Zeng, H;
Wasylczyk, P;
Parmeggiani, C;
Martella, D;
Wiersma, DS;
(2016)
Free-form Light Actuators - Fabrication and Control of Actuation in Microscopic Scale.
Journal of Visualized Experiments
(111)
, Article e53744. 10.3791/53744.
Preview |
Text
jove-protocol-53744-free-form-light-actuators-fabrication-control-actuation-microscopic.pdf - Published Version Download (1MB) | Preview |
Abstract
Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others.
Type: | Article |
---|---|
Title: | Free-form Light Actuators - Fabrication and Control of Actuation in Microscopic Scale |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3791/53744 |
Publisher version: | http://dx.doi.org/10.3791/53744 |
Language: | English |
Additional information: | Copyright © 2016 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License |
Keywords: | Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, Engineering, Issue 111, Direct laser writing, liquid crystalline elastomers, liquid crystal alignment, photolithography, 3D fabrication, microactuators, microstructures, smart materials, light driven, Laser |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10025191 |




Archive Staff Only
![]() |
View Item |