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Abstract

We study norms that can be used as penalties in machine learning problems. In particular, we

consider norms that are defined by an optimal interpolation problem and whose additional

structure can be used to encourage specific characteristics, such as sparsity, in the solution to

a learning problem.

We first study a norm that is defined as an infimum of quadratics parameterized over

a convex set. We show that this formulation includes the k-support norm for sparse vector

learning, and its Moreau envelope, the box-norm. These extend naturally to spectral regular-

izers for matrices, and we introduce the spectral k-support norm and spectral box-norm. We

study their properties and we apply the penalties to low rank matrix and multitask learning

problems.

We next introduce two generalizations of the k-support norm. The first of these is the

(k,p)-support norm. In the matrix setting, the additional parameter p allows us to better

learn the curvature of the spectrum of the underlying solution. A second application is to

multilinear algebra. By considering the rank of its matricizations, we obtain a k-support

norm that can be applied to learn a low rank tensor. For each of these norms we provide an

optimization method to solve the underlying learning problem, and we present numerical

experiments.

Finally, we present a general framework for optimal interpolation norms. We focus on

a specific formulation that involves an infimal convolution coupled with a linear operator,

and which captures several of the penalties discussed in this thesis. Finally we introduce an

algorithm to solve regularization problems with norms of this type, and we provide numerical

experiments to illustrate the method.
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Chapter 1

Introduction

In machine learning and statistics we study the problem of learning a model from data

for descriptive or predictive purposes. Large amounts of data are becoming available to

researchers in a variety of domains, and new technologies are being applied to an ever

increasing diversity of fields. As the science of machine learning continues to mature, the

complexity of state of the art models tends to increase. Nevertheless, in most domains,

the data or the computational resources required to solve the relevant problems limit the

complexity of the model we can hope to efficiently and accurately learn. In order to improve

the performance of a learning algorithm within these limitations, a standard approach is

to directly or indirectly incorporate assumptions on the underlying model into the learning

process. By enforcing these structural assumptions, we aim to improve learning accuracy by

restricting the model space being explored.

The principle of parsimony known as Occam’s razor states that given competing models,

the simplest one should prevail, and this has proven to be a powerful heuristic in many

scientific fields. In our context of learning potentially complex models from large amounts of

data, this principle naturally leads to sparse models, that is, models that depend only on a

small number of parameters. In various problem settings this could, for example, translate

to vectors with few non zero elements, matrices with low rank, or other, more complex,

characteristics.

A priori knowledge about the underlying domain may further suggest some underlying

structure for the sparsity pattern, and this can often be incorporated into the problem with the

goal of improving learning. The field of structured sparsity studies learning methods in this

setting and forms the backdrop for this thesis. Broadly, research around this topic investigates

methods to enforce a given set of statistical or structural constraints, optimization methods

to solve the resulting problems, and corresponding algorithmic and statistical guarantees. In

this thesis we focus primarily on methodology and optimization, rather than on statistical

guarantees related to the methods.
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1.1 Problem Setting

Our framework is supervised learning, where we have access to data and observations. The

training data are drawn randomly from X ×Y, independently and identically distributed,

and used to learn the model h in some Hilbert space H which predicts y = h(x) ∈ Y given

input x ∈ X . The general problem is

min
h∈H
L(h),

where the loss function L :H→ R measures the fit of the model to the data. In regression

problems, we learn one or more functions which predict real-valued observations, whereas in

classification problems, the model allocates a given input to a class chosen from a discrete

finite set. In supervised learning, a standard approach is to frame the learning task as an

optimization problem that involves minimizing an objective function over the training data

with the goal of the model accurately generalizing to unseen data. Furthermore, when domain

specific knowledge about the structure of the underlying model is available, encouraging

the learned model to have specific properties, such as low complexity, can lead to improved

performance.

In this thesis we focus on methods that encode our assumptions via a functional, typically

a norm, which serves as a constraint or a regularizer. Our focus throughout is on the penalties,

the properties that they encourage in the underlying solution, and optimization methods to

solve the corresponding learning problems. We highlight three frameworks that allow us to

impose our structural assumptions on the model in this manner. In each case the structure

is encouraged using a convex penalty functional Ω : H→ R, which is chosen to have the

property that desirable solutions (according to our heuristic) take on small values.

In the regularization approach, the problem takes the form min
{
L(h) +λΩ(h)

∣∣ h ∈H},

where the composite objective function involves the loss L and the penalty Ω, and λ is a

positive parameter that regulates the two terms. The problem, also known as Tikhonov

regularization, therefore involves a trade off between fitting the data by minimizing L, and

imposing some structural assumptions on the solution by minimizing Ω.

A second method is to directly constrain the solution to the optimization problem by

solving min
{
L(h)

∣∣ h ∈H,Ω(h)≤ α
}

, for some positive real α. This constrained formulation,

also known as Ivanov regularization, can be interpreted as finding the best fitting model in a

restricted solution space.

In the third approach, the optimization problem becomes min
{

Ω(h)
∣∣ h ∈H,L(h)≤ β

}
,

for some positive real β. This method, also known as Morozov regularization, can be

interpreted as minimizing the complexity of the model subject to a minimum fit to the data.

Originally studied in the inverse problems literature (Ivanov et al., 1978), under mild
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conditions these problems can be shown to be equivalent in a certain sense (Vasin, 1970;

Bertsekas, 1999). Consequently the appropriate problem setting can be decided by the

availability of computational tools to solve the respective optimization problems. In this

thesis we consider problems of the first (unconstrained) and second (constrained) type.

1.2 Research Approach

Much research in structured sparsity centres on studying penalties Ω, primarily focusing on

the structure they impose in the solution, their statistical properties, and methods to solve the

resulting optimization problems. In particular, norms exhibit a number of properties which

make them convenient choices for penalties, as we discuss in Chapter 2. Well known examples

include `p-norms (Tibshirani, 1996; Zou and Hastie, 2005) and mixed `p/q-norms (Yuan and

Lin, 2006; Fornasier and Rauhut, 2008; Teschke and Ramlau, 2007; Kowalski, 2009) for

sparse vector learning problems, as well as penalties for low rank matrix learning problems

such as the trace norm (Srebro et al., 2005; Abernethy et al., 2009; Jaggi and Sulovsky, 2010;

Mazumder et al., 2010). Other matrix penalties have been studied in multitask learning,

where related learning problems are solved by taking advantage of commonalities between

them (Evgeniou et al., 2005; Argyriou et al., 2007a, 2008; Jacob et al., 2009a).

Of particular relevance to this thesis are a range of norms that are defined using a

variational formulation. These include a series of norms that are defined by an optimization

over a set of atoms (Jacob et al., 2009b; Argyriou et al., 2012; Chandrasekaran et al., 2012b;

Bach, 2013) or over a parameterized set (Micchelli and Pontil, 2005; Bach et al., 2012;

Micchelli et al., 2013). While employing such penalties comes at a cost, such as intractability

of computing the norms, the additional complexity of these penalties allows greater flexibility

in encoding structural assumptions.

Following on from this line of research, in this thesis we study a number of norms that

are defined via an optimization problem. Continuing a line of research by Micchelli and

Pontil (2005); Bach et al. (2012), in Chapter 3 we first study a family of vector norms that

are defined as an infimum of quadratics, parameterized over a convex set. Specifically, letting

Θ⊂ Rd++ be a convex bounded subset of the positive orthant, we define the norm of w ∈ Rd

by

‖w‖Θ =
(

inf
θ∈Θ

d∑
i=1

w2
i

θi

) 1
2

.

In addition to the `p-norms, for p ∈ [1,∞], the Θ-norms capture the so-called Λ-norms for

structured sparsity of Micchelli et al. (2013). As we show, a particular norm that is included

in this family is the k-support norm of Argyriou et al. (2012). This was introduced as an



22 Chapter 1. Introduction

alternative to the `1-norm of the lasso method and it was shown to perform well in sparse

vector estimation problems. Similarly, the Moreau envelope of the k-support norm, which we

term the box-norm, can also be written as a Θ-norm. Using this framework, we provide an

efficient method to compute the proximity operator of the squared norm, which allows us to

employ efficient optimization methods to solve regularization problems using the norms.

Related to the problem of learning a sparse vector is the problem of learning a low rank

matrix, that is a matrix with a sparse spectrum. The trace norm, or nuclear norm, for matrices

has been studied in the context of learning low rank matrices (Srebro et al., 2005; Abernethy

et al., 2009; Jaggi and Sulovsky, 2010; Mazumder et al., 2010), and it is equivalent to

`1-norm regularization of the spectrum of the learned matrix. This relationship is generalized

by a classical theorem by von Neumann (Von Neumann, 1937), which provides that a vector

norm that is a symmetric gauge function induces an orthogonally invariant matrix norm when

applied to the spectrum of a matrix. It follows that under certain symmetry conditions on the

parameter set Θ, the Θ-norm induces an orthogonally invariant matrix norm. Consequently,

under appropriate conditions, a subset of the Θ-norms can be extended to matrices in this

manner, and in Chapter 4 we use this fact to introduce the spectral k-support norm for low

rank matrix learning. The norm generalizes in a natural manner the corresponding vector

norm. Specifically, the unit ball of the k-support norm is the convex hull of vectors with

cardinality k and unit `2-norm, and the unit ball of the spectral k-support norm is the convex

hull of matrices with of rank k and unit Frobenius norm. Similarly, we obtain the spectral

box-norm, and we show that the latter is closely related to the cluster norm of Jacob et al.

(2009a), which has been used in multitask learning.

The k-support norm can naturally be extended in a number of ways. By generalizing the

euclidean norm constraint in the unit ball definition to an `p-norm, for p ∈ [1,∞], in Chapter

5 we obtain the (k,p)-support norm, and the corresponding spectral (k,p)-support norm for

matrices. For low rank matrix learning, the additional hyperparameter allows us to tune the

decay of the spectrum of the underlying model, which can lead to better performance. We

provide a Frank-Wolfe optimization method to solve constrained optimization problems with

the norm when p is finite, and a method for the case p =∞ using the projection onto the

unit ball of the norm.

In recent years there has been increased interest in learning multilinear models. The

entries of a tensor of dimension p1× . . .×pm can be rearranged into m matrices, referred

to as the matricizations of the tensor. A standard approach to regularization methods for

tensors is to apply matrix regularizers to the matricizations of a tensor. In Chapter 6 we show

that the natural extension of the k-support norm to tensors is the norm whose unit ball is the

convex hull of the set of tensors whose matricizations have rank k and unit Frobenius norm.

We further describe an optimization method and present numerical experiments using the
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norm.

In addition to the Θ-norm formulation, the k-support norm can be formulated as an

infimal convolution (Rockafellar, 1970). In Chapter 7, we introduce a general optimal

interpolation problem that defines a norm, and which captures many penalties used in

machine learning, including the (k,p)-support norm. Specifically, for w ∈ Rd, the norm ||| · |||

is defined as

|||w|||= inf
v∈RN
Bv=w

‖F (v)‖, (1.1)

where ‖ · ‖ is a monotone norm, F a vector-valued mapping the components of which are

also norms, and B a d×N matrix. By choosing the constituent components appropriately we

show that a number of regularizers belong to this family. In particular, when the set Θ has

finite extreme points, the Θ-norm belongs to the class defined in (1.1). We then focus on the

case where ‖ · ‖ is the `1-norm and describe an optimization algorithm which can be used to

solve regularization problems involving the norms, and we present numerical experiments.

1.3 Contributions
In summary, the main contributions of this thesis are the following:

Θ-norms for sparse vector problems

In Chapter 3 we study the Θ-norms, which are defined as optimization problems over a

convex set Θ.

• We show that this framework captures a number of norms, such as existing norms for

structured sparsity, and the recently proposed k-support norm.

• We show that the vector k-support norm is a special case of the more general box-norm,

which in turn can be seen as a perturbation of the former.

• The box-norm can also be written as a Θ-norm, and this framework is instrumental

in deriving a fast algorithm to compute the norm and the proximity operator of the

squared norm, which allows us to use optimal first order optimization algorithms for

the box-norm.

Orthogonally invariant norms for low rank matrix problems

In Chapter 4 we discuss the application of Θ-norms to induce orthogonally invariant matrix

norms for low rank matrix problems.

• We extend the k-support and box-norms to orthogonally invariant matrix norms. We

note that the spectral box-norm is closely related to the cluster norm, which in turn can

be interpreted as a perturbation of the spectral k-support norm.
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• Our computation of the vector box-norm and its proximity operator extends naturally

to the matrix case, which allows us to use proximal gradient methods for the cluster

norm.

• We provide a method to apply the centered versions of the penalties, which are

important in applications.

• We present numerical experiments on both synthetic and real matrix learning datasets.

The (k,p)-support norm

In Chapter 5 we introduce the (k,p)-support norm.

• We propose the (k,p)-support norm as an extension of the k-support norm and we

characterize in particular the unit ball of the induced orthogonally invariant matrix

norm.

• We show that the norm can be computed efficiently and we discuss the role of the

parameter p.

• We outline a conditional gradient method to solve the associated regularization problem

for both vector and matrix problems.

• In the special case p =∞ we provide an O(d logd) computation of the projection

operator

• We present numerical experiments on matrix completion benchmarks that demonstrate

that the proposed norm offers significant improvement over previous methods.

The tensor k-support norm

In Chapter 6 we extend the k-support norm to tensors.

• We define the tensor k-support norm and show that it arises naturally by considering

the convex hull of the union of tensors whose matricizations are constrained in rank.

• We give a bound on the Rademacher average of the linear function class associated

with the norm.

• We provide an optimization algorithm to solve the corresponding regularization prob-

lems and we provide numerical experiments.

Minimum interpolation norms

In Chapter 7 we study a general framework for a wide range of norms.

• We introduce a class of convex regularizers that encompasses many norms used in

machine learning and statistics.
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• We provide basic properties and examples of this construction, including the latent

group lasso, the overlapping group lasso and the (k,p)-support norm.

• We present a general method to solve optimization problems involving regularizers

of this form which is based on a recent stochastic block-coordinate Douglas-Rachford

algorithm.

• We present numerical experiments using the latent group lasso and the non smooth

hinge loss and we investigate the trade off between the number of block updates and

total computation time.

1.4 List of Publications
The following publications were completed over the course of this thesis.

• Regularization with the Spectral k-Support Norm (with M. Pontil, D. Stamos, NIPS
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• Fitting Spectral Decay with the k-Support Norm (with M. Pontil, D. Stamos, AISTATS
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2016)

• Learning with optimal interpolation norms: properties and algorithms (with C. L.

Combettes, C. A. Micchelli, M. Pontil) arXiv:1603.09273, March 2016.

1.5 Outline
This thesis is organized as follows. In Chapter 2 we review literature related to structured

sparsity regularization. In Chapter 3 we review the Θ-norms and we discuss the k-support

norm. In Chapter 4 we discuss matrix regularizers and we introduce the spectral k-support

norm. In Chapter 5 we introduce the (k,p)-support norm. In Chapter 6 we extend the

k-support norm to tensors. In Chapter 7 we introduce the optimal interpolation norm

framework. Finally, in Chapter 8 we discuss further work based on the topics covered in this

thesis and we conclude. The appendices contain derivations of results that are not included

in the body of the thesis.





Chapter 2

Background

A standard approach in machine learning and statistics is to constrain the space in which

we seek the solution to an estimation problem in order to improve how well the model

generalizes to unseen data. By choosing the constraint to encode certain characteristics

that we assume to be present in the underlying model, the learned solution should more

accurately reflect reality. An approach that has proven very successful in the last two decades

consists of methods that promote sparsity. These assume that the data can be accurately

described by a model that is primarily determined by a small number of parameters (Bach

et al., 2012; Huang et al., 2011; Jenatton et al., 2011a; Maurer and Pontil, 2012; Hastie et al.,

2015). Incorporating the assumption into the optimization problem should subsequently lead

to solutions with the desired sparsity structure, providing improved predictive or descriptive

performance.

Within this field, a particular line of research involves the study of penalties that scale

with the complexity of the underlying object, that is, their value increases as sparsity of the

object decreases. By incorporating these penalties into the learning problem, either directly

via a constraint on the solution space, or indirectly via a trade off between model fit and

sparsity, the solution is encouraged to be sparse, see e.g. Bach et al. (2011, 2012); Micchelli

et al. (2013); Wainwright (2014). These methods have successfully been applied to a number

of applications including computer vision (Huang et al., 2011; Jenatton et al., 2010), sparse

coding (Jenatton et al., 2011b), collaborative filtering (Srebro et al., 2005; Abernethy et al.,

2009), multitask learning (Evgeniou et al., 2005; Argyriou et al., 2007a, 2008; Jacob et al.,

2009a; Obozinski et al., 2010), bioinformatics (Rapaport et al., 2008; Jacob et al., 2009b;

Gramfort and Kowalski, 2009; Kim and Xing, 2010) and others.

