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ABSTRACT: The mechanical properties of rodlike cellulose nanocrystals (CNCs) suggest great potential as bioderived
reinforcement in (nano)composites. Poly(vinyl alcohol) (PVOH) is a useful industrial material and very compatible with CNC
chemistry. High performance CNC/PVOH composite fibers were produced coaxial coagulation spinning, followed by hot-
drawing. We showed that CNCs increase the alignment and crystallinity of PVOH, as well as providing direct reinforcement,
leading to enhanced fiber strength and stiffness. At 40 wt % CNC loading, the strength and stiffness reached 880 MPa and 29.9
GPa, exceeding the properties of most other nanocellulose based composite fibers previously reported.
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Cellulose nanocrystals (CNCs) are short rigid single
crystals of cellulose, generally with a width of ca. 5−20

nm and length of 100−300 nm.1 Their straight rodlike
morphology is characteristic, and distinguishes them from
longer, typically entangled, cellulose nanofibers (CNFs), which
represent the other important member of the nanocellulose
family. Cellulose is the principal component in all plants and is
the most abundant renewable polymer on earth. The ideal
crystalline form intrinsically possesses a very high strength
(∼7.6 GPa) and stiffness (∼160 GPa) coupled with low density
(∼1.6 g/cm3).2 The other attractive features of CNCs,
including biocompatibility, biodegradability, and sustainability,
have stimulated a diverse range of potential applications
including cosmetics, medical implants, chiral templates for
inorganic materials, and green composites.3,4

The opportunity to obtain high mechanical performance
from a renewable material has recently spurred an intensive
period of research for applications of CNCs as a reinforcement
for polymers.5 Unfortunately, CNCs are only compatible with a

few polymer matrices and usually aggregate when blended with
other materials, leading to a reduction in polymer/CNC
interfacial area, poor stress transfer, and stress-concentrating
agglomerates.6 Surface modification, particularly covalent
polymer grafting,7 can overcome the poor compatibility but
the procedures are often laborious and hard to scale. An
alternative approach is to make use one of the few intrinsically
compatible polymers as a matrix.8 Poly(vinyl alcohol) (PVOH)
is one such suitable candidate: it does not adsorb on cellulose in
water9 but its hydroxyl groups hydrogen bond copiously with
those of cellulose in the dry state. However, although a range of
CNC/PVOH composites have been prepared, for example by
electrospinning (∼50 MPa),10 cross-linking (∼100 MPa),11 and
liquid crystal microphase separation (0.05 N/tex),12 mechanical
performance is generally inferior compared to expectations.
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In this paper, we exploit uniform CNC/PVOH suspensions
to prepare high strength nanocomposite fibers via a gel
spinning method, followed by hot-drawing. This approach is
effective for high CNC loading fractions with excellent
dispersion and alignment (Figure 1), as required for
mechanically superior composite fibers.

Aqueous CNC suspensions (Figure 2a) were prepared by an
established acid hydrolysis route, and mixed with PVOH

solutions in DMSO, to form a uniform, stable spinning dope,
with a final DMSO:water volume ratio of 4:1. Optical
micrographs (Figure S1) show little evidence of agglomeration,
due to the compatibility of the components, until the CNC
content reaches around 60 wt % relative to PVOH. Nano-
composite CNC/PVOH fibers were successfully produced by
injecting these spinning dopes into a coaxial flowing stream of
antisolvent (acetone) to induce controlled coagulation. The
coflowing antisolvent was intended to increase CNC alignment
during the fiber spinning process and improve fiber consistency,

by confining the gel filament in a laminar flow; this approach
has previously been shown to be effective for carbon nanotube-
PVOH fibers.13 Around 1 mL of CNC spinning dope was
coagulated and stretched during the spinning process to form a
∼2 m long fiber. Fibers were dried at ambient conditions then
subsequently hot-drawn at 150 °C, to a draw ratio of 6, below
the CNC degradation temperature of 200 °C.14 Drawing the as-
spun fiber has two effects: it condenses the fiber and increases
the alignment of both the CNC and polymer in the fiber
direction, as can be seen by the increased birefringence (Figure
S2) and X-ray diffraction patterns (see below).15 The final
CNC/PVOH composite fibers were 10 m in length (digital
image, Figure 2b), with a linear density of 1.0 ± 0.1 tex (Figure
2c). Higher-magnification SEM images (Figure 2d) indicated
that individual CNCs remained well dispersed in the composite
at loadings up to 40 wt % CNCs. Indeed, good quality, dense,
uniform fibers were obtained for the pure polymer and
nanocomposites containing up to 40 wt % CNC. At 60 wt %
CNC, the fibers contained obvious agglomerates and pores
(Figure S3).
The presence of nanofillers can alter the morphology of a

