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Abstract—Although considered one of the most important
decisions in a software development lifecycle, empirical evidence
on how developers perform and perceive architectural changes is
still scarce. Given the large implications of architectural decisions,
we do not know whether developers are aware of their changes’
impact on the software’s architecture, whether awareness leads
to better changes, and whether automatically making developers
aware would prevent degradation. Therefore, we use code review
data of 4 open source systems to investigate the intent and
awareness of developers when performing changes. We extracted
8,900 reviews for which the commits are available. 2,152 of the
commits have changes in their computed architectural metrics,
and 338 present significant changes to the architecture. We
manually inspected all reviews for commits with significant
changes and found that only in 38% of the time developers
are discussing the impact of their changes on the architectural
structure, suggesting a lack of awareness. Finally, we observed
that developers tend to be more aware of the architectural impact
of their changes when the architectural structure is improved,
suggesting that developers should be automatically made aware
when their changes degrade the architectural structure.

Index Terms—Software Architecture, Code Reviews

I. INTRODUCTION

Architectural decisions are among the most important
decisions to be taken by practitioners [1], due to the high risks
and costs accrued by poor decisions [2]. Recent studies have
empirically shown that bug-prone files are more architecturally
connected than clean files [3], and that architectural flaws
can lead to increased maintenance effort [4]. The notions
of cohesion and coupling as guides for software architecture
design have been extensively associated with different aspects
of software quality, including, but not limited to, maintainabil-
ity [5], [6], comprehensibility [7], [8] and code smells [9], [10].
Structural dependencies between code components were the
most used assets for cohesion and coupling measurement for
many years [11]–[14], where other sources of information have
been taken into account more recently, such as semantics [15]
and revision history [16]. Nevertheless, recent studies [17], [18]
have revealed structural dependencies to be one of the best
proxies for developers’ perception of cohesion and coupling.

Despite the large body of work aimed at aiding developers
in the structural organisation of systems [19]–[21], we still see
evidence of architectural erosion as systems evolve [22], [23].
Developers sometimes choose to accept suboptimal solutions in
order to achieve a desired goal, such as short term delivery [24];
thereby accruing technical debt [25]. Nevertheless, the reasons
for a developer to accept a solution that will damage the

software architecture or to neglect the refactoring of an eroded
architecture are still open for investigation. As pointed out
by recent studies with developers [17], [18], different systems
and different developers work under different conditions and
have different perspectives regarding architectural quality.
This diversity indicates the need for studies aimed at better
understanding how developers deal with architectural changes.

In this paper, we extend the body of empirical knowledge
regarding architectural changes in software systems by studying
these changes on a day-to-day basis. We investigate the intent
of developers when performing changes that will impact
the system’s architecture. Moreover, we also assess whether
developers are aware of the architectural impact of their
changes at the time these changes are being made.

To the best of our knowledge, no existing work addresses
developers’ intent and awareness when performing architectural
changes on a day-to-day basis. Quantitative studies evaluating
metrics and techniques for structural optimisation [19], [20],
[26] show how much architectural improvement can be achieved
in software systems, but the feedback from developers is usually
insufficient. Qualitative studies interview developers regarding
architectural quality by either using toy systems [27] or selected
past changes [17], [18]. Since surveys are subjective to bias [28]
and the questionnaires usually target the software system as
whole, such studies fail to capture details and nuances of each
particular architectural change.

In order to understand the intent and the architectural
awareness of developers when performing architectural changes
on a day-to-day basis, we mined code review data [29] to extract
significant architectural changes and infer the developers’ intent
and architectural awareness. During the process of code review,
a change is only incorporated into the system after an inspection
of the patch being submitted. The author of the change submits
the patch and a natural language description of the change,
where other developers will have the opportunity to review the
code and provide feedback. Reviewers may request the author
to improve the patch and the author will do so until the change
is incorporated in the system or discarded.

The code review process provides detailed information
about each change, which enables us to perform the empirical
study on which we report here. For each change, we have
the source code from which cohesion and coupling metrics
can be computed, and a natural language description that
was submitted alongside the change from which the intent
can be inferred. Based on the change’s description and the



feedback provided by other developers, we can seek evidence
of developers’ awareness, at the time the change was being
made, of the architectural impact of each specific change.

After mining a total of 8,900 code reviews from 4 software
systems, we used a metric-based approach to identify reviews
that changed the structural architecture of the systems. For
626 architectural changing reviews, we performed a manual
analysis and classification of the reviews according to the intent
of the review and the architectural awareness of the developers
involved in the review. The inference of each review’s intent
and architectural awareness is based on the reviews’ description
and feedback provided by developers (no interviews have been
performed).

The main contributions of the paper are listed as follows:
1) We found that developers discuss the architectural impact

of their changes in only 38% of the reviews with
significant impact to the system’s architecture. In addition,
reviews in which the architecture is discussed tend
to have higher structural improvement than reviews
where the architecture is not discussed. This provides
evidence and reasoning for the introduction of tools for
automated architectural analysis at reviewing time, where
the developers would be automatically made aware of
the architectural impact of their changes.

2) A dataset of 626 manually classified code reviews that
include the intent of each review and the architectural
awareness of developers involved in each review.

3) A dataset of 17,800 structural architectures extracted
from the source code of 4 open source software systems,
which corresponds to a total of 17 years and 2 months
of development time.

