UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Resilience in the tantalum supply chain

Mancheri, NA; Sprecher, B; Deetman, S; Young, SB; Bleischwitz, R; Dong, L; Kleijn, R; (2018) Resilience in the tantalum supply chain. Resources, Conservation and Recycling , 129 pp. 56-69. 10.1016/j.resconrec.2017.10.018. Green open access

[thumbnail of Resilience_Framework_in_the_Tantalum_Supply_Chain_ REV.pdf]
Preview
Text
Resilience_Framework_in_the_Tantalum_Supply_Chain_ REV.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Tantalum, considered one of the critical elements by many countries, is a widely used metal in industries such as electronics, aerospace and automotive. The tantalum market has experienced several disruptions and subsequent price swings in the past, implying problems with its supply chain resilience and stability. In this study, we trace the entire value chain of the tantalum industry from mining to the intermediate and the downstream industries. Our interest is to see how dependent the tantalum supply chain is on specific countries and regions, how exposed primary production is to disruptions, and what mechanism counteracts disruption. This study assesses the tantalum supply chain from a resilience perspective rather than an investigation of any specific disruption in the system. We analyze several resilience-promoting mechanisms such as: (a) diversity of supply, (b) material substitution, (c) recycling and (d) stockpiling. We evaluate each of these mechanisms, and find that even though diversity of supply and stockpiling mechanisms have been decreasing for years, the tantalum supply chain has been flexible in its response to disruption. We find a much larger supply from unaccounted artisanal and small mining sources than expected based on official statistics, and estimate the unaccounted production in Africa, which shows an almost 250 percent increase from around 600 tons in 2004 to more than 2000 tons in 2014.. Besides flexible primary production from small-scale mining, we identfy rapid material substitution and increasing availability of waste and scrap as the main reasons behind the observed supply chain resilience.

Type: Article
Title: Resilience in the tantalum supply chain
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.resconrec.2017.10.018
Publisher version: http://dx.doi.org/10.1016/j.resconrec.2017.10.018
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Tantalum; Sustainable supply chain; Resilience framework; Material flow
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Bartlett School Env, Energy and Resources
URI: https://discovery.ucl.ac.uk/id/eprint/10025154
Downloads since deposit
239Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item