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Abstract

Characterising road networks has been the focus of a large body of research due to it

being the main driver of activities in an urban ecosystem and the structuring factor in the

dynamics of the city. One of these activities, and one with the largest economical impact in

a city, is retail dynamics and its evolution. Therefore, the mathematical modeling of the

location of retail activities and of the emergence of clustering in retail centers has as well

generated a large number of works. Despite these two interwoven components strongly

depending on one another and their fundamental importance in understanding cities, little

work has been done in order to compare their local and global properties. Here we com-

pare the road network’s hierarchical structure, unveiled through a percolation analysis of

the network, with the retail location distribution defined by exploiting a gravity-based retail

model. We interpret the great agreement in the city’s organizations as it emerges from both

methodologies as new evidence of the interdependence of these two crucial dimensions of

a city’s life.

Introduction

The study of the spatial organization and the dynamics of retail activities in cities is a long

standing problem, one that has puzzled researchers of various fields for a number of years now

[1–5]. Despite this multidisciplinary effort fresh approaches have struggled to emerge in the

last decades. Recent advances in spatial networks [6, 7], and in particular, in road networks

[8–11], combined with the large increase of available data in urban systems, have renewed the

interest in the field with efforts aimed at modelling and measuring the formation of retail

agglomerations [12–14], and relating it to centrality measurements of the city’s road network

[15, 16]. Given its economical importance and the influence that the location of retail activity

has on the general structure of a city, and how this structure in turn influences the develop-

ment of retail centers, we felt compelled to gain insight into the extent to which the road
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clusters that stem from the percolation process on the road network [17] give rise to retail

agglomeration centres [18].

To study and describe retail activities we exploit the retail model introduced in [18], a

benchmark in its field. It describes flows of spending power, or money, from population cen-

troids to retail centers. For decades this model has proven itself successful in predicting the

dynamics of retail centers [19]. In the model, retail centers compete for the limited amount

of resources, represented by the population, and only the more attractive and better posi-

tioned manage to survive. This is elegantly done through an entropy maximizing model [20],

which quantifies the aggregate flow from population centroid i to retail center j with only

two parameters: one that sets the scaling between a retailers’ attractiveness and floorspace

and another which defines the cost of moving. Indeed, highly visited retail centers grow

proportionally to the number of visits, while poorly visited centers shrink in size and are

eventually removed from the system. The identity, number and position of retail centers that

survive, strongly depends on the values of the two parameters, and it has been shown that, by

keeping the cost of moving constant and increasing the attractiveness scaling exponent, the

model undergoes a phase transition [21–23] from a diverse and heterogenous retail land-

scape to one where only the most attractive center, by defeating all other competition, man-

ages to survive. In between those two extreme cases the model describes the formation of

retail clusters.

This retail model will be put into context with a percolation approach on the road network

based on the work presented in [17]. Percolation theory [24] studies the properties of the clus-

ters formed when adjacent sites of a lattice are occupied, and has been applied to study systems

in many different contexts, such as oil extraction [25], the study of the electrical conductivity

of materials [26], polymerization processes [27], epidemic studies [28], fire spreading [29] and

of course urban systems [30, 31]. Moreover, in [17] it has been shown how the road network

contains footprints of the socio-economic and cultural evolution of a country and its regions.

This has been done by applying percolation theory to the network of the street intersections in

the UK, which allowed to clearly uncover regional economical patterns in relation to their

infrastructure. In this approach, and very similarly in [32], clusters are the outcome of some

thresholding process and reveal a hierarchical organisation of the network. For low thresholds

small road clusters scattered through the system appear, which merge with one another by

increasing the threshold forming fewer larger clusters, eventually joining in one giant one

formed by the whole network.

Understanding the formation of retail centres as one analog to the generation of clusters in

the percolation model allows us to establish a comparison between the two approaches. The

low threshold scenario corresponds to a small scaling exponent parameter in the model, which

forms a heterogeneous and varied retail landscape. While the formation of the giant road clus-

ter obtained by increasing the threshold, corresponds to high values of the model’s scaling

exponent which describes the formation of one large retail center. Indeed the scaling parame-

ter and the threshold seem to play the same role in these two clustering processes. It is there-

fore tempting, to bridge these two formalisms and, following the hierarchical definition that

comes from percolation analysis, to interpret the formation of retail clusters described by the

model as a fingerprint of a hierarchical organization in the economic activities of a city. As we

will show in great detail the two approaches describe a very similar urban hierarchical struc-

ture with the location and size of the retail and road clusters being in great agreement. This

result seems to bring new evidence on the polycentric organisation of the city, and indeed

sheds new light on the relationship between the road network of a city and the economical

activities that develop on it.