II. BACKGROUND

In an object-oriented context, structural metrics of cohesion
and coupling assess how the code is organised in terms of its
structural dependencies between classes and packages. These
dependencies capture compile time dependencies, such as
method calls, data access and inheritance. In this paper, the
architectural structure of a system is represented as a Module
Dependency Graph (MDG) [14]. Once the MDG of a system
is computed, structural cohesion and coupling measurements
can be used to assess the system’s structure. In this paper, we
employ a set of structural metrics for cohesion and coupling
measurement that have been quantitatively and qualitatively
evaluated in a recent study [18].

The structural cohesion of the MDG M of a certain system,
consisting of m packages P1, ..., Pm, is assessed by measuring
the lack of structural cohesion, which is computed as

LStrCoh(M) =

∑m
j=1 LCOFPj

m
, (1)

where LCOFPj
represents the Lack of Cohesion of Files for

package Pj . LCOFPj
is computed as the number of pairs

of files in Pj without a structural dependency between them.
Packages with a high amount of unrelated files will be scored

a high LCOF, and, accordingly, packages with only a few
unrelated files will be scored a low LCOF.

Consider a review that changed the system’s structural
architecture. LStrCoh is used to measure the cohesion of the
system both before (Mi) and after (Mi+1) the review. In this
case, LStrCoh is an inverse metric, where a positive difference
in LStrCoh(Mi+1)− LStrCoh(Mi) indicates higher lack of
cohesion, and therefore, a degradation in structural cohesion
as a result of the review. Similarly, a negative difference in
LStrCoh indicates an improvement in structural cohesion.

The structural coupling of M , StrCop, is computed as

StrCop(M) =

∑m
j=1 FanOutPj

m
, (2)

where FanOutPj
indicates the number of files outside package

Pj that depend on files inside Pj . Similarly to LStrCoh, a
positive difference in StrCop(Mi+1) − StrCop(Mi) after a
review indicates a degradation in structural coupling, and a
negative difference after a review indicates an improvement in
structural coupling.

III. EXPERIMENTAL DESIGN

The goal of this paper is to study the intent and the architec-
tural awareness of developers when performing architectural
changes on a day-to-day basis. To this end, we ask the following
research questions:
RQ1: What are common intents when developers perform
significant changes to the architecture? This research question
investigates architectural changes and identifies common intents
behind these changes. Thus, we classify architectural changes
regarding their intent at the time the change was reviewed, such
as New Feature, Bug Fixing and so on. Using this approach we
can perform our analysis on the most recurrent intents, thereby
achieving a better understanding of the conditions under which
architectural changes were performed.
RQ2: How often are developers aware of the architectural
impact of their changes on a day-to-day basis? Given the large
number of ramifications of an architectural change, this research
question investigates how often developers are aware of the
impact of their changes on the system’s structure. To answer
it, we inspect changes that had an impact on the architectural
structure to identify whether developers discuss the system’s
architecture during the review of that change.
RQ3: How does awareness and intent influence architectural
changes on a day-to-day basis? Considering changes with
common intents, we assess how the architectural awareness
of developers influences the improvement or degradation of
cohesion and coupling for each change.

The rest of this section reports the experimental methodology
we used to answer the research questions presented above.

A. Code Reviews Data Mining

Code review in modern software development is a
lightweight process in which changes proposed by developers
are first reviewed by other developers before incorporation
in the system. In this paper, we focus on Gerrit [30], one



of the most popular code review systems currently in use
by large open source communities, such as Eclipse [31] and
Couchbase [32]. Although we focus on Gerrit in this paper,
the methodology presented here is adaptable and extensible
for other code review systems.

In Gerrit, a developer submits a new patch for review in
the form of a git commit, where the commit message is used
as the review’s description and the commit id is stored for
future reference. For each new submission, Gerrit creates a
Change-Id to be used as a unique identifier of that review
throughout its reviewing cycle. Other developers of the systems
will then inspect the patch, and provide feedback in the form
of comments. Improved patches are submitted according to the
feedback until the review is merged or abandoned, where the
first indicates the patch was incorporated to the system and
the latter indicates the patch was rejected. For the rest of this
paper, we use review and change interchangeably to indicate a
code submission that was manually inspected by developers
and later merged or abandoned.

After selecting the subject systems for our empirical study
(Section III-B), we mined the systems’ code review data from
Gerrit and downloaded the systems’ git repositories. Since the
goal of this study is to better understand how architectural
changes are performed, we focus our analysis on the merged
reviews. Hence, with the aid of the review’s original commit
id and Gerrit’s Change-Id, we linked each merged review
to the commit in the git repository where the review was
incorporated1. Moreover, we also identify the commit that
immediately preceded each review. Finally, for each review, we
collected the author’s description of the change, the feedback
provided by other developers and the commits that represent
the state of the system before and after the review.

B. Subjects Selection for Empirical Investigation

As we needed systems with a rich review history, the number
of Merged reviews was one of the criteria used when selecting
the subject systems for investigation. Moreover, since our static
analysis framework can only be applied to Java systems (see
Section III-C), we used the proportion of Java code in the
system as the other selection criteria.

Thus, we selected the two systems with the most merged
reviews and the highest proportion of Java code in two open
source communities, i.e. egit and linuxtools for Eclipse,
and couchbase-java-client and couchbase-jvm-
core for Couchbase. For brevity, the Couchbase systems will
be abbreviated as java-client and jvm-core, respec-
tively. The consideration of these 4 systems yielded a manual
inspection and classification of 628 code reviews, highlighting
the high level of manual analysis involved in this study. This
high level of painstaking manual analysis is required to form a
ground truth, which will assist other researchers in subsequent
studies, facilitating greater automation. Table I reports the
number of Merged reviews for each system and the time span
of the system’s history we are investigating. Moreover, we also

1In rare cases, a link cannot be established and we discarded such reviews.

report the proportion of Java code for each system and size
metrics. Since the proportion of Java code and the size of the
systems change throughout their history, we additionally report
median, maximum and minimum values for these statistics.

