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Systems of cubic forms in many variables

By Simon L. Rydin Myerson at London

Abstract. We consider a system of R cubic forms in n variables, with integer coeffi-
cients, which define a smooth complete intersection in projective space. Provided n > 25R, we
prove an asymptotic formula for the number of integer points in an expanding box at which
these forms simultaneously vanish. In particular, we obtain the Hasse principle for systems of
cubic forms in 25R variables, previous work having required that n 3> R?. One conjectures
that n > 6 R + 1 should be sufficient. We reduce the problem to an upper bound for the num-
ber of solutions to a certain auxiliary inequality. To prove this bound we adapt a method of
Davenport.

1. Introduction

1.1. Mainresult. Letcy,...,crbehomogeneous cubic forms inn variables xq, ..., xp
with integer coefficients. We treat the simultaneous Diophantine equations

c1(X)=0, ..., cr(X¥)=0

and the corresponding projective variety in ]P’(&_l, which we call V(cy,...,cr). We assume
throughout that the ¢; generate the ideal of V(cy,...,cr), and are linearly independent. The
cubic case of a classic result of Birch gives us:

Theorem 1.1 (Birch [2]). Let B be a box in R, contained in the box [—1, 118, and
having sides of length at most 1 which are parallel to the coordinate axes. For each P > 1,

write
Neyoog(P) =#{X€Z":X/P € B,c1(X) =0,...,cr(X) =0}.
If the variety V(c1, ..., cR) is a smooth complete intersection, and the inequality
(1.1) n > 8R?+9R

holds, then for all P > 1, some 3 > 0 depending only on the ¢; and B, and some & > 0
depending only on the c;, we have

(1.2) Ney...cn(P) = 3G PP 3R L o(pn=3R=5)
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2 Rydin Myerson, Systems of cubic forms in many variables

where the implicit constant depends only on the forms ci, and the positive real number §
depends only on R. If the variety V(c1, ..., cRr) has a smooth point over Q, for each prime p,
and a smooth real point whose homogeneous co-ordinates lie in B, then © and 3 are positive.

In particular, the latter theorem follows from [2, Theorem 1], on inserting the bound
dim V* < R — 1 for the dimension of the variety V* occurring in that result. This bound fol-
lows from [4, Lemma 3.1] whenever V(cy,...,cR) is a smooth complete intersection. See
[18, Lemma 1.1] for details.

In Section 1.3 we prove:

Theorem 1.2. In Theorem 1.1 we may replace (1.1) with the condition

(1.3) n > 25R.

This sharpens (1.1) as soon as R > 3. For example when R = 3 and V(cy, ¢2,c¢3) is
a smooth complete intersection, Theorem 1.2 applies when n > 75, whereas Birch’s theorem
requires n > 99.

The “square-root cancellation™ heuristic suggests that in place of (1.1) the condition
n > 6R + 1 should suffice, see for example [3, discussion around formula (1.5)]. By handling
systems of forms in O(R) variables we come within a constant factor of this conjecture.

Our strategy is an extension of our previous work [18]. In forthcoming papers we further
generalise this approach to treat systems of R forms with degree d > 2, with rational or real
coefficients.

1.2. Related work. We begin with the case when the forms ¢; (X) are diagonal.

In the case of a single diagonal form ¢, Baker [1] proves that V(c¢) has a rational point
whenever n > 7.

Briidern and Wooley [7, 8, 11] treat diagonal systems in n > 6R + 1 variables, the best
value of n possible with the classical circle method. In particular, they prove the Hasse principle
for V(cy,...,cr) whenever the ¢; are diagonal, V(cy,...,cR) is smooth and n > 6R + 1.
They also prove an asymptotic formula of the type (1.2) whenever n > 6 R + 3 holds, or when
R =2 and n > 14 holds [5, 6,9]. In the case R = 2 they prove a Hasse principle for certain
pairs of diagonal cubics in as few as eleven variables [10].

Returning to the case of general (not necessarily diagonal) forms, we consider the case
R = 1. Let ¢ be a cubic form. Hooley [17] proves that if n = 8, the variety V(F) is smooth,
and the box B is sufficiently small and centred at a point at which the Hessian determinant of F
does not vanish, then a smoothly weighted version of the asymptotic formula (1.2) holds. In
this work he assumes a Riemann hypothesis for a certain modified Hasse—Weil L-function.
When n = 9, he proves the same result unconditionally [16], with the weaker error term
O(P"3(log P)~%) in place of the O(P"~37%) from (1.2). Heath-Brown [15] proves that if
n > 14, then V(c) always has a rational point, regardless of whether it is singular.

In the case R = 2, Dietmann and Wooley [14] have shown that V(cy,cz) always has
a rational point when n > 827, whether or not it is smooth.

In the general case R > 1, Schmidt [19] shows that V(cy,...,cR) always has a rational
point if n > (10R)5. Recent work of Dietmann [13] improves this condition to

n > 400,000R*.
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Rydin Myerson, Systems of cubic forms in many variables 3

1.3. Reduction to an auxiliary inequality. To prove Theorem 1.2 we will use Theo-
rem 1.3 from the author’s previous work [18]. This will reduce the problem to proving an upper
bound for the number of solutions to the following auxiliary inequality.

Definition 1.3. Forany k € N and 7 € R¥, we write ||7]|oc = max;|¢; | for the supremum
norm. When ¢(X) is a cubic form in n variables with real coefficients, we define a symmetric
matrix

- 1 %c(x
(14) He (%) = ( >) |
”c”OO axiaxj 1<i,j<n
where i
lelloo = - e
9 = - ma .
oo 6i,j,ke{l,...,n} axixjxk

Thus H,(X) is the Hessian of the cubic form ¢(X)/||¢||c0, Wwhich has been normalised so that 1
is the absolute value of its largest coefficient. For each B > 1 we put N2**(B) for the number
of pairs (X, y) of integer vectors with

%l ¥lloo = B, [|He(X)¥lloo < B.