Urban retail location: Percolation and spatial interaction modeling
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Materials and methods

In this section we will go through the details of the procedures we want to compare, and the

data used both for calibration and for testing. We will start by defining the retail model, and

analysing its main results, we will then present the application of the percolation process to

London’s road network, and finally present the data.

The retail model

By following the procedure outlined in [23], we can define the flows from population centroids

i to retail centres j as described by the equation

Tij ¼
piwa

j expð� bcijÞ

Zi

ð1Þ

where pi is the population in the origin i, wj is the aggregated floorspace of retail center j and cij

the cost of moving from i to j, that we will simply quantify as the euclidean distance between

the two points. We can see how these flows are defined by two parameters, namely α, which

sets the scaling between the attractiveness and the floorspace of a retailer and β which tunes the

cost of moving. Zi is the normalisation factor, which under the constraint of the total outflow

being equal to the population, i.e. ∑j Tij = pi, becomes

Zi ¼
X

k

wa

kexpð� bcikÞ ð2Þ

As one can see in [23], the form of the flows in Eq (1) comes out of an entropy maximising

process, and is obtained under the constraints that come from the observed data: the popula-

tion’s pi, the aggregated floorspace’s wj and the cost matrix’s cij spatial distribution. This means

that the set of flows {Tij} are an equilibrium configuration, that depends on the input data as

well as on the values of the parameters α and β. Any small change in the input data would yield

a rapid reconfiguration to a new attractor state. We can therefore interpret this process as a

fast dynamics one.

Moreover we can, by exploiting Eqs (1) and (2), predict the evolution of the floorspace dis-

tribution {wj}, considered constant during the fast dynamics. By calculating the total inflow to

retail centre j as dj = ∑i Tij, we define the dynamics equation as

Dwj ¼ �ðkdj � wjÞ ð3Þ

The set of equations in Eq (5) are complicated non linear equations that can only be solved

iteratively., because every variation in any retailer’s floorspace wk, modifies all other equations.

The � is a small factor that allows the iterative process to converge. Therefore we have

wjðnþ 1Þ  wjðnÞ þ DwjðnÞ ð4Þ

with n being the current iteration. Eqs (3 and 4) tell us that wj will increase if κdj > wj and

shrink in the opposite case. The constant κ is there to make sure that all quantities are mea-

sured in commensurate units, and converts the flow of people into floorspace. Its value must

be calibrated on the data. The solution to Eq (3), is given by the set of equations kdj ¼ weq
j

which explicitly become

k
X

i

� piðw
eq
j Þ

a exp ð� bcijÞ
P

kðw
eq
k Þ

aexpð� bcikÞ

�

¼ weq
j ð5Þ

which implies that Dweq
j ’ 0 8j. The model we have just defined has a rich behaviour and
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describes different types of retail structures {weq}, according to the two parameters α and β.

For α> 1 larger shops will be more attractive and a small β implies higher probabilities of

interaction over longer distances to achieve the benefits of size. Hence large α and small β
combinations generate structures with a small number of large wj centres and vice versa. In the

bottom panels of (Fig 1) we can see how, by fixing β = 0.8 and increasing α, the number of

retail centres decrease with the ones remaining becoming larger and larger.

Percolation on London’s road network

In this work we apply a percolation process to London’s road networks in order to uncover its

hierarchical structure, following the procedure used in [17]. In the approach, the nodes of the

weighted network are the road intersections, while the links are each road joining two intersec-

tions. These are weighted by their lengths, so two crossings connected by a long road will have

a link with a high weight connecting them and vice versa. The approach undertaken to calcu-

late the percolation of London’s road network consists of the following steps: we begin by set-

ting a threshold τ, then we select every link who’s weight falls below that threshold, rij < τ and

extract the subgraph formed by those links. The weakly connected components of the sub-

graph are the clusters of the network generated by the percolation process for a given thresh-

old. The clusters are constructed such that they have at least a link connecting them with a

weight smaller than the given threshold. These clusters form a tree structure given that for two

thresholds τ1 and τ2, if τ1 < τ2, a cluster generated using τ1 will be completely contained into a

cluster obtained using τ2. This allows us to construct a hierarchical tree that follows the order-

ing of the regions induced by the percolation which uncovers the intrinsic structure of the

system.