Both egit and linuxtools are plugins for Eclipse,
where the first is aimed at providing git support in Eclipse,
and the second provides a C/C++ IDE for Linux developers.
Couchbase as a whole is a NoSQL database solution for
both server side and mobile, where java-client is the
official driver to access the Couchbase database using Java,
and the jvm-core is a low-level API mostly used by the
java-client implementation. Considering the 4 systems,
we have access to a rich review history, with a combined total
of 17 years and 2 months of development time.

C. Computing the Difference in Structural Cohesion and
Coupling for Reviewed Changes

For each system selected to participate in our empirical study,
we computed the difference in structural cohesion and coupling
for the changes that have undergone a process of code review
as described in Section III-A, where the formal definitions of
the metrics being computed are presented in Section II.

The computation of the difference in structural cohesion and
coupling for all code reviews we mined is depicted in the first
steps of the framework presented in Figure 1. For each code
review, we revert the system to the states before and after the
review took place, creating two snapshots where the difference
between them was induced by the merged review.

We subsequently filter all the test code in the system’s code
base. Although part of the project, test code is not included in
the end product, and so we chose not to include it as part of
the structural architecture. In this paper, we employ a two-stage
procedure for test code filtering. In the first stage, every file
under a test/ folder is filtered. Next, all remaining files with
Test or test in the file name are manually analysed by two
of the authors, where a decision is reached to either include
or filter the file from the structural architecture analysis.

After filtering test code, we extract the MDG representing
the structural architecture of the system for the snapshots
before and after the review. Previous studies that performed
architecture analyses in Java systems relied on bytecode
analysis for structural architecture extraction [18], [20], [33]–
[37]. However, building and compiling the systems for each
commit is a time consuming and error prone activity. Hence,
for this investigation, we extract the architectural structure of a
system directly from its source code by using Understand [38],
a commercial tool for static code analysis whose set of features
include dependencies extraction and visualisation.

Given the system’s MDG before and after the review, we
compute the structural cohesion and coupling as defined in
Equations 1 and 2 and compare the cohesion and coupling of
the system before and after the review. The measurements of
structural cohesion and coupling are separately computed for
each package in the structural architecture, and then aggregated
in an overall score. Hence, when comparing the cohesion and
coupling for before and after the review, we store not only the



TABLE I: DESCRIPTIVE STATISTICS FOR THE SYSTEMS UNDER STUDY. WE REPORT THE NUMBER OF MERGED REVIEWS IN EACH SYSTEM
AND THE TIME SPAN OF OUR INVESTIGATION. WE REPORT THE MEDIAN, MAXIMUM AND MINIMUM VALUES OF SIZE METRICS.

Systems No. of
Reviews

Time Span
(Months)

Proportion of
Java Code (%) kLOC Number of

Packages
Number of

Files
Number of

Dependencies
Med Max Min Med Max Min Med Max Min Med Max Min Med Max Min

egit 3983 9/09 to 5/16 (80) 91 99 84 67 99 16 57 80 19 602 801 137 2508 3779 347
linuxtools 3633 6/12 to 5/16 (47) 90 94 85 178 215 90 351 435 214 1825 2199 1083 6765 8777 3103
java-client 716 11/11 to 5/16 (54) 100 100 97 8 24 1 14 39 3 125 420 13 392 1612 22
jvm-core 568 4/14 to 5/16 (25) 100 100 100 13 18 2 38 50 17 286 386 74 1106 1639 230
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Fig. 1: Framework for the identification of code reviews with significant changes to the system’s architecture. Given a set of code reviews,
our automated framework identifies significant reviews in terms of the impact to system’s architectural structure.

overall difference, but also the biggest difference in a single
package. We thus expand our analysis to consider not only
changes to the overall structural architecture, but also changes
that highly affect a single package.

At the end of this process, four different values are stored for
each review, each of which indicate the difference in overall co-
hesion/coupling and the biggest difference in cohesion/coupling
for a single package, respectively. In this paper, we computed
the differences in cohesion and coupling for 8,900 code reviews,
which generated a dataset of 17,800 structural architectures
automatically extracted from source code. The dataset of all
extracted structural architectures and the respective cohesion
and coupling values computed for each review is available at
our supporting webpage [39].

D. Identification of Reviews with Significant Architectural
Changes

In order to identify the reviews that performed significant
changes to the system’s architecture, we employed an outlier-
based approach. At first we grouped the set of code reviews
according to the following criteria. We identified all reviews
that showed an improvement in overall cohesion, followed by
all reviews with an improvement in overall coupling. We then
identified all reviews that showed a cohesion improvement for
a certain package, followed by all reviews with a coupling
improvement for a certain package. Similarly, we identified
all reviews that showed a degradation in the cohesion and
coupling measurements presented above. In total, we grouped
the reviews on 8 different subsets, which stand for the reviews
that improve or degrade the cohesion and coupling of either
the overall structural architecture or a single package.