polymer matrix as well as providing direct reinforcement; to
help deconvolute these effects, polymer crystallinity and glass
transition temperature (Tg) were quantified from the initial
differential scanning calorimetry (DSC) heating scans (see
Figure S4).3 After hot-drawing, the crystallinity of the PVOH,
calculated from the heat of fusion (ΔHm), increased steadily
(Figure S4c) from 12.8 to 17.9% with increasing CNC loading.
The increased PVOH crystallinity may be attributed to the
dispersed, crystalline CNCs providing additional nucleation
sites for PVOH during strain-induced crystallization. At the
same time, the glass-transition temperature remained constant
in the range of 70−72 °C. (Figure S4)
The fiber microstructure was characterized by wide-angle X-

ray scattering (WAXS) to identify the crystal phases present
and the degree of orientation of each component (Figure 3).
Monoclinic syndiotactic PVOH has a unit cell16 with
parameters a = 7.63 Å, b = 2.54 Å (parallel to the chain
axis), c = 5.41 Å, and γ = 91.5°. Predominantly, CNC has a
cellulose Iβ structure,

17 which is monoclinic with parameters a
= 7.78 Å, b = 8.20 Å, c = 10.38 Å, and β = 96.5°. 1D WAXS
(Figure S5) patterns of the fibers show the characteristic
features of the PVOH and CNC phases. Notably, the (101 ̅),
(101), and (200) planes of monoclinic PVOH and the (200)
plane of monoclinic cellulose Iβ crystal are observed. 2D X-ray
patterns of the as-spun fibers show only approximately isotropic
broad rings, indicating little preferential alignment of either
PVOH or CNC (Figure S5 b-d). However, after hot-drawing,
the (101 ̅) and (200) planes of the PVOH become much more
intense in the equatorial region, indicating a high degree of
orientation, with the fiber direction approximately parallel to
the [010] direction (Figure 3a). The hot-drawn composite
fibers containing 20 and 40 wt % CNC show a similar trend but
with even further improved alignment. The degree of
orientation of PVOH was quantified from the full width at
half-maximum (FWHM) of the azimuthal intensity distribution
(fitted as Lorentzian functions) of the (101 ̅) plane of PVOH at
2θ = 19.4° (Figure 3, right). The hot-drawn pure PVOH fibers
showed a preferred orientation (FWHM = 39.5°) along the
fiber axis, similar to those reported previously. For both hot-
drawn composite fibers, the PVOH crystallite orientation
increased very significantly to around FWHM = 18° (Figure 3b,
c). Unfortunately, the CNC (200) peak coincides with the

Figure 1. Illustration of fiber processing to optimize the micro-
structure of CNC/PVOH composite fibers: (i) coagulation of spinning
dope (CNC and PVOH) by injection into a coaxial flowing stream of
coagulant; (ii) hot-drawing of the fiber under tension at high
temperature (150 °C).

Figure 2. (a) 5 × 5 μm2 AFM height image of 20 mg/mL CNC thin
films. (b) 10 m long CNC fiber collected on a winder. SEM images of
CNC40/PVOH fiber, indicating a (c) well-formed fiber morphology
and (d) dispersion of individual CNC rigid rods in PVOH matrix from
CNC40/PVOH.
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PVOH (200) peak at 22.7°, preventing quantification of the
CNC alignment. However, the intensity of the peak in this
region does increase with CNC content and shows a
qualitatively similar angular distribution to the 19.4° peak,
indicating that the alignment of the PVOH crystals and the
CNC are correlated (WAXS, Figure S5e−g).
As-spun PVOH and CNC/PVOH fibers exhibit ductile