Percolation is a critical process that, generally, presents a phase transition at a critical proba-

bility (in our case threshold). The term phase transition here is used perhaps freely used since

in the type of percolation that we are dealing with, this phase transition is not as clear as in

other percolation processes. As we can see in (Fig 2e) the threshold that generates the

Fig 1. The figures in the top panel represent the evolution of the road clusters for growing values of the threshold τ. The figures in

the bottom panels show the distribution of the equilibrium configuration defined in Eq (3), weq(α, β), for growing α’s and fixed β = 0.8. The size

of the circles are proportional to the total floorspace of the retail cluster. In both cases the colours indicate the rank of the clusters. There is a

striking similarity both in the types of dynamics, and in the spatial distribution.

https://doi.org/10.1371/journal.pone.0185787.g001
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maximum entropy configuration is τ = 120 and that is the point where the clusters are simulta-

neously maximizing their sizes while equilibrating their difference. Below it, the clusters are

small, while above it the giant cluster starts to take over the whole distribution. It is therefore,

the threshold with a larger information in terms of the distribution of the cluster sizes.

We must clarify that the specific value of the threshold τmax, for which the maximum

entropy configuration is generated, depends on the value of the minimum cluster size accepted

in the analysis nmin. For the purpose of this work we have arbitrarily set this value to nmin =

100, but the results we have obtained can be extended to any other value of this parameter,

with no loss of generality.

Given a threshold τ the clusters of the percolation separate the network into regions that

have a similar density of intersections, and it has been shown in [33] and in the supplementary

information of [34] that this is correlated with the population density. This is probably due to

the fact that buildings have to be located next to a road intersection. Moreover it is safe to

assume that retailers tend to position themselves close to population centers proportionally to

their size. We can therefore interpret the study undertaken in this paper as an effort to quantify

this effect through the comparison between retail and intersection clusters.

Results

As explained in the introduction, our aim is to compare the location and size of road clusters,

that come from a percolation analysis of the road network, and the retail clusters described by

the model as solutions of Eq (3). Moreover we want to compare the role played by the scaling

parameter α of the model in the formation of retail clusters with that played by the threshold τ
in the percolation.

To do so we will start with a qualitative observation of the two evolutions: in (Fig 1) we

show the evolution of the spatial distribution of the clusters in the two approaches. The figures

in the top panel show the evolution of the percolation clusters, where nodes of the same colour

Fig 2. The top panels refer to the retail dynamics with β = {0.4, 0.8, 1.0}, while the bottom panels to the hierarchical percolation. (a)-

(d) The evolution of the size of the giant cluster, is presented, for increasing values of τ and α. (b)-(e) We show the evolution of the spatial

entropy. Both quantities show a very similar behaviour in the two approaches. (c)-(f) We can see the distribution of the cluster (β = 0.8 for the

retail model) that have an exponential form as shown in the insets.

https://doi.org/10.1371/journal.pone.0185787.g002
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belong to the same cluster, and where the colour indicates the rank of the cluster. White nodes

are those that either don’t belong to any cluster or they belong to a cluster who’s size is smaller

than 100 (minimum cluster size). We consider white nodes as not belonging to the system for

the given threshold, making the fraction of active nodes dependent on τ. In the bottom panels,

following the same logic, we present the {weq} configuration that comes out of Eq (3), where

we have fixed the β parameter to 0.8 and where we vary the value of α. We see how for every

new value of α the configuration {weq} is formed by retailers that vary in number, location and

size. At a first glance we can see how by increasing τ in the road percolation approach and

increasing α in the retail model the behaviour is very similar: in both cases the number of clus-

ter decreases while their size tends to increase, and high ranked clusters tend to position them-

selves in similar positions.