We show that this definition of the counting function N2"*(B) agrees with the one given
in [18, Definition 1.1]. There we consider a degree d polynomial f and a system of multilinear
forms m(x D, ..., ¥@=D) and when d = 3 and f(¥) = ¢(¥), we see that

ADGED 3@ = feflaHe(EDF D)

One can then check that the definitions agree. The case d = 3 of [18, Theorem 1.3] therefore
states that:

Theorem 1.4. Let the counting function N,
that for some Cy > 1 and € > 3R, we have

cr(P) be as in Theorem 1.1. Suppose

.....

(1.5) NZ2(B) < CoB?"—8C
-C

for all,g € RR and B > 1, where we write B - C for B1cy + -+ + BrCR. Then we have

Ney.cn(P) = 3GP" 3R 4 o(Pr3R70)

.....

forall P > 1, where the implicit constant depends at most on Cy, € and the c;, and the positive
constant § depends at most on € and R. Here the constants 3 and  are as in Theorem 1.1.

We give the following bound for the counting function N2"*(B). The proof occupies the
bulk of this paper and is completed in Section 6.

Proposition 1.5. We call a set K of real cubic forms in n variables a closed cone if
(i) forallc € X and A > 0 we have Ac € K,

(ii) K is closed in the real linear space of cubic forms in n variables.
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4 Rydin Myerson, Systems of cubic forms in many variables

Let K be a closed cone as above, and let N}**(B) be as in Definition 1.3. If we set

(1.6) ox =1+ max }dimSing V(c),
0

ceX\{

sothatoyx €{0,...,n — 1}, then foralle > 0, c € K and B > 1 we have

(17) N:uX(B) <<.7C,e Bl’l+0]{+€‘

Note that without the normalising factor 1/||c||cc in (1.4) this result would be false, since
we would then have N3*(B) >, B?" whenever ||¢|co < %. We will outline the proof of the
proposition after deducing Theorem 1.2.

_ Proof of Theorem 1.2. Suppose that (1.3) holds. We claim that for all B > 1, ¢ > 0 and
B € RR we have

.....

(18) Ng'uf(B) <<(,'| CRaE Bn—i—R—H—e’
-C

where ,g -Cis asin Theorem 1.4. If weset© = (n — R + %) /8 and let Cy be sufficiently large
in terms of the forms ¢;, we can then apply Theorem 1.4. For (1.8) implies (1.5) on setting
€= % in (1.8). Moreover, we have € > 3R, by (1.3). So the hypotheses of Theorem 1.4 are
satisfied, and Theorem 1.2 follows.

Setting K = {,5 - C: B € RR} in Proposition 1.5, we see that (1.8) follows from (1.7)
unless o > R — 1 holds. Suppose for a contradiction that we have o5 > R — 1.

By the definition in (1.6) there must be g € RR \ {6} with

(1.9) dim Sing V(B -¢) > R — 1.

N

We may assume that V(cy,...,cr) = V(c1,...,cr—1, B - ¢) holds, after permuting the ¢; if
necessary. We have

V(ci,...,cr_1) NSing V(B - &) C Sing V(c1,...,cR)
since V(cq,...,cR) is a complete intersection, and so
dim Sing V(cy,...,cg) > dimV(cy,...,cr—1) + dim Sing V(B C)—(m—1)
= dim Sing V(8- &) — (R — 1).

Thus (1.9) implies that dim Sing V(cy,...,cr) > 0, which contradicts the assumption in the
theorem that Sing V(cy,...,cr) = 0. O

1.4. Outline of remaining steps. To prove Proposition 1.5 we adapt the argument
used to prove Lemma 3 in Davenport [12], and subsequently a somewhat more general result
in [19, Section 5]. These authors consider the counting function defined by

NEY(B) = #(F,7) € (Z"? | ]loos 1700 < B, He(3)§ = 0}

for a cubic form ¢ with integer coefficients. Davenport proves that either N5 “4(B) is small,
or there is a large rational linear space on which ¢ vanishes. In order to briefly sketch his line
of reasoning, we define some additional notation.
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Rydin Myerson, Systems of cubic forms in many variables 5

Definition 1.6. Define

IHe(X) oo = I?::}XIHC(J?)UI-

Let A¢.1(X), ..., Aen(X) be the eigenvalues of the real symmetric matrix H(X), listed with
multiplicity and in order of decreasing absolute value. Observe that

(1.10) e, 1 ()] < n||He(¥)]loo < 121X ]|oo-

For each i € {1,...,n} let D@ (%) be the vector of all i x i minors of Hc(X), arranged
in some order. This is a vector of degree i homogeneous forms in the variables X, with real
coefficients. Let J 5 ; (X) be the Jacobian matrix (E)D](.C’l)()_c') /OXk) k-

Davenport’s argument runs as follows.

(1) Leto € {0,...,n — 1}. Suppose that we have Nz (B) > B" T for some sufficiently
large implicit constant. The contribution to this count from any one vector X is at most
O(B”_ra“kHc()?)). So there must be an integer b in the set {0,...,n — 1} such that at
least 3> B TP integer points X satisfy both rank H.(X) = b and || ¥||ec < B.

(2) If o and b are as in (1), then one can deduce that there is an integer point X ©) satis-
fying the condition rank H,. (¥ (?)) = b such that the tangent space to the affine variety
Db+ (X) = 0 at the point ¥ (©) has dimension o + b + 1 or more. Equivalently,

rank Ho(x @) = b and rank I iensn (X Oy <p—o-b-1

both hold. This follows from [12, Lemma 2].

(3) If ¢ has integral coefficients and there exists a vector 7@ a5 in (2), then it follows
that there exist linear subspaces X, Y of Q” with dimensions o + b + 1 and n — b,
respectively, such that for all X € X and Y Y' €Y the equality YTHC (X )Y " = 0 holds.
See [19, Lemma 4] or [12, proof of Lemma 3].