deformation behavior, characteristic for low crystallinity PVOH
materials, which are plasticized at 64% relative humidity.18 To
compensate for variations in cross-sectional area and shape, the
mechanical properties were evaluated relative to linear density,
measured in N/tex, as conventional for textile fibers. Values in
N/tex were converted to values in GPa, using the fiber average
cross-sectional area deduced from the ratio of the measured
linear density and calculated bulk density.2,9 While data in N/
tex may be considered more reliable, the conversion to GPa is
useful for comparison with previous literature on CNC
composites and other materials (see below). The tenacity and
stiffness for as-spun PVOH fibers were 0.03 N/tex (50 MPa)
and 0.83 N/tex (1.2 GPa), respectively, with a high strain to
failure (500%). The incorporation of CNCs increased both
tenacity and stiffness (σ = 0.06 N/tex (85 MPa), E = 1.1 N/tex
(1.6 GPa)). After hot-drawing (at a constant draw ratio of 6),
the mechanical properties of all fibers increased dramatically at
the expense of strain-to-failure (stress−strain data, Figure 4,
and tabulated tensile properties, Figure S6). The ultimate

tenacity and stiffness of the hot-drawn pure PVOH fibers
increased to 0.3 N/tex (430 MPa) and 5.5 N/tex (8.3 GPa),
respectively, at a strain to failure of 33.7 ± 0.5%. Optimized
commercial pure PVOH fibers (Kuralon K−II WN2, σ = 0.6
N/tex (820 MPa), E = 17.7 N/tex (15 GPa), and ε = 20%) still
have better properties because of the higher draw ratios (∼20)
possible at higher temperatures (220 °C).19 In the current
experiments, the hot-drawing temperature was limited to 150
°C due to the onset of CNC degradation.14 Nevertheless, the
hot-drawn PVOH fibers containing 40 wt % CNC match the
ultimate tenacity but have double the stiffness of the
commercial material, with stiffness 21.1 N/tex (29.9 GPa)
and a tenacity 0.65 N/tex (880 MPa) at a strain-to-failure of 5.6
± 0.2%. Mechanical properties increased with CNC loading up
to 40 wt % (CNC40/PVOH) but decreased for a CNC loading
of 60 wt % due to the agglomeration effects noted above
(Figure 4b, c). The increase in stiffness and tenacity for
composite fibers with up to 40 wt % CNC loading can be
attributed to the combined effect of increased crystallinity of
the matrix and direct reinforcement by the CNCs. To explore
this hypothesis quantitatively, Krenchel’s micromechanical
model can be applied (eq 1).20 The model follows a rule of
mixture formalism, modified for fiber length and orientation.

η η= + + + + =ιE V E V E V E V V V( 1)o f f m.a m.a m.c m.c f m.a m.c

(1)

where Ef, Em.a, and Em.c are the moduli of the CNC (120 GPa),
amorphous matrix (3.75 GPa), and crystalline matrix (25.5
GPa), and ηo and ηl efficiency factors relating to fiber
orientation and length, respectively; the equation has been
modified to treat the crystalline and amorphous PVOH
components separately, to account for the changing levels of
crystallinity between samples (see Appendix 1 in the
Supporting Information for full derivation). The volume
fractions are determined from weight fractions and the material
densities (1.26 g/cm3 for amorphous PVOH, 1.34 g/cm3 for
crystalline PVOH and 1.6 g/cm3 for CNC)2,9 and the degree of
PVOH crystallinity, which was determined by DSC (Figure
S4). Orientation factors for the PVOH crystals determined
from the (101 ̅) peaks for the hot-drawn PVOH (Figure 3), and
composite fibers containing 20 and 40 wt % CNC, were
calculated to be 0.73, 0.83, and 0.84, respectively. The
orientation efficiency factor of CNC was assumed to be the
same as the degree of orientation of the PVOH as more
detailed analysis was precluded due to peak overlap. The fiber
length factor was calculated using the shear-lag model using the
measured CNC length distribution from previous work.20 To
be consistent with volume fraction terms used in the model,
and the known moduli of the constituent phases, the stiffness of
the composite fibers was normalized by area rather than linear
density. The model predictions are in reasonably good
agreement with the measured moduli (Figure 4c). The
divergence at the highest CNC content correlates with the
onset of CNC agglomeration. The general fit for the
nanocomposite fibers containing well dispersed CNCs, suggests
that both CNC reinforcement and matrix crystallinity (which is
also affected by the CNC loading fraction) do indeed play a
role. For example, the relative increase in stiffness (31.6 GPa)
obtained for the sample containing 40 wt % CNC, above the
value of the pure PVOH fiber (6.5 GPa), is attributed partly to
the stiffening contribution of the CNCs (26.6 GPa) and partly
to the increase in crystallinity (from 12.8 to 17.9%)
contributing an increase in stiffness of 5.0 GPa.

