�+1(x).

(407)
In contrast to the quantum Ising chain, this is an interact-
ing model of fermions as the interchain coupling consti-
tutes a genuine fermionic scattering vertex, see Eq. (218).
This model has two symmetries that can be easily in-
corporated into the MPS to produce an efficient repre-
sentation. The first is translational symmetry along the
circumferential direction, leading to conservation of the
total chain momentum, just as for the free model we con-
sidered previously. The second is a Z2 symmetry that has
its origin in the π rotation symmetry of the spins in the
1D lattice model (i.e. spin inversion), and which leads
to the overall sector (the number of chains in a Neveu-
Schwarz state, modulo 2) being conserved.

1. Static Properties

We now examine the ability of the ChainAMPS con-
struction to accurately capture the behaviour of the 2D
quantum Ising model. For chains with Δ > 0, the 2D
system is ordered and it is possible to calculate the low-
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FIG. 46. Ground state energy of 2D quantum Ising
model (407) formed from an array of continuum chains, cal-
culated using DMRG and an RPA method. Inset: Gap to the
first excited state. Data from Ref. [564].

est energies of the states of the coupled chain system
using a ‘random phase approximation’ (RPA) approach,
in which the ordered moment is treated self-consistently.
In Ref. [564] such a calculation was compared to DMRG
for the lowest lying states of the array of coupled quan-
tum Ising chains and excellent agreement was found (see
Fig. 46). Calculating the energy of the ground and first
excited states of the coupled chains is quite easy with
DMRG, because they both have different values of the
sector quantum number and therefore can be targeted
by separate energy minimization runs.
The DMRG results can also be used to check that the

gap to the first excited state has the correct 2D quantum
Ising scaling form. Armed with the knowledge that the
scaling dimension of the spin operator is 1/8 (see, e.g.,
Ref. [135]), this scaling form can be discerned to be

Δ2D = J
4/7
⊥ Φ

(
ΔJ

−4/7
⊥

)
, (408)

where Φ is a dimensionless scaling function. Figure 47
shows the scaling collapse of the DMRG data for a wide
range of J⊥ and Δ > 0.

Perhaps the most compelling argument is that the
ChainAMPS system displays the correct 2D quantum
critical behaviour. As in 1D, the 2D quantum Ising model
also displays an order-disorder transition separating two
gapped phases, but with properties in the universality
class of the 3D classical Ising model. For the array of
quantum Ising chains we can approach the transition to
the ordered phase by starting with weakly coupled disor-
dered (Δ < 0) chains and increasing J⊥ (see Fig. 45). In
Fig. 48 we show the gap, Δ2D, in the disordered phase
as a function of J⊥, calculated using DMRG for an array
of 100 continuum quantum Ising chains with an energy
cutoff of Ec = 7.8. The gap is proportional to the in-
verse correlation length in the system, and therefore is

1 10
x = J⊥

4/7 Δ-1

8

10

12

14

16

18

Δ 2D
 J

⊥-4
/7

0.5 < Δ < 1.6, J⊥ = 17.0
0.5 < Δ < 1.6, J⊥ = 9.0
1.5 < Δ < 6.0, J⊥ = 5.0
Δ = 1, 0.05 < J⊥ < 35
Δ = 1.5, 0.125 < J⊥ < 0.80

F(x) = 6.8 + 1.97/x - 0.06/x2

FIG. 47. Scaling collapse of the gap in the 2D quantum Ising
model (407) formed from an array of continuum chains. Also
shown is a fit to the data, F (x). Adapted from Ref. [564].

0.12 0.13 0.14 0.15 0.16 0.17 0.18
J⊥

0

0.1

0.2

0.3

0.4

0.5

Δ 2D

Ec = 7.8Δ: ν = 0.650
J⊥c = 0.188

RG-Improved: ν = 0.622 ± 0.019
J⊥c = 0.184 ± 0.0025

FIG. 48. Gap in the disordered phase of the 2D quantum Ising
model (407), as calculated using DMRG on the ChainAMPS
system. Blue curve shows the results after RG improvements
(cf. Sec. VI). Adapted from Ref. [564].

expected to close as,

Δ2D ∼ |J⊥ − Jc|ν , (409)

where Jc is the critical value of the interchain Ising cou-
pling. Fitting the form Eq. (409) to the DMRG data, one
finds ν = 0.650 (or 0.622 after RG improvement [564])
which compares well with the value 0.630 obtained using
series expansion [592].50 This value should be contrasted
with ν = 1 for the 1D quantum Ising chain (2D classical
Ising universality class) [263].

50 This is especially true considering extrapolations in the number
of chains and the chain size, R, have not been performed, and
that the truncation error is ∼ 10−6.
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For very small R, the model crosses over to a 1D lattice
Ising model: as the level spacing of the chain spectrum
increases (∼ R−1) only the two lowest chain eigenstates
become important, leaving an effective Ising degree of
freedom for each chain. In this limit a finite size scal-
ing analysis reveals a different critical coupling and the
critical exponent ν = 1 as expected [565].

2. Entanglement

It is also useful to analyze the entanglement content
of the model. Far from criticality, the leading order con-
tribution to the entanglement of a ground or low-lying
state is expected to have an area law form. By virtue
of the cylindrical ChainAMPS geometry shown in Fig.
42, we can easily extract the entanglement of a biparti-
tion formed by cutting through the cylinder between two
chains. For such a partitioning the ‘area’ is proportional
to the chain length, and therefore the entanglement en-
tropy, SE , of our 2D quantum Ising model in the disor-
dered phase should scale linearly with R.

The coefficient of the area law term is non-universal,
because it requires a microscopic length scale to make the
contribution dimensionless. With lattice chains, the lat-
tice constant would provide the length scale, but for our
continuum chains this is replaced by the bare correlation
length on the chains, |Δ|−1

. Taking the large R limit of
the various expressions defining the spectrum and matrix
elements of a continuum quantum Ising chain (given in
Sec. VB) and performing a perturbative calculation for
small J⊥, we find the leading order contribution to the
entanglement entropy in the disordered phase [565]:

SE ∼ −ΔR

8

(
J⊥σ̄2

Δ2

)2

log

∣∣∣∣J⊥σ̄2

Δ2

∣∣∣∣ , (410)

which matches our expectations for area law scaling in
2D (note that the dimensionless combination J⊥σ̄2/Δ2

is the perturbative expansion parameter).
The existence of area law scaling can be viewed as

a statement that the dominant entanglement is short
ranged, and so it makes sense that SE deep in the gapped
phase (where the correlation length is very short) is
independent of Ny, the number of chains. Figure 49
shows that this behavior persists even when J⊥σ̄2/Δ2 is
not strictly small, and the perturbative approach breaks
down.
As the gap closes and the system approaches crit-

icality, the correlation length increases, the entangle-
ment becomes long-ranged, and the above arguments no
longer apply. In particular, the behavior of SE is liable
to change due to the presence of logarithmic correction
terms, including a logNy piece (see the right panel of
Fig. 49) and a chord scaling-like term that depends on
the relative sizes of the partitions [565].
When examining the critical properties it can be help-

ful to consider not just SE , but the individual eigenvalues
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10 100
Ny (log scale)
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J⊥=0.18
J⊥=0.187
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R=10Ny=12