(4) We conclude that if N2"“(B) > B"T9, then there are spaces X, Y as in (3). In that
case the space Z defined by Z = X NY is a rational linear space, with dimension at
least o 4 1, such that for all Z € Z the equality c¢(Z) = 0 holds.

Our setting differs in three ways from that of Schmidt and Davenport. First, we consider
the inequality || H¢(¥)¥|loo < B rather than the equation Hc(X)7 = 0. Second, for us the cubic
form ¢(X) may have real coefficients. And third, rather than concluding that ¢(X) has a rational
linear space of zeroes, we seek to show that the variety V(c) is very singular.

1.5. Structure of this paper. In Section 2 and Sections 4-6 we will modify each of the
four steps (1)—(4) above to accommodate the three changes described at the end of Section 1.4.
In the remaining section, Section 3, we prove some technical lemmas relating the minors and
eigenvalues of real matrices.

1.6. Notation. Throughout, we let ¢, |[7]|oo, [[¢[loos Hc(X) and N3 (B) be as in Defini-
tion 1.3, and we let || H¢ (X) ] oo» Ac,i (X), D@ (%) and J 3c.i» (X) be as in Definition 1.6. We do
not require algebraic varieties to be irreducible, and we adopt the convention that dim @ = —1.
We use Vinogradov’s < notation and big- O notation in the usual way.
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6 Rydin Myerson, Systems of cubic forms in many variables

2. The eigenvalues of the Hessian matrix H, (X)

In this section we show that if the counting function N3**(B) from Definition 1.3 is large,
there are many integer points X for which the eigenvalues of H,(X) lie in some fixed dyadic
ranges. Namely, we will show that there are many integer points in a set Kg(Eq, ..., Ex41)
defined as follows. This corresponds to step (1) from Section 1.4.

Definition 2.1. Suppose that k € {0,...,n} and that Eq, ..., Ex+1 € R such that the
inequalities £y > --- > Ep4q > 1 hold. Then we define K (E1,..., Ex41) to be the set of
all vectors X in R” satisfying the following conditions: the inequality ||X||coc < B holds, and
we have

1 -
EEi <|Aei(X)| = Ei
whenever 1 < i < k holds, and we have
[Ac,i ()| < Ex41

whenever k + 1 <i < n holds.

Lemma 2.2. Let H be a real symmetric n X n matrix and let Ay, ..., Ay be the eigen-
values of the matrix H, listed with multiplicity and in order of decreasing absolute value. Let
C > 1l and B > 1, and suppose that |A1| < CB holds. Set

Nu(B) =#y € Z" : |Vlloo < B, [|HY|loo < B}.

Then we have

Bn
Ny (B min ——
H(B) Lcm i e A

Proof. 'The integral vectors y counted by Ng (B) are all contained in the box || ¥||co < B
and in the ellipsoid {f € R” : T HT Hf < nB?}, which has principal radii |A;|~! \/n B. Hence

n
Np (B) < [ min{l +|A;|"' VB, B}
i=1

and as |A;| < CB holds, this is

n
< [[ min{2C|2;| "' V2 B. B}.

i=1
It follows that
n
N (B) < B" [ [ min{|2;]7". 1.
i=1

Since the inequalities |[A1]| > --- > |4, hold, we deduce that

Ng(B) < B"min{l ! ! ! }
H C, R s S,
" 21] [A1A] A1 Anl
. B"
SO T Al

as claimed in the lemma. O
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Rydin Myerson, Systems of cubic forms in many variables 7

Corollary 2.3. Let N**(B) be as in Definition 1.3, let A.,; (X) and D©D (%) be as in
Definition 1.6, and let Ki(E1, ..., Ex+1) be as in Definition 2.1. For any B > 1, one of the
following alternatives holds. Either

NauX(B)
2.1 — #{7Z" N Ko(1)},
( ) B"(log B)n <Ln { 0( )}
orthereisk € {1,...,n — 1} and there are ey, ..., e, € N satisfyinglog B >, e; > -+ > ¢,
and
2el+"'+ek Naux(B)
2.2 < #HZ" N K (2, ...,2° 1)},
22 Filog by < HE 0 Ki( )
or there are ey, . .., e, € N satisfyinglog B >, e1 > -+ > e, and
2el+~~~+enNaux B
(2.3) " (B) Ln MZ" N Kp—1(2°0,...,2°7)}.

B"(log B)"

Proof. Note that in the case that k = n, there are no values of i satisfyingk+1 <i <n,
so the last condition in the definition of Ky (E1, ..., Ex41) is vacuously true and can be omit-
ted. In particular, if k = n then (2.3) follows from (2.2), because

Kn(2°',...,2¢ 1) C K1 (2°',...,2%").

So it is enough to prove that either (2.1) holds or there exist integers k and eq, . . . , ;. satisfying
the inequalities 1 < k <n and log B >, e; > --- > e, such that (2.2) holds.

The set Ko(1), together with the sets Ky (2°1,...,2¢, 1), partition the box ||X||co < B
into disjoint pieces. So, if we let

N, ) (B) =#y € Z" : |¥lloo = B. [[He (X))o < B}

then we have

Q4 NGB = ) NupB)+ ) > Nuw®).
XeZ" 1<k<n Tezn
XeKop(1) e1>->ex>1 XeKy(2°1,...,2°k 1)
e1 < log B

The total number of terms on the right-hand side of (2.4) is O, ((log B)") at most, so it follows
that either

NauX(B)
2.5 Ny (= (B < -
(2.5) QZ He.)(B) >n (log B)"
_XEZ"
xeKp(1)

holds, or else there are | <k <nandey > --- > ¢} > 1 such that

N2%(B)
(2.6) #GXZ:H Ny, ) (B) >n (o B
X

xeKy(2¢1,...,2° 1)

If (2.5) holds, then the trivial bound Ny (3)(B) <, B" implies (2.1). Suppose instead that
(2.6) holds.
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8 Rydin Myerson, Systems of cubic forms in many variables

By (1.10), for each real vector X the bound
Mc,l (2)| <Ln B

holds. So we may apply Lemma 2.2 with the choice H = H.(X) and some C depending on n
only. This shows that

n

Ny, ) (B) <n TR ———

Substituting this into (2.6), we see that (2.2) holds, as claimed. D

3. Intermission: Eigenvalues and minors

Here we collect some results about the eigenvalues and minors of real matrices which
will be needed in Section 4. We need the following relatively straightforward fact; we include
a proof for the reader’s convenience.