In this review chapter, we first describe our general framework for structured sparsity

problems. The learning task is framed as an optimization problem, and the concept of

convexity is central to guarantee existence and uniqueness of solutions, as well as allowing

access to the wealth of numerical methods to solve the corresponding optimization problem.
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We then review core concepts from convex analysis and optimization that we will use

throughout this thesis. Finally, we survey a number of structured sparsity penalties from the

literature, with a particular focus on sparse vector and low rank matrix learning problems.

2.1 Problem Setting

Given data {(xi,yi)ni=1} ⊂ X ×Y where X and Y are Euclidean spaces, we seek a model

f : X 7→ Y in a finite dimensional Hilbert space H such that the model fits that data and

generalizes well to unseen data. This is measured by L : H→ R. In structured learning

problems we introduce a functional Ω :H→ R+, such as a norm raised to some power, that

measures the complexity (e.g. sparsity) of a model.

The manner in which the choice of Ω influences the structure of the underlying model

depends on the specific framework that is chosen. For illustration we consider a simple

linear regression task and we briefly review three problem settings from the inverse problems

literature (Tikhonov and Arsenin, 1977). We are given data X ∈ X and observations y ∈ Y

for which it holds

y =Xw∗+ε,

where in this case X ∈Rn×d, Y = Rn, H= Rd, w∗ is the ground truth, and ε represents noise.

We seek w ∈H which minimizes L(w) = ‖Xw−y‖, where ‖·‖ is some norm, and we consider

three optimization settings. With Tikhonov regularization, we solve the unconstrained

problem

inf
w∈H

L(w) +λΩ(w), (2.1)

where λ > 0 is the regularization parameter and regulates the trade-off between fitting the

data and minimizing the complexity of the model. In contrast, Ivanov regularization involves

a constrained problem of the form

inf
w∈H
L(w) (2.2)

s.t. Ω(w)≤ α,

where α > 0 determines the space within which we seek the model w. This setting can be

interpreted as seeking the best fitting model with a given complexity defined by the level set{
w
∣∣ Ω(w)≤ α

}
. Finally, Morozov regularization also involves a constrained problem, taking
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the form

inf
w∈H

Ω(w) (2.3)

s.t. L(w)≤ β,

where β > 0 regulates the maximum error. This formulation can be interpreted as seeking

the model with the smallest complexity, subject to a worst case error, as defined by the set{
w
∣∣ L(w)≤ β

}
. The latter formulation in particular has been studied in the compressed

sensing literature, with recent research being motivated by fundamental results by Donoho

(2006); Candes et al. (2006) and others, see e.g. Qaisar et al. (2013); Hegde et al. (2014)

for a review.

In a supervised learning setting, for each of the problems, the optimal value of λ, α and

β can be selected by validation over the positive real numbers. In (2.1), the objective L+λΩ

is composite and the penalty Ω is also referred to as the regularizer; in (2.2) and (2.3) we

solve a constrained problem.

Under relatively weak assumptions, including convexity of L and Ω (see below), these

problems are equivalent in the sense that the regularization paths, that is, the sets of solutions

to each of (2.1), (2.2), and (2.3), are equivalent as we let λ, α and β vary over the positive

reals, see e.g. Bach et al. (2011, §1.2), or Borwein and Lewis (2000, §4.3) for a discussion on

the Tikhonov and Ivanov problems, or Vasin (1970) for the particular case of the Euclidean

loss for all three problems.

Moreover, for a given regularizer Ω, the problems involving the regularizer or a power

(greater than 1) are equivalent in the same sense. Specifically, for any p, p̃ > 1, the Tikhonov

problem with objective L+λΩp is equivalent to an Ivanov problem with constraint Ωp ≤ α, or

by positivity, with constraint Ωp̃ ≤ α̃, where α̃= αp̃/p. Finally this is equivalent to a Tikhonov

problem with objective L+ λ̃Ωp̃ (Bach et al., 2011, §1.2). A similar reasoning can be applied

to the Ivanov and Morozov problems. This allows us to choose the power of the penalties

according to the optimization problem that we are able to solve.

Much of the recent research in structured sparsity has involved studying penalty func-

tionals that are proposed as the penalty Ω in problems (2.1), (2.2), and (2.3), in particular

studying the structure of the sparsity pattern that they encourage, their relationship to other

penalties, analysing their statistical properties, and deriving numerical methods to solve the

corresponding optimization problems for one of the problem settings (Bach et al., 2012;

Huang et al., 2011; Wainwright, 2014). In this thesis we continue this line of research, and

we study a number of penalties for sparse learning problems, with a focus on the properties of

the penalties, and optimization methods for the regularization problems. For the remainder
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of this chapter, we review fundamental concepts, principally from convex analysis and convex

optimization, that we use throughout this thesis, and we review the literature for structured

sparsity penalties.

2.2 Fundamentals

In this section we review our notation, we recall basic concepts from convex analysis and

convex optimization, we discuss the existence of solutions to the optimization problems that

we study throughout this thesis, and finally we recall an optimization method that can be

used to solve a range of Tikhonov regularization problems.

2.2.1 Notation

We first outline common notation used throughout the thesis. Additional notation will be

introduced in the following chapters as needed. We use Nd for the set of integers from 1

up to and including d. We let Rd be the d dimensional real vector space, whose elements

are denoted by lower case letters. We let Rd+ and Rd++ be the subsets of vectors with

nonnegative and strictly positive components, respectively. On Rd, the canonical scalar

product is given by 〈w | u〉=
∑d
i=1wiui, for w,u ∈ Rd. For p ∈ [1,∞) the `p-norm of a vector

w ∈ Rd is defined as ‖w‖p = (
∑d
i=1 |wi|p)1/p and ‖w‖∞ = maxdi=1 |wi|. The corresponding

dual norm is ‖ · ‖p,∗ = ‖ · ‖q, where 1/p+ 1/q = 1. We denote by ∆d the unit simplex

in Rd+1, ∆d =
{
λ ∈ Rd+1

+
∣∣ ∑d+1

i=1 λi = 1
}

. For any vector w ∈ Rd, its support is defined

as supp(w) =
{
i
∣∣ wi 6= 0

}
⊂ Nd and its cardinality is defined as the size of its support,

card(w) =
∣∣{i ∣∣ wi 6= 0

}∣∣. We use 1 to denote either the scalar or a vector of all ones, whose

dimension is determined by its context. Given w ∈ Rd and a subset g of Nd, w|g ∈ Rd is the

vector whose components are identical to those of w on the support set defined by g, and zero

elsewhere. In particular, the d-dimensional vector 1g has ones on the support g, and zeros

elsewhere. We let Rd×m be the space of d×m real matrices and write W = [w1, . . . ,wm] to

denote the matrix whose columns are formed by the vectors w1, . . . ,wm ∈ Rd. For a vector

σ ∈ Rd, we denote by diag(σ) the d×d diagonal matrix having elements σi on the diagonal.

We say matrix W ∈ Rd×m is diagonal if Wij = 0 whenever i 6= j. We denote the trace of a

matrix W by tr(W ), its transpose by W>, and its rank by rank(W ). The canonical inner

product on Rd×m is 〈W | U〉= tr(WU>), for W,U ∈ Rd×m. We use Sd to denote the set of

real d×d symmetric matrices, and Sd+ to denote the subset of positive semidefinite matrices.

We use � to denote the positive semidefinite ordering on Sd. We use Od to denote the set

of real orthogonal d×d matrices. We let σ(W ) ∈ Rr+ be the vector formed by the singular

values of W , where r = min(d,m), and where we assume that the singular values are ordered

nonincreasing, i.e. σ1(W ) ≥ . . . ≥ σr(W ) ≥ 0. Similarly, for W ∈Od, we let λ(W ) be the

vector formed by the eigenvalues of W , counted by multiplicity, ordered nonincreasing. On
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Rd we denote by ‖ · ‖2 the Euclidean norm, and on Rd×m we denote by ‖ · ‖F the Frobenius

norm and by ‖ · ‖tr the trace norm, that is the sum of singular values, also known as the

nuclear norm. The convex hull of a subset S of a vector space is denoted conv(S). Given a

vector space X , a subset S ⊂X , and function f defined on X , a statement of the form "f(S)"

should be taken as shorthand for "f(s) for all s in S".

2.2.2 Basics

We now review some basic relevant definitions and results, see e.g. Bhatia (1997); Horn and

Johnson (2005); Marshall and Olkin (1979). Throughout, let X be a Euclidean space.

Definition 1 (Norm). A norm ‖ · ‖ on X is a function which is positive, homogeneous, non

degenerate and satisfies the triangle equality, that is

(i) ‖x‖ ≥ 0, for all x ∈ X ,

(ii) ‖αx‖= |α|‖x‖, for all α ∈ R,x ∈ X ,

(iii) ‖x‖= 0 if and only if x is the zero element in X ,

(iv) ‖x+y‖ ≤ ‖x‖+‖y‖, for all x,y ∈ X .

The corresponding dual norm is the function ‖ · ‖∗ defined for y ∈ X by

‖y‖∗ = sup
{
〈y | x〉

∣∣ ‖x‖ ≤ 1
}
,

where 〈· | ·〉 is the canonical scalar product on X .

Proposition 2 (Generalized Hölder inequality). Let ‖·‖ be a norm on X . Then, for all x,y ∈X

we have

〈x | y〉 ≤ ‖x‖‖y‖∗.

The inequality follows immediately from the definition of the dual norm. The case of

equality is of particular interest and we mention the following special cases.

Proposition 3 (Hölder Inequality). Let x,y ∈ Rd, and let p,q ∈ (1,∞) such that 1
p + 1

q = 1.

Then

〈x | y〉 ≤ ‖x‖p‖y‖q,

and equality holds when xi = αsign(yi)(|yi|)
q
p , for any α ∈ R+. Similarly

〈x | y〉 ≤ ‖x‖1‖y‖∞,
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and equality holds when

xi =

αsign(yi) if i ∈ I

0 if i /∈ I
,

where I =
{
i= 1 . . .n

∣∣ i= argmaxdi=1 |yi|
}

, for any α ∈ R+.

Proof. The proof follows by direct computation, see Appendix A.

The following notion is particularly useful in the context of regularizers for matrix

learning problems, see e.g. Mirsky (1960).

Definition 4 (Symmetric gauge function). A real-valued function g, defined on Rd, is called a

symmetric gauge function if it satisfies the following conditions.

(i) g(x)> 0(x 6= 0);

(ii) g(αx) = |α|g(x);

(iii) g(x+y)≤ g(x) +g(y);

(iv) g(Px) = g(x);

(v) g(Jx) = g(x),

where P is any permutation matrix, and J is any diagonal matrix with entries ±1.

The first three properties characterize a norm, hence it is clear that any norm on Rd

which is invariant under permutations and sign changes is a symmetric gauge function, and

vice versa. The following result is due to Von Neumann (1937), see also Lewis (1995).

Theorem 5 (OI norms and symmetric gauge functions). A matrix norm is orthogonally

invariant if and only if it is of the form ‖X‖= g(σ(X)), where σ(X) is the vector formed by the

singular values of X, and g is a symmetric gauge function.

The dual norm of an orthogonally invariant norm derives in the natural manner from

the dual of the inducing symmetric gauge function.

Proposition 6. Let ‖ · ‖ be an orthogonally invariant norm induced by the symmetric gauge

function g. Then, for Y ∈ Rd×m the dual norm is given by ‖Y ‖∗ = g∗(σ(Y )) where g∗ is the

dual of g.

Proof. See Appendix A.
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Theorem 7 (Von Neumann’s trace inequality). If X,Y ∈ Rd×m, then it holds

tr(XY >)≤ 〈σ(X) | σ(Y )〉

and equality holds if and only if X and Y admit a simultaneous singular value decomposition,

that is,X =Udiag(σ(X))V >, Y =Udiag(σ(Y ))V >, where U ∈Od and V ∈Om are orthogonal

matrices.

Von Neumann’s inequality provides an upper bound for the trace of AB. The following

inequality provides a lower bound, and is given in Marshall and Olkin (1979, Sec. 9 H.1.h).

Lemma 8. If A,B ∈ Sd+, then it holds

tr(AB) =
d∑
i=1

λi(AB)≥
d∑
i=1

λi(A)λd−i+1(B).

A related result to Theorem 7 involving the spectral decomposition is known as Fan’s

inequality (Borwein and Lewis, 2000, Thm. 1.2.1).

Theorem 9 (Fan’s inequality). If X,Y ∈ Sd, then it holds

tr(XY >)≤ 〈λ(X) | λ(Y )〉

and equality holds if and only if X and Y admit a simultaneous ordered spectral decomposition,

that is, X = Udiag(σ(X))U>, Y = Udiag(σ(Y ))U>, where U ∈Od is an orthogonal matrix.

Let x,y ∈ Rd, and let x↓ and y↓ denote the vectors with the same components permuted

into nonincreasing order, respectively. The following inequality is a direct consequence of

Theorem 9, see also Borwein and Lewis (2000, Prop. 1.2.4).

Theorem 10 (Hardy-Littewood-Polya). Any vectors x,y ∈ Rd satisfy the inequality

〈x | y〉 ≤
〈
x↓ | y↓

〉
. (2.4)

2.2.3 Convex analysis

Convexity is a crucial property in regularization penalties, as we discuss in this and the

following section. The literature is vast, with core references including Bauschke and

Combettes (2011); Bertsekas et al. (2003); Bertsekas (2015); Borwein and Lewis (2000);

Boyd and Vandenberghe (2004); Hiriart-Urruty and Lemaréchal (2001); Rockafellar (1970).

Throughout this section we consider learning problems in a real finite dimensional Hilbert
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space X . Recall that the general problem is Tikhonov regularization, that is

min
x∈X
L(x) +λΩ(x), (2.5)

where L is the loss function and Ω is a regularizer, typically a norm. Informally, convexity

ensures that local minima are global minima, and we can employ descent based numerical

methods to solve the learning problem. For the following fundamental definitions, we

generally follow Hiriart-Urruty and Lemaréchal (2001); Borwein and Lewis (2000); Bertsekas

(2009).

Definition 11. A set C is convex if, for all x, y in C, for all λ in [0,1], λx+ (1−λ)y ∈ C.

Geometrically, any two points x and y in C can be linked by a segment entirely contained

in C. In particular, note that Rd and Rd×m are convex sets, as is the unit d-simplex ∆d.

Definition 12. A set Λ ∈ X is a cone if it satisfies αΛ = Λ for all α > 0. If Λ is convex, we refer

to it as a convex cone.

Examples of convex cones include the set
{
x ∈ Rd

∣∣ 〈x | u〉 ≤ 0
}

, for a given u ∈ Rd and

the (strictly) positive orthant Rd++.

Definition 13. A convex combination of elements {x1, . . . ,xk} of X is an element
∑k
i=1αixi,

where αi ≥ 0 and
∑k
i=1αi = 1.

Definition 14. Let C be a non empty convex set. The set of extreme points ext(C) is the set of

points x ∈ C such that if x= λy+ (1−λ)z, for y,z ∈ X , and λ ∈ (0,1), then x= y = z.

Definition 15. The convex hull convC of a set C is equivalently defined as either of the

following

a) the smallest convex set containing C, or

b) the intersection of all convex sets containing C.

The second characterization holds as convexity is preserved by taking intersections.

Theorem 16 (Minkowski). Any compact convex set C ⊂ X is the convex hull of its extreme

points.

Note that when the set ext(C) has finitely many elements, C is a polyhedron. For the

following 3 definitions let C ⊂X be nonempty and convex.

Definition 17. Let x ∈ C. The normal cone to C at x is NC(x) =
{
u ∈ X

∣∣ 〈C−x | u〉 ≤ 0
}

.

Definition 18. The polar set of C is C	 =
{
u ∈ X

∣∣ 〈C | u〉 ≤ 1
}

.
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Definition 19. Let x ∈ C. The tangent cone to C at x is the polar of the normal cone,

TC(x) =
{
u ∈ X

∣∣ 〈NC(x) | u〉 ≤ 0
}

.

Having defined the geometric concept of convexity for sets, we can define the concept

for functions.

Definition 20. Let C be a convex set. A function f : C→ R is convex if for all x,y in C, and

for all λ in [0,1] we have f(λx+(1−λ)y)≤ λf(x)+(1−λ)f(y). If the inequality is strict, then

f is strictly convex.

Definition 21. A convex function f is proper if f(x)<∞ for at least one x, and f(x)>−∞

for all x.

Definition 22. The domain of f : X →]−∞,∞] is the set dom f =
{
x ∈ X

∣∣ f(x)<∞
}

.

Definition 23. The epigraph of a function f : X → [−∞,∞] is the subset

epif =
{

(x,ξ) ∈ X ×R
∣∣ f(x)≤ ξ

}
.