FIG. 49. Entanglement entropy, SE , as a function of R and
Ny for the ChainAMPS 2D quantum Ising model (407) with
Δ = −1 and Ec = 8.0. Deep in the disordered phase SE

scales linearly with the chain length R (left panel) and is
independent of the number of chains Ny. As the critical point
is approached, the correlation length increases and a logNy

dependence emerges (right panel). Data from Ref. [565].

of the system’s reduced density matrix ρr (these are just
the squared Schmidt coefficients of our MPS). Following
Li and Haldane [593] we define a fictitious entanglement
Hamiltonian, HES, in terms of the diagonalized reduced
density matrix ρr = exp(−HES). The levels of the en-
tanglement spectrum are then given by ω = − log ρr.
Taking the difference between the two lowest levels

(corresponding to the largest Schmidt coefficients, or sin-
gular values) as the ‘entanglement gap’ ΔES, we can
consider the scaling of this quantity with finite system
size Ny, keeping the aspect ratio Ny/R fixed (alter-
natively, one could use iDMRG to work in the ther-
modynamic limit, Ny → ∞, and perform scaling with
the bond dimension χ). Applying the scaling rela-
tion proposed by Calabrese and Lefevre for conformal
models [594] (and confirmed for a variety of 1D quan-
tum critical models [582]) to the entanglement gap,
ΔES ∼ const./ log(Ny/π), we find that curves for dif-
ferent system sizes cross at the same point, as shown in
Fig. 50. This gives an estimate of the critical coupling
Jc = 0.186(2) which agrees very well with the value found
by conventional finite size scaling of the actual spectral
gap Δ2D, Jc = 0.185(2) and by RG improved DMRG in
Ref. [564]. The former is considerably easier to obtain,
because it requires a DMRG calculation of the ground
state energy alone, whereas the latter also requires the
first excited state to be computed.

3. Time Evolution

The 2D quantum Ising model (407) is interacting and
therefore, unlike Hfree in Sec. IXD, it is possible to see
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FIG. 50. Scaling of the entanglement gap ΔES in the ground
state of the 2D quantum Ising model (407). The intersection
of the curves provides an estimate of the critical interchain
coupling Jc (see text). Data from Ref. [565].

non-trivial dynamics following a quench

J⊥ = 0 → J⊥ �= 0, (411)

that starts from the ground state of the uncoupled
Hamiltonian. We can discern three time scales that
should feature in the dynamics on general grounds, us-
ing the quasiparticle propagation picture of Calabrese
and Cardy [589, 595]. In this picture, the energy im-
parted by the quench51 acts as a source of quasiparti-
cle excitations. In the initial state at time t = 0 with
J⊥ = 0, the quasiparticles are initially entangled if they
are within a distance ∼ |Δ|−1

of each other on a chain.
Once created they move along the chains with a maxi-
mum velocity v. Intrachain scattering therefore begins to
have an appreciable effect when quasiparticles from ini-
tially unentangled regions start to reach each other, at a
time tΔ = (2v |Δ|)−1. This provides our first time scale.
The second time scale is revealed when considering the
average time for quasiparticles to hop between chains,
and is given by a Fermi’s golden rule type argument as

tJ⊥ = |Δ|1/2 /(J⊥R)2. The third time scale occurs be-
cause the chains have a finite length R; two quasiparti-
cles created at the same point and traveling along a finite
chain in different directions will eventually meet again, at
a time tR = R/(2v) = |Δ|RtΔ (for periodic chain bound-
ary conditions). This scale is different to trec, the time
for periodic revivals or ‘quantum recurrences’ to occur in
systems with a finite number of degrees of freedom.
With ChainAMPS the revival time will depend on the

number of chains, trec ∼ tJ⊥Ny (roughly speaking, quasi-
particles will need to hop through the entire system and

51 It should be noted that the initial state has an extensively high
energy relative to the ground state of the post-quench Hamilto-
nian.

FIG. 51. Propagation of quasiparticles after a quantum
quench. Top: Quasiparticles created by the quench must
travel a distance ∼ |2Δ|−1 to see uncorrelated quasiparticles.
Bottom: Two quasiparticles created at the same point, and
traveling in opposite directions, meet again on the other side
of the periodic chain.

back again for a revival, not just round a single chain).
Therefore if we work with infinitely long cylinders, using
iTEBD, we should not see any true revivals. Indeed there
is a time window, tΔ, tJ⊥ < t < tR in which we expect to
see the behavior of the thermodynamic limit of the 2D
quantum Ising model.

For very small post-quench J⊥, the maximum quasi-
particle velocity v, along the chains will be given by the
group velocity for excitations of the continuum quantum
Ising chain, i.e. v = 1. As J⊥ increases the additional
scattering between chains will renormalize v.

One of the questions that quenches are designed to
elucidate is: how do many-body systems reach thermal
equilibrium or otherwise relax? As we consider a closed
system, represented by a pure state, the time evolution is
unitary and the system as a whole cannot thermalize (or,
indeed, relax). Instead we find that relaxation occurs for
many local observables, for example expectation values
of single site operators and short ranged correlators. A
candidate local quantity for the 2D quantum Ising model
is 〈σz

� (x, t)〉: the expectation of spin at position x on
chain �, at time t. Unfortunately the symmetries of our
chosen quench and the Ising chain field theories are such
that this quantity is zero at all times. We can of course
still study the spin-spin correlation functions, but it is
still useful to have a single chain observable that tracks
the dynamics after the quench. For this purpose we con-
sider the mode expansions of the field theories describing
the quantum Ising chains.