For a more quantitative comparison of the macroscopic properties of the two evolutions we

study the size of the giant cluster and of the entropy of the cluster sizes for increasing values of

α and τ. To calculate the entropy we have used Shannon’s formula

Ht;a ¼ �
X

x

pt;aðxÞ log pt;aðxÞ ð6Þ

where x runs on the cluster sizes and p(x) is the probability of finding a cluster of size x, for

each value of τ and α. In (Fig 2) we can see how the evolution of these two quantities follows

the same behaviour in both approaches. In the percolation on the road network (bottom

panel) (Fig 2d) and (Fig 2e), for low values of τ, increases in the threshold imply increases in

the entropy. This corresponds to a slow increase in the size of the giant cluster. Around τ = 130

the Entropy reaches its maximum and we can see a change in the curvature of the giant cluster

which starts a steeper increase. From then on, as one may expect, the entropy of the system

decays to zero and the giant cluster spreads to the whole network.

In (Fig 2a and 2b) we show how the clusters that form during the dynamics of the retail

model follow a very similar dynamics. In this case, for all values of β, both the decrease in the

entropy as well as the increase in the giant cluster size are very slow for α< 1. This is due to the

fact that for α< 1 the model does not describe the formation of retail clusters, and the equilib-

rium configuration {weq} is very similar to the initial condition found in the data. That said,

one can see a clear transition happening at α = 1, where the entropy rapidly starts decreasing.

This behavior does not depend on the value of β, although higher values of the parameter yield

smoother transitions while for lower values we get sharper ones. However, no matter the value

of β the system always ends up with the same winner: the same retail cluster manages to out-

play the rest of the competitors and have all the flows in the systems directed towards it. This

means that for each value of the parameter we are always observing the same transition, which

begins from the same initial condition and ends up in the same ground state. We could think

of β as setting the scale of the transition, in terms of α: the system always explores the same

states, but in a low β scenario one needs more coarse grained values of α than in a high β sys-

tem to actually observe them all. This allows us to fix the value of β (we will arbitrarily set to

β = 0.8) and study the behaviour of the system only varying the values of α. Given our interest

in understanding the spatial distribution of retail clusters with respect to road clusters, we will

concentrate our analysis on α> 1 values. In the two figures on the right (Fig 2c and 2f) we

show the distribution of the sizes of the clusters, i.e. the aggregated floorspace for the retail cen-

tres and number of nodes on the road network clusters, of the 10 largest clusters. In the insets

we can see how the distribution has an exponential form in both cases, and how increasing α
and τ has the same effect on the distribution, namely increasing its steepness.

In this paragraph we have seen how at a macroscopic level the two approaches describe a

very similar dynamics in the formation of clusters, and eventually of a giant cluster. We have

Urban retail location: Percolation and spatial interaction modeling
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also shown how we can fix β without loss of generality in the results and how, in the retail

model, the α parameter plays the same role as the threshold τ plays in the percolation. In the

following we will measure the spatial similarity of the cluster’s distribution.

Retail distribution on road clusters emerging from the percolation

process

Before moving to a more detailed comparison of the spatial distribution of the two types of

clusters, we must take a step back, and see how the retailers found in the data are distributed

on the percolation road clusters. This step is interesting for two reasons: on one hand it will

tell us if we can learn something on the real retail distribution by analysing its relationship to

the road clusters, and on the other hand it will serve as a benchmark to then better quantify the

effects of the retail model’s dynamics. In [17] the authors have shown how starting from the

road network of the whole of the UK, the cities emerged as clusters of the road network for

τ = 300m. Given that our analysis is applied at the city level in London, we will take that as our

maximum threshold.

As already mentioned in the previous section, in the VOA dataset, where we find the infor-

mation on the retailers, retailers are aggregated at the post-code level, which in the UK and

therefore in the city of London, differs for every street. Therefore retailers that share the same

street have identical x, y coordinates in the dataset. We therefore begin our analysis by aggre-

gating all retailers with the same coordinates, and assigning their floorspace to the nearest

node of the road network. In other words this consists in allocating the street’s retail floorspace

to the road intersection closest to the street’s centroid. For each value of the threshold τ we

then study the fraction of floorspace assigned to the emerging clusters. To do so we compare

the fraction of nodes of the road network that form the clusters for given threshold τ, namely

ninðtÞ ¼
ncðtÞ

Nroad
ð7Þ

where nc(τ) is the sum of nodes that belong to a percolation cluster of the system and Nroad the

total number of nodes in the system, to the amount of retail floorspace contained in them:

finðtÞ ¼
fcðtÞ

Ftot
ð8Þ

where fc(τ) is the amount of floorspace assigned to the nodes of percolation clusters and Ftot

the total amount of floorspace in the system. We can then study their difference

YðtÞ ¼ ðnin � finÞ ð9Þ

A Θ’ 0 case would indicate a random spatial distribution of the retailers on the road network.