Definition 24. Let f : X → [−∞,∞] be convex. We say f is closed if its epigraph epif is closed.

Related to closedness is the concept of lower semicontinuity.

Definition 25. A function f : X → [−∞,∞] is lower semicontinuous at an element x ∈ X if

f(x)≤ lim
k→∞

inf f(xk)

for every sequence {xk} ⊂ X with xk→ x. We say that f is lower semicontinuous if it is lower

semicontinuous at each point x in its domain X .

Note that continuity implies lower semicontinuity. In the sequel, we let Γ0(X ) be the set

of proper lower semicontinuous convex functions from X to ]−∞,∞], and we use Γ0 when

there is no ambiguity about the domain. We have the following result (Bertsekas, 2009, Prop.

1.1.2).

Proposition 26. For a function f : X → [−∞,∞], the following are equivalent.

a) The level set Vγ =
{
x
∣∣ f(x)≤ γ

}
is closed for every scalar γ.

b) f is lower semicontinuous

c) epi(f) is closed.

Definition 27. A function f : X →]−∞,∞] is coercive if

lim
‖x‖→∞

f(x) =∞.
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The next concepts are fundamental auxiliary functions. Let C ⊂X .

Definition 28. The indicator function ιC of C is defined as

ιC(x) =

1, if x ∈ C

0, if x /∈ C.

Definition 29. Let C be convex. The characteristic function δC of C is defined as δC(x) =

− logIC(x), that is

δC(x) =

0, if x ∈ C

∞, if x /∈ C.

Definition 30. The support function σC of C is defined as

σC(x) = sup〈C | u〉.

Convexity is closely related to the triangle inequality for norms as the following two

results show. The proofs follow directly from the definition of convexity and the properties of

norms, see Appendix A.

Lemma 31. A norm is convex and proper.

We have the following converse.

Lemma 32. Let f : X → R be positive, homogeneous and convex. Then f satisfies the triangle

inequality. If f moreover is only 0 at the origin, then f is a norm.

Convexity of a function provides a method to construct convex sets.

Lemma 33. Let C be a convex set, and let f : C → R be convex. The level sets Cα ={
x ∈ X

∣∣ f(x)≤ α
}

are convex.

The result is a direct consequence of the convexity of f . In particular, given a norm ‖ · ‖,

for any α > 0 the level set Bα =
{
x ∈ X

∣∣ ‖x‖ ≤ α} corresponds to the unit ball of the norm

scaled by α, and is a convex set. This fact ensures that the constraint sets in the Ivanov and

Morozov problems are convex.

Convexity is trivially preserved through addition.

Lemma 34. Let f,g : X → R be convex. Then f +g is convex.

Proof. The proof follows directly from the definition of convexity, see Appendix A.
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If either of the functions f or g is strictly convex then (f +g) is strictly convex. Lemma

34 provides that when L and Ω are both convex, the objective in (2.5) is convex. Furthermore

if L is a strictly convex loss function, such as the square loss, then the objective is strictly

convex, which, under weak assumptions, guarantees uniqueness of solutions to (2.5). We

return to this in Section 2.2.3.

Lemmas 31, 33 and 34 suggest that norms may be suitable candidates for penalties and

we discuss this further in Section 2.3. In future chapters we shall make use of the following

fundamental relationship between convex sets and norms in order to define new penalties.

Definition 35. Let C ⊂ X be a closed convex set containing the origin. The Minkowski

functional (or gauge) µC of C is defined, for every x ∈ X , as

µC(x) = inf
{
λ
∣∣∣ λ > 0, 1

λ
x ∈ C

}
.

The following result allows us to characterize the unit ball of a norm, see e.g. Rudin

(1991, §1.35) for further details. Recall that a subset C of X is called balanced if αC ⊆ C

whenever |α| ≤ 1. Furthermore, C is called absorbing if for any x ∈ X , x ∈ λC for some λ > 0.

Lemma 36. Let C ⊂ X be a bounded, convex, balanced, and absorbing set. The Minkowski

functional µC of C is a norm on X .

Proof. We show that µC satisfies the properties of a norm, see Appendix A.

Note that for such set C, the unit ball of the induced norm µC is C. Furthermore, if ‖ · ‖

is a norm then its unit ball satisfies the hypotheses of Lemma 36.

The Fenchel conjugate is a fundamental transform in convex analysis and plays a role

similar to the gradient of a smooth function, see e.g. Hiriart-Urruty and Lemaréchal (2001,

§E) for a discussion.

Definition 37 (Fenchel conjugate). The conjugate (or Fenchel conjugate) of a function

f : X → [−∞,∞] is the function f∗ : X → [−∞,∞] defined by

f∗(u) = sup
x∈X
{〈u | x〉−f(x)}.

The function f∗ is convex, and we define the biconjugate f∗∗ as the conjugate of the

conjugate f∗.

Example 38. Examples of conjugates.

a) Let C ⊂X and let f = δC . Then f∗ = σC , that is, the conjugate is the support function.

b) Let f be a norm ‖ · ‖. Then f∗ = δB∗ , where B∗ =
{
u ∈ X

∣∣ ‖u‖∗ ≤ 1
}

, that is, the

conjugate is the characteristic function of the unit ball of the dual norm.
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c) Let f = 1
2‖ · ‖

2. Then f∗ = 1
2‖ · ‖

2
∗.

Proof. See Appendix A.

In general the penalty function Ω need not be smooth. Indeed, in general norms are not

differentiable at the origin, hence in both the Tikhonov and Morozov settings, we require a

more general concept than the gradient for smooth functions. The subgradient performs this

role, and it is used to qualify the optimality conditions in non smooth optimization.

Definition 39 (Subgradient). Let f :X →R be a convex function. We say u∈X is a subgradient

of f at a point x ∈ X if f(x) + 〈u | y−x〉 ≤ f(y), for all y ∈ X .

If f is differentiable at x, then u is unique. Informally, a subgradient at x is a hyperplane

which passes through x and which lower bounds f(x).

Definition 40 (Subdifferential). The set of all subgradients of a convex function f at x ∈ X is

called the subdifferential of f at x, and is denoted by ∂f(x), that is

∂f(x) =
{
u ∈ X

∣∣ f(x) + 〈u | y−x〉 ≤ f(y), for all y ∈ X
}
.

If f is differentiable at x, the subdifferential reduces to the singleton containing the

gradient of f at x, ∂f(x) = {∇f(x)}. We distinguish between strong subdifferential calculus

in optimization theory, where the set of all subgradients at a point is required, and weak

differential calculus in optimization applications, where identification of a single subgradient

at a point is required.

The following result (Hiriart-Urruty and Lemaréchal, 1993, Ch. VI., Th. 2.2.1) char-

acterizes the optimality conditions of a non smooth optimization problem in terms of the

subdifferential of the objective function.

Theorem 41 (Optimality conditions). For f ∈ Γ0, the following two properties are equivalent.

• f is minimized at x∗ over X , that is f(y)≥ f(x∗) for all y ∈ X ,

• 0 ∈ ∂f(x∗).

When the function f is smooth, Theorem 41 reduces to the standard condition that the

gradient vanishes, that is ∇f(x∗) = 0.

A special case that we encounter throughout this thesis relates to linear objectives

(Bertsekas, 2009, Prop. 2.4.2).

Proposition 42 (Supremum of linear functional over compact set). Let P be a polyhedral set

that has at least one extreme point. A linear function that is bounded below over P attains a

minimum at some extreme point of P .
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We now introduce the proximity operator proxf of a convex function, which plays a key

role in the optimization algorithms that we employ throughout this thesis (Moreau, 1965;

Combettes, 2004; Parikh and Boyd, 2013; Villa, 2014). Let ‖ · ‖ be the norm induced by the

standard inner product on X .

Definition 43. Let f ∈ Γ0. The proximity operator of f at x with parameter ρ is defined as

proxf (x) = arginf
u∈X

f(u) + 1
2ρ‖x−u‖

2. (2.6)

The objective in (2.6) is strictly convex, hence proxf (x) is uniquely defined for each

x ∈ X . Note that proxf (x) will only evaluate to x if it is an infimizer of f , otherwise

u = prox(x) will be a point which trades off minimizing f and the distance from x. A

necessary condition for u to be an infimizer of lower semicontinuous, proper, h is that

0 ∈ ∂h(x). We therefore obtain the following characterization of the proximity operator.

u= proxf (x)⇔ 0 ∈ ∂f(x) + (x−u)⇔ u−x ∈ ∂f(x)⇔ u= (I+∂f)−1(x). (2.7)

The Moreau envelope of f , which is given by the pointwise evaluation of the proximity

operator, is convex and smooth (Moreau, 1965; Bauschke and Combettes, 2011). It acts

as a parameterized smooth approximation to f from below, and it is an important tool in

variational analysis (Rockafellar and Wets, 2009, Ch. 1 §G).

Definition 44. Let f ∈ Γ0. The Moreau envelope of f with parameter ρ is defined as

eρf(x) = inf
u∈X

f(u) + 1
2ρ‖x−u‖

2. (2.8)

The following fundamental identity relates the proximity operator and Fenchel duality,

see e.g. Parikh and Boyd (2013).

Theorem 45 (Moreau decomposition). Let f ∈ Γ0. Then

x= proxf (x) + proxf∗(x).

A direct consequence is the duality relationship

u= proxf (x)⇔ x−u ∈ ∂f(u)⇔ u ∈ ∂f∗(x−u)⇔ x− (x−u) ∈ ∂f∗(x−u)⇔ x−u= proxf∗(x).

Theorem 45 allows us to compute the proximity operator of a function whenever the proximity

operator of its conjugate is known. Note that if f = δC , where C is a non empty closed set,
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then the proximity operator reduces to the Euclidean projection ΠC onto C, as

prox(x) = argmin
x∈X

δC(u) + 1
2‖u−x‖

2 = argmin
x∈C

‖u−x‖= ΠC(x). (2.9)

The case where f is a norm ‖ · ‖ is of particular interest. Recall first that the conjugate

f∗ is given by the characteristic function of the unit ball B∗ of the dual norm, that is

f∗(u) = δ{‖·‖∗≤1}(u). Moreau’s decomposition then provides that the proximity operator of

a norm can be computed via the projection on the unit dual norm ball, that is

prox(x) = x−ΠB∗(x).

2.2.4 Optimization

We can now characterize the existence of solutions to the optimization problems (2.1), (2.2),

and (2.3). Our treatment follows Bertsekas (2009, §3.1). Consider the general problem

inf
x∈X

f(x), (2.10)

where X ⊂ H. For Tikhonov regularization X corresponds to the entire space H, with

f = L+λΩ. The Ivanov and Morozov problems correspond to f = L with X = {Ω(x)≤ α},

respectively f = Ω with X = {L(x)≤ β}.

An element x∈X ∩dom(f) is a feasible solution of the problem (2.10), and the problem is

feasible if at least one feasible solution exists. Consequently we only consider x ∈X ∩dom(f)

as candidate solutions to (2.10). We note that with this restriction, the Tikhonov problem

for a general objective is implicitly constrained. However, for machine learning problems

that we consider in practice, for loss functions such as the square loss, and penalties defined

by norms, the domain in each case is the entire space, hence the Tikhonov problem is not

constrained.

The problem we seek to solve is to find x∗ ∈ X ∩dom(f) such that f(x∗) = infx∈X f(x),

and we call x∗ a (global) minimizer. Equivalently, we have x∗ ∈ argminx∈X f(x). When the

solution is unique, we may write x∗ = argminx∈X f(x) with a slight abuse of notation. If an

element x̃ satisfies f(x̃) = inf
{
f(x)

∣∣ x ∈ X ,‖x− x̃‖ ≤ ε}, for some ε > 0, then we say x̃ is a

local minimizer of (2.10). A fundamental consequence of convexity is that local minima are

global minima. We summarize this as follows (Bertsekas, 2009, Prop. 3.1.1).

Proposition 46. If X is a convex subset of H and f : X →]−∞,∞] is a convex function, then

a local minimum of f over X is also a global minimum. If in addition f is strictly convex, then

there exists at most one global minimum of f over X .

We can now state the following corollary of the classical Weierstrass theorem (Bertsekas,
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2009, Prop. A.2.7) which guarantees existence of optimal solutions (Bertsekas, 2009, Prop.

3.2.1).

Proposition 47 (Weierstrass). Consider a closed proper function f :X →]−∞,∞], and assume

that any one of the following three conditions holds:

a) dom(f) is bounded.

b) There exists a scalar γ such that the level set
{
x
∣∣ f(x)≤ γ

}
is nonempty and bounded.

c) f is coercive.

Then the set of minima of f over X is nonempty and compact.

For our purposes we obtain the following consequence of Proposition 47, which applies

to the regularization problems of the form discussion above.

Proposition 48. Let H be a finite dimensional Euclidean space, let L be convex, proper, and

coercive on H, and let Ω be a norm on H. Let λ,α,β ∈ R+. In each of the problems (2.1), (2.2),

and (2.3) the set of solutions is nonempty and compact.

Proof. The proof follows from Proposition 47, see Appendix A.

2.2.5 Proximal gradient descent

While Proposition 48 establishes existence of global optima for the type of learning problems

that we consider in this thesis, unfortunately in general computing the subdifferential of the

objective function is not straightforward, hence we resort to numerical methods rather than

applying Theorem 41 directly.

In this section we review a class of numerical algorithms which can be used to solve

a wide range of regularization problems in machine learning with fast convergence rates.

Specifically we consider problems of the form

min
x∈H

f(x) +λg(x), (2.11)

where f is smooth with Lipschitz continuous gradient, g is convex and λ> 0 is a regularization

parameter. As the form of (2.11) suggests, when f is a smooth loss function such as the square

loss, and g is some regularizer Ω, the algorithm conveniently captures Tikhonov regularization

problems in a natural manner. Moreover, choosing λ > 0 and letting g(x) = δ{Ω(·)≤α}(x),

for some norm Ω, and for α > 0, we note that (2.11) also captures constrained problems of

Ivanov type (2.2). A similar transformation is possible for problems of Morozov type (2.3).

The general algorithm requires, at each step, the computation of the gradient of the

smooth term, ∇f , and the computation of the proximity operator of the penalty term, proxg.
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We now outline the iterative shrinkage thresholding algorithm (ISTA), following e.g. Beck

and Teboulle (2009). For ease of notation we absorb the regularization parameter into the

penalty, and we consider the problem

min
x∈H

F (x), (2.12)

where F (x) = f(x)+g(x), andH is a Euclidean space with norm ‖·‖. We assume f is smooth,

convex, with Lipschitz continuous gradient L(f), so it holds

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x−y‖, for every x,y ∈H,

and we assume g is continuous and convex. We purposefully do not require smoothness

of g, which will allow the algorithm to be used with non smooth penalties as discussed in

the following section. Finally, we assume that a solution x∗ to (2.12) exists, and define

F ∗ = f(x∗). For any L > 0, in the first instance, we compute the quadratic approximation of

F (x) = f(x) +g(x) at point y:

QL(x,y) = f(y) + 〈x−y | ∇f(y)〉+ L

2 ‖x−y‖
2 +g(x).

This quantity admits a unique minimizer

pL(y) = argmin
x

QL(x,y)

= argmin
x

g(x) + 〈x | ∇f(y)〉+ L

2 ‖x−y‖
2

= argmin
x

g(x) + L

2 ‖x− (y− 1
L
∇f(y))‖2

= prox 1
Lg

(y− 1
L
∇f(y))

where we have dropped constant terms in y and completed the square. We obtain the iterative

scheme xt = proxαg(xt−1), where in this case α= 1
L . The method is outlined as the proximal

gradient descent algorithm in Algorithm 1, also known as the iterative shrinkage-thresholding

algorithm (ISTA). The term shrinkage derives from the fact that the prox is non expansive,

that is, for f ∈ Γ0, and x,y ∈H it holds

‖proxf (y)−proxf (x)‖ ≤ ‖y−x‖,

see e.g. Bauschke and Combettes (2011). The update involves computing the linear ap-

proximation to the smooth objective, and computing a regularization of this quantity via the

proximity operator. At each step it requires a gradient (forward) computation and a proximity
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Algorithm 1 ISTA.