As explained in Sec. VB, these modes are fermionic
with creation and annihilation operators obeying anti-

commutation relations {ai,p, a†i′,p′} = δi,i′δp,p′ , where
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p, p′ are fermion momenta parallel to the chains, and i, i′
are chain indices. Using the occupations of these modes
we can calculate the occupation number (density) in po-
sition space, ni(x):

R ni(x) =

∫ R

0

dx′ni(x
′) =

∑
p

a†i,pai,p, (412)

where we have invoked translational invariance around
the cylinder for the first equality. In principle calcu-
lating this quantity involves an infinite sum over all
p = 2πn/R, n ∈ Z, but in practice the mode occupa-
tions fall off rapidly enough with p that it is possible to
obtain an accurate answer by summing a finite number
of terms. Monitoring the occupations of the individual

chain modes ni,p = a†i,pai,p also provides a good check
on the effect of the chain spectrum cutoff Ec. The cut-
off imposes a largest possible fermion momentum along
a chain through

Ec > Ep − Evac =
√
Δ2 + p2, (413)

where Evac is the appropriate chain vacuum energy. If
the occupations n�,p calculated by the ChainAMPS al-
gorithm, are not suitably small as p → pmax, then Ec

should be increased.
For small J⊥ we can perform a perturbative calcula-

tion of the mode occupations [566], following the unitary
method of [596] to avoid secular terms that grow in time
without bound. This calculation indicates that the mode
occupations are proportional to J2

⊥ at leading order, and
are independent of Ny (except for a boundary effect at
the ends of the cylinder).
If we confine our discussion to disordered Δ < 0 chains,

we can consider two types of quenches from the J⊥ = 0
state: those in which the final coupling is less than Jc,
and those in which it is greater. The former are easier
to perform with iTEBD and ChainAMPS, because the
population of the higher energy modes remains small for
a reasonable range of times. Figure 52 shows the results
of iTEBD simulations on the ChainAMPS 2D quantum
Ising model for quenches to J⊥ = 0.1 < Jc with several
different chain lengths. Scaling the results by the dimen-

sionless interchain coupling j2⊥ = J2
⊥ |Δ|−7/2

, we see that
they collapse to the same curve, up to approximately
tR = |Δ|RtΔ (the actual value will be renormalized by
the interchain hopping). In the region of collapse, the dy-
namics are in the 2D thermodynamic limit, outside this
region the finite chain length affects the quench dynam-
ics.
The inset of Fig. 52 shows that the leading order per-

turbative result (which is appropriate for J⊥ � 1) is
only accurate to short times for this quench. The failure
of the perturbative result can be linked to the growth
of the Neveu-Schwarz (half-integer momentum) chain
modes with time. These modes are entirely missed by
the perturbation theory at leading order, but would ap-
pear once higher order scattering processes were taken
into account.

0 1 2 3 4 5 6 7 8
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0.5

1

1.5

2

n i(x
)/j

⊥
2

R=4, Ec=8|Δ|
R=6, Ec=8|Δ|
R=8, Ec=6|Δ|
R=10, Ec=6|Δ|

0 2 4 6 8 10
t/tΔ

0
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1.5

2

n i(x
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⊥
2
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iTEBDj⊥=0.1

t R
=8

t R
=4 t R
=6

FIG. 52. The fermion density, ni(x) in the 2D quantum Ising
ChainAMPS system, with different chain lengths R, after a
quench from uncoupled disordered chains (Δ < 0, J⊥ = 0)
to finite coupling, J⊥ = 0.1. The results are scaled by the

dimensionless interchain coupling j2⊥ = J2
⊥ |Δ|−7/2, and col-

lapse to a single curve up to a time ∼ tR, described in the
text. Inset: comparison between perturbation theory (P.T.)
and the R = 10 data, showing that the perturbation theory
is no longer accurate. Reprinted figure with permission from
A.J.A. James and R.M. Konik, Phys. Rev. B, 92 161111,
2015. Copyright (2015) by the American Physical Society.

Quenches through the critical point can be performed,
but the numerics are more challenging, and consequently
the chain lengths and/or timescales that can be studied
are shorter. Figure 53 shows results for a quench of this
type, and also demonstrates that the dependence on Ec

becomes more significant at later times. It is also possible
to see the effect of tJ⊥ , as the approximate time at which
quenches for different final J⊥ begin to diverge. This is
especially evident in the inset of Fig. 53.

Quenches on systems with finite numbers of chains re-
quire approximately a factor of Ny more computer time.
For reasonably large Ny � 10, the results for local quan-
tities are not significantly affected by the finite cylinder
length, up to the times that can be reached by iTEBD
with the ChainAMPS system (excepting boundary effects
close to the ends of the cylinder). Global quantities how-
ever, including the Loschmidt echo can be more dramat-
ically affected. The Loschmidt echo per unit area (RNy,
for this 2D model) can display non-analytic points un-
der certain circumstances, and it has been argued that
these correspond to athermal behaviour [597]. Quenches
of the coupled quantum Ising chain array to J⊥ > Jc
show non-analytic behaviour in the Loschmidt echo, but
the qualitative nature of these non-analyticities is sen-
sitive to boundary conditions in 1D and 2D, even for
large Ny [566] (numerically the non-analytic behaviour
is rounded off by finite Ny and χ). Figure 54 displays an
example of this behaviour for a quench from the uncou-

Page 89 of 112 AUTHOR SUBMITTED MANUSCRIPT - ROPP-100904

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



90

0 1 2 3 4 5 6 7 8 9 10
t/tΔ

0

0.5

1

1.5

2
n i(x

)/j
⊥

2
R=4, Ec=8|Δ|
R=4, Ec=10|Δ|
R=6, Ec=6|Δ|
R=6, Ec=8|Δ|

0 2 4 6 8 10t/tΔ
-2

-1.5

-1

-0.5

0

<
σz i(x

)σ
z i+

1(x
)>

/(j
⊥
 |Δ

|1/
4 ) R=8, j⊥=0.01

R=10, j⊥=0.01
R=8, j⊥=0.1

j⊥=0.2
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FIG. 53. The fermion density, ni(x) in the 2D quantum Ising
ChainAMPS system, with different chain lengths R, after a
quench through the critical coupling to J⊥ = 0.2. Inset:
nearest neighbor chain spin correlation function, for differ-
ent antiferromagnetic post-quench J⊥, showing the time scale
tJ⊥ . Reprinted figure with permission from A.J.A. James and
R.M. Konik, Phys. Rev. B, 92 161111, 2015. Copyright
(2015) by the American Physical Society.
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FIG. 54. The logarithm of the Loschmidt echo for quenches
to J⊥ = 0.1 and 0.5. There is no apparent non-analytic be-
haviour in the quench to J⊥ = 0.1, at least up to t = 10tΔ.
Inset: the difference between finite and infinite cylinders.
Reprinted figure with permission from A.J.A. James and
R.M. Konik, Phys. Rev. B, 92 161111, 2015. Copyright
(2015) by the American Physical Society.

pled state to J⊥ = 0.5.