Next, for each of the 8 subsets, we identified the outliers
using Tukey’s method [40] and defined the upper outlier “fence”
as 1.5× IQR (interquartile range) from the third quartile (Q3)
over the distribution of measurements in the specific subset.
The outliers indicate the reviews with “significant” differences

TABLE II: NUMBER OF REVIEWS IDENTIFIED AS OUTLIERS
ACCORDING TO DIFFERENT ARCHITECTURAL ASPECTS. WE REPORT
THE NUMBER OF OUTLIERS FOR THE REVIEWS WITH AN OVERALL
IMPROVEMENT (⊕) OR DEGRADATION (	) IN COHESION AND/OR
COUPLING. WE ALSO REPORT THE NUMBER OF OUTLIERS FOR A
SINGLE PACKAGE. THE NUMBER OF UNIQUE OUTLIERS CONSIDERS
ALL ASPECTS DISCUSSED ABOVE.

System
Cohesion Coupling Unique

OutliersOverall Single P. Overall Single P.
⊕ 	 ⊕ 	 ⊕ 	 ⊕ 	

egit 5 33 15 34 4 63 13 40 122
linuxtools 30 34 17 31 24 49 37 63 164
java-client 5 10 2 11 3 12 2 11 27
jvm-core 0 4 0 7 1 17 1 9 25

All 40 81 34 83 32 141 53 123 338

in cohesion and coupling relative to the overall distribution.
Table II presents the number of reviews identified as outliers
for each subset discussed above, and for each system under
study. Additionally, since reviews can be identified as outliers
in more than one subset, we also report the number of unique
reviews identified as outliers when considering all subsets.

As one can see from the table, 338 reviews were automati-
cally identified as the ones presenting the biggest changes in
structural cohesion and coupling, indicating that these reviews
are the ones that performed significant changes to the systems’
architecture. The subset of 338 unique reviews identified as
outliers stand for 15% of all reviews with architectural change.

E. Manual Inspection and Classification of Reviews

Following the automated process described in the previous
section, we considered all 338 outlier reviews, and performed
a manual inspection and classification inspired by the work of
Tufano et al. [41]. The manual classification process consisted
of two authors analysing each review and providing values
for a set of tags. Each tag can assume true or false, and aim
at describing a review in two dimensions: intent of change



and architectural awareness. In order to identify the reviews’
intent, we performed an open coding classification process.
As a starting point, we considered the set of tags originally
proposed by Tufano et al. During the open coding classification,
we augmented the set of tags with different intents that emerged
from the reviews’ data in a bottom-up fashion. The final set of
tags used in the reviews’ classification is presented in Table III,
alongside a short description of each tag.

To assess architectural awareness, we rely on the review’s
description and/or comments to ascertain the developers’
awareness of the architectural impact of the change. When
developers discuss the structural architecture in the review’s
description or comments, we can be certain of the developer’s
awareness. However, when the architecture is not discussed,
two scenarios are possible. In the first scenario, developers do
not discuss the architecture because they are not aware of the
impact of their changes. In the second scenario, developers are
aware of the architectural impact, but choose not to discuss
it during code review. We are therefore careful to couch over
scientific conclusions in the conduct of our analysis which is a
conservative, safe, under approximation of developer awareness.

In this paper, our analysis is focused on reviews that
performed significant changes to the system’s structural ar-
chitecture. In this case, when the author do not discuss the
architecture in the review’s description, reviewers who are not
familiar with the change might not be able to understand its
impact in the architecture. Similarly, if a reviewer do not raise
the architecture discussion during the reviewing process, the
author of the change might not perceive the ramifications of the
change being performed. In both cases, the lack of discussion
in regard to the system’s architecture during code review will
lead to a lack of awareness of some developers involved in the
review, which will ultimately lead to a poor reviewing process.
Therefore, the (lack of) discussion of structural architecture
during code review can be used as proxy for the developers’
awareness regarding the impact of their changes.

In order to mitigate threats to internal validity during the
classification process, we employed a two stages classification.
In the first stage, each author solely inspected and classified the
reviews according to a guideline that was discussed, reviewed
and agreed by all authors. In the second stage, the authors
discussed all the reviews for which there was a disagreement in
the classification. For this paper, there was no disagreement in
any reviews after the second stage of classification. The set of
manually classified code reviews is available at our supporting
webpage [39].

F. Pre-study for Validation of Experimental Design

We focus on the reviews with significant changes as identified
by the outliers. We assume that reviews with no significant
impact on the structural architecture will have fewer discussion
as developers may not expect a significant change (i.e. they
are aware of the low impact and see no need to discuss
it). Moreover, we also assume that the structural metrics
of cohesion and coupling are indeed capturing changes in
structural architecture and not only fluctuations in the system’s

TABLE III: TAGS BEING USED IN THE MANUAL CLASSIFICATION
OF CODE REVIEWS.

Intent of Change

New Feature Developer is adding a new feature to the system
Enhancement Developer is enhancing an existing feature or code
Feature Removal Developer is removing an obsolete feature
Platform Update Developer is updating the code for a new platform/API
Refactoring Developer is refactoring the system
Bug fixing Developer is fixing a bug
Not clear There’s no evidence to suggest any of the previous

Architectural Awareness

In Description Architectural impact is discussed in the description
In Comments Architectural impact is discussed in the comments
Never Architectural impact is never discussed

size. To validate these assumptions, we performed both a
qualitative and a quantitative pre-study.