Choose α > 0. Choose x0 ∈H.
for t= 0, . . . ,T do

Update xt := proxαg(∇f(x(t)))
end for

operator (backward) computation, and the algorithm is also referred to as forward backward

splitting by Combettes and Wajs (2005) or SpaRSA by Wright et al. (2009). The proximity

operator can be interpreted as a general projection operator (Parikh and Boyd, 2013), hence

the proximal gradient descent algorithms can be seen as a special case of projected gradient

methods, see e.g. Bertsekas (2015). If α≤ 1
L the objective in (2.12) decreases monotonically,

that is, the algorithm converges monotonically. Furthermore, it has convergence speed

O(1/t), that is, F (xt)−F (x∗) ≈ O(1/t), also known as sublinear convergence (Beck and

Teboulle, 2009). An accelerated version of the algorithm with convergence speed O(1/t2),

but without monotone convergence, known as FISTA, involves computing an intermediate

point yt, in which case the update equation evaluates xt+1 as a convex combination of yt

and the proximity point, see e.g. Beck and Teboulle (2009) for full details. Alternative

accelerated versions have also been proposed by Bioucas-Dias and Figueiredo (2007) and

Nesterov (2007). Note that the proximal gradient descent algorithm reduces to a gradient

descent method when g = 0 since the proximity operator of the zero operator is simply the

identity operator.

In the general case, the proximal gradient algorithm requires the computation of the

gradient of f and the proximity operator of g at each iteration, however the latter is itself

an optimization problem. It follows that the algorithms are useful in those cases where

the proximity operator is easy to compute, such as when it has a closed form expression,

or there exists a computationally efficient procedure to compute the proximity operator.

This is the case for a number of well known regularizers that we review in the following

section, in particular the `1-norm of the Lasso method. In this thesis we make use of two

further algorithmic frameworks, and we defer the discussion to later chapters. In particular, in

Chapter 5 we discuss a conditional gradient method, which we apply to a constrained (Ivanov)

regularization problem. Moreover, for Tikhonov regularization problems where neither the

loss nor the penalty is smooth, we require a different approach to solving the problems, and

in Chapter 7 we introduce a random sweeping splitting algorithm that addresses this case.

2.3 Norms as Penalties

In Section 2.2.3 we established that a suitable candidate for Ω should be continuous, convex

and coercive. It follows that norms are natural candidates for penalties, and indeed much of

the literature, and the entirety of this thesis, focuses penalties of this type.
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Given a positive, convex penalty Ω, the level sets
{
w
∣∣ Ω(w)≤ α

}
, for α > 0, can provide

insight into structural or statistical properties that Ω promotes. Specifically, in the case of

a norm, the level sets correspond to the unit ball of the norm, scaled by α, which suggests

a link between the geometry of the norm and the properties of the solution to a learning

problem.

Geometric approaches to machine learning problems form an entire research area in

itself, and a review of the literature is outside of the scope of this thesis, however we briefly

mention a few results notions which are relevant to structured sparsity, in particular relating

to aspects of optimization and statistical recovery properties.

In the constrained problem (2.2) in Rd, let B be the ball of a norm penalty of radius α.

At optimality the gradient of L evaluated at a solution x̂ is contained within the normal cone

of the ball of radius α at x̂, that is the set
{
z ∈ Rd

∣∣ 〈x | z〉 ≤ 0
}

, see e.g. Bach et al. (2012,

§1.3) and Borwein and Lewis (2000, §3.2). It follows that when α is small enough that the

constraint is active, the level set of L for the value L(x̂) is tangent to the unit ball. If we

inspect the `2-norm and `1-norm balls (see e.g. Figure 2.1 below, or 3.2 in Chapter 3), it is

clear that the tangent sets at points located on their respective surfaces behave differently.

More precisely, the smooth isotropic `2-norm unit ball treats all directions equally, whereas

the anisotropic `1-norm ball has singularities located on the axes, which are specifically those

points which have some zero coordinates, that is they correspond to sparse vectors.

Drusvyatskiy et al. (2015) consider the extreme points of the level set of a composite

regularizer, that is the unit ball of a penalty which is defined as the sum of two distinct

norms, for matrix learning. Penalties of this type have been studied in the literature in

order to encode more than one constraint, such as matrices which are both sparse and low

rank (Candes et al., 2011; Chandrasekaran et al., 2012a; Oymak et al., 2015). Drusvyatskiy

et al. (2015) provide an algebra relating the respective unit balls, and use this to tune the

constituent penalties.

In a related line of work, Amelunxen et al. (2014) link the geometry of a penalty Ω to the

statistical recovery properties in sparse estimation problems in the Morozov regularization

setting, extending work by Chandrasekaran et al. (2012b). The authors define the notional

of statistical dimension of a convex cone, which, in a certain sense, measures its width. Using

this quantity they relate the statistical recovery properties of a penalty Ω for a sparse convex

problem to the shape of the descent cone of Ω at the optimal solution. As in the previous

analysis, the sharp extreme points of the `1-norm ball contrast with the uniformly smooth

surface of the `2-norm, and Amelunxen et al. (2014) show that this leads to better statistical

recovery guarantees for the former.

In the following sections we survey a number of regularizers that have been proposed in

the literature for structured sparsity. For a review of this material, see Huang et al. (2011);
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Bach et al. (2012); Jenatton et al. (2011a); Hastie et al. (2015).

2.4 Vector Penalties

In the context of vector estimation, sparsity refers to the presence of zero components. The

typical problem setting is linear regression with the square loss, however other settings have

been explored, such as classification with the hinge loss, see e.g. Hastie et al. (2011), or

`1-regularized logistic regression, see e.g. Krishnapuram et al. (2005). Sparse vectors are

particularly useful in feature selection, as the features that have the most predictive power

should correspond to non zero components of the regression vector, that is, the components

in the support set of the vector.

In the ordinary least squares problem we have a sample of n points {(xi,yi)}ni=1, where

(xi,yi) ∈ Rd−1×R, and we solve

min
w∈Rd−1,b∈R

‖Xw+ b1−y‖22 = min
w∈Rd−1,b∈R

n∑
i=1

(x>i w+ b−yi)2. (2.13)

If the data are not assumed to be centered, we can apply a standard technique to implicitly

include the bias term in the data. Specifically, letting the data x>i form the rows of X̃ ∈

Rn×(d−1), suppose (w̃, b̃) ∈ Rd−1×R solve (2.13). Then letting X = [X̃,1] ∈ Rn×d, the

solution to the problem

min
w∈Rd

‖Xw−y‖22 = min
w∈Rd

n∑
i=1

(x>i w−yi)2, (2.14)

will be of the form w> = [w̃, b̃], that is, we recover the regression vector and bias for problem

(2.13). Unless otherwise stated, we will use the form of (2.14) going forward.

A number of norms have been proposed as regularizers to encourage structure in the

regression vector. The standard ridge regression method uses the squared `2-norm, that is

min
w∈Rd

‖Xw−y‖22 +λ‖w‖22. (2.15)

This method, introduced by Hoerl and Kennard (1970), guarantees that the problem admits

a unique solution for a fixed λ, which is obtained by solving a linear system of equations. The

effect of the `2-norm is to moderate fluctuations around the mean components of w, however

these do not produce zero entries in general, so the resulting model is not sparse.
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Figure 2.1: Geometry of lasso (left) and ridge regression (right) (Tibshirani, 1996).

2.4.1 Lasso

In order to explicitly control for the number of zeros in the regression vector and obtain

sparse solutions, the problem we would like to solve is

min
w∈Rd

‖Xw−y‖22 +λcard(w), (2.16)

where the cardinality operator card counts the number of non zero components of a vector.

Unfortunately card is not convex since, for example, card(1
2 (0 +ei))> 1

2 card(0)+ 1
2 card(ei),

for any standard basis vector ei. Moreover, the regularization problem with the square loss

and the card operator is NP-hard, see e.g. Natarajan (1995). Consequently, in order to

employ tools from convex analysis, a standard approach is to use convex surrogates, the

principal of which is the `1-norm, and various norms which are derived from it, as we now

discuss.

With the square loss, regularization with the `1-norm is known as the lasso, for least

absolute shrinkage and selection operator

min
w∈Rd

‖Xw−y‖22 +λ‖w‖1. (2.17)

Tibshirani (1996) proposed using the `1-norm in the Ivanov setting, and provided the

lasso name. Previously, Breiman (1995) had proposed a nonnegative garotte, involving a

constrained `1-norm with a nonnegativity constraint on the regression vector components and

Frank and Friedman (1993) suggested bounding the `p-norm, for p > 0. In Tikhonov form

the method can efficiently be solved using proximal gradient methods, which we outlined in

Section 2.2.5. The effect of the `1-norm is to produce a regression vector w whose sparsity is

determined by the magnitude of the regularization parameter.

Some intuition for using the `1-norm is given by the geometry of the unit ball of the norm.
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Framing each of the ridge regression and lasso methods in their constrained formulation,

the problem involves finding a solution at the intersection of an ellipsoid (the square loss)

and the respective scaled unit balls of the norm. In contrast to the isotropic shape of the

Euclidean norm ball, the sharper corners of the `1-norm ball encourage the intersection to

occur at a point along the axes, that is, at a point where one or more coordinates are zero,

especially in higher dimensions. Figure 2.1, taken from Tibshirani (1996), depicts this.

A more principled justification for the `1-norm comes from the fact that it is the tightest

convex approximation to the card operator on the `∞-norm unit ball, that is, also known

as the convex envelope, see e.g. Boyd and Vandenberghe (2004); Fazel (2002); Jojic et al.

(2011). Figure 2.2 illustrates this relationship.

Following the success of the lasso method, a number of extensions have been proposed

which build upon the `1-norm, and most of the penalties that we review in the following

sections derive from it in a natural manner.

2.4.2 Elastic net

A common theme in regularizers for structured sparsity is combining simple penalties to

achieve a combination of their effects, for example, controlling for sparsity and extreme

values when combining the `1 and `2-norms. A natural extension to the lasso which takes

this approach is the elastic net (Zou and Hastie, 2005). The model is

min
w∈Rd

‖Xw−y‖22 +λ1‖w‖1 +λ2‖w‖22, (2.18)

where λ1 and λ2 are regularization parameters. This results in sparse regression vectors,

whose non zero components are of similar size, that is it promotes a grouping effect where

highly correlated features tend to be selected or excluded as a group. In particular in the

high dimensional case where d� n, Zou and Hastie (2005) showed that the elastic net may

outperform the lasso. While intuitively, a composite penalty imposes a combination of the

effects of the component regularizers, each additional regularizer introduces an additional

parameter, which increases the computational load of validation exponentially. Solving the

optimization problem involving a composite regularizer is also typically less straightforward,

for example when using methods involving the proximity operator, which we reviewed in

Section 2.2.3. For the elastic net specifically, Zou and Hastie (2005) show that the elastic

net problem can be expressed as a lasso problem on an augmented dataset, hence the same

numerical methods can be applied, however in general this is not the case for other composite

regularizers.
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Figure 2.2: Geometric interpretation of `1-norm as convex envelope of card on `∞-norm unit ball.
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2.4.3 Group lasso

The effect of the `1-norm penalty in the lasso is to select a subset of the support supp(w)⊂Nd
of the regression vector to be activated, that is the non zero coordinates. While the support

of the regression vector found via the lasso tends to be sparse, the location of the non zero

components is not known in advance. The group lasso is a method that was introduced to

incorporate a priori assumptions on the relationship between the features in the data, or

equivalently between the components of the regression vector (Yuan and Lin, 2006). Let

G = {g1, . . . ,gn} be a subset of the power set of Nd, such that the groups form a partition

of Nd, that is, let the groups be disjoint and let their union be Nd. The group lasso norm is

defined, for w ∈ Rd, as

‖w‖GL =
n∑
i=1

√
pi‖wgi‖2, (2.19)

where pi is a strictly positive weight, e.g. the size of gi. The penalty aggregates the `2-norms

of the vectors formed by the vector w restricted to each of the support sets gi. The effect of

the group lasso is to activate all of the components of the regression vector in each group

as a whole, or not at all. Similar to the elastic net, within each group, extreme values, that

is, values with large deviation from the group mean, are discouraged as the `2-norm acts

separately on each subset wgi . The constrained method with a general loss function was

introduced as blockwise sparse regression by Kim et al. (2006).

2.4.4 Sparse group lasso

The `2-norm applied to each group in (2.19) encourages the components of wgi to be of

similar orders of magnitude. The sparse group lasso combines the group lasso with an

additional `1-norm penalty in order to promote sparsity within the groups as well as with
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respect to the groups (Simon et al., 2013). The penalty is given, for w ∈ Rd, by

‖w‖SGL = λ1

n∑
i=1

√
pi‖wgi‖2 +λ2‖w‖1, (2.20)

where λ1,λ2 are regularization parameters which regulate the relative importance of group-

wide and within-group sparsity respectively.

2.4.5 Fused lasso

A modification of the lasso was proposed by Tibshirani and Saunders (2005). The method

was motivated in particular by problems where the number of features is significantly greater

than the number of data points. The fused lasso involves an `1-norm constraint, as well as

a constraint on the difference in absolute value of successive components of the regression

vector.

min
w∈Rd

‖Xw−y‖22, (2.21)

s.t. ‖w‖1 ≤ α1,
d∑
i=2
|wi−wi−1| ≤ α2,

where α1 and α2 are positive parameters.

2.4.6 Composite absolute penalty

The group lasso penalty can be considered an `1/`2-norm, as it computes the sum of `2-norms.

More generally it is an example of a mixed `p/`p′ -norm, where p,p′ ∈ [1,∞]. The CAP penalty

is an extension of the group lasso penalty which uses mixed norms (Zhao et al., 2009).

Specifically, for G= {g1, . . . ,gn}, p0, . . . ,pn ∈ [1,∞], the penalty is given, for w ∈ Rd by

‖w‖CAP = ‖(‖wg1‖p1 , . . . ,‖wgn‖pn)‖p0
p0 . (2.22)

In the case where p1 = . . . = pn, the penalty computes the p0-norm, raised to the power

p0, of the p1-norms of the group components. When the groups form a partition, this is a

straightforward variation of the group lasso, where the hyperparameters p0, . . . ,pn can be

tuned to the data.

A key use of the penalty is hierarchical selection when the underlying structure can be

captured by a directed acyclic graph (DAG). In this setting, whenever a node corresponding

to a non zero coordinate in the regression vector is activated, all predecessors of the node

should also be activated. This behaviour can be encoded using the CAP penalty as whenever

a subset of the groups have a nested structure, indicating a series of parent-child relationships

in the graph, sparsity in the parents cascades down to the children. By way of example, the

relationship w1(parent)→w2(child) could be encoded using groups g1 = {1,2} and g2 = {2}.
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Letting p1 = p2 = p > 1 for simplicity, the corresponding components of the CAP penalty

become

‖(w1,w2)‖p0
p +‖(w2)‖p0

p .

The authors show that when the value of w2 is non zero, the value of w1 tends also to be non

zero, as there is no additional penalty for this, that is whenever the child is activated, the

parent is also activated.

2.4.7 Hierarchical models

A related approach to the CAP penalty for hierachical penalization was introduced by Yuan

et al. (2009). Following on from the nonnegative garrote of Breiman (1995), who consid-

ered the square loss with constrained `1-norm, subject to nonnegative regression vector

components, Yuan et al. (2009) add the constraint that for G= {g1, . . . ,gn}, for each gi, the

corresponding vector components wgi are nonnegative and nonincreasing. A similar method

was proposed by Szafranski et al. (2007), where again an a priori set of groups determine

a hierarchical structure. These methods do not explicitly define norms in the general case

where p0 6= 1, and we do not elaborate on them further.

2.4.8 Overlapping group lasso

With the standard group lasso, the groups form a partition of Nd. With the overlapping group

lasso, this assumption is no longer enforced, allowing overlap between the groups, provided

that their union G = {g1, . . . ,gn} spans Nd (Jenatton et al., 2011b). The expression of the

penalty is the same as (2.19). The latent group lasso can also be seen as a special case of the

CAP in (2.22), whereby the principle norm is the `1-norm, that is p0 = 1, and all others are

set to the `2-norm (Zhao et al., 2009).

2.4.9 Ordered weighted `1-norm

The lasso has a single regularization parameter that regulates the threshhold below which

components of the regression vector are set to zero, and this impacts all coordinates equally.

The ordered weighted `1-norm was proposed to allow additional flexibility with respect to

the individual components. Specifically, given λ1 ≥ . . .≥ λd ≥ 0, the penalty is defined as

‖w‖OWL =
d∑
i=1

λi|w|↓i ,

where |w|↓i denotes the ith largest component of the vector in absolute value (Bogdan et al.,

2013; Zeng and Figueiredo, 2014; Figueiredo and Nowak, 2016). While this requires d

parameters, Bogdan et al. (2013) show that these can be chosen based on quantiles of a

normal distribution in a manner which gives good statistical performance.
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The penalties discussed so far have had explicit closed form definitions. A number of

general mathematical frameworks have been proposed to generate families of norms, and

we mention a few of these in the following sections. In particular, we highlight a number of

norms which are defined using a variational formulation, that is, in order to compute the

norm, it is necessary to solve an optimization problem, and this will be a common theme

throughout later chapters of this thesis. In general, this approach leads to penalties capable

of expressing more complex relationships between the variables. As we see in the following

examples, a common approach in frameworks aimed at promoting sparse vectors involves

constraining their support, or the support of component parts which decompose a vector.