F. Further directions

In the last subsection we have attempted to establish
that exactly solvable models, often thought of as a pe-
culiarity of one dimension, can have a part to play in

understanding many-body quantum physics in higher di-
mensions. Here we have mainly covered the application
to the 2D quantum Ising model, but it is simple to ex-
tend these ideas to other coupled quantum chains. For
example one can treat arrays of (finite length) Luttinger
liquids with tunnelling terms, and even lattice systems
such as Heisenberg models. The former case admits three
good Z quantum numbers, related to chain momentum,
field winding number, and the canonical momentum con-
jugate to the field. Interesting future extensions include
adaptive methods to reduce the effects of the chain spec-
trum truncation (so that higher energy chain states can
be gradually added in to the representation), and incor-
porating some of the ideas from Sec. VI to reduce the
effects of the cutoff on the chain spectrum.

X. SUMMARY

The development of non-perturbative techniques for
tackling strongly correlated quantum systems remains at
the forefront of contemporary research in condensed mat-
ter theory. Whether analytical or numerical in nature,
such methods provide a concrete starting point for study-
ing problems absent a small parameter or in which the
physics is not adiabatically connected to a trivial (e.g.,
non-interacting) point. In this review, we have covered a
number of such methods for examining low-dimensional
quantum systems.
We first presented an applications-driven discussion

of non-Abelian bosonization – a formal correspondence
between fermionic and bosonic theories which explic-
itly preserves non-Abelian symmetries through confor-
mal embedding. We showed how this method can be
applied to models with complicated symmetries, such as
SU(2) × SU(k) which have applications to condensed
matter systems with both spin and orbital degeneracies.
We followed this by a discussion of applications to cold
atom systems with large symmetries, such as SU(N) or
Sp(2N).
We then turned our attention to a numerical approach:

the truncated space approach and its recent numerical
renormalization group extensions in Secs. V–VIII. This
powerful technique bootstraps exact knowledge from in-
tegrability to attack new and previously inaccessible
problems, allowing us to construct low-energy (approxi-
mate) eigenstates and to compute correlation functions
within these states. After introducing technical details,
we presented applications of the TSA+NRG algorithm to
semiconducting carbon nanotubes, the non-equilibrium
dynamics of a perturbed integrable model, 2D Landau-
Ginsburg theories, and perturbed WZNW models. The
latter were the subject of interest in the previous section
on non-Abelian bosonization.
The theme of bootstrapping integrability continued

in Sec. IX, where we introduced matrix product states
for arrays of integrable chains. This method expands
the toolbox of available techniques for two-dimensional
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strongly correlated systems by using information from
the exact solution of one-dimensional subsystems. By
blending such information with matrix product state
technology, the low-energy properties (including the crit-
ical point) of two-dimensional arrays of integrable one-
dimensional quantum systems can be accessed. After
filling out a number of technical details, we provided con-
crete examples where this method can be applied, includ-
ing arrays of free fermions and quantum Ising chains. We
showed that chain array matrix product states are useful
for studying both the equilibrium properties and the non-
equilibrium dynamics of 2D models that can be formed
from arrays of integrable chains, and discussed some fu-
ture directions for these studies.
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1D One dimensional
2D Two dimensional
BA Bethe Ansatz
BCS Bardeen-Cooper-Schrieffer
CDW Charge Density Wave
CFT Conformal Field Theory
DFT Density Functional Theory
DMFT Dynamical Mean Field Theory
DMRG Density Matrix Renormalization Group
ED Exact Diagonalization
iDMRG Infinite system size DMRG
iTEBD Infinite system size TEBD
iPEPS Infinite system size PEPS
IR Infrared
LG Landau-Ginsburg (model)
MERA Multiscale Entanglement

Renormalization Ansatz
MPO Matrix Product Operator
MPS Matrix Product State
NRG Numerical Renormalization Group
NS Neveu-Schwartz (sector)
OPE Operator Product Expansion
PEPS Projected Entangled Pair States
QCP Quantum Critical Point
QMC Quantum Monte Carlo algorithm
QPT Quantum Phase Transition
R Ramond (sector)

RG Renormalization Group
RPA Random Phase Approximation
SC Superconductivity
SDW Spin Density Wave
SVD Singular value decomposition
TBA Thermodynamic Bethe Ansatz
TCSA Truncated Conformal Space Approach
TDVP Time-dependent Variational Principle
TEBD Time-evolving Block Decimation
TIM Tricritical Ising Model
TSA Truncated Space Approach
uMPS ‘Uniform’ Matrix Product State
UV Ultraviolet
VEV Vacuum Expectation Value
WZNW Wess-Zumino-Novikov-Witten (model)
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Appendix A: A brief recap of Abelian bosonization

There are many good introductions to Abelian
bosonization: a field theoretic treatment is provided by
Sénéchal [598] and the textbooks [22, 61], whilst an
operator-lead constructive approach is explained in great
detail in [599]. The monograph by Giamarchi presents
both phenomenological and constructive approaches to
bosonization, and then discusses a great many applica-
tions [60].
Over the last three decades Abelian bosonization has

become a standard tool in the study of one-dimensional
quantum systems. In large part this is due to its suc-
cess at describing the phenomenology of strongly cor-
related fermionic systems: by choosing a new basis for
a problem, many fermionic problems decouple into sep-
arate bosonic theories, which often can be successfully
treated via integrability [61] or semi-classical approxima-
tions [60].52 In this appendix, we aim to briefly introduce
bosonization through the operator correspondence, and
then illustrate the so-called spin-charge separation and
semi-classical treatment with a simple example.

1. The bosonization identities

At its heart, bosonization describes a formal corre-
spondence between operators (or fields) in a fermionic
theory and those in a bosonic theory. Consider left- and
right-moving fermion fields Lσ, Rσ for electrons with spin
σ =↑, ↓ – these may be related to the chiral bosonic fields
ϕσ, ϕ̄σ via the bosonization identities

Rσ(x) ∼ ησ√
2π

: eiϕσ(x) :,

Lσ(x) ∼ ησ√
2π

: e−iϕ̄σ(x) :,
(A1)

where ησ are Klein factors, which anticommute
{ησ, ησ′} = 2δσσ′ to ensure the anticommutation of
fermion fields of different spin species, and the bosonic
fields are governed by the actions (23).
We have explicitly written the normal ordering of the

exponential of the bosonic fields (often called vertex
functions, from the high energy literature) in the above
bosonization identities. This normal ordering is impor-
tant in a linear theory (which is pathological in the ab-
sence of a cut-off, as there are an infinite number of elec-
tron states) and it means that the vertex functions do
not multiply in the usual manner, instead they satisfy

: eA :: eB :=: eA+B : e〈0|AB|0〉, (A2)

52 It is often surprisingly simple to capture the correct phenomenol-
ogy, as we will see in the following. In certain cases bosonization
can be combined with information from integrability to give ex-
act results (see, e.g., Ref. [106]).