Figure 3. 2D WAXS pattern (left) and angular scattered intensity at 2θ
= 19.4° (right, corresponding to the diffraction of the PVOH (101 ̅)
crystal plane): (a) PVOH, (b) CNC20/PVOH, and (c) CNC40/
PVOH. The small arcs of the PVOH (101 ̅) crystal plane reflect better
alignment of the PVOH chains in the presence of CNCs. FWHM (full
width at half-maximum) was calculated based on Lorentzian fits.
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The stiffness and strength of the new CNC/PVOH fiber
exceed the properties of other nanocellulose-based fibers
reported in the scientific literature (Figure 4d). Strikingly, our
new fibers are approximately 10 times stronger than previous
CNC composite fibers. Interestingly, their performance is quite
similar to optimized commercially available, pure cellulose
fibers, including Cordenka EHM (σ = 900 MPa and E = 38
GPa)21 and Lyocell A (σ = 624 MPa and E = 31.2 GPa),22

while exceeding those of Viscose (σ = 260 MPa and E = 9.3
GPa),21 both in terms of stiffness and ultimate tensile strength.
Because of the lower density of PVOH (∼1.26−1.34 g/cm3)
compared to pure cellulose (1.5 g/cm3),2,9 the CNC40/PVOH
fibers even outperform Cordenka EHM in terms of specific
ultimate tensile strength (0.62 GPa cm3/g versus 0.60 GPa
cm3/g). The ductile PVOH matrix also offers a higher
elongation at break (5.5% versus 4.6%).21 Although single-
walled carbon nanotubes are reported to offer greater
reinforcement in PVOH fibers,13 because of their superior
mechanical properties, they are not renewable, are less
environmentally benign, and are harder to process than
CNCs. The relative success of the CNCs can be attributed to
their excellent hydrogen-bonding compatibility with PVOH.30

Interestingly, the presence of the CNCs appears to
dramatically improve the polymer microstructure, even under
relatively modest drawing conditions. The size and stiffness of
the CNCs is expected to assist their orientation by shear, due to
longer rotational relaxation times. The coaxial flow coagulation
spinning process appears to be very effective at orienting both

components. Once oriented, the CNCs encourage the
nucleation of PVOH crystals, increasing both polymer
crystallinity and orientation. Despite the lower crystallinity of
PVOH in this composite, compared to commercial PVOH
(∼50−60%), the higher fiber stiffness shows that the CNCs are
contributing effectively. The overall improvement in properties
is thus likely to be a combination of improved polymer
microstructure and direct reinforcement by the CNCs. The
results obtained are extremely promising, and offer considerable
scope for further optimization of constituents and processing
conditions. To date, the development of CNC composites has
been hampered by the poor mechanical performance obtained
in most cases. The high performance obtained here
demonstrates that further development is warranted. The
highly aligned, high loading CNC reinforced fibers may have
direct relevance to biomedical applications due to their
biocompatibility. In addition, they could be readily combined
with a suitable (renewable) matrix to create a new generation of
hierarchical composites.
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Figure 4. (a) Characteristic tenacity−strain curves of all CNC/PVOH composite fibers and the pure PVOH control; all fibers were drawn to the
same draw ratio (6). (b) Comparative mechanical strength of all CNC/PVOH composite fibers and the pure PVOH control in textile and materials
units. (c) Comparative mechanical stiffness of all CNC/PVOH composite fibers and the pure PVOH control with modified Krenchel’s model (in
GPa). (d) Overview of strength vs stiffness of various nanocellulose-based composite fibers reported in scientific literature and commercially
available fibers. Circles and rectangles indicate literature and commercial data, respectively. Tensile strength and stiffness were determined using the
cross-sectional area, calculated by δL/ δB, where δL and δB are linear and bulk density, respectively. Legend for data in D: C, Cordenka EHM;21 K,
Kuralon; L, Lyocell;22 V, Viscose;22 W, CNF, 2014;23 D, CNF, 2014;24 I, CNF, 2011;25 A, CNF, 2011;26 Y, CA/CNC, 2014;27 O, PLA/CNC,
2016;7 U, CNF/PVOH, 2008;28 H, CNC/PVOH, 2015;29 J, CNC, PVOH, 2014;12 and T, This work
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