2.4.10 Group lasso with overlap

The group lasso with overlap is a generalization of the group lasso. Given groups G =

{g1, . . . ,gn}, whose union is Nd and which may overlap, the penalty is defined, for w ∈Rd, as

‖w‖GLO = inf
{

m∑
j=1
‖zj‖p

∣∣∣ zj ∈ Rd,supp(zj)⊂ gj ,
m∑
j=1

zj = w

}
, (2.23)

where p ∈ [1,∞] (Jacob et al., 2009b; Bach et al., 2012). As the groups may overlap, for a

given vector w, the set of groups whose union includes supp(w) may not be unique, hence

the definition involves a variational formulation which implicitly selects the most efficient

subset of groups as measured by the sum of p-norms of the associated vectors. When the

groups form a partition, the infimum is vacuous, and the penalty reduces to the standard

group lasso. As with the CAP, this penalty can be motivated by a graph structure, whereby

the nodes correspond to features, and the groups are determined by the connectivity of the

graph, for instance corresponding to edges or cliques. In this case Jacob et al. (2009b) refer

to the penalty as the graph lasso.

Note that the support recovery properties of the two group lasso approaches are com-

plementary. With the standard group lasso, the complement of the support corresponding

to components which are zero is always equal to the union of some subset of the groups.

It follows that the group lasso of Yuan and Lin (2006) will never estimate a model whose

support is a union of groups, whereas the group lasso with overlap does precisely this (Jacob

et al., 2009b; Wainwright, 2014), and this was one of the motivating factors behind the

introduction of the norm.

2.4.11 The k-support norm

The k-support norm was introduced by Argyriou et al. (2012) as an alternative regularizer to

the `1-norm for sparse vector estimation problems. As outlined above, one motivation for the

`1-norm stems from the fact that it is the convex relaxation of the card operator on the unit

`∞-ball. Notwithstanding this fact, Argyriou et al. (2012) consider the convex hull of the set
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of k-sparse vectors with unit Euclidean norm and show that the k-support norm is a strictly

tighter relaxation compared to the `1-norm. Its unit ball is the set Ck defined by

conv
{
w ∈ Rd

∣∣ card(w)≤ k,‖w‖2 ≤ 1
}
,

where k ∈Nd. From the definition of the unit ball, for k = 1 we recover the `1-norm, whereas

for k = d we recover the `2-norm. Used as a regularizer, for values of k in between these

extremes, the norm has an intermediate effect, promoting sparsity in general, but less so

than the `1-norm. The norm is a particular example of the group lasso with overlap (2.23),

where the set of groups G is chosen to contain all groups with cardinality no greater than k.

The k-support norm plays a central role throughout this thesis, and we will study it in further

detail in the subsequent chapters.

2.4.12 Atomic norms

The group lasso with overlap, with the k-support as a particular example, can be expressed

as an infimal convolution (see Rockafellar, 1970, p. 34). A general family of norms of this

construction was studied by Chandrasekaran et al. (2012b), who consider norms of the type

‖w‖A = inf
{∑
a∈A

ca

∣∣∣ w =
∑
a∈A

caa,ca ≥ 0
}
,

where A corresponds to the unit ball of the corresponding norm and is composed of elements

which define the convex hull of A. The formulation encompasses several families including

the group lasso with overlap. The authors investigate the statistical recovery properties of the

norms and describe how these depend on the geometry of the atomic set, as we highlighted

in Section 2.3, see also Amelunxen et al. (2014) for a generalization of this idea. We also

mention a related approach by Negrinho and Martins (2014), who apply group operators to

a parameter vector to define the unit ball of a penalty as the convex hull of the images of

the parameter. For appropriate settings this captures several of the norms reviewed in this

chapter, and the authors provide optimization methods to address regularization problems

with the penalties.

2.4.13 Submodular functions and polyhedral norms

As outlined above, one motivation for the use of sparsity inducing penalties deriving from

the `1-norm stems from the fact that the convex relaxation of the card operator on the unit

`∞-norm ball is the `1-norm. An alternate approach is taken by Bach (2010, 2013), who

start from a submodular set-function w 7→ F (supp(w)) and derive a norm via its convex

envelope on the unit `∞-norm ball. Each such norm is polyhedral, that is, its unit ball has

finite extreme points and is defined by the intersection of half spaces.
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A real valued function F defined on the power set V of Nd is nondecreasing submodular

if for all A,B ⊂ V , we have

F (A) +F (B)≥ F (A∪B) +F (A∩B), and

A⊂B⇒ F (A)≤ F (B),

and we assume F (∅) = 0. For each such function F , its Lovasz extension f is a convex

function which extends the former from the discrete domain V to the continuous domain Rd.

Specifically, this is computed at a vector w ∈ Rd+ by ordering the components in decreasing

order wj1 ≥ . . .≥ wjd ≥ 0, and by defining

f(w) =
d∑
k=1

wjk [F ({j1, . . . , jk})−F ({j1, . . . , jk−1})].

The extension property of function f uses the fact that for δ ∈ {0,1}d, f(δ) = F (supp(δ)),

where we can consider δ an indicator vector. Finally, if the function F is strictly positive for all

singletons, then Ω : w 7→ f(|w|) defines a norm, whose unit ball is polyhedral. The procedure

encompasses various existing norms. For example, choosing f to be the cardinality function

induces the `1-norm. Similarly, if G = {g1, . . . ,gn} is a partition of Nd, the set function

A 7→ F (A), which is equal to the number of groups Bg1 , . . . ,Bgn with non empty intersection

with A, induces the CAP penalty (Zhao et al., 2009).

2.4.14 Structured sparsity Λ-norms

We now discuss the class of norms introduced by Micchelli et al. (2010). The class is defined

by a prescribed conic subset Λ of the positive orthant, and we refer to them as Λ-norms

throughout this thesis. Specifically, for the cone Λ⊂ Rd++, the norm is defined, for w ∈ Rd by

‖w‖Λ = inf
λ∈Λ

{
1
2

d∑
i=1

(
w2
i

λi
+λi

)}
. (2.24)

The authors show that this is a norm, and for fixed λ ∈ Rd++ the objective in (2.24) provides

a smooth approximation to ‖w‖1 from above, which is exact at w =±λ. Furthermore, the

corresponding dual norm is given, for u ∈ Rd, by

‖u‖Λ,∗ = sup
λ∈Λ


√√√√∑d

i=1λiu
2
i∑d

i=1λi

 . (2.25)

The construction of the norm and its dual via the parameter set Λ allows for different models

of sparsity patterns to be encoded, including more complex relationships than the group lasso

with overlap discussed earlier. One example is the so-called wedge penalty (Micchelli et al.,
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2010). We define the wedge parameter set as the positive monotone cone

ΛW =
{
λ ∈ Rd++

∣∣ λ1 ≥ . . .≥ λd
}
, (2.26)

that is the subset of the positive orthant which corresponds to vectors with nonincreasing

components. The Λ-norm induced by the set ΛW , when used as a regularizer for regression

with the square loss, promotes solutions whose components are ordered in the same fashion.

In Chapter 3 we will introduce and discuss in detail a closely related family of norms which

subsumes these.

2.4.15 Convex relaxation of set functions

A recent work by Obozinski and Bach (2016) follows on from Bach (2010), and considers

norms which are defined as the convex envelope of a set-valued function F of the support

of a vector, plus an `p-norm, raised to a power. Specifically they consider the penalty

µF (supp(w)) + ν‖w‖pp, for µ,ν > 0, where F is defined on the power set V of {1, . . . ,d}

such that F (∅) = 0, and F (A) ≤ F (V ) for any A ⊂ V . They define the penalty h(w) =

F (supp(w))
1
q ‖w‖p, where q satisfies 1

p + 1
q = 1. They show that the convex envelope of h is

a multiple of a norm Ωp, whose dual norm is defined by Ω∗p(w) = maxA⊂V,A 6=∅
‖wA‖q

F (A)
1
q

. For

appropriate choices of F and p, Ωp captures several norms discussed above, in particular

subsuming the `p-norms, the k-support norm, the ordered weighted `1-norm and the wedge

penalty of Micchelli et al. (2010). Furthermore, the norm Ωp can be written as a variational

expression involving the Lovasz extension, see Obozinski and Bach (2016) for details.

2.5 Matrix Penalties

In this section we discuss regularizers which have been proposed for matrices with sparse

structure. Due to the additional structure in the space of matrices, there are different types

of sparsity in the context of matrix learning problems. The first is sparsity in the elements.

The zeros can be distributed throughout the matrix entries, or the matrix can have one or

several zero rows or columns.

2.5.1 Sparsity in elements

Note that the matrix `1-norm, defined by ‖X‖1 =
∑
i,j |Xij |, is equivalent to the vector

`1-norm of the vectorized matrix vec(X). Consequently the norm can be used to encourage

matrices with zero elements. Furthermore, for the Frobenius norm we have ‖X‖fro =√∑
i,jX

2
ij = ‖vec(X)‖2, hence the norm acts to minimize outlier values, as with ridge

regression in the vector case. In order to promote zero columns, the `1,2 norm has been

studied, see e.g. Yuan and Lin (2006). Similar to the case of the group lasso for vectors, the

sum of `2 norms of columns promotes columns with zero Euclidean norm, which by positivity
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implies that the entire column vector is zero. For rows, the same method can be applied to

the transpose of the matrix.

2.5.2 Common support sets

Norms which address the columns of a matrix have been used in the setting of multiple

regression learning and multitask learning, which we expand on below. In particular, the

`1,∞-norm is a special case of the CAP, (2.22), where the norms ‖ · ‖p1 , . . . ,‖ · ‖pn are all set

to the `∞-norm, and this has been studied in the case where the regression vectors share a

common support set by Negahban and Wainwright (2011); Turlach et al. (2005); Tropp et al.

(2006).

2.5.3 Sparsity in structure

In contrast to the vector case, sparsity in the elements does not necessarily prevent a matrix

from being complex in some sense. Comparing a sparse, full rank, diagonal matrix to the

dense, rank one, matrix whose entries are all identical, it is clear that presence or lack of zeros

does not completely define the complexity of a matrix. With this in mind, the second type of

sparsity for matrices relates to the inherent structure of the matrix. A large body of research

has developed around factorization models to determine the characteristics of a matrix (Bach

et al., 2008). With this approach, a matrix W ∈ Rd×m is assumed to have factorization

W = UV >, with U ∈ Rd×k, V ∈ Rm×k. This model captures a number of problem instances

including clustering, dictionary learning, and non negative matrix factorization (Bach et al.,

2008). In this thesis we focus on two matrix learning frameworks, low rank matrix learning

and multitask learning. We also mention that dual approaches which promote element

sparsity and low rankedness exist, see e.g. Savalle (2014).

2.5.3.1 Low rank matrix learning

In recent years there has been a great deal of interest in the problem of learning a low rank

matrix from a set of linear measurements. A widely studied and successful instance of this

problem arises in the context of matrix completion or collaborative filtering, in which we

want to recover a low rank (or approximately low rank) matrix from a small sample of its

entries, see e.g. Srebro et al. (2005); Abernethy et al. (2009) and references therein. In the

factorization framework, this corresponds to taking k�min(d,m). One prominent method

of solving this problem is trace norm regularization: we look for a matrix which closely fits

the observed entries and has a small trace norm (sum of singular values) (Jaggi and Sulovsky,

2010; Toh and Yun, 2011; Mazumder et al., 2010).

2.5.3.2 Multitask learning

Multitask learning is framework for solving multiple related regression or classification

problems simultaneously. Each problem, or task, is represented by a single weight vector,
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and these are stacked as the columns of a matrix W which is to be learned. The goal behind

the method is to make use of commonalities between the tasks in order to improve learning

relative to solving the tasks independently (Evgeniou et al., 2005; Argyriou et al., 2007a,

2008; Jacob et al., 2009a; Cavallanti et al., 2010). In particular, in instances where available

training data for each task are limited, aggregating the data and solving the tasks together

has been shown to improve learning (Maurer and Pontil, 2012). A general approach to

multitask learning is using spectral regularizers to encourage low rank solutions (Evgeniou

et al., 2005; Argyriou et al., 2008; Jacob et al., 2009a). When the tasks are clustered in

several groups we refer to the problem as clustered multitask learning, which we discuss in

Chapter 4.

2.5.4 Spectral regularizers

As mentioned above, the vector of singular values of a low rank matrix is sparse. One popular

class of regularizers is given by spectral regularizers, which are norms which are functions of

the singular values (Argyriou et al., 2010). When these norms are chosen to promote sparsity

in the spectrum, the resulting matrix has low rank, and such regularizers have been applied to

a range of problems including multiple regression, matrix completion, and multitask learning,

see e.g. Evgeniou et al. (2005); Argyriou et al. (2008); Jacob et al. (2009a) and references

therein.

Some intuition for this is given by the fact that given a matrix W , the closest rank k

matrix in Frobenius norm is characterized by taking W and setting to zero all but the largest

k singular values.

Lemma 49 (Best rank k matrix approximation). Let X ∈ Rd×m have singular value de-

composition X = U diag(σ(X))V > and let k ≤ q = min(d,m). Then the closest rank k ma-

trix to X in Frobenius norm is given by the matrix Z = U diag(σ(Z))V >, where σ(Z) =

(σ1(X), . . . ,σk(X),0, . . . ,0).

Proof. See Appendix A.

Spectral norms have the property that they are invariant to left and right multiplication

by orthogonal matrices, which is referred to as orthogonally invariant, that is for W ∈ Rd×m,

‖W‖= ‖AWB>‖= ‖ΣW ‖, (2.27)

where A ∈Od, B ∈Om are orthogonal, and ΣW is the matrix of singular values of W . As

discussed in Section 2.2.2, recall that a classical result by von Neumann states that a matrix

norm is orthogonally invariant if and only if it is of the form ‖W‖= g(σ(W )), where σ(W ) is

the vector formed by the singular values of W , and g is a symmetric gauge function.
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2.5.5 Frobenius norm

The standard Euclidean norm for matrices is the Frobenius norm, that is the square root

of the sum of the squared entries, ‖W‖fro =
√∑

ijW
2
ij . Note that the squared Frobenius

norm can equally be considered as the sum of the squared `2-norms of the columns or the

rows of the matrix. Consequently, as with the Euclidean norm in the vector case, when

used a regularizer, the Frobenius norm encourages the entries of the matrix to be similar in

magnitude. Moreover, for W = [w1, . . . ,wm] ∈ Rd×m we have

‖W‖2fro =
m∑
j=1

d∑
i=1

W 2
ij =

m∑
j=1
‖wj‖22 =

m∑
j=1

w>j wj = tr(W>W ),

and letting W have singular value decomposition W = UΣWV >, we have

tr(W>W ) = tr(V ΣWU>UΣWV >) = tr(Σ>WΣW ) = ‖σ(W )‖22,

using the cyclic property of the trace operator, hence ‖W‖fro =
√

tr(W>W ) = ‖σ(W )‖2, and

we see that the Frobenius norm is the orthogonally invariant spectral norm induced by the

`2-norm.

2.5.6 Trace norm

The baseline regularizer for matrices is the orthogonally invariant norm induced by the

`1-norm, the trace norm (or nuclear norm)

‖W‖tr = ‖σ(W )‖1 =
r∑
i=1

σ(W )i, W ∈ Rd×m,

where r = min(d,m). Used as a regularizer in matrix learning problems, the norm promotes

low rank solutions (Argyriou et al., 2007b; Mazumder et al., 2010; Srebro et al., 2005; Toh

and Yun, 2011). It has also been used in multitask learning problems, which we return to

in Chapter 4. The use of the `1-norm as a convex approximation of the cardinality operator

for vectors naturally carries over to the trace norm as a convex approximation of the rank

operator for matrices (Jojic et al., 2011).

The trace norm can be computed directly via the singular value decomposition. It can

also be expressed in a variational formulation

‖W‖tr = 1
2 inf
S�0

tr(W>S−1W +S),

see e.g. Argyriou et al. (2008) and Bach et al. (2012). In subsequent chapters we focus in

particular on norms which have variational definitions. In particular, in Chapter 4, we use a

related formulation when we discuss the cluster norm and the spectral k-support norm.
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2.5.7 Schatten p-norms, Ky-Fan k-norms

The Frobenius and trace norms are both examples of the Schatten p-norms. These are given,

for W ∈ Rd×m and p ∈ [1,∞] by

‖W‖p = ‖σ(W )‖p =
(

r∑
i=1

σi(W )p
) 1
p

,

where r = min(d,m), that is they are the orthogonally invariant matrix norms induced by the

vector `p-norms. We return to these in Chapter 4.