First, we assessed whether an analysis of only outliers is
suitable to answer the research questions we proposed. Thus,
we collected all reviews from the Couchbase projects, including
reviews with significant changes (see Section III-D) and reviews
with no significant change (as identified by the outliers). On the
set of 287 non significant changes, we performed an inspection
as described in Section III-E and identified 45 reviews in which
the architecture is discussed (15%). The ratio is much higher
for the reviews with significant changes: developers discuss
the architecture in 19 out of 52 (36%) reviews. The difference
in the two groups of reviews is statistically confirmed by a
two-tailed pooled test in which the statistical difference is
confirmed at the 0.01 α level. It is therefore safe to assume
that developers tend to discuss the structural architecture when
they expect a significant change.

Next, we performed an analysis to assess whether structural
metrics of cohesion and coupling correlate with size and churn.
In terms of size metrics, we used LOC, number of packages,
number of files and number of dependencies. For churn, we
used number of files changed, number of lines changed and
number of hunks. We employed the Kendall-τ correlation
test [42], and the correlation coefficients were interpreted as
proposed by Cohen [43]. For all systems under study, structural
metrics presented either no or small correlation to both size and
churn metrics, where most of correlation coefficients lie below
0.3. An exception was observed when considering structural
coupling and number of dependencies, where the correlation
coefficients for these metrics varied from 0.65 to 0.7 between
systems. This correlation was expected as structural coupling is
directly computed from dependencies. Nevertheless, structural
coupling performs a qualified assessment of the system’s
structural cohesion as it evaluates not only the number of
dependencies as it is but also how dependencies affect each
other in an overall fashion.

IV. EXPERIMENTAL RESULTS

This section describes the results we found for each of our
research questions.



A. RQ1: What are common intents when developers perform
significant changes to the architecture?

Table IV reports the number of reviews identified under
different intents for the 338 outliers. Most of the reviews
that caused a significant change to the system’s structural
architecture were introducing a new feature to the system,
followed by enhancement, refactoring, bug fixing, feature
removal and platform update, respectively. An interesting
observation is that most architecturally significant changes
introduce a new feature, even though we have found weak
correlation between the metrics we used for architectural
change and metrics of size and churn (see Section III-F). This
is expected because new code usually has dependencies to
existing code, which affects the structural architecture of the
system, where changes that add/modify several lines of code,
but that do not affect the dependencies will have no effect in
the architecture.

A surprising result is that 9% of architectural reviews are
classified as bug fixing, as one would expect that bug fixing
would not alter the system’s architectural structure. After an
in depth analysis, we noticed that the majority of bugs being
fixed in these reviews are bugs that affect the behaviour of the
system, instead of bugs that simply cause an error or throw an
exception. For these kind of bugs, developers had to rework
the code so that the system would exhibit the correct behaviour,
which in turn would result in significant architectural changes.

We found few reviews that performed a feature removal
or a platform update in comparison to the other intents. In
fact, only 4% and 3% of architecturally significant changes
updated the platform or removed a feature, respectively. Note
that we found a non-negligible number of reviews where we
could not infer the intent behind the change. In most of the
not clear changes, the review had a very short description and
no comments from which we could infer the intent.

When considering the most common intents behind the
architectural changes, i.e. new feature, enhancement, refactoring
and bug fixing, we noticed that 28% of the reviews have
more than one intent. This is also an expected finding since
architectural changes are usually large and touch several files
at once. Figure IV-A presents the number of reviews for each
of the most common intents, including the number of reviews
that share more than one intent. The biggest intersection occurs
between new feature and enhancement. This happens due to the
incremental nature of software development, where a system
is developed in an iterative fashion, and existing features are
improved by small increments of new functionality. According
to our manual inspection, 72% of the reviews that enhance an
existing feature are doing so by introducing new features, and
39% of reviews introducing a new feature also have the intent
of enhancing an existing feature.

As an answer to RQ1, we found that new feature, en-
hancement, refactoring and bug fixing are the most common
intents behind architectural changes, accounting for 90% of the
significant architectural changes we collected and inspected.
Moreover, 28% of these changes have more than one intent,

New Feature  
(183)

Enhancement 
(109)

Refactoring 
(108)

Bug Fixing 
(32)

101 
(33%)

50 
(16.3%)

5 
(1.6%)

15 
(4.9%)

8 
(2.6%)

25 
(8.2%)

66 
(21.6%)

14 
(4.6%)

2 
(0.7%)

3 
(1%)10 

(3.3%)
2 

(0.7%)5 
(1.6%)

0 
(0%)

0 
(0%)

Fig. 2: Classification of reviews with significant architecture changes
for each of the most common intents.

and 72% of changes enhancing an existing feature do so by
adding a new feature.

B. RQ2: How often are developers aware of the architectural
impact of their changes on a day-to-day basis?

Considering the intents behind architectural changes de-
scribed in RQ1, Table V reports the number of reviews with
different levels of architectural awareness according to our
inspection and classification. Reviews for which the intent is
not clear were left out of the analysis. In total, the number of
reviews where the architecture is never discussed is higher than
the number of reviews where the architecture is discussed in the
description, comments or both. This indicates a substantial lack
of architectural awareness from developers when performing
changes with significant impact to the system’s architecture.

For reviews where developers are adding a new feature, only
in 10%, 17% and 7% of the time the architecture was discussed
in the description, comments or both, respectively. Considering
enhancements of existing feature, the architecture was discussed
15% of the time in the description, 16% of the time in comments
and 9% of the time in both. Given that these are the most
common intents when developers are performing architectural
changes (see RQ1), these results point to an alarming lack of
architectural awareness from developers during the changes
where the architectural impact is the greatest. Finally, for all 338
architecturally significant reviews, we could find evidence of
architectural awareness in the reviews’ description, comments
and both in only 18%, 12% and 8% of the reviews, respectively.