Meaning that the distribution of retail floorspace on the road network would be independent

of the hierarchy indicated by τ, and one would obtain the same fin by selecting the same frac-

tion of nodes, fin, using any other criteria. On the other hand Θ< 0, would indicate a tendency

of retailers to be on roads that are not yet in the system, while the opposite case Θ> 0 would

unveil a spontaneous tendency of retailers in positioning themselves on highly connected

clusters.

Once again, in order for this analysis to make sense, we have to set a minimum size for the

road clusters. Without it, and considering a single node as a cluster of size 1, all the retail floor-

space would be considered completely contained for any value of the threshold τ. In that case

fin = nin = 1 8τ. As mentioned in the previous section we will show the results obtained with

Urban retail location: Percolation and spatial interaction modeling
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nmin = 100, but have tested other thresholds, and despite slight numerical differences, we have

found the same behaviour.

In (Fig 3) we show the behaviour of the distribution of the three quantities nin(τ), fin(τ) and

Θ(τ) in (Fig 3a, 3b and 3c) respectively. We have measured the quantities on the full network

(black curve), the network without the giant cluster (yellow curve) and only considering the

giant cluster (blue curve). This has been done to make sure the results were not being domi-

nated by the giant cluster. By comparing the figures we can see how fin grows much faster in τ
with respect to nin, and we constantly get Θ> 0. Furthermore the yellow curve shows that up

to τ = 200 this is true even if we exclude the giant cluster from the analysis. If it is clear from

these results that retailers tend to position themselves in central locations, what also emerges is

a tendency to choose highly connected clusters, or in other words clusters formed by a dense

grid of alleys and road crossings. An in depth analysis of these results would require a study of

its own and we leave it to future research. We will now exploit these results to understand the

effects introduced by the dynamics described in Eqs (1)–(5).

Comparing the spatial distribution of retail and road clusters

We have seen how the retailers are more likely to be found on roads that belong to very con-

nected clusters, but we still did not apply the model’s dynamics to the retailer’s spatial distribu-

tion. We have also seen that just like in the road network percolation τ shows the hierarchical

relationship of the roads, α in the model describes the formation of retail clusters described in

{weq}. Now we want to study the analogies and differences of these emerging structures. We do

this by repeating the same analysis we have done on the full data set, this time on the equilib-

rium configurations that comes out of Eq (3). Of course the introduction of the α adds a new

degree of freedom, and now fin� fin(α, τ) and Θ� Θ(α, τ).

In (Fig 4a) we start by showing an overlap of the clusters obtained with β = 0.8, α = 1.5 and

τ = 130. At a first glance we can see how big retail clusters tend to lay on big road clusters, and

vice versa, and how this is true even for clusters appearing at the periphery of the city. Some

clusters that did not exactly overlap lie one next to the other. To quantify this impression, in

(Fig 4b and 4d) we show fin(α, τ) and Θ(α, τ) for values of α ranging from 1.1 to 2.3. For α
greater than that, the floorspace is mainly contained in the giant cluster which dominates any

analysis. Perhaps surprisingly fin(α, τ)>fin(τ) and Θ(α, τ)>Θ(τ) 8τ, indicating that retailers

Fig 3. (a) This figure represents the evolution of the fraction of nodes of the road network allowed in the system for the given value of τ,

nin(τ) (black curve). Moreover we show the same quantity considering only the giant cluster (blue curve) and every cluster but the giant

cluster (yellow curve). (b) Here we show the fraction of the total retail floorspace belonging to the nodes that form the clusters fin(τ) where the

colors have the same meaning. (c) We compare the two curves by showing their differenceΘ(τ) = (nin − fin).

https://doi.org/10.1371/journal.pone.0185787.g003
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Fig 4. (a) We have overlapped a snapshot of the road network clusters for τ = 130 with the retail clusters

{weq} for α = 1.5. The colours indicate the size of the clusters in a logarithmic scale. We can see how most of

retail clusters fall on road clusters, and there is good agreement between the spatial distribution of the ranks.