Lemma 3.1. Foreachk,l € N, let
Try={ieN:l1<a < <q <t

This set has (ﬁ) members. For each k,£,m € N such that k < min{{, m}, and each £ x m real
matrix L, define an (ﬁ) X ('l’: ) real matrix LK1 by

k]l _ (g k] (k] _
LY = e, La = det(Lagp))1<i,j<k).

so that the LEkJ are the k x k minors of L. For all £ x m matrices L and all m x n matrices M
a
we have

(LM)[k] — LIkl p L]
Sforall k < min{{,m,n}. That is, we have
k] _ (k] 5 r[k]
(3.1) (LM) > = Z‘ LagM_>.
IIJGTk,m

Proof. Let éW ... 8 be the standard basis of R™. Fix L,Zl,g; then each side
of (3.1) is an alternating multilinear form in those k columns of M whose indices appear
in the vector b. This is some k-tuple of m-vectors.

Given the value of an alternating multilinear form at the k-tuple € ¢V, ... &) for
each Z € Ty, one can extend by linearity and the alternating property to find its value at any
k-tuple of m-vectors. In other words, it suffices to check (3.1) when, for some Z € T ,, the
k x k submatrix (M, b;)1<i,j<k is the identity and all other entries of M are zero. In this
case both sides of (3.1) are equal to L[f;;] O

z

Our main result of this section is the following technical lemma.

Lemma 3.2. Let M be a real m x n matrix. Recall that MT M is positive semidefinite
and symmetric. Let the eigenvalues of MT M be A%, cees A,21 in decreasing order, where the
A are nonnegative and in decreasing order. That is, the A; are the singular values of M.

In particular, if M is a symmetric matrix, then the A; are exactly the absolute values of
the eigenvalues of M, by diagonalisation.
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Rydin Myerson, Systems of cubic forms in many variables 9

Given a natural number k with k < min(m, n), let D®) pe the vector of k x k minors
of M, arranged in some order. Then we have:

(1) The maximum norm ||5(k) lloo satisfies
(32) 15® oo <mm A1+ Ag.

(ii) There is a k-dimensional linear space V. C R" such that for all v € V,
(3.3) [M7Vloe >mn 1UlcoAk-

We may take V to be a span of k standard basis vectors é @ jin R".

(iii) Forany C > 1, either there is an (n — k + 1)-dimensional linear subspace X of R" such
that

(3.4) IMX|loo < C V| Xl forall X € X,

or there is a k-dimensional linear subspace V of R", spanned by standard basis vectors
of R, such that

|M3loo ma € illoo forall i € V.

Proof. Part (i). First we prove the result on the assumption that M T M is diagonal. Let
the sets Ty ¢ and the matrices L1 be as in Lemma 3.1. Since M T M is diagonal with diagonal
entries Aiz, we have

2 2 T k] _ [k1\2

(3.5) DAL AL =) MMy = Y (M)
ZiETk,n aeTk.n ZieTk.n
TI)ETk’m

by (3.1). The left-hand side of (3.5) is =<, A}--- A2, and the right-hand side is = || D®||2,
so this proves (3.2).

Let O be an n x n orthogonal matrix such that OT MT MO is diagonal. Let C® be
the vector of k x k minors of MO. We claim that the norms ||C ®) || and || D® || s are of
comparable size.

Lemma 3.1 shows that

(MO)[k] — M[k]O[k],
and since we have
(0T = 1] ang (0T)M = 011,
ab ba
it follows that O] is orthogonal. Hence the maximum norm of the entries satisfies
1€P oo = (MO H oo = MW oo = DD co.

So in proving (3.2) we may assume that M T M is diagonal. The result follows.
Part (ii). By permuting the rows and columns of M, we may assume that

(3.6) ID® oo = |det(Mij)1<i. <kl
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10 Rydin Myerson, Systems of cubic forms in many variables

Let v be in the span of the first k basis vectors. If (3.3) holds for all such v, then we have proved
the lemma. Since v; = 0 fori > k, one finds that

My - My (Mv)y Miz -+ M,

: . 5 le(n—l) _ : : . :
Myy -+ My, In—1 (MV) My -+ Mg, |’
Ot—iyxk | In—k O(n—k)xk ‘ Ik

where we have divided each matrix into three blocks, and 0,4 stands for a p x g block of
zeroes. By (3.6) we have £y - ||[D®)| o as the determinant of the left-hand side. Expanding
the determinant of the right-hand side in the first column, we find that it is equal to

k
Zl:“D(k)”OOvl — Z(_l)é—i_l(Mﬁ)e det((Mu)lzl ,,,,, k,l;ée)
=1 j=2,..., k

L KM ool| D*V 0.

Note the (k — 1) x (k — 1) determinant in which i runs over 1, ..., k with the value £ omitted,
and j runs over 2, ..., k.

By part (i), this implies that Agvi <Kpm,n || M V]lco, s0 provided that ||¥]|cc = |v1], then
(3.3) holds.