For the reviews which performed a refactoring to the system,
the total number of reviews where the architecture is discussed
either in the description, comments or both is higher than the
number of reviews where the architecture is not discussed.
Developers were aware of the architectural impact of their
refactorings in 65% of the cases. We noticed that most of the
reviews with a refactoring intent but no architectural awareness
were removing dead code. Dead code removal is indicated as
an architecturally significant change because of the amount
of apparent static dependencies usually removed by such
operations. However, this is a straightforward operation in
which its impact to the system as a whole is minimum and
only apparent dependencies are removed, by definition.

As an answer to RQ2, by inspecting and classifying 338
reviews that performed significant architectural changes, we



TABLE IV: NUMBER OF REVIEWS THAT PERFORMED ARCHITECTURALLY SIGNIFICANT CHANGES GROUPED BY DIFFERENT INTENTS.

Systems New
Feature

Feature
Enhancement

Feature
Removal

Platform
Update Refactoring Bug Fixing Not Clear

egit 76 (62%) 39 (32%) 5 (4%) 4 (3%) 27 (22%) 14 (11%) 6 (5%)
linuxtools 70 (43%) 57 (35%) 7 (4%) 5 (3%) 69 (42%) 15 (9%) 9 (5%)
java-client 22 (81%) 11 (41%) 1 (4%) 1 (4%) 6 (22%) 1 (4%) 0 (0%)
jvm-core 15 (60%) 2 (8%) 0 (0%) 1 (4%) 6 (24%) 2 (8%) 3 (12%)

All Systems 183 (54%) 109 (32%) 13 (4%) 11 (3%) 108 (32%) 32 (9%) 18 (5%)

TABLE V: NUMBER OF REVIEWS, FOR EACH INTENT, WHERE THE
ARCHITECTURE IS NOT DISCUSSED, IS DISCUSSED ONLY IN THE
REVIEW’S DESCRIPTION, ONLY IN ITS COMMENTS, OR IN BOTH.

Intent Discussion (Awareness)
None Description Comments Both

New Feature 120 (66%) 18 (10%) 32 (17%) 13 (7%)
Enhancement 64 (59%) 17 (15%) 18 (16%) 10 (9%)
Feature Removal 9 (69%) 3 (23%) 1 (8%) 0 (0%)
Platform Update 4 (36%) 5 (45%) 2 (18%) 0 (0%)
Refactoring 37 (34%) 43 (40%) 8 (7%) 20 (18%)
Bug Fixing 24 (75%) 6 (19%) 2 (6%) 0 (0%)

Total 211 (62%) 60 (18%) 41 (12%) 26 (8%)

found that developers were aware of the impact of their
change in only 38% of the time. Although being one of
the most common intents when performing architectural
changes, reviews that add a new feature or enhance an existing
feature present a poor level of architectural awareness. Finally,
developers present a high level of awareness when refactoring
the systems, where the architecture is discussed in the reviews’
description, comments or both in 65% of the cases.

C. RQ3: How does awareness and intent influence architectural
changes on a day-to-day basis?

Table VI reports the number of reviews that either improved
or degraded the cohesion and coupling of each system under
study for different intents. In RQ1 we showed that there is
a considerable overlap of reviews introducing a new feature
and reviews enhancing existing features. Therefore, since both
these intents are concerned with augmenting and improving
the system’s features, we combined these two intents under
Feature in Table VI. Finally, we consider under Awareness all
reviews in which the structural architecture was discussed in
the review’s description or comments (as absolute numbers
and as percentage of the total number of reviews).

Consider the coupling degradation of egit, for example.
When the intent was to add a new feature and/or enhance
a feature, we found 57 reviews where the change led to a
degradation of either the overall coupling of the system or the
coupling of a single package. For 6 reviews, corresponding to
10%, the architecture was discussed during the review. Similarly,
we identified a total of 24 reviews that improved the coupling
of linuxtools through refactoring. However, in only 14
(59%) of these the architecture was discussed.

When one compares the reviews that improve cohesion/cou-
pling to the reviews that degrade cohesion/coupling, developers
tend to be more aware of the architectural impact when their

changes have a positive effect. This indicates that developers
are often not aware of the impact of their changes when they
are degrading the structural architecture. Moreover, most of the
reviews identified as performing significant archiectural changes
caused a degradation in the systems’ structural cohesion and
coupling. This is arguably the moment which developers
should be mostly aware of the architectural impact of their
changes since poor architectural decisions might lead to bug
proneness [3] and increased maintenance effort [4].

Considering only the reviews in which a Refactoring was
performed, this behaviour is not so pronounced. Based on
our inspection, developers tend to have a similar level of
awareness when the cohesion/coupling of the system is both
improved and degraded. As an example, we found that
developers of linuxtools are aware of the architectural
impact in 61% and 62% of the refactorings that improved
and degraded the system’s cohesion, respectively. This is a
counterintuitive finding as one expects that refactorings should
lead to improvements instead of degradations.

In order to shed light into this issue, we present two examples
of refactorings in which developers were aware of the architec-
ture, but the change resulted in a degradation of the system’s
structural architecture. In review 23478 of linuxtools, the
author of the change describes the refactoring as “Internalize
remaining classes. They were not exported so not a real change”,
which clearly indicates an attempt of structural improvement.
For this purpose, a set of 9 files were moved from their original
package to an internal package. As a result, the cohesion of the
original package was improved, but the amount of dependencies
the files had to other files in the system caused a degradation of
overall coupling and overall cohesion. This is an example of a
developer who, although being aware of the system’s structural
architecture and having the intent of refactoring it, failed to do
so. This is an indication that even with the intent of improving
the system’s architecture, developers sometimes are not able
to see all the ramifications of their architectural changes.