which follows from the mode-expansion of the bosonic
field (see, for example, Ref. [598]). Working in Euclidean
space with complex coordinate z = τ− ix, this translates
to the following for the vertex functions

eiαϕσ(z)eiβϕσ(w) = eiαϕσ(z)+iβϕσ(w) (z − w)
αβ

, (A3)

where normal ordering of vertex functions is implicit. No-
tice that (A3) shows that the correlation functions of the
fermionic fields are reproduced by the bosonic operators

〈Rσ(z)R
†
σ′(z

′)〉 = δσσ′
1

2π

1

z − z′
, (A4)

= δσσ′
1

2π

1

(τ − τ ′)− i(x− x′)
. (A5)

Furthermore, it can be proven at the level of the partition
function that the free bosonic theory coincides with the
free fermionic one [135, 598]. An early prominent exam-
ple of the fermion-boson correspondence in an interacting
(1+1)-dimension system is the quantum sine-Gordon to
massive Thirring model mapping discussed by Coleman
in 1975 [52].
Further useful bosonization identities include the den-

sity operator

: R†σ(z)Rσ(z) :∼ − i

2π
∂zϕσ(z), (A6)

which can be derived via a point-splitting procedure [598]

: R†σ(z)Rσ(z) :

= lim
ε→0

[
R†σ(z + ε)Rσ(z − ε)− 〈R†σ(z + ε)Rσ(z − ε)〉

]
,

= lim
ε→0

−1

4πε

[
1− e−i(ϕσ(z+ε)−ϕσ(z−ε))

]
,

= lim
ε→0

−1

4πε

[
1− 1 + 2iε∂zϕσ(z) +O(ε2)

]
,

= − i

2π
∂zϕσ(z). (A7)

2. Spin-charge separation

Let us now turn our attention to a phenomenon at the
center of physics in one-dimensional quantum systems:
spin-charge separation. Consider a system of interacting
electrons in one-dimension; for simplicity we will con-
sider the Hubbard (on-site) interaction. The Hamilto-
nian reads

HU = −t
∑
l,σ

(
c†σ(l)cσ(l + 1) + H.c.

)
+ U

∑
l

n↑(l)n↓(l),

(A8)
where nσ(l) = c†σ(l)cσ(l) is the number operator for elec-
trons with spin σ. We focus on the case of half-filling
(i.e., one-electron per site) and we proceed to bosonize
the model by first linearizing the dispersion and then ap-
plying the bosonization identities (A1). Following this,
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we change basis to a set of bosonic fields associated with
spin (s) and charge (c) degrees of freedom:

Φd = ϕd + ϕ̄d, Θd = ϕd − ϕ̄d, (d = c, s) (A9)

where the chiral fields are defined as

ϕc = ϕ↑ + ϕ↓, ϕs = ϕ↑ − ϕ↓, (A10)

ϕ̄c = ϕ̄↑ + ϕ̄↓, ϕ̄s = ϕ̄↑ − ϕ̄↓ . (A11)

We then obtain the Hamiltonian density [333]

HU = Hc +Hs, (A12)

Hc =
vF
16π

[
(∂xΦc)

2 + (∂xΘc)
2
]

− g

(2π)2

{
cos(Φc) +

1

16

[
(∂xΘc)

2 − (∂xΦc)
2
]}

,

Hs =
vF
16π

[
(∂xΦs)

2 + (∂xΘs)
2
]

+
g

(2π)2

{
cos(Φs) +

1

16

[
(∂xΘs)

2 − (∂xΦs)
2
]}

.

We see that the theory has separated into two decoupled
sectors, describing spin and charge degrees of freedom.
This so-called spin-charge separation has been observed
experimentally in quasi-one-dimensional materials (see,
for example, Refs. [63–66]).

3. Semi-classical treatment: a simple example

We have seen that bosonization maps a fermionic
Hamiltonian (A8) to a bosonic one (A12) with decou-
pled spin and charge degrees of freedom. However, the
bosonic theory is rather complicated: we now have non-
linear interaction terms, and one might be tempted to
suggest that we have in fact made our lives more diffi-
cult. Fortunately, it is often the case that a semi-classical
analysis is sufficient to understand the physics.
Consider the Hamiltonian (A12), which is the contin-

uum limit of the Hubbard model at half-filling. Focusing
on the case with repulsive interactions, a one-loop RG
analysis (valid for small g) tells us that the fixed point
Hamiltonian is [227]

H =
vs
16π

[
K−1

s (∂xΦs)
2 +Ks(∂xΘs)

2
]

+
vc
16π

[
K−1

c (∂xΦc)
2 +Kc(∂xΘc)

2
]

−g̃ cos(Φc), (A13)

whereKc,Ks are the Luttinger parameters for the charge
and spin sectors [60] (which reflect the interacting nature
of the underlying fermionic theory, and which change un-
der the RG flow), vc, vs are velocities for the charge and
spin degrees of freedom, and g̃ ∼ O(1) is the renormalized
coupling (the coupling for the cosine of the spin boson
flows to zero under the RG). The Hubbard model en-
joys an SU(2) spin symmetry, which fixes the Luttinger
parameter in the spin sector to be Ks = 1.

As the RG flow is towards a strong coupling fixed point
with large g̃, it is natural to treat the cosine term semi-
classically: the cosine term pins the charge boson Φc to
one of its minima. We then expand about one of the
minima of the cosine potential Φc = 2nπ + Φ̃c (n ∈ Z),
assuming that fluctuations Φ̃c are small, to obtain the
Hamiltonian

H =
ṽs
16π

[
(∂xΦs)

2 + (∂xΘs)
2
]

+
ṽc
16π

[
K−1

c (∂xΦ̃c)
2 +Kc(∂xΘ̃c)

2
]

+m̃Φ̃2
c +O

(
Φ̃4

c

)
, (A14)

where m̃ is an effective mass for the charge fluctuations
and we neglect an unimportant constant.
So, semi-classically we have a low-energy effective the-

ory that describes a gapless spin degree of freedom and a
massive charge degree of freedom. Correlation functions
can be computed: charge correlation functions will de-
cay exponentially due to the effective mass m̃ and spin
fluctuations will decay as a power law. This phenomenol-
ogy is consistent with the exact solution of the Hubbard
model via the Bethe ansatz [333].

Appendix B: A conformal field theory primer

Conformal field theory is now a vast field in its own
right and covers a huge variety of works, ranging from
pure mathematics to applied physics. As a result there
is a large introductory literature on the subject – per-
haps the best known is the beautiful “Big Yellow Book”
by Di Francesco, Mathieu and Sénéchal [135]. In this ap-
pendix, we will briefly introduce the subject of CFT and
summarize some useful results. For further exposition
and information, we urge the reader to consult the wider
literature.