If we apply the same permutation both to the v; and to the first k£ rows of M, then
both sides of our claim (3.3) and our assumption (3.6) remain the same. By applying such
a permutation, we may assume ||U]|oo = |v1|, and so we have proved (3.3).

Part (iii). Let X be the span of the Al.z—eigenvectors of MT M, where i runs from k up
to n. As the matrix M7 M is symmetric, we have XT MT M X <, ||)?||§OA,% forall X € X,
and so R R

[M X [|oo Lm,n [ X loo Ak

for all X € X. Therefore either this space X satisfies (3.4), or the bound Ag >, C ~1 holds
and the existence of the space V' follows by part (ii). O

4. Counting points in the sets Ky (E1,..., Ex4+1)

In this section we estimate the number of integer points in the sets Kx(E1, ..., Ex+1)
from Definition 2.1. We give the following result.

Lemma 4.1. Let ¢ and H(X) be as in Definition 1.3, A¢ i(X), DED (%), I 5. (X)
as in Definition 1.6, and Ky (E1,..., Ex41) as in Definition 2.1. Suppose that B,C > 1,
o0e€{0,....n—1}, ke{0,...,n—0 —1} and that CB > Ey > --- > Ep1 > 1. Then at
least one of the following holds:

(Dx The set Kx(E1, ..., Exy1) may be covered by a collection of at most
Ocn (B (E1 -+ Ex ) EgS 7"
boxes in R" of side Ey . Such a box contains Oy, (E;Cl-‘rl) integral points, so it follows
that

(4.1) #HZ" N Ki(Ers ... Exq1)) <cn BO(Er-+ Exp)ERLT N
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Rydin Myerson, Systems of cubic forms in many variables 11

(I)g There exist an integer 1 < b <k, a (6 + b + 1)-dimensional linear subspace X of R",

and a point ¥© € Ky(Ey, ..., Epyq) such that
Epy1 <C7lE
and
42 I pern EDXoo = CTHDOPDED)| || X |00 forall X € X.

(IM) There is a (6 + 1)-dimensional linear subspace X of R" such that
4.3) IHe(X)lloo < CY[X oo forall X € X,

with || H, ()Z)Hoo as in Definition 1.6.

We have subscripted the first two items to emphasize their dependence on k; note that item (I11)
has no such dependence.

In Corollary 5.2 below, we will use Lemma 4.1 to bound quantities (2.1) and (2.2) from
Corollary 2.3. Before proving the lemma, we give a comparison with step (2) in Section 1.4.

If there are many integer points X for which rank H.(X) = b holds, then step (2) gives
us a point ¥ (9 for which the matrix J Bt (% ©) has a kernel of dimension (o + b + 1) or
more and rank H. (¥ ) = b holds.

If there are many integer points X for which X € K¢ (E1, ..., Exy1), then (4.1) is false
and so either (I); or (III) must hold. Of these, case (II); gives us a point 7 © guch that
I ot (%) is small on a (o + b + 1)-dimensional space. Moreover, it states that

O c Ky(Ey,....Epyy) and Eppq < CTVEp,

so that the (b + 1)st eigenvalue of the matrix H. (¥ (?)) is about C times smaller than the bth
eigenvalue. Thus (II); gives us a point ¥ (¥) for which in some sense J B (X ) is close
to having a kernel of dimension at least (o 4+ b + 1) and H.(¥ V) is close to having rank b.

The third case (III) is less directly comparable to step (2). We suggest that it could corre-
spond to the case b = 0 of step (2).

Proof of Lemma 4.1.  The proof is by induction on k. Let ¢, C, B, and ¢ be fixed.

The case k = 0. Let k =0,let CB > E; > 1 and suppose that alternative (III) does
not hold. We claim that alternative (I)o holds, that is, Ko(E1) is covered by Oc,»(B°/EY)
boxes of side E;.

As (IID) is false, applying Lemma 3.2 (iii) to the matrix of the linear map X — H,(X)
shows that there is an (n — o')-dimensional subspace V' of R” with

(4.4) I He (@)oo >n CHV]loe forall T e V.
For each Z € R”, let Ay(Z) be the box in R” defined by
AoB) = Z4+iu+1:u0eVE TeV, |ilo < Er, ||U]loo < B}

Now Ko(E1) is contained in the box ||X||cc < B. It follows that we can cover Ko(E1) with
a collection of Oc¢,,(B?/E{) boxes of the form Ag(Z), each one of which is centred at
a point Z belonging to Ko(E1). We will show below that for each Z € Ko(E1), the intersection
Ao(Z) N Ko(E) is contained in a box of side Oc 5 (E1). It follows that Ko(E) is covered by
Oc,n(B?/EY) boxes of side E1, as claimed.
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12 Rydin Myerson, Systems of cubic forms in many variables

It remains to let Z € Ko(E1) and let y € Ag(Z) N Ko(E1), and to deduce that the bound
|7 = Z]loo <, E1 must hold.

By the definition of Ko(E1) we have [Ac,1(¥)| < E1 and |A¢1(Z)| < Eq, and the bounds
| He(P)]loo <n E1 and |He(Z)]oo <Kn E1 follow by (1.10). So we have

(4.5) ”Hc()_} _Z)”oo <n E7.

Let 7 € V1 and let ¥ € V such that § = Z + i 4+ v holds. Since ¥ lies in A (Z), we have
lilloo < E1, and with (4.5) this implies that

| He(0)|loo <n Ei.

By (4.4) it follows that ||¥]|cc <, CE1, and hence that ||y — Z||oc <c.n E1, as claimed.

The inductive step. Letk > 1landCB > E; > --- > E;. 1 > 1. We suppose that (II),
and (IIT) are both false, and claim that (I); holds.

By induction, at least one of (I);_;, (I)z_1, or (II) holds. Note that of these (III) is false
by assumption, and (II);_1 is false since it implies (I)z, and so (I);—; must hold.