Review 11670 of linuxtools in another example, where
the author described the refactoring as “Move input validators to
where they are actually used”. In this case, the developer is also
performing an improvement to the code base, but this time the
reasoning behind the change seems to be semantical rather than
structural. Hence, the author moved two Validators files
from the validators package to a package with files that
use the the Validators’ functionality. Due to the number of
dependencies the Validators have to their original package,
this change caused a degradation in both the structural cohesion



TABLE VI: NUMBER OF REVIEWS THAT EITHER IMPROVED OR DEGRADED THE SYSTEMS’ COHESION AND COUPLING FOR DIFFERENT
INTENTS AND THE SUBSET OF REVIEWS WITH SIGNS OF AWARENESS.

System Intent
Cohesion Coupling

Improvement Degradation Improvement Degradation
Total Awareness Total Awareness Total Awareness Total Awareness

egit
Feature 10 6 60% 30 40 13% 9 5 55% 57 6 10%

Refactoring 6 4 66% 7 5 71% 7 5 71% 13 6 46%
Bug Fixing 0 0 0% 5 1 20% 2 1 50% 9 2 22%

linuxtools
Feature 12 7 58% 28 15 53% 26 15 57% 52 26 50%

Refactoring 18 11 61% 16 10 62% 24 14 58% 32 25 78%
Bug Fixing 2 2 100% 4 0 0% 5 3 60% 5 0 0%

java-client
Feature 4 3 75% 13 5 38% 3 2 66% 15 9 60%

Refactoring 2 2 100% 1 1 100% 1 1 100% 4 4 100%
Bug Fixing 1 0 0% 0 0 — 0 0 — 0 0 —

jvm-core
Feature 0 0 — 6 2 33% 0 0 — 12 2 16%

Refactoring 0 0 — 2 2 100% 1 0 0% 4 3 75%
Bug Fixing 0 0 — 0 0 — 1 0 0% 1 1 100%

and structural coupling of the system. With this example, we
provide evidence that developers consider not only structural
cohesion and coupling, but also other aspects when carrying
out architectural changes. Such observation is aligned with
findings reported in previous empirical studies [17], [18].

In order to assess the effect that architectural awareness has
on the improvement and degradation of structural cohesion and
coupling, we report in Figure 3 the distribution of cohesion
and coupling for reviews we found evidence of architectural
awareness and for reviews where we did not. We report box-
plots for both egit and linuxtools because these are the
systems with the largest number of architecturally significant
reviews. For each system, we computed 8 box-plots. First, we
report the distribution of cohesion and coupling for the reviews
that improved or degraded the overall cohesion and coupling
of the system. Next, we report cohesion and coupling for the
reviews that improved or degraded the cohesion and coupling
of a single package in the system. In all box-plots, smaller
values of cohesion and coupling are more desirable for the
system’s structural architecture.

Consider the box-plots that depict the distribution of cohesion
and coupling for the reviews that improved either the system’s
overall cohesion/coupling or the cohesion/coupling of a single
package. In every case (a, b, e, f, i, j, m, n), the reviews in which
the architecture was discussed presented larger improvements
in structural cohesion and coupling. When looking at egit
in particular, reviews with evidence of architectural discussion
presented considerably larger improvements to the system’s
overall cohesion and overall coupling, as can be seen in
boxplots (a) and (b), respectively.

When considering the reviews that degraded the system’s
cohesion and coupling, we found two cases in which the
reviews with evidence of architectural discussion caused less
degradation than reviews in which the architecture was not
discussed. In the first one (g), reviews with architectural
discussion caused less degradation to single packages of egit
than their counterparts with no architectural discussion. A
similar behaviour was identified for the reviews that degraded
the overall cohesion of linuxtools. However, this did
not replicate to the other cases, where both reviews with

and reviews without architectural discussion had a similar
degradation in cohesion and coupling.

The observations from the box-plots provide evidence that
architectural awareness has a positive effect in the cohesion
and coupling of the systems for the reviews in which the
structural architecture was improved. However, for reviews that
degrade the system’s architecture, apart from specific cases,
architectural awareness does not have a noticeable effect in
the actual degradation caused by the review.

In summary, we found that the architecture is more often
discussed in the reviews that improve the cohesion and coupling
of the system when compared to reviews that degrade the
cohesion/coupling. Differently, the architecture is similarly
discussed in reviews that perform a refactoring. Moreover,
we found evidence that refactorings that degrade the systems’
cohesion/coupling are not caused only by poor implementation,
but also by the fact that developers may consider other
properties when performing refactorings. Finally, by assessing
the distribution of cohesion and coupling of the reviews we
studied, we noticed that reviews in which we found evidence
of architectural awareness tend to present larger improvements
in cohesion and coupling when compared to reviews where
the architecture was not discussed.

As an answer to RQ3, architectural awareness is mostly
found in reviews that improve the system’s architecture, where
the architecture discussion often leads to larger improvements
in cohesion and coupling in these reviews.