2.5.8 Cluster norm

The cluster norm was introduced by Jacob et al. (2009a) as a regularizer for multitask

learning problems where the regression vectors for the tasks are understood to exhibit

clustered behavior. The norm is defined by the following variational formulation. Letting S

be the set of d×d matrices whose singular values lie in the interval [a,b], and whose trace is

upper bounded by c, for specific values of a, b, and c, the cluster norm is defined for n×d

matrices W as

‖W‖cl =
√

inf
Σ∈S

tr(WΣ−1W>).

Used as a regularizer in multitask learning problems, where the penalty is computed by first

centering the columns of W , the cluster norm promotes clustering in the regression vectors.

We discuss the cluster norm further in Chapter 4, where we will show its connection to the

k-support norm of Argyriou et al. (2012).

2.5.9 Variational Gram functions

A recent work by Jalali et al. (2016) introduced a class of functions which promote pairwise

relations, such as orthogonality, among the columns of a matrix. The penalty ΩM, which the

authors name a variational Gram function (VGF), is defined, for X ∈ Rd×m, as

ΩM(X) = max
M∈M

tr(XMX>), (2.28)

whereM is a subset of Sm. The authors give conditions under which ΩM is convex, and

define the penalty ‖ · ‖M =
√

ΩM(·). The formulation is general and captures a number of

well known norms. Given any vector norm ‖ · ‖ on Rd, considering the VGF defined by the

setM=
{
uu>

∣∣ ‖u‖∗ ≤ 1
}

, using tr(x>uu>x) = 〈u | x〉2, we see that we recover the original

vector norm in the induced penalty ‖ · ‖M. Furthermore, the k-support norm corresponds

to the choice ofM=
{

diagθ
∣∣ 0< θ ≤ 1,‖θ‖1 ≤ k

}
, a result that we prove and subsequently

use in Chapter 3. If the setM is closed under left and right multiplication by orthogonal
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matrices, the VGF is a spectral function. In Chapter 4 we introduce a matrix k-support norm

and its Moreau envelope the box norm, and we show its relation to the cluster norm of Jacob

et al. (2009a). The box norm then corresponds to a VGF for an appropriate choice ofM, and

we will return to this characterization.

2.6 Discussion
In this chapter we introduced our learning framework. In each case, the problem is framed

as a regularized or constrained optimization problem, and we reviewed core concepts

from convex analysis and optimization that can be applied to the respective problems.

We concluded that problems involving convex penalties and convex loss functions can be

efficiently tackled using tools from convex analysis and optimization, and this motivates the

use of norms as penalties. We surveyed a number of norms which have been proposed in the

literature as structured sparsity penalties, starting from the `1-norm, and progressing to more

sophisticated norms. We noted that the increased complexity of the norms allows us to more

finely tune the learning process, generally improving the performance of the penalties both

theoretically and empirically. In particular, in recent years, a range of complex penalties have

been proposed that themselves are defined as an optimization problem. While this brings

additional computational complexities, the variational formulations can be used to derive

numerical methods, and to impose more sophisticated properties than the simple penalties,

leading to better performance.

In the subsequent chapters of this thesis we study a number of norms that have variational

formulations, and which can be used in sparse vector, matrix and tensor problems. In

particular, we propose a number of norms that are defined as an infimal convolution, we

study their properties and their relationship to existing norms, and we demonstrate that

the additional complexity can lead to improved performance on a number of real world

datasets. Finally, we present a general interpolation framework that captures many of the

norms studied in this thesis.
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The Θ-norm for structured sparsity

In Chapter 2 we reviewed several norms that have been studied as penalty functions in

structured sparsity learning problems. In particular, penalties have recently been introduced

that are defined as variational problems, and the added complexity has led to improved

learning. In this chapter we proceed in this vein and we continue the study of a family of

norms that are obtained by taking the infimum of a class of quadratic functions. These norms

can be used as a regularizer in linear regression learning problems, where the parameter set

can be tailored to assumptions on the structure of the underlying regression model. Our work

builds upon a recent line of papers that in addition to families of quadratics, also considered

related infimal convolution problems, see e.g. Jacob et al. (2009b); Bach et al. (2012);

Maurer and Pontil (2012); Micchelli and Pontil (2005); Obozinski and Bach (2012) and

references therein. Related variational formulations for the lasso have also been discussed in

Grandvalet (1998) and further studied in Szafranski et al. (2007).

This family of norms is rich and encompasses a number of regularizers outlined in

Chapter 2, such as the `p norms, the norm of Micchelli et al. (2013) and the group lasso with

overlap (Jacob et al., 2009b) which includes the k-support norm introduced by Argyriou et al.

(2012), and which we study in more detail in this chapter. In particular, we show that the

norm is a special case of the box-norm, in which the parameter set involves box constraints

and a linear constraint. We show that it can be generated as a perturbation of the k-support

norm introduced by Argyriou et al. (2012) for sparse vector estimation, which hence can be

seen as a special case of the box-norm. Furthermore, our variational framework allows us to

study efficient algorithms to compute the norms and the proximity operator of the square of

the norms.

This chapter is organized as follows. In Section 3.1, we review a general class of norms

and characterize their unit ball. In Section 3.2, we specialize these norms to the box-norm,

which we show is a perturbation of the k-support norm. We study the properties of the norms

and we describe the geometry of the unit balls. In Section 3.3, we compute the box-norm
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and we provide an efficient method to compute the proximity operator of the squared norm.

Finally in Section 3.4 we discuss a generalization of the Θ-norm which we use in Chapter 5

to generalize the k-support norm.

3.1 The Θ-Norm
In this section we review a family of norms parameterized by a set Θ that we call the Θ-norms.

They are closely related to the norms considered in Micchelli et al. (2010, 2013). Similar

norms are also discussed in Bach et al. (2012, Sect. 1.4.2) where they are called H-norms.

We first recall the definition of the norm.

Definition 50. Let Θ be a convex bounded subset of the open positive orthant. For w ∈ Rd the

Θ-norm is defined as

‖w‖Θ =

√√√√ inf
θ∈Θ

d∑
i=1

w2
i

θi
. (3.1)

Note that the function (w,θ) 7→
∑d
i=1

w2
i
θi

is strictly convex on Rd×Rd++, hence every

minimizing sequence converges to the same point. The infimum, however, is not attained in

general because a minimizing sequence may converge to a point on the boundary of Θ. For

instance, if Θ =
{
θ ∈ Rd++

∣∣ ∑d
i=1 θi ≤ 1

}
, then ‖w‖Θ = ‖w‖1 and the minimizing sequence

converges to the point
( |w1|
‖w‖1 , . . . ,

|wd|
‖w‖1

)
, which belongs to Θ only if all the components of w

are different from zero.

Proposition 51. The Θ-norm is well defined and the dual norm is given, for u ∈ Rd, by

‖u‖Θ,∗ =

√√√√sup
θ∈Θ

d∑
i=1

θiu2
i . (3.2)

Proof. Consider the expression for the dual norm. The function ‖ · ‖Θ,∗ is a norm since it is a

supremum of norms. Recall that the Fenchel conjugate h∗ of a function h : Rd→ R is defined

for every u ∈Rd as h∗(u) = sup
{
〈u | w〉−h(w)

∣∣ w ∈ Rd
}

. It is a standard result from convex

analysis that for any norm ‖ · ‖, the Fenchel conjugate of the function h := 1
2‖ · ‖

2 satisfies

h∗ = 1
2‖ · ‖

2
∗, where ‖ · ‖∗ is the corresponding dual norm, see e.g. Example 38 in Chapter 2

and Lewis (1995). By the same result, for any norm the biconjugate is equal to the norm,

that is (‖ · ‖∗)∗ = ‖ · ‖. Applying this to the dual norm we have, for every w ∈ Rd, that

h(w) = sup
u∈Rd

{〈w | u〉−h∗(u)}= sup
u∈Rd

inf
θ∈Θ

{
d∑
i=1

(
wiui−

1
2θiu

2
i

)}
.

This is a minimax problem in the sense of von Neumann (see e.g. Prop. 2.6.3 in Bertsekas
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et al., 2003), and we can exchange the order of the inf and the sup, and solve the latter

(which is in fact a maximum) componentwise. The gradient with respect to ui is zero

for ui = wi
θi

, and substituting this into the objective function we obtain h(w) = 1
2‖w‖

2
Θ. It

follows that the expression in (3.1) defines a norm, and its dual norm is defined by (3.2), as

required.

3.1.1 Examples

The Θ-norm (3.1) encompasses a number of well known norms. For example, they include

the `p-norms for p ∈ [1,∞] as follows, see also Micchelli and Pontil (2005, Lemma 26), and

Aflalo et al. (2011) who considered the case of p > 2. Recall that for p ∈ [1,∞) the `p norm is

defined, for every w ∈ Rd, as ‖w‖p =
(∑d

i=1 |wi|p
) 1
p , if p ∈ [1,∞) and ‖w‖∞ = maxdi=1 |wi|.

Lemma 52. For p ∈ [1,∞] we have

‖w‖p =


‖w‖Θ, Θ =

{
θ ∈ Rd++

∣∣∣ ∑d
i=1 θ

p
2−p
i ≤ 1

}
, for p ∈ [1,2),

‖w‖Θ = ‖w‖Θ,∗, Θ =
{
θ ∈ Rd++

∣∣∣ 0< θi ≤ 1
}
, for p= 2,

‖w‖Θ,∗, Θ =
{
θ ∈ Rd++

∣∣∣ ∑d
i=1 θ

p
p−2
i ≤ 1

}
, for p ∈ (2,∞].

Note that the case p = 2 follows from the cases p ∈ [1,2), respectively p ∈ (2,∞], by

taking the limit as p tends to 2 from below, respectively from above.

Proof. See Appendix B.

Figure 3.1 (left) illustrates the Θ parameter set for the `p-norm (p ∈ {5
4 ,5}) in R3.

Other norms which belong to the family (3.1) are the so called Λ-norms for struc-

tured sparsity of Micchelli et al. (2013) that we recalled in Section 2.4.14. A specific

example described therein is the wedge penalty, which corresponds to choosing Λ ={
θ ∈ Rd++

∣∣ θ1 ≥ . . .≥ θd
}

. The equivalence is given by choosing Θ =
{
θ ∈ Λ

∣∣ ∑d
i=1 θi ≤ 1

}
,

where Λ⊂Rd++ is a convex cone, as we now show. Letting Λ be a conic subset of Rd++, recall

that the primal and dual norms are defined by

‖w‖Λ = inf
λ∈Λ

{
1
2

d∑
i=1

(
w2

λi
+λi

)}
(3.3)

‖u‖Λ,∗ = sup
λ∈Λ


√√√√∑d

i=1λiw
2∑d

i=1λi

 . (3.4)
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Figure 3.1: Θ sets for `p-norm (p ∈ { 5
4 ,5}), k-support norm (k = 2) and box-norm (a= 0.15, b= 1) in

R3.

Lemma 53. Let Λ be a conic subset of Rd++. Define Θ =
{
θ ∈ Rd++

∣∣∣ θ = λ
‖λ‖1 ,λ ∈ Λ

}
. Then

‖w‖Θ = ‖w‖Λ,

‖w‖Θ,∗ = ‖w‖Λ,∗.

Proof. First note that Θ is a one-dimensional manifold given by the intersection between the

cone Λ and the unit simplex (`1 unit ball) in the strictly positive orthant. It follows that it is

convex and bounded, hence the Θ-norms are well defined. Considering the dual norm we

have

‖w‖2Θ,∗ = sup
θ∈Θ

d∑
i=1

w2
i

θi
= sup
λ∈Λ

d∑
i=1

(
λi∑d
j=1λj

)
w2
i = sup

λ∈Λ

∑d
i=1λiw

2
i∑d

j=1λj

= ‖w‖Λ,∗.

As the dual norms are equivalent, it follows that the primal norms are also equivalent.

The Θ-norm has a direct dependence on the scaling of the set Θ.

Lemma 54 (Scaling). Let Θ be a convex bounded subset of the open positive orthant, c > 0, and

define Θ̃ = c2Θ. Then the set Θ̃ defines a primal and dual norm, and there hold ‖ · ‖Θ̃ = 1
c‖ · ‖Θ

and ‖ · ‖Θ̃,∗ = c‖ · ‖Θ,∗.

Proof. As c > 0, the set Θ̃ is a convex bounded subset of the open positive orthant, hence the

primal and dual norms are well defined. The scaling result follows by direct computation, or

by noting that with respect to each 1
θi

(respectively θi), the primal (respectively dual) norm

is a homogeneous function of order 1
2 .

For the remainder of this section we consider the case where Θ is a polyhedron. As we

show below, this setting applies to a number of norms of practical interest, including the

group lasso with overlap, the wedge norm mentioned above and, in particular the k-support

norm, which forms a central theme throughout this thesis. We first characterize the unit ball
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of the norm, which allows us to identify the norm as promised. To describe our observation,

for every vector γ ∈ Rd+, we define the seminorm

‖w‖γ =

√√√√ ∑
i:γi>0

w2
i

γi
.

Proposition 55. Let γ1, . . . ,γm ∈ Rd+ such that
∑m
`=1 γ

` ∈ Rd++ and let Θ be defined by Θ ={
θ ∈ Rd++

∣∣∣ θ =
∑m
`=1λ`γ

`, λ ∈∆m−1
}

. Then we have, for every w ∈ Rd, that

‖w‖Θ = inf
{

m∑
`=1
‖v`‖γ`

∣∣∣ v` ∈ Rd, supp(v`)⊂ supp(γ`), ` ∈ Nm,
m∑
`=1

v` = w

}
. (3.5)

Moreover, the unit ball of the norm is given by the convex hull of the set

m⋃
`=1

{
w ∈ Rd

∣∣∣ supp(w)⊂ supp(γ`),‖w‖γ` ≤ 1
}
. (3.6)

Proof. The proof of this result is presented in Appendix B. It is based on observing that the

Minkowski functional (see e.g. Rudin, 1991) of the convex hull of the set (3.6) is a norm and

it is given by the right hand side of equation (3.5); we then prove that this norm coincides

with ‖ · ‖Θ by noting that both norms share the same dual norm.

The proof of Proposition 55 reveals that the unit ball of the dual norm of ‖ · ‖Θ is given

by an intersection of ellipsoids in Rd. Indeed, we find that

{
u ∈ Rd

∣∣ ‖u‖Θ,∗ ≤ 1
}

=
{
u ∈ Rd

∣∣∣ mmax
`=1

d∑
i=1

γ`iu
2
i ≤ 1

}

=
{
u ∈ Rd

∣∣∣ d∑
i=1

γ`iu
2
i ≤ 1,∀` ∈ Nm

}

=
⋂
`∈Nm

{
u ∈ Rd

∣∣∣ d∑
i=1

γ`iu
2
i ≤ 1

}
,

see Equation (B.8) in Appendix B. Notice that for each `∈Nm, the set
{
u ∈ Rd

∣∣∣ ∑d
i=1 γ

`
iu

2
i ≤ 1

}
defines a (possibly degenerate) ellipsoid in Rd, where the i-th semi-principal axis has length

1/
√
γ`i (which is infinite if γ`i = 0) and the unit ball of the dual Θ-norm is given by the

intersection of m such ellipsoids. We return to this in Section 3.2.2.

To illustrate an application of the proposition, we specialize it to the group Lasso with

overlap (Jacob et al., 2009b), of which the k-support norm is an example.

Corollary 56. If G is a collection of subsets of Nd such that
⋃
g∈G g = Nd and Θ is the interior
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of the set co
{

1g
∣∣ g ∈ G}, then we have, for every w ∈ Rd, that

‖w‖Θ = inf
{∑
g∈G
‖vg‖2

∣∣∣ vg ∈ Rd, supp(vg)⊂ g,
∑
g∈G

vg = w

}
. (3.7)

Moreover, the unit ball of the norm is given by the convex hull of the set

⋃
g∈G

{
w ∈ Rd

∣∣∣ supp(w)⊂ g,‖w‖2 ≤ 1
}
. (3.8)

The utility of the result is that it links seemingly different norms such as the group Lasso

with overlap and the Θ-norms, which provide a more compact representation, involving

only d additional variables. This formulation is especially useful whenever the optimization

problem (3.1) can be solved in closed form. One such example is provided by the wedge

penalty described above.

As highlighted earlier we have the following characterization of the unit ball of the

k-support norm.

Corollary 57. The unit ball of the k-support norm is equal to the convex hull of the set{
w ∈ Rd

∣∣ card(w)≤ k,‖w‖2 ≤ 1
}

.

Proof. The result follows directly by Corollary 56 for G = Gk observing that in this case⋃
g∈Gk

{
w ∈ Rd

∣∣ supp(w)⊂ g,‖w‖2 ≤ 1
}

=
{
w ∈ Rd

∣∣ card(w)≤ k,‖w‖2 ≤ 1
}

.