In (b)-(c) We show howΘ(α, τ) varies with τ for several values of α, on the full network and not considering the

giant cluster. The dashed black line indicates the values obtained from the data. We can see that the model

Urban retail location: Percolation and spatial interaction modeling
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belonging to the clusters have survived the dynamics more than those not belonging to the

clusters, and have grown in size. This is true both if we include the giant cluster and if we leave

it out. For α = 2.3 however 40% of the retail floorspace is concentrated in the retail giant cluster

which lies on the road giant cluster, therefore not considering it ruins the results.

The point we are trying to make is that the retailers that survive the model’s dynamics

{weq}, tend to belong to road clusters. This effect is not given by the actual configuration of

retail floorspace in the system, and we can see in (Fig 4), by comparing the results with the

black dashed line, that this tendency is increased by the model. The effects of the model’s

dynamics on the floorspace distribution are shown in the diagram in (Fig 5a). By increasing

the α parameter the model describes a retail activity concentrated in fewer larger retail clusters,

which we have showed have a tendency to be positioned on nodes that belong to road clusters,

for every τ. The high level of agreement between the two formalisms with no apparent relation-

ship hints to the existence of an underlying common mechanism in the two methodologies.

The high level of agreement between the two formalisms with no apparent relationship hints

to the existence of an underlying common structure. Our understanding is that this stems

from the locations of the population centres which, as we have seen in [33] and in the supple-

mentary information of [34], have a very strong correlation with the location of road intersec-

tions which in turn attract retail activity. Indeed in the case of the retail model, the population

is introduced as an input to the dynamics and it is related to the size of the emerging clusters

through the cost term cij, and retailers that survive the model’s dynamics in average are closer

to the population centres. Therefore the clusters formed by the density of intersections at the

road level are implicitly picking up this densely populated areas as do the model’s retail

clusters.

for α� 1.9 constantly produces higher values, with and without the giant cluster, while for α = 2.3 we can see

how the giant cluster plays a fundamental role. This is because for that value of α the floorspace is mostly

concentrated in the giant cluster (see Fig 2). (d)-(e) We show the fin(α, τ) with and without the giant cluster.

The results are in line with that said for the previous figures.

https://doi.org/10.1371/journal.pone.0185787.g004

Fig 5. A diagram of the effect of the model’s dynamics on the retail floorspace distribution. We see how the retail floorspace

distribution in the data falls outside the road cluster, and how after the dynamics, the floorspace is all concentrated inside the cluster.

https://doi.org/10.1371/journal.pone.0185787.g005
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Conclusion

We can find throughout the literature approaches that characterise cities through the analysis

of their road network [8, 9, 11, 35] and others that study the distribution and nature of retail

activity [18, 36, 37]. Furthermore, some work has been done in order to relate these two

approaches [15, 16] and the contribution presented in this paper goes in that direction. More-

over, the presence of a clear hierarchical structure in road networks has been shown [17] as

has the theoretical mechanism that leads to the formation of this hierarchy [7]. Percolation

theory has proven itself as a useful tool to study urban areas [17, 38] but to our knowledge no

work has been done to export these concepts to analyse the organisation of retail activities in

cities. In order to do so we have used the single constrained gravity model [18], perhaps the

most widely used model of the field, and characterised its results by embedding them on the

city’s road network through the clusters generated by the percolation process. We have used

the city of London as a test case, and given the quality of our results now plan to extend our

research to the whole of the UK. In other words we have presented an attempt to relate the dif-

ferent configurations of clusters obtained through purely geometrical means based on the road

network, with the location of retail clusters described by the retail model. We have seen how

the location and size of the clusters depend on the threshold τ, in the road network, and the

scaling exponent α in the model: by conveniently tuning these two parameters we are able to

reproduce an almost identical spatial configuration. The city’s hierarchical organization that

emerges from these two approaches is in complete agreement. We believe that the results pre-

sented in this paper are important for a number or reasons. Namely, we have bridged the

results of a model first presented many years ago with an approach that only recently has been

applied to study urban spaces, and comparing the results we have interpreted them in a new

way. In doing so, we have brought evidence to the existence of a hierarchical spatial organiza-

tion of retail activity in London, and believe this result can be very useful in future modeling.
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