The results for RQ1–3 lead to actionable findings for tool
builders, practitioners and researchers. We have observed that
architectural awareness during code review leads to better archi-
tectural changes. Thus, tool builders should provide plugins for
code review systems that will automatically identify significant
architectural changes and make the reviewers aware of the
architectural impact of the change. Practitioners should under-
stand the importance of discussing the system’s architecture
when performing architectural changes, and more importantly,
adopt tools to assist in this dicussion. Finally, researchers can
use code review not only to study architectural changes, but
also as technique to perform architectural improvements and
prevent architectural degradation.
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Fig. 3: Distribution of cohesion and coupling for reviews where we found evidence of architectural awareness and for reviews where we did
not. We report box-plots for the reviews that improve and degrade the overall cohesion/coupling of the system and also for the reviews that
improve and degrade the cohesion/coupling of a single package in the system.



V. THREATS TO THE VALIDITY

Internal validity: We use a metric-based approach to automat-
ically identify reviews that performed significant changes to
the system’s structural architecture. Using this approach, one
cannot guarantee all architecturally significant reviews were
inspected. To alleviate this threat, we performed a pre-study in
which we inspected all reviews from the Couchbase systems
that presented any change to structural cohesion and coupling.
With statistically significance at the 0.1 α confidence level, we
showed that the number of reviews discussing the architectural
impact among the reviews with significant changes is higher
than among those with negligible changes.

The metrics of structural cohesion and coupling we used
are based on structural dependencies between files, in which
differences in size might affect the cohesion and coupling
measurement. In our pre-study, we collected size and churn
metrics of all systems and performed a correlation analysis
with the cohesion and coupling metrics we employed. Most of
the correlation coefficients were identified as low or medium,
which is aligned with what is usually expected from object-
oriented metrics computed from source code [44]. The low and
medium correlation indicates that the cohesion and coupling
metrics we employed are indeed capturing changes in structural
architecture of the system and not only size fluctuations.

Manual classifications are naturally subjective to bias. To
mitigate this threat, we employed a two-stage manual classifi-
cation procedure. In the first stage, all reviews were separately
classified by two authors following a strict guideline previously
discussed and agreed by all authors. In the second stage, for
all reviews in which a disagreement was found, both authors
discussed the review until a unified classification was reached.
External validity: Our study focuses on four Java projects
which we carefully chose so that we could study them in detail
both quantitatively and qualitatively. However, the results may
not be generalisable to projects in other languages.

The analysis of the systems’ architecture is based on
structural metrics of cohesion and coupling. One might expect
different results using different metrics. However, we rely on
structural cohesion and coupling since they are widely-adopted
for architecture analysis and have been thoroughly evaluated
in previous studies [18], [20], [26].

VI. RELATED WORK

Tufano et al. [41] performed an empirical study to understand
the lifecycle of code smells in software projects. They manually
inspected and classified commits in regard to commit goal,
project status, and developer status. While their classification
is mostly based on commit messages and patches, the code
review process adopted in our analysis provides a richer set
of artefacts for each software change. Besides having access
to each commit and patch, a review also includes feedback
provided by other developers, and often links to tickets in the
issue tracking system and links to related reviews performed
in the past. As such, during our manual inspection, we extend
Tufano et al.’s classification of the commit goal to include a
wider set of intents we found during our open coding analysis.

Several studies have been performed to qualitatively evaluate
the developer’s perception of cohesion and coupling metrics.
Simons et al. [27] prepared a set of toy examples and surveyed
developers to assess whether metrics represent the developer’s
perception of quality. Bavota et al. [17] and Candela et al. [18]
also surveyed developers with the same purpose, where in this
case the questionnaire was focused on selected past changes.
By inspecting code reviews, we are able to assess developers
intent and awareness on a day-to-day basis, focusing on how
developers perceive the architectural changes at the time these
changes are being reviewed. As a result, we can study the
developers’ behaviour for each different architectural change
in particular, without the bias of interviews that involve toy
systems or past changes.

Recent studies have evaluated different metrics of struc-
tural cohesion and coupling as suitable measurements for
architectural quality. In a context of search based software
modularisation, Paixao et al. [20] compared the modularisation
developers implemented in their systems against baselines
generated by different search procedures. In a similar setting,
Ó Cinnéide et al. [26] evaluated a set of structural cohe-
sion metrics for automated refactoring. Although providing
quantitative evidence on how structural cohesion measurement
can be used to improve software systems, these work lack a
qualitative analysis to better understand how developers perform
architectural changes on a day-to-day basis.

VII. CONCLUSION

Architectural decisions have large implications on the
development and evolution of software systems. In this context,
a better understanding of how developers perform architectural
changes on a day-to-day basis is required as a foundation for
the improvement of automated decision support tools.

Thus, we performed an empirical study that involved the
inspection and classification of 628 architectural changes
mined from 4 software systems. We limited our study to
reviews with good quality description and feedback provided
by developers. After analysing 338 reviews that performed
significant changes to the system’s structural architecture, we
found that the architecture is only discussed in 38% of the
reviews we studied, which indicates a lack of architectural
awareness when performing significant architectural changes.
Nevertheless, developers tend to be more often aware of the
architecture when the change is actually improving the system
in terms of cohesion and coupling.

Finally, we noticed that changes in which developers are
aware of the architectural impact tend to present larger
improvements in cohesion and coupling than changes where the
architecture is not discussed. Such observation indicates that
architectural awareness during code review has the potential
to aid developers on their day-to-day activities. Hence, we
lay as future work the automation of architectural analysis
during code review time, where authors and reviewers would
automatically be made aware of the architectural impact of
their changes.
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