Suppose for the time being that

(4.6) Exiq < CTLEY.
The contrary case is almost trivial and will be dealt with at the end of the proof. We claim that
(4.7) Ke(Ev..... Exp) = | KO VEL ... Esr),
14
where V runs over those (n — o — k)-dimensional subspaces of R” which are spanned by
standard basis vectors, and we define
4.8) KOVN(Er,.... Exs1)
= {¥ € Kk(Ero Exr) 1 jesin@lloo = CTHDEO @) ool
forall ¥ € V}.
We have assumed that £y ; < C ' Ey and that the case b = k of (Il) is false. So the case
b = k of (4.2) must be false for every ¥ © e Ky (Eq,..., Ej 1) and every (0 +b+ 1)-dimen-
sional subspace X of R”,

That is, for any X © € K (E;, ..., Ey41) and any (0 + k + 1)-dimensional linear sub-
space X of R”, we must have

1 e s GO X oo > CTHDER (@) 5] X oo

for some X € X. Applying Lemma 3.2 (iii) with the choice M = J 5 « o (X (0)) shows that
for each ¥ © e Ky (Eq,..., Ex 1) there is an (n — o — k)-dimensional subspace V' of R”,
spanned by standard basis vectors, such that

(4.9) 1 500G il = CTHDER G @)oo [§]lo forall i € V.

This proves (4.7). So to prove (I); it suffices to show that for each (n — 0 — k)-dimensional
space V, the set (4.8) is covered by a union of Oc ,(B?(E --‘EkH)Ek_j:l_k_l) boxes of
side Ef 1.
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Rydin Myerson, Systems of cubic forms in many variables 13

Let € > 0 be a sufficiently small constant depending at most on C and n, and for each
Z € R” set

4.10)  AxG) = 4id+v:ueVE TeV, |lilloo < Exg1. IV]loo < €Ex}.

Recall from the start of this inductive step that (I);_; holds, and so K;_1(Eq,..., Eg) is
covered by a collection of Oc »(B°(Ey--- Ex)E; o=k) poxes of side Ex. We can subdivide

each of these boxes into Oc (E,erk / E,‘c’i{‘ ) sub-boxes of the form Ay (Z). Since

K/EC’V)(EL ooy Egy1) C Kg—1(Ex, ..., Eg),

it follows that the set K,EC’ V)(Eq, ..., Ex41) may be covered by a collection of no more
than Oc »,(B?(E; "'EkJrl)Ek_il_k_l) boxes of the form Ay (Z), each of which is centred
at a point Z belonging to the set K IEC’ V)(E 1oy Ex41). We will show below that for each
such box Ay (Z), the intersection Ay (Z) N Klgc’ V)(Ey. ..., Ex41) is covered by a box of side
Oc n(Eg+1). It follows that each set (4.8) is covered by Oc,, (B (E; ---Ek+1)E]:i’1_k_1)
boxes of side Ej 1, and by the comments after (4.9) this proves the lemma.

LetZ € K{CV)(Ey.... Exqr) andlet y € A ()N KCYI(Ey. ..., Exq). The claim
is that || — Z|lcoc < Ex41 holds. Letu € V-4 and let v € V such that y = Z + i + 9, and
note that since y € Ay (Z), we have

(4.11) lilloo < Eg+1. NVlloo < €E.

Now the jth partial derivatives of the (k + 1) x (k 4 1) minors Dck +1 () are linear
combinations of the minors D (¢-¥+1=/) (%) with coefficients of size at most O, (1). So we have

aj [j(c,k-i—l)()-é)

. <n DA () oo,
xi] e axl-j

o0

and Taylor expansion shows that
D@Kk+tD(z 4 g + §) — Dk (z)
= J3cssn @) +B) + On([lii + 5|21 DHFVE) oo + -+
+ |l + T5 1DV @)oo + Il + TIEST).
It follows that

(4.12) 1 5cx10@lloo <n IDCHFTVF) oo + DAV (E) oo
+ [illoo | DR @) oo + -+
+ i l5 1DV G oo + lliill 5
+ 12, DCHF D @)oo + -
+ 1515 1DV E) oo + 1515

Since y,Z € Ki(E1, ..., Ex41), Lemma 3.2 (i) gives us the bounds

J k+1
(4.13) 1D @)oo <n [[ Eir IDF VG0 =<n [ ] Ei.
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14 Rydin Myerson, Systems of cubic forms in many variables

and since Z € KIEC’ VI(Eq,.... Ek 1), it follows from (4.8) that

k
(4.14) 1 541 (E)Vlloo >n C™ oo l_[ E;.
i=1

Substituting (4.13) and (4.14) into (4.12) yields

k k+1 k—1
CMlloo [T £ < [T Ei + 1013 [T Ei + - + 13116 E1 + 1511557
i=1 i=1 i=1
k

+liilloo [T Ei + -+ + lil& Ex + [I5F.
i=1

Applying the bounds from (4.11) and the inequalities £1 > --- > Ej 1, we deduce that

k k+1 k
COlloo [[Ei <n [] Ei +€llllo [ Ei-
i=1 i=1 i=1

Since ¢ is assumed to be small in terms of C and n, it follows that ||V]|cc < CEj 41 holds and
hence that ||y — Z|lcc <c.n Ek+1 holds. By the comments after (4.10), this proves the lemma.