3.2 The Box-Norm and the k-Support Norm

The Θ-norm formulation allows us to characterize the connection between the k-support

norm and a regularizer which we introduce below, and the symmetries of the parameter set

Θ will lead to matrix regularizers which we discuss in Chapter 4. In particular, we specialize

our analysis to the case that

Θ =
{
θ ∈ Rd

∣∣∣ a≤ θi ≤ b, d∑
i=1

θi ≤ c

}
(3.9)

where 0 < a ≤ b and c ∈ [ad,bd]. We call the norm defined by (3.1) the box-norm and we

denote it by ‖ · ‖box.

The structure of set Θ for the box-norm will be fundamental in computing the norm and

deriving the proximity operator in Section 3.3. Furthermore, we note that the constraints

are invariant with respect to permutations of the components of Θ and, as we shall see in

Section 4.1, this property is key to extending the norm to matrices. Finally, while a restriction
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of the general family, the box-norm nevertheless encompasses a number of norms including

the `1 and `2 norms, as well as the k-support norm, which we now recall.

For every k ∈ Nd, the k-support norm ‖ · ‖(k) is defined as the norm whose unit ball is

the convex hull of the set S(2)
k of vectors of cardinality at most k and `2-norm no greater than

one. The norm was introduced by Argyriou et al. (2012) with the goal of learning a sparse

vector which has small `2-norm, and they further show that the k-support norm is a tighter

relaxation of S(2)
k than the elastic net. They further show that the k-support norm can be

written as the infimal convolution (see Rockafellar, 1970, p. 34)

‖w‖(k) = inf
{∑
g∈Gk

‖vg‖2
∣∣∣ vg ∈ Rd, supp(vg)⊂ g,

∑
g∈Gk

vg = w

}
, w ∈ Rd, (3.10)

where Gk is the collection of all subsets of Nd containing at most k elements. The k-

support norm is a special case of the group lasso with overlap (Jacob et al., 2009b), where

the cardinality of the support sets is at most k. When used as a regularizer, the norm

encourages vectors w to be a sum of a limited number of vectors with small support. Note

that while definition (3.10) involves a combinatorial number of variables, Argyriou et al.

(2012) observed that the norm can be computed in O(d logd), a point we return to in Section

3.3.

Comparing equation (3.10) with Corollary 56 it is evident that the k-support norm is a

Θ-norm where Θ =
{
θ ∈ Rd++

∣∣ θ =
∑
g∈Gk λg1g, λ ∈∆|Gk|−1}, which by symmetry can be

expressed as Θ =
{
θ
∣∣ 0< θi ≤ 1,

∑d
i=1 θi ≤ k

}
. Hence, we see that the k-support norm is a

special case of the box-norm.

Despite the complicated form of (3.10), Argyriou et al. (2012) observe that the dual

norm has a simple formulation, namely the `2-norm of the k largest components,

‖u‖(k),∗ =

√√√√ k∑
i=1

(|u|↓i )2, u ∈ Rd, (3.11)

where |u|↓ is the vector obtained from u by reordering its components so that they are

non-increasing in absolute value. Note from equation (3.11) that for the cases k = 1 and

k = d, the dual norm is equal to the `∞-norm and `2-norm, respectively. It follows that the

k-support norm includes the `1-norm and `2-norm as special cases.

We now provide a different argument illustrating that the k-support norm belongs to the

family of box-norms using the dual norm. We first derive the dual box-norm.

Proposition 58. The dual box-norm is given by

‖u‖2box,∗ = a‖u‖22 + (b−a)
(
‖u‖2(k),∗+ (ρ−k)(|u|↓k+1)2

)
, (3.12)
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where ρ= c−da
b−a and k is the largest integer not exceeding ρ.

Proof. We need to solve problem (3.2). We make the change of variable φi = θi−a
b−a and

observe that the constraints on θ induce the constraint set
{
φ ∈ (0,1]d

∣∣ ∑d
i=1φi ≤ ρ

}
, where

ρ = c−da
b−a . Furthermore

∑d
i=1 θiu

2
i = a‖u‖22 + (b−a)

∑d
i=1φiu

2
i . The result then follows by

taking the supremum over φ.

We see from equation (3.12) that the dual norm decomposes into a weighted combination

of the `2-norm, the k-support norm and a residual term, which vanishes if ρ= k ∈ Nd. For

the rest of this chapter we assume this holds, which loses little generality. This choice is

equivalent to requiring that c = (b−a)k+da, which is the case considered by Jacob et al.

(2009a) in the context of multitask clustering, where k+ 1 is interpreted as the number

of clusters and d as the number of tasks. We return to this case in Section 4.2, where we

introduce the spectral k-support norm and explain in detail its relationship to the cluster

norm.

Observe that if a = 0, b = 1, and ρ = k, the dual box-norm (3.12) coincides with dual

k-support norm in equation (3.11). We conclude that if

Θ =
{
θ ∈ Rd

∣∣∣ 0< θi ≤ 1,
d∑
i=1

θi ≤ k

}

then the Θ-norm coincides with the k-support norm.

3.2.1 Properties of the norms

In this section we illustrate a number of properties of the box-norm and the connection to

the k-support norm. The first result follows as a special case of Proposition 55.

Corollary 59. If 0< a < b and c= (b−a)k+da, for k ∈ Nd, then it holds that

‖w‖box = inf
{∑
g∈Gk

√√√√∑
i∈g

v2
g,i

b
+
∑
i/∈g

v2
g,i

a

∣∣∣ vg ∈ Rd,
∑
g∈Gk

vg = w

}
, w ∈ Rd.

Furthermore, the unit ball of the norm is given by the convex hull of the set

⋃
g∈Gk

{
w ∈ Rd

∣∣∣ ∑
i∈g

w2
i

b
+
∑
i/∈g

w2
i

a
≤ 1
}
. (3.13)

Notice in Equation (3.13) that if b= 1, then as a tends to zero, we obtain the expression

of the k-support norm (3.10), recovering in particular the support constraints. If a is small

and positive, the support constraints are not imposed, however most of the weight for each

vg tends to be concentrated on supp(g). Hence, Corollary 59 suggests that if a� b then the
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box-norm regularizer will encourage vectors w whose dominant components are a subset of

a union of a small number of groups g ∈ Gk.

Our next result links two Θ-norms whose parameter sets are related by a linear transfor-

mation with positive coefficients.

Lemma 60. Let Θ be a convex bounded subset of the positive orthant in Rd, and let Φ ={
φ ∈ Rd

∣∣ φi = α+βθi,θ ∈Θ
}

, where α,β > 0. Then

‖w‖2Φ = min
z∈Rd

{
1
α
‖w−z‖22 + 1

β
‖z‖2Θ

}
.

Proof. We consider the definition of the norm ‖ · ‖Φ in (3.1). We have

‖w‖2Φ = inf
φ∈Φ

d∑
i=1

w2
i

φi
= inf
θ∈Θ

d∑
i=1

w2
i

α+βθi
, (3.14)

where we have made the change of variable φi = α+βθi. Next we observe that

min
z∈Rd

{
1
α
‖w−z‖22 + 1

β
‖z‖2Θ

}
= min
z∈Rd

inf
θ∈Θ

{
d∑
i=1

(wi−zi)2

α
+ z2

i

βθi

}
= inf
θ∈Θ

d∑
i=1

w2
i

α+βθi
, (3.15)

where we interchanged the order of the minimum and the infimum and solved for z com-

ponentwise, setting zi = βθiwi
α+βθi . The result now follows by combining equations (3.14) and

(3.15).

In Section 3.2 we characterized the k-support norm as a special case of the box-norm.

Conversely, Lemma 60 allows us to interpret the box-norm as a perturbation of the k-support

norm with a quadratic regularization term.

Proposition 61. Let ‖ · ‖box be the box-norm on Rd with parameters 0 < a < b and c =

k(b−a) +da, for k ∈ Nd, then

‖w‖2box = min
z∈Rd

{
1
a
‖w−z‖22 + 1

b−a
‖z‖2(k)

}
. (3.16)

Proof. The result directly follows from Lemma 60 for Θ =
{
θ ∈ Rd

∣∣ 0< θi ≤ 1,
∑d
i=1 θi ≤ k

}
,

α= a and β = b−a.

Lemma 60 and Proposition 61 can further be interpreted using the Moreau envelope,

which we introduced in Definition 2.8. Recall that for ρ > 0 and f : Rd→]−∞,∞] which is

proper, lower semi-continuous, the Moreau envelope of f with parameter ρ is defined as

eρf(w) = inf
z∈Rd

{
f(z) + 1

2ρ‖w−z‖
2
2

}
.
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Lemma 60 therefore says that β‖ · ‖2Φ is a Moreau-envelope of ‖ · ‖2Θ with parameter ρ= α
2β

whenever Φ is defined as Φ = α+βΘ, α,β > 0. In particular we see from (3.16) that the

squared box-norm, scaled by a factor of (b−a), is a Moreau envelope of the squared k-support

norm as we have

(b−a)‖w‖2box = min
z∈Rd

{
‖z‖2(k) + 1

2ρ‖w−z‖
2
2

}
=: eρf(w), (3.17)

where f(w) = ‖w‖2(k) and ρ= 1
2

a
b−a .

Proposition 61 further allows us to decompose the solution to a vector learning problem

using the squared box-norm into two components with particular structure. Specifically,

consider the regularization problem

min
w∈Rd

‖Xw−y‖22 +λ‖w‖2box (3.18)

with data X ∈ Rn×d and response y ∈ Rn. Using Proposition 61 and setting w = u+ z, we

see that (3.18) is equivalent to

min
u,z∈Rd

{
‖X(u+z)−y‖22 + λ

a
‖u‖22 + λ

b−a
‖z‖2(k)

}
. (3.19)

Furthermore, if (û, ẑ) solves problem (3.19) then ŵ = û+ ẑ solves problem (3.18). The

solution ŵ can therefore be interpreted as the superposition of a vector which has small

`2 norm, and a vector which has small k-support norm, with the parameter a regulating

these two components. Specifically, as a tends to zero, in order to prevent the objective

from blowing up, û must also tend to zero and we recover k-support norm regularization.

Similarly, as a tends to b, ẑ vanishes and we have a simple ridge regression problem.

A further consequence of Proposition 61 is the differentiability of the squared box-norm.

Proposition 62. If a > 0 the squared box-norm is differentiable on Rd and its gradient

∇(‖ · ‖2box) = 2
a

(
Id−proxρ‖·‖2(k)

)

is Lipschitz continuous with parameter 2
a .

Proof. Letting f(w) = ‖w‖2(k), ρ = 1
2

a
b−a , by (3.17) we have eρf(w) = (b− a)‖w‖2box. The

result follows directly from Bauschke and Combettes (2011, Prop. 12.29), as f is convex and

continuous on Rd and the gradient is given as ∇(eρf) = 1
ρ (Id−proxρf ).

Proposition 62 establishes that the square of the box-norm is differentiable and its

smoothness is controlled by the parameter a. Furthermore, the gradient can be determined

from the proximity operator, which we compute in Section 3.3.
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3.2.2 Geometry of the norms

In this section, we briefly investigate the geometry of the box-norm. Figure 3.2 depicts the

unit balls for the k-support norm in R3 for various parameter values, setting b= 1 throughout.

For k = 1 and k = 3 we recognize the `1 and `2 balls respectively. For k = 2 the unit ball

retains characteristics of both norms, and in particular we note the discontinuities along each

of x, y and z planes, as in the case of the `1 norm.

Figure 3.3 depicts the unit balls for the box-norm for a range of values of a and k, with

c = (b−a)k+da. We see that, in general, the balls increase in volume with each of a and

k, holding the other parameter fixed. Comparing the k-support norm (k = 1), that is the

`1-norm, and the box-norm (k = 1, a= 0.15), we see that the parameter a smooths out the

sharp edges of the `1 norm. This is also visible when comparing the k-support (k = 2) and the

box (k = 2, a= 0.15). This illustrates the smoothing effect of the parameter a, as suggested

by Proposition 62.

We can gain further insight into the shape of the unit balls of the box-norm from Corollary

59. Equation (3.13) shows that the primal unit ball is the convex hull of ellipsoids in Rd,

where for each group g the semi-principle axis along dimension i has length
√
b if i ∈ g, and

length
√
a if i /∈ g. Similarly, the unit ball of the dual box-norm is the intersection of ellipsoids

in Rd where for each group g the semi-principle axis in dimension i has length 1/
√
b if i ∈ g,

and length 1/
√
a if i /∈ g (see also Equation B.8 in Appendix B). It is instructive to further

consider the effect of the parameter a on the unit balls for fixed k. To this end, recall that

since c= (b−a)k+da, when k = d we have c= bd. In this case, for all values of a in (0, b],

the objective in (3.1) is attained by setting θi = b for all i, and we recover the `2-norm, scaled

by 1/
√
b, for the primal box-norm. Similarly in (3.2), the dual norm gives rise to the `2-norm,

scaled by
√
b. In the remainder of this section we therefore only consider the cases k ∈ {1,2}

in R3

For k = 1, Gk = {{1},{2},{3}}. The unit ball of the primal box-norm is the convex hull

of the ellipsoids defined by

w2
1
b

+ w2
2
a

+ w2
3
a

= 1, w2
1
a

+ w2
2
b

+ w2
3
a

= 1, and
w2

1
a

+ w2
2
a

+ w2
3
b

= 1, (3.20)

and the unit ball of the dual box-norm is the intersection of the ellipsoids defined by

w2
1

b−1 + w2
2

a−1 + w2
3

a−1 = 1, w2
1

a−1 + w2
2

b−1 + w2
3

a−1 = 1, and
w2

1
a−1 + w2

2
a−1 + w2

3
b−1 = 1. (3.21)

For k = 2, Gk =
{
{1},{2},{3},{1,2},{2,3},{1,3}

}
. The unit ball of the primal box-norm is
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the convex hull of the ellipsoids defined by (3.20) in addition to the following

w2
1
b

+ w2
2
b

+ w2
3
a

= 1, w2
1
a

+ w2
2
b

+ w2
3
b

= 1, and
w2

1
b

+ w2
2
a

+ w2
3
b

= 1, (3.22)

and the unit ball of the dual box-norm is the intersection of the ellipsoids defined by (3.21)

in addition to the following

w2
1

b−1 + w2
2

b−1 + w2
3

a−1 = 1, w2
1

a−1 + w2
2

b−1 + w2
3

b−1 = 1, and
w2

1
b−1 + w2

2
a−1 + w2

3
b−1 = 1. (3.23)

For the primal norm, note that since b > a, each of the ellipsoids in (3.20) is entirely contained

within one of those defined by (3.22), hence when taking the convex hull we need only

consider the latter set. Similarly for the dual norm, since 1
b <

1
a , each of the ellipsoids in

(3.21) is contained within one of those defined by (3.23), hence when taking the intersection

we need only consider the latter set.

Figures 3.4 and 3.5 depict the constituent ellipses for various parameter values for

the primal and dual norms. As a tends to zero the ellipses become degenerate. For k = 1,

taking the convex hull we recover the `1-norm unit ball in the primal norm, and taking the

intersection we recover the `∞-norm unit ball in the dual norm. As a tends to 1 we recover

the `2 norm in both the primal and the dual.

3.3 Computation of the Norm and the Proximity Operator

In this section, we compute the norm and the proximity operator of the squared box-norm

by explicitly solving the optimization problem (3.1). We also specialize our results to the

k-support norm and comment on the improvement with respect to the method by Argyriou

et al. (2012). Recall that, for every vector w ∈ Rd, |w|↓ denotes the vector obtained from w

by reordering its components so that they are non-increasing in absolute value.

Theorem 63. For every w ∈ Rd it holds that

‖w‖2box = 1
b
‖wQ‖22 + 1

p
‖wI‖21 + 1

a
‖wL‖22, (3.24)

where wQ =
(
|w|↓1, . . . , |w|

↓
q

)
, wI =

(
|w|↓q+1, . . . , |w|

↓
d−`
)
, wL =

(
|w|↓d−`+1, . . . , |w|

↓
d

)
, q and ` are

the unique integers in {0, . . . ,d} that satisfy q+ `≤ d,

|wq|
b
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wq+1|
b

,
|wd−`|
a
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wd−`+1|

a
, (3.25)

p= c− qb− `a and we have defined |w0|=∞ and |wd+1|= 0. Furthermore, the minimizer θ
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Figure 3.2: Unit balls of the k-support norm for k ∈ {1,2,3}.

Figure 3.3: Unit balls of the box-norm, (k,a) ∈ {(1,0.15),(2,0.15),(2,0.40)}.

Figure 3.4: Primal box-norm component ellipsoids, (k,a) ∈ {(1,0.15),(2,0.15),(2,0.40)}.