1. Conformal transformations

In two dimensions, the conformal group is formed from
the set of all holomorphic mappings. It is useful to con-
sider the generators of conformal transformations

�n = −zn+1∂z, �̄n = −z̄n+1∂z̄, (B1)

which are derived from the following logic. Consider an
infinitesimal holomorphic transformation

z → z′ = z + ε(z), ε(z) =

∞∑
n=−∞

cnz
n+1, (B2)

here ε(z) is small, and can be expressed as a Laurent
series about z = 0 (this is true by construction as we
consider holomorphic transformations). A spinless field
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Ψ(z, z̄) (see Eq. (B13)) transforms under (B2) as

Ψ(z, z̄) = Ψ(z′, z̄′)− ε(z′)∂z′Ψ(z′, z̄′)− ε̄(z̄′)∂z̄′Ψ(z′, z̄′),
(B3)

which is easily written in terms of the generators (B1) as

δΨ =

∞∑
n=−∞

[
cn�nΨ(z, z̄) + c̄n�̄nΨ(z, z̄)

]
. (B4)

It is straightforward to show that the generators obey
the Witt algebra

[�n, �m] = (n−m)�n+m, (B5)

[�̄n, �̄m] = (n−m)�̄n+m, (B6)

[�n, �̄m] = 0. (B7)

Clearly �n and �̄n form two infinite isomorphic alge-
bras, each of which has an additional finite sub-algebra
formed from �−1, �0, �1. These generators correspond
to: (i) �−1 = −∂z translations of the complex plane; (ii)
�0 = −z∂z scale transformations; (iii) �1 = −z2∂z special
conformal transformations. Together (i)–(iii) form the
global conformal group.
We note that in real space (x, y ∈ R), only the linear

combinations

�n + �̄n, −i(�n − �̄n), (B8)

preserve the realness of the space. For n = 0, these
combinations correspond to dilation and rotations of the
real space, respectively.

2. What is a CFT?

From a purely “computational” point of view, a CFT
can be described through the following:

1. a set of primary fields {φj};
2. the conformal dimensions {(Δj , Δ̄j)} of these fields;
3. the rules for fusion of these fields φi × φj → ckijφk;

4. its central charge.

For the purpose of clarity in illustrating these concepts,
we will focus on one particular example of a CFT: the
critical Ising model.

3. The critical Ising model

This is equivalent to a model of a massless real (e.g.,
Majorana) fermion with the action

S =
1

2π

∫
dzdz̄

(
ψ∂̄ψ + ψ̄∂ψ̄

)
, (B9)

where ψ, ψ̄ are holomorphic and anti-holomorphic Majo-
rana fermion fields with propagators

〈ψ(z, z̄)ψ(w, w̄)〉 = 1

z − w
,

〈ψ̄(z, z̄)ψ̄(w, w̄)〉 = 1

z̄ − w̄
,

(B10)

and the two-dimensional plane (x, y) is parameterized by
the complex coordinates z = x+ iy, z̄ = x− iy. Deriva-
tives with respect to these are denoted by

∂ = ∂z =
1

2
(∂x − i∂y), ∂̄ = ∂z̄ =

1

2
(∂x + i∂y). (B11)

a. Primary fields

Primary fields are of central importance in CFT. Un-
der a conformal transformation z → w(z), z̄ → w̄(z̄) ,
primary fields φj(z, z̄) transform as

φj(z, z̄) → φj(w, w̄) =

(
∂w

∂z

)−Δj
(
∂w̄

∂z̄

)−Δ̄j

φj(z, z̄),

(B12)
where (Δj , Δ̄j) are the holomorphic and antiholomorphic
conformal dimensions, respectively. From these, one can
define the scaling dimension dj and the conformal spin
sj of the primary field φj

dj = Δj + Δ̄j , sj = Δj − Δ̄j . (B13)

In terms of the Ising CFT (B9), it follows from the form
of the propagators (B10) that the Majoranas fermions are
primary fields with conformal dimensions

ψ(z) :

(
1

2
, 0

)
, ψ̄(z̄) :

(
0,

1

2

)
. (B14)

They have scaling dimension d = 1/2, as should be ex-
pected for fermions, and carry s = ±1/2 conformal spin.

There are two additional operators of interest in the
critical Ising theory. These are the energy operator
ε(z, z̄) = iψ̄(z, z̄)ψ(z, z̄) and the spin operator σ(z, z̄),
which are related to the operators σiσi+1 and σi in the
lattice two-dimensional Ising model (see, e.g., Ref. [135]),
respectively. The operators are primary fields with con-
formal dimensions

ε(z, z̄) :

(
1

2
,
1

2

)
,

σ(z, z̄) :

(
1

16
,
1

16

)
.

The disorder parameter μ(z, z̄) is dual to the spin oper-
ator σ(z, z̄) and carries the same conformal dimensions.
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b. The operator product expansion and fusion rules

The computation of correlation functions is one of the
central aims in field theory. It is typically the case that
when you bring two operators together towards a single
point z → w the correlation function diverges, see for
example the propagators of the Majorana fields (B10).
The operator product expansion (OPE) is a representa-
tion of this process of bringing two operators together:
it expresses the product as a sum of operators which are
well-behaved z multiplied by functions of z − w which
may diverge as z → w. A typical example would look
like

lim
z→w

φi(z)φj(w) ∼
∑
k

ckij
φk(w)

(z − w)Δi+Δj−Δk
, (B15)

where ckij are real numbers, often called the OPE coeffi-
cients and ∼ denotes that the relation holds only within
correlation functions and keeps only the singular terms.
A special role in the OPE is played by the stress-energy

tensor of the theory. The OPE of the stress-energy tensor
with a primary field is fixed

T (z)φ(w, w̄) ∼ Δ

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄),

T̄ (z̄)φ(w, w̄) ∼ Δ̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄),

(B16)

where (Δ, Δ̄) is the conformal dimension of the primary
field φ(w, w̄). It is also the case that the OPE of the
stress energy tensor with itself is

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (B17)

where c is the central charge of the theory.
In the context of the Ising field theory, the stress energy

tensor is

T (z) = −1

2
ψ(z)∂ψ(z). (B18)

Using the OPE of the Majorana fermion fields

ψ(z)ψ(w) ∼ 1

z − w
, (B19)

it is easy to see that

T (z)ψ(w) ∼ 1/2

(z − w)2
ψ(w) +

1

z − w
∂φ(w), (B20)

as required. Other useful OPEs for the fields in the Ising
theory include

ε(z, z̄)ε(w, w̄) ∼ 1

|z − w|2 , (B21)

σ(z, z̄)σ(w, w̄) ∼ 1

|z − w| 14 +
1

2
|z − w| 34 ε(w, w̄).