It remains to consider the case when (4.6) is false, that is, when Ej 41 > ClE & holds.
At the start of the inductive step we supposed that (I);_; holds, so the set Kr_1(E1,..., E)
may be covered by Oc ,(B?(Eq -+ Ek)E;"_k) boxes of side Ej. We have

Ki(Eq, ..., Exq1) C Kg—1(E1, ..., E),

and so the set Ky (E1, ..., Ex41) is also covered by this collection of boxes. Since the estimate
Ery1 > C~1E holds, we can divide each of these boxes into O¢ , (1) boxes of side Ej 1.
This proves (D). ]

5. Small values of a trilinear form

Part (3) of Davenport’s argument from Section 1.4 starts from a point X for which the
matrices H.(X) and J Blestn (X) have prescribed ranks, and finds linear spaces X, Y such that
the equation

YTH.(X)Y =0
holds for all X € X and 17 Y' €Y.Our analogue is the following pair of results, which give
linear spaces on which the trilinear form fTHc (f)I? " is small. One may recover Davenport’s
result by setting b = rank H. (X @), X = ker I 5enn (X (0)) and restricting 7 to lie in the
space X

Lemma 5.1. Let ¢(X) be as in Definition 1.3, and let A ;(X) and J . ;,(X) be as in
Definition 1.6. Suppose thatb € {1, ... ,n—1} and that X ©) € R”. Then, provided D¢ (3 (0)
is nonzero, there exists an (n — b)-dimensional linear subspace Y of R" such that for all
Y,Y' €Y andall f € R" we have
15000 EDlloo e i1 (RO Flloo

| DED)(E )| Aep(x )]

GJ)YTHAB?'<n( )Mwmu?wm.
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Rydin Myerson, Systems of cubic forms in many variables 15

We prove Lemma 5.1 at the end of this section, after deducing

Corollary 5.2. Let ¢, H.(X) and N**(B) be as in Definition 1.3. For any B,C > 1
and any o € {0, ...,n — 1}, one of the following alternatives holds: Either

(5.2) N2 (B) <c.n B"*9(log B)",

or else there exist positive-dimensional linear subspaces X and Y of R", satisfying the condi-
tiondim X +dimY =n + o + 1, such that

53)  [YTH.(X)Y'| <n C Y loo| X lloollY oo forall X € X, Y,Y' €Y.

Proof. Lemma4.1 shows thatforanyk € {0,...,n—o—1}andany Ey, ..., Exy; € R
satisfying
CB>E;>->Eppq 21,

one of (I)g, (IDg, or (IIT) must hold. Suppose first that in every case alternative (I); holds.
By (4.1), we then have

(5.4) #HZ" N Kg(Er. ..., Ex+1)} <cn B°(Eq "'Ek+1)E1'<lJ_r?_k_1

for every k € {0,...,n —0 — 1} and every CB > E{ > --- > E;,; > 1. Now Corollary 2.3
shows that either

NaUX(B)
5.5 — #{Z" N Ko(1)},
55) Briiog By < HZ' 0 Ko(D)
or
2e1+~-~+ekNaux(B)
5.6 < #HZ" N K (29, ...,2% 1)},
(5.6) B”(log B)” <n { k( )}
where k € {1,...,n — 1} and the inequalities B >>, 2°! > ... > 2¢+1 > 1 hold, or
281+~'+enNaux B
57 ) I N K21, 20,

B"(log B)"

where the inequalities B >, 2¢! > ... > 2" > | hold. We may assume that C is sufficiently
large in terms of n, so that CB > 2°¢! holds in (5.6)—(5.7). Substituting the bound (5.4) into
each of (5.5)—(5.7) proves the conclusion (5.2).

Suppose next that alternative (IIT) holds in Lemma 4.1. In this case we let Y = R”, and
the conclusion (5.3) follows from (4.3).

It remains to treat the case when there existk € {0,...,n—o—1}and Eq, ..., Ex4; € R
satisfying CB > E1 > .-+ > Ejx41 > 1 such that alternative (II); holds in Lemma 4.1. This
means that there exist an integer b with 1 < b < k, a point 7O ¢ Kp(E1,...,Epsq), and

a (0 + b + 1)-dimensional linear subspace X of R” such that
(5.8) Epiq <CLE,
and

5.9 W erinGEDXoo < CTHDDE D) X]|oo forall X € X.
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16 Rydin Myerson, Systems of cubic forms in many variables

Since X € Ky (E;...., Epyq), the inequalities %E,- < Ac,i (@) < E; hold. There-
fore (5.8) implies

(5.10) hepi1E@) <2070 53 @),

Note that (5.10) implies that A, ; (¥ @) # 0 so by Lemma 3.2 (i) we have D) (3 £ 0.
Hence we may apply Lemma 5.1. This gives us an (n — b)- dlmensmnal space Y such that for
all Y Y’ €Y and all 7 € R” the bound (5.1) holds. Taking f=Xin (5.1) and substituting in
the bounds (5.9) and (5.10) shows that (5.3) holds. Since dim X = o+b+1anddimY = n—b,
we have dim X 4+ dimY = n + o + 1, as required. O

Proof of Lemma 5.1. 'We imitate the proof of Lemma 3 in Davenport [12], which begins
by considering the following easy “warm-up” problem. Suppose we were to look for n — b lin-
early independent vectors 7 at which H. (% (?)y vanishes. One approach would be as follows.
One can construct matrices L{ ), MO fori = 1,...,n — b, with entries in {0, +1}, such that
the vectors

(5.11) yO3) = LODEd (3)
satisfy
(5.12) He(%)5 @) = MO Db+ (x).

In particular, one can take the components of ¥ @) (¥) to be polynomials of the form +D; ®) (X),
and the components of H, (¥)¥ V(%) to be polynomials of the form :I:D( +1)( ).

If H.(x @)y V= 0 had exactly n — b linearly independent solutlons ¥, we would have
Deb+D (3 0)) =, while D) (% () would be nonzero. We would then have n — b solu-
tions ¥ ®) defined by

7 &) ()

(5.13) Yo =
| DE:D) (X )]0

(1<k<n-»b),

and if we chose our matrices L@, M @ appropriately, these would be linearly independent.

We now return to the proof of the lemma. Assume for the time being that LW, M@,
7 @ (%) and Y @) satisfying (5.11)—(5.13) are given, and let X (%) be as in the lemma. Let 7 € R”.
Let 0; be the directional derivative along { defined by Y tiaix,-’ and apply 0; to both sides
of (5.12). This shows that

(5.14) 07 He (9)]7 O (%) + He(9)[0;5 P (3)] = MP[0; D +V ()],

Now we have
;DR (%) = T30 (I,
and together with (5.11) and (5.14) this shows that
He(H)F D @) = MDT 5, (T = He () LD9:D) (3).

Premultiplying by ¥ /) (¥)T and using (5.12) gives

515 FOOTHOFPF) = 7DD TMDT 50040 @

_ [M(i)D(C’b+1)(f)]T[L(i)a;D(c’b)(f)].
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Rydin Myerson, Systems of cubic forms in many variables 17

Now Lemma 3.2 (i) shows that

Db+ () o . [8:DED(F) oo 17100
- - Ln [Aep+1(X)], = - n =
| DD (%) 0o [PICRIE Xep(F)]

and substituting these bounds into (5.15) gives

| Jf)(c.b+1> (x (0));”00 Mc,b—l—l (x (O))| ’ ||;”oo

(5.16) YOTH.OYO « : . ,
¢ " IDED) (G O] Aep(X©)]

where the ¥ ®) are as in (5.13).

The idea is now to let Y be the span of the Y ® and deduce (5.1) from (5.16). Since
we are looking for an (n — b)-dimensional space Y, we will need YD, YD) o be lin-
early independent. In order to prove (5.1) we require the following slightly stronger statement.
We claim there are L(i), M (i), y (i)(x) and Y@ satisfying (5.11)- (5 13) such that the linear
combination defined by ¥ = > _1 yi YO satisties [|7]oo <n [|Y [|oo for every vector § in
real (n — b)-space. The lemma then follows, with ¥ being the span of the Y®, on expressing
Y Y’ as linear combinations of the ¥ ) and applying (5.16).

For the remainder of the proof we will assume for simplicity that the b x b minor of
H. (3 ©) with largest absolute value is the minor in the lower right-hand corner, that is, we
will assume that

(5.17) 15D G O)loo = |det((He(E )edk=n-p 1.0 )
{=n—b+1,...,

In general (5.17) holds after permuting the rows and columns of the matrix H,(X) and one can
then apply the same permutations throughout the rest of our construction of Y ), every time
the matrix H.(X) appears.

Define y D (%),..., 5 @D (%) by

(1" det((He@mn-ps1,.n) 05 =1,

@ {=n—b+1,...,
i), = . N

yi () =q(=1)/ det((Hc(X)ke) k=n—b+1,....n

) if j >n—b,
{=i,n—b+1,...n;L#]

0 otherwise,
where ({ =i, n—b+1,...,n; £ # j) means that £ first takes the value i and then runs over
the numbers n — b + 1,...,n with j omitted. Now this is of the form (5.11), and one can
check that
e D e (He @Ok b1, ) i == b
(He(X)y (X)) = {=in—b+1,...n,

0 otherwise,

which is of the form (5.12). Define a matrix Q by
0= (?U) [T e || g(n)),

or equivalently by

( "(1)(x (0)) y = b)(x 0))
Q= 1D D) (% O] o IID(‘ D (E D)o

g(n)) ’

5 (n—b+1) ‘
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18 Rydin Myerson, Systems of cubic forms in many variables

so that the entries Q;; have absolute value at most 1. Then one sees from (5.17) that

. In—p  Opxp
Q_( 0 I )

where @ is some (n — b) x (n — b) matrix. In particular, det Q = 1, and so the entries of Q!
are bounded in terms of 7. It follows that if ¥ = Z;:f yi Y @ then

vi = (07'Y)i < Y [loos

as claimed. O

6. Constructing singular points on V(c)

Corollary 5.2 shows that either N?**(B) is small, or there are spaces X, Y of large dimen-
sion on which ¥ TH, ()? ))7’ is small. To prove Proposition 1.5 we show that the second alter-
native implies that V'(c) is singular. This is our analogue of Davenport’s step (4), as described
in Section 1.4.

Proof of Proposition 1.5.  Suppose for a contradiction that the result is false. Then for
every N € N there is cy € K with

N2X(B) = NB"*9% (log B)".
By Corollary 5.2, this implies that there are linear subspaces X, Y of R” such that
dmXy +dimYy =n+oyx + 1
holds and for all X Xpn and 17, Y e Yy, we have
VT Hep )Y < N7 floo 1 X oo 7 loo-

If we multiply ¢ by a constant, then the matrix H,, (X) does not change. So we may assume
that for each N the equality |cny|lco = 1 holds. After passing to a subsequence, we have
cy — cas N — oo, and it follows that there are subspaces X, Y of R” such that

dimX +dimY =n+oyx +1
and
6.1) YTH.(X)Y =0 forallX € X, Y,Y €Y.
Leth € {0,...,n — o — 1} such that
dimX =n—»b, dimY =ox +b+ 1.

Let x .. ¥ be a basis of R” such that ¥ ®+D . ¥ i a basis of X.
Let [Y] be the projective linear space in Pﬁ_l associated to Y. Take homogeneous
co-ordinates y on [Y], so that y takes values in Y.
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Rydin Myerson, Systems of cubic forms in many variables 19

Let W be the projective variety cut out in [Y] by the b equations
6.2) W 3THGENHF =0 (=1,....b),
so that
dimW >dim[Y]—b = 0.

We claim that W is contained in the singular locus of the projective hypersurface V(c). It
follows that dim Sing V(¢) > o, which is a contradiction, by (1.6).
Now (6.1) implies that for every y € Y we have

JTH.GEN5 =0 (i=b+1,....n).
So if we let y € Y such that (6.2) holds, then we have
3TH.(X)y =0 forall X € R".

This implies that %;c(fz) = 0 holds, by the definition (1.4). It follows that every point of W is
contained in Sing V(c), as claimed. |
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