(B22)

Δ Δ̄ d s

ψ 1
2

0 1
2

1
2

ψ̄ 0 1
2

1
2

− 1
2

ε 1
2

1
2

1 0
σ 1

16
1
16

1
8

0

ψ ψ̄ ε σ

ψ 1 μ
ψ̄ 1 μ
ε 1 σ
σ μ μ σ 1+ε

TABLE VI. Conformal data for the Ising CFT. (Left) List of
primary fields and their conformal dimensions (Δ, Δ̄), scaling
dimensions d, and conformal spin s. (Right) The fusion rules
for the primary fields of the Ising CFT, with 1 being the
identity field (1× φ = φ).

Schematically, a quick way to characterize the above are
the fusion rules:

ψ × ψ = 1, ψ̄ × ψ̄ = 1,

ε× ε = 1, σ × σ = 1+ ε.

We summarize the conformal information of the Ising
theory and the fusion rules in Table VI.

c. Conformal blocks

The fusion rules immediately suggest that factorization
of the multi-point correlation functions into products of
holomorphic functions does not occur (unlike in the Lut-
tinger liquid, cf. Eqs. (22) and the accompanying dis-
cussion). Instead, correlation functions are, generically,
sums of products of holomorphic functions. This is well
illustrated by the four point function of the spin operator

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉. (B23)

Applying the OPE (B22) to both the first and second
pairs, we find

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉
=

1

|z1 − z2| 14 |z3 − z4| 14
(
1 +

1

4

|z1 − z2||z3 − z4|
|z2 − z4|2

)
,

(B24)

which is a sum of products of holomorphic functions.
More generally, in conformal field theory multi-point

correlation functions of fields will have the form

〈φ(z1, z̄1) . . . φ(zN , z̄N )〉
=

∑
j

CjFj(z1, . . . , zN )F̄j(z̄1, . . . , z̄N ), (B25)

where Fj(z1, . . . , zN ) and F̄j(z̄1, . . . , z̄N ) are called con-
formal blocks, and correlation functions can be thought
of as factorizing on the level of conformal blocks.

4. The Hilbert space

Before finishing our brief review of some CFT topics
relevant to our discussions, it will be useful to examine
the basic structure of the Hilbert space of CFTs.
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a. The Virasoro Algebra

An important concept in CFT is the Virasoro alge-
bra [600]. The algebra is formed from the mode opera-
tors of the Laurent expansion of the stress-energy tensor,
traditionally denoted by Ln, L̄n [135]:

T (z) =

∞∑
n=−∞

z−n−2Ln, T̄ (z̄) =

∞∑
n=−∞

z̄−n−2L̄n.

(B26)
Here, the indices −n − 2 are chosen such that the oper-
ator L−n transforms under z → z/a as L−n → anL−n

and hence Ln has scaling dimension n. The Laurent ex-
pansion can be inverted to give the relations [135]

Ln =
1

2πi

∮
dz zn+1T (z),

L̄n =
1

2πi

∮
dz̄ z̄n+1T̄ (z̄).

(B27)

Whilst the operators �n, �̄n in Sec. B 1 are the genera-
tors of local conformal transformations in the space of
functions, the operators Ln, L̄n generate local confor-
mal transformations on the Hilbert space. For exam-
ple, L0 + L̄0 generate dilations of the real space (z, z̄) →
a(z, z̄), in direct analogy with �0 + �̄0. L0 + L̄0 can be
interpreted as the Hamiltonian of the CFT [135].
From the OPE of the stress-energy tensor, see

Eq. (B17), the Virasoro algebra [600] follows:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 ,

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0 ,

[Ln, L̄m] = 0,

(B28)

where c is the central charge of the CFT. As with
the operators �n, �̄n, there is a subalgebra formed from
L−1, L0, L1 which generate the global conformal group

[L±1, L0] = ±L±1, [L1, L−1] = 2L0. (B29)

b. States in the Hilbert space

Here we will briefly cover some basic terminology; the
Hilbert space of a CFT can be quite complicated and
may possess some intricate mathematical structure [135].
Generally, states in the CFT can be grouped into families
[φ], each of which contains a single primary field φ of the
theory and an infinite set of ‘descendant’ fields. These
form irreducible representations of the conformal group,
with the primary field corresponding to a ‘highest weight
state’ of the representation.
a. The vacuum. We denote the vacuum state by |0〉

and impose that it possesses global conformal symmetry.
As a result, the vacuum state must be annihilated by
the generators of the global conformal group L−1, L0, L1

(and the corresponding antiholomorphic components)

L−1|0〉 = L0|0〉 = L1|0〉 = 0. (B30)

Furthermore, application of the stress-energy tensor to
the vacuum should be well-defined in the limit z → 0:

T (z)|0〉 =
∞∑

n=−∞
z−n−2Ln|0〉, (B31)

which clearly requires

Ln|0〉 = 0, for n ≥ −1. (B32)

Application of the operators L−n with n ≥ 2 to the vac-
uum generate states in the Hilbert space that form part
of a representation of the Virasoro algebra.
b. Highest weight states. Let us now consider the

application of the primary field φ(z, z̄) with conformal
dimensions Δ, Δ̄ to the vacuum:

|Δ, Δ̄〉 = φ(z, z̄)|0〉. (B33)

The OPE of the stress-energy tensor T (z) with the pri-
mary field φ(z, z̄), see Eq. (B16), fixes the commutation
relation of the Virasoro operators with the field

[Ln, φ(z, z̄)] = Δ(n+ 1)znφ(z, z̄) + zn+1∂φ(z, z̄), (B34)

where n ≥ −1, and we find

L0|Δ, Δ̄〉 = Δ|Δ, Δ̄〉, L̄0|Δ, Δ̄〉 = Δ̄|Δ, Δ̄〉. (B35)

Hence states generated by applying a primary field to
the vacuum are eigenstates of the Hamiltonian. Equa-
tion (B34) also implies

Ln|Δ, Δ̄〉 = L̄n|Δ, Δ̄〉 = 0, n > 0. (B36)

The states |Δ, Δ̄〉 that satisfy Eqs. (B35)–(B36) are
known as the highest weight states.
c. Descendent states. Application of the operator

L−m (m > 0) to a state increases the conformal dimen-
sion (as L−m has scaling dimension m), as can be seen
from the Virasoro algebra:

[L0, L−m] = mL−m. (B37)

Excited states in a CFT can be obtained from application
of Virasoro operators on a highest weight state:

L−m1L−m2 . . . L−mN
L̄−m̄1L̄−m̄2 . . . L̄−m̄N̄

|Δ, Δ̄〉 (B38)

where by convention m1 < m2 < . . . < mN (and m̄1 <
m̄2 < . . . < m̄N̄ ). This state is a simultaneous eigenstate
of L0 with eigenvalue

Δ +
N∑

n=1

mn,

and of L̄0 with eigenvalue

Δ̄ +

N̄∑
n=1

m̄n.

Such states are known as descendent states (or simply
‘descendants’) of the primary field φ(z, z̄).
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[77] U. Schollwöck, “The density-matrix renormalization
group in the age of matrix product states,” Ann. Phys.
(N.Y.) 326, 96 – 192 (2011), january 2011 Special Issue.

[78] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Ra-
jagopal, “Quantum Monte Carlo simulations of solids,”
Rev. Mod. Phys. 73, 33–83 (2001).

[79] S. Hochkeppel, T. C. Lang, C. Brünger, F. F. As-
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[197] T. Gotô and T. Imamura, “Note on the Non-
Perturbation-Approach to Quantum Field Theory,”
Prog. Theor. Phys. 14, 396–397 (1955).

[198] J. Schwinger, “Field Theory Commutators,” Phys. Rev.
Lett. 3, 296–297 (1959).

[199] S. Coleman, D. Gross, and R. Jackiw, “Fermion Avatars
of the Sugawara Model,” Phys. Rev. 180, 1359–1366
(1969).

[200] A. A. Belavin, A. M. Polyakov, and A. B. Zamolod-
chikov, “Infinite conformal symmetry of critical fluctu-
ations in two dimensions,” J. Stat. Phys. 34, 763–774
(1984).

[201] A. A. Belavin, A. M. Polyakov, and A. B.
Zamolodchikov, “Infinite conformal symmetry in two-
dimensional quantum field theory,” Nucl. Phys. B 241,
333 – 380 (1984).

[202] H. Sugawara, “A Field Theory of Currents,” Phys. Rev.
170, 1659–1662 (1968).

[203] A. B. Zamolodchikov and V. A. Fateev, “Operator al-
gebra and correlation functions in the two-dimensional
SU(2) × SU(2) chiral Wess-Zumino model,” Sov. J.
Nucl. Phys. 43, 657 (1986).

[204] A. A. Belavin, A. M. Polyakov, and A. B.
Zamolodchikov, “Infinite conformal symmetry in two-
dimensional quantum field theory,” Nucl. Phys. B 241,
333 – 380 (1984).
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multisoliton form factors in finite volume,” Phys. Rev.
D 85, 085005 (2012).
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[409] G. Takács, “Determining matrix elements and reso-

nance widths from finite volume: the dangerous μ-
terms,” JHEP 2011, 113 (2011).

[410] T. Palmai, “Edge exponents in work statistics out
of equilibrium and dynamical phase transitions from
scattering theory in one-dimensional gapped systems,”
Phys. Rev. B 92, 235433 (2015).

[411] F. Buccheri and G. Takács, “Finite temperature one-
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lik, “Studying the perturbed Wess–Zumino–Novikov–
Witten theory using the truncated conformal spectrum
approach,” Nucl. Phys. B 899, 547 – 569 (2015).

[434] R. M. Konik and Y. Adamov, “Numerical renormal-
ization group for continuum one-dimensional systems,”
Phys. Rev. Lett. 98, 147205 (2007).

[435] G. Feverati, K. Graham, P. A. Pearce, G. Zs. Tóth,
and G. M. T. Watts, “A renormalization group for the
truncated conformal space approach,” J. Stat. Mech.
2008, P03011 (2008).

[436] G. M. T. Watts, “On the renormalisation group for the
boundary truncated conformal space approach,” Nucl.
Phys. B 859, 177 – 206 (2012).

[437] P. Giokas and G. Watts, “The renormalisation group for
the truncated conformal space approach on the cylin-
der,” ArXiv e-prints (2011), arXiv:1106.2448 [hep-th].

[438] Slava Rychkov and Lorenzo G. Vitale, “Hamiltonian
truncation study of the ϕ4 theory in two dimensions,”
Phys. Rev. D 91, 085011 (2015).

[439] A. Coser, M. Beria, G. P. Brandino, R. M. Konik,
and G. Mussardo, “Truncated conformal space approach
for 2d landau–ginzburg theories,” J. Stat. Mech. 2014,
P12010 (2014).

[440] S. Rychkov and L. G. Vitale, “Hamiltonian truncation
study of the φ4 theory in two dimensions. II. The Z2-
broken phase and the Chang duality,” Phys. Rev. D 93,
065014 (2016).

[441] Z. Bajnok and M. Lajer, “Truncated Hilbert space ap-
proach to the 2d φ4 theory,” JHEP 2016, 50 (2016).
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and J. F. Stilck, “Hamiltonian studies of the Blume-
Emery-Griffiths model,” Phys. Rev. B 32, 7469–7475
(1985).

[481] D. B. Balbao and J. R. Drugowich de Felicio, “Operator
content of the Blume-Capel quantum chain,” J. Phys.
A 20, L207 (1987).

[482] G. von Gehlen, “Off-criticality behaviour of the Blume-
Capel quantum chain as a check of Zamolodchikov’s
conjecture,” Nucl. Phys. B 330, 741 – 756 (1990).

[483] G. von Gehlen, V. Rittenberg, and H. Ruegg, “Con-
formal invariance and finite one-dimensional quantum
chains,” J. Phys. A 19, 107 (1986).

[484] V. A. Alba, V. A. Fateev, A. V. Litvinov, and
G. M. Tarnopolskiy, “On Combinatorial Expansion of
the Conformal Blocks Arising from AGT Conjecture,”
Lett. Math. Phys. 98, 33 (2011).

[485] Vl. S. Dotsenko and V. A. Fateev, “Four-point correla-
tion functions and the operator algebra in 2D confor-

mal invariant theories with central charge c < 1,” Nucl.
Phys. B 251, 691 – 734 (1985).

[486] A. B. Zamolodchikov, “Integrable Field Theory from
Conformal Field Theory,” in Advanced Studies in Pure
Mathematics 19: Integrable Systems in Quantum Field
Theory and Statistical Mechanics, edited by M. Jimbo,
T. Miwa, and A. Tsuchiya (Academic Press, San Diego,
1989) pp. 641 – 674.

[487] V. A. Fateev and A. B. Zamolodchikov, “Conformal field
theory and purely elastic S-matrices,” Int. J. Mod. Phys.
A 05, 1025–1048 (1990).

[488] F. H. L. Essler and R. M. Konik, “Application of mas-
sive integrable quantum field theories to problems in
condensed matter physics,” in From Fields to Strings:
Circumnavigating Theoretical Physics (World Scientific,
2012) pp. 684–830.
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