Figure 3.5: Dual box-norm unit balls and ellipsoids, (k,a) ∈ {(1,0.15),(2,0.15),(2,0.40)}. For k = 2,
only 3 tightest ellipsoids are shown.
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has the form

θi =


b, if i ∈ {1, . . . , q},

p |wi|∑d−`
j=q+1 |wj |

, if i ∈ {q+ 1, . . . ,d− `},

a, otherwise.

Proof. (Sketch) We need to solve the optimization problem

inf
θ

{
d∑
i=1

w2
i

θi

∣∣∣ a≤ θi ≤ b, d∑
i=1

θi ≤ c

}
. (3.26)

We assume without loss of generality that the wi are ordered nonincreasing in absolute

values, and it follows that at the optimum the θi are also ordered nonincreasing. We further

assume that wi 6= 0 for all i and c≤ db, so the sum constraint will be tight at the optimum,

however this can be generalized. The Lagrangian is given by

L(θ,α) =
d∑
i=1

w2
i

θi
+ 1
α2

(
d∑
i=1

θi− c

)

where 1/α2 is a strictly positive multiplier to be chosen such that S(α) :=
∑d
i=1 θi(α) = c.

We can then solve the original problem by minimizing the Lagrangian over the constraint

θ ∈ [a,b]d. Due to the decoupling effect of the multiplier we can solve the simplified problem

componentwise, obtaining the solution

θi = θi(α) = min(b,max(a,α|wi|)) (3.27)

where S(α) = c. The minimizer has the form θ = (b, . . . , b,θq+1, . . . ,θd−`,a, . . . ,a), where q,`

are determined by the value of α. From S(α) = c we get α= p/(
∑d−`
i=q+1 |wi|). The value of

the norm in (3.24) follows by substituting θ into the objective. Finally, by construction we

have θq ≥ b > θq+1 and θd−` > a≥ θd−`+1, which give rise to the conditions in (3.25).

Theorem 63 suggests two methods for computing the box-norm. First, we can find α

such that S(α) = c; this value uniquely determines θ in (3.27), and the norm follows by

substitution into the objective in (3.26). Alternatively, we identify q and ` that jointly satisfy

(3.25) and we compute the norm using (3.24). Taking advantage of the structure of θ in the

former method leads to a computation time that is O(d logd).

Theorem 64. The computation of the box-norm can be completed in O(d logd) time.

Proof. Following Theorem 63, we need to determine α∗ to satisfy the coupling constraint

S(α∗) = c. Each component θi is a piecewise linear function in the form of a step function
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with a constant positive slope between the values a/|wi| and b/|wi|. Let
{
αi
}2d
i=1 be the set

of the 2d critical points, where the αi are ordered nondecreasing. The function S(α) is a

nondecreasing piecewise linear function with at most 2d critical points. We can find α∗ by

first sorting the points {αi}, finding αi and αi+1 such that

S(αi)≤ c≤ S(αi+1)

by binary search, and then interpolating α∗ between the two points. Sorting takes O(d logd).

Computing S(αi) at each step of the binary search is O(d), so O(d logd) overall. Given αi

and αi+1, interpolating α∗ is O(1), so the overall algorithm is O(d logd) as claimed.

The k-support norm is a special case of the box-norm, and as a direct corollary of

Theorem 63 and Theorem 64, we recover Argyriou et al. (2012, Proposition 2.1).

Corollary 65. For w ∈ Rd, and k ≤ d,

‖w‖(k) =
(

q∑
j=1

(|w|↓j )
2 + 1

k− q

( d∑
j=q+1

|w↓j |
)2
) 1

2

,

where q is the unique integer in {0,k−1} satisfying

|wq| ≥
1

k− q

d∑
j=q+1

|wj |> |wq+1|, (3.28)

and we have defined w0 =∞. Furthermore, the norm can be computed in O(d logd) time.

3.3.1 Proximity operator

Recall from Section 2.2.5 that proximal gradient methods are efficient optimization methods

to solve Tikhonov regularization problems of the form

min
w
f(w) +λg(w), w ∈ Rd,

where f is a convex loss function with Lipschitz continuous gradient, λ > 0 is a regularization

parameter, and g is a convex function. We now use the infimum formulation of the box-norm

to derive the proximity operator of the squared norm. We note that recently Chatterjee et al.

(2014) showed that the proximity operator of the vector k-support norm can be computed

in O(d logd) time. Here we directly follow Argyriou et al. (2012) and consider the squared

k-support norm.

Theorem 66. The proximity operator of the square of the box-norm at point w ∈ Rd with
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parameter λ
2 is given by prox λ

2 ‖·‖
2
box

(w) =
( θ1w1
θ1+λ , . . . ,

θdwd
θd+λ

)
, where

θi =


b, if α|wi|−λ > b,

α|wi|−λ, if b≥ α|wi|−λ≥ a,

a, if a > α|wi|−λ,

and α is chosen such that S(α) :=
∑d
i=1 θi(α) = c. Furthermore, the computation of the

proximity operator can be completed in O(d logd) time.

Proof. Using the infimum formulation of the norm, we solve

min
x∈Rd

inf
θ∈Θ

{
1
2

d∑
i=1

(xi−wi)2 + λ

2

d∑
i=1

x2
i

θi

}
.

We can exchange the order of the optimization and solve for x first. The problem is separable

and a direct computation yields that xi = θiwi
θi+λ . Discarding a multiplicative factor of λ/2, and

noting that the infimum is attained, the problem in θ becomes

min
θ

{
d∑
i=1

w2
i

θi+λ

∣∣∣ a≤ θi ≤ b, d∑
i=1

θi ≤ c

}
.

Note that this is the same as computing a box-norm in accordance with Proposition 61.

Specifically, this is exactly like problem (3.26) after the change of variable θ′i = θi+λ. The

remaining part of the proof then follows in a similar manner to the proof of Theorem 63.

Algorithm 2 illustrates the computation of the proximity operator for the squared box-

norm in O(d logd) time. This includes the k-support as a special case, where we let a tend

to zero, and set b= 1 and c= k, which improves upon the complexity of the O(d(k+ logd))

computation provided in Argyriou et al. (2012), and we illustrate the improvement empirically

in Table 3.1. We summarize this in the following corollary.

Corollary 67. The proximity operator of the square of the k-support norm at point w with

parameter λ
2 is given by prox λ

2 ‖·‖
2
Θ

(w) = x, where xi = θiwi
θi+λ , and

θi =


1, if α|wi|> λ+ 1,

α|wi|−λ, if λ+ 1≥ α|wi| ≥ λ

0, if λ > α|wi|,

where α is chosen such that S(α) = k. Furthermore, the proximity operator can be computed in

O(d logd) time.
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Algorithm 2 Computation of x= prox λ
2 ‖·‖

2
box

(w).

Require: parameters a, b, c, λ.

1. Sort points
{
αi
}2d
i=1 =

{
a+λ
|wj |

, b+λ|wj |

}d
j=1

such that αi ≤ αi+1;

2. Identify points αi and αi+1 such that S(αi)≤ c and S(αi+1)≥ c by binary search;
3. Find α∗ between αi and αi+1 such that S(α∗) = c by linear interpolation;
4. Compute θi(α∗) for i= 1 . . . ,d;
5. Return xi = θiwi

θi+λ for i= 1 . . . ,d.

Table 3.1 empirically verifies the improved performance of the proximity operator

computation of Algorithm 2.

Table 3.1: Comparison of proximity operator algorithms for the squared k-support norm (time in
seconds), k = 0.05d. Algorithm 1 is the method in Argyriou et al. (2012), and Algorithm 2
is our method.

d 1,000 2,000 4,000 8,000 16,000 32,000

Algorithm 1 0.0443 0.1567 0.5907 2.3065 9.0080 35.6199
Algorithm 2 0.0011 0.0016 0.0026 0.0046 0.0101 0.0181

Argyriou et al. (2012) demonstrated the good estimation properties of the vector k-

support norm compared to the Lasso and the elastic net. In the following chapter we

will extend the norm, along with the box-norm, to the matrix setting. As we will discuss,

Algorithm 2 can be applied to matrix learning problems with the induced spectral norms,

and we will use this to present a range of numerical experiments with the spectral norms for

matrix completion and multitask learning problems.

3.4 The Θ p-Norm

We end this chapter by describing a generalization of the Θ-norm. The primal and dual norms

of Equations (3.1) and (3.2) are a special case of the following more general framework.

For p ∈ [1,∞], define the generalized perspective function (Dacorogna and Maréchal, 2008;

Maréchal, 2005) φp : R+ 7→ R+ by φp(x) = xp and note that φp is invertible on R++, and for

p=∞ we define its value by continuity.

Proposition 68. Let Θ ⊂ Rd++ be convex and bounded, and let p ∈ [1,∞] and let q ∈ [1,∞]

satisfy 1
p + 1

q = 1. Define the following for w,u ∈ Rd

‖w‖= inf
θ∈Θ

φ−1
p

(
d∑
i=1

θiφp

(
|wi|
θi

))
, (3.29)

‖u‖∗ = sup
θ∈Θ

φ−1
q

(
d∑
i=1

θiφq(|ui|)
)
. (3.30)
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Then the expressions define norms, and furthermore they are dual to each other.

We refer to the expression (3.29) as the Θ p-norm, and (3.30) as the dual Θ p-norm.

Clearly we recover the standard Θ-norm when p= q = 2.

Proof. The proof of Proposition 68 follows that of Proposition 51, see Appendix B.

Lemma 54 can be generalized to the Θ p-norm.

Lemma 69 (Scaling). Let Θ be a convex bounded subset of the open positive orthant, let

p,q ∈ [1,∞] satisfy 1
p + 1

q = 1, let c > 0, and define Θ̃ = cqΘ. Then the set Θ̃ defines a primal

and dual norm, and there hold ‖ · ‖Θ̃ = 1
c‖ · ‖Θ and ‖ · ‖Θ̃∗ = c‖ · ‖Θ∗.

Proof. Following the reasoning in Lemma 54, the primal and dual norms are well defined.

The scaling result follows by noting that with respect to each 1
θi

(respectively θi), the primal

(respectively dual) Θ p-norm is a homogeneous function of order 1
q , using the fact that

p−1
p = 1

q in the case of the primal norm.

We provide an example of a Θ p-norm when we introduce the (k,p)-support norm in

Chapter 5.

3.5 Discussion
In this chapter we introduced the Θ-norm, we showed that the k-support and box-norms

belong to the framework, and we presented a number of results relating to the norms. In

the following chapter we turn our attention to matrices, and we show that several properties

carry over in a reasonable manner. We then investigate empirically the performance of the

penalties in numerical experiments.



Chapter 4

Orthogonally invariant spectral norms

In the previous chapter we introduced the Θ-norm which can be used as a regularizer to

impose structure in the solution to a vector learning problem. A special case of this penalty

is the k-support norm, which subsumes the `1-norm used in the lasso method among other

sparse learning methods. In this chapter we move to the domain of matrices and we discuss

spectral regularizers for low rank and multitask learning problems. By a classical result

by von Neumann, vector norms which are symmetric gauge functions induce orthogonally

invariance matrix norms. In particular the k-support norm and box-norms of Chapter 3 give

rise to spectral norms that exhibit good performance in low rank and multitask learning

matrix problems, and we study them in this chapter.

The characteristic properties of matrix norms translate in a natural manner from the

respective vector norms. In particular, the unit ball of spectral k-support norm is the convex

hull of the set of matrices of rank no greater than k, and Frobenius norm bounded by one.

In addition, we observe that the spectral box-norm is essentially equivalent to the cluster

norm introduced by Jacob et al. (2009a) for multitask clustering, which in turn can be

interpreted as a perturbation of the spectral k-support norm. Moreover, our computation of

the vector box-norm and its proximity operator extends naturally to the spectral case, which

allows us to use proximal gradient methods to solve regularization problems using the cluster

norm. Finally, we provide a method to use the centered versions of the penalties, which

are important in applications (see e.g. Evgeniou et al., 2007; Jacob et al., 2009a), and we

provide numerical experiments using the norms.

This chapter is organized as follows. In Section 4.1 we extend the k-support and box

norms to orthogonally invariant matrix norms. In Section 4.2, we review multitask learning.

In Section 4.3 we review clustered multitask learning and we discuss the cluster norm

introduced by Jacob et al. (2009a). In Section 4.4 we provide a method for solving the

resulting matrix regularization problem using “centered" norms. Finally, in Section 4.5, we

apply the norms to matrix learning problems on a number of simulated and real datasets.
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4.1 Orthogonally Invariant Θ-Norms

Recall from Section 2.5.4 that an orthogonally invariant matrix norm ‖ · ‖ is invariant to left

and right multiplication by orthogonal matrices, that is for X ∈ Rd×m,

‖W‖= ‖AWB>‖= ‖ΣW ‖,

where A ∈Od, B ∈Om are orthogonal, and ΣW is the matrix of singular values of W . A

classical result by von Neumann (Theorem 5 in Chapter 2) states that a matrix norm is

orthogonally invariant if and only if it is of the form ‖W‖ = g(σ(W )), where σ(W ) is the

vector formed by the singular values of W , and g is a symmetric gauge function, that is, a

vector norm which is invariant under permutations and sign changes (Von Neumann, 1937).

Examples of norms which are related by this property include the `1-norm and trace

norm, the `2-norm and the Frobenius norm, and the `∞-norm and the spectral norm (the

largest singular value of a matrix).

The relationship extends beyond the computation of the norm. In particular, we highlight

that the proximity operator of an orthogonally invariant norm ‖ ·‖= g(σ(·)) can be computed

using von Neumann’s trace inequality (Theorem 7 in Chapter 2). Specifically, it is given by

prox‖·‖(W ) = Udiag
(

proxg(σ(W ))
)
V >, W ∈ Rd×m, (4.1)

where U and V are the matrices formed by the left and right singular vectors of W , see

e.g. Argyriou et al. (2011, Prop. 3.1) and Lewis (2003). It follows that whenever we can

efficiently compute the proximity operator of a symmetric gauge function, we can compute

the proximity operator of the induced spectral norm at the additional cost of computing the

singular value decomposition, and we will make use of this fact below.

In Chapter 3 we introduced the Θ-norm and discussed several examples. Using von

Neumann’s theorem we can extend certain instances to matrices.

Lemma 70. If Θ is a convex bounded subset of the strictly positive orthant in Rd that is invariant

under permutations, then ‖ · ‖Θ is a symmetric gauge function.

Proof. Let g(w) = ‖w‖Θ. We need to show that g is a norm that is invariant under per-

mutations and sign changes. By Proposition 51, g is a norm, so it remains to show that

g(w) = g(Pw) for every permutation matrix P , and g(Jw) = g(w) for every diagonal matrix

J with entries ±1. The former property holds since the set Θ is permutation invariant. The

latter property holds because the objective function in (3.1) involves the squares of the

components of w.
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4.1.1 The spectral k-support norm and spectral box-norm

Lemma 70 establishes that both the k-support norm and the box-norm are spectral gauge

functions. We can therefore extend both to orthogonally invariant norms that we term the

spectral k-support norm and the spectral box-norm respectively, and which we write (with

some abuse of notation) as ‖W‖(k) = ‖σ(W )‖(k) and ‖W‖box = ‖σ(W )‖box. We note that

since the k-support norm subsumes the `1 and `2-norms for k = 1 and k = d respectively,

the corresponding spectral k-support norms are equal to the trace and Frobenius norms

respectively.

A number of properties of the vector norms translate in the natural manner to the matrix

norms. We first characterize the unit ball of the spectral k-support norm.

Proposition 71. The unit ball of the spectral k-support norm is the convex hull of the set of

matrices of rank at most k and Frobenius norm no greater than one.

Proof. (Sketch) We consider the sets

Tk =
{
W ∈ Rd×m

∣∣ rank(W )≤ k, ‖W‖F ≤ 1
}
, Ak = co(Tk),

and we apply Lemma 36 to the set Ak to derive a norm, and finally we argue that the norm

is a spectral function with the desired properties, see Appendix C.

Referring to the unit ball characterization of the k-support norm, we note that the

restriction on the cardinality of the vectors that define the extreme points of the unit ball

naturally extends to a restriction on the rank operator in the matrix setting. Furthermore, as

noted by Argyriou et al. (2012), regularization using the k-support norm encourages vectors

to be sparse, but less so than the `1-norm. In matrix regularization problems, Proposition 71

suggests that the spectral k-support norm for k > 1 encourages matrices to have low rank,

but less so than the trace norm. This is intuitive as the extreme points of the unit ball have

rank at most k.

As in the case of the vector norm (Proposition 61), the spectral box-norm (or cluster

norm – see below) can be written as a perturbation of the spectral k-support norm with a

quadratic term.

Proposition 72. Let ‖ · ‖box be a matrix box-norm with parameters a,b,c and let k = c−da
b−a .

Then

‖W‖2box = min
Z∈Rd×m

{
1
a
‖W −Z‖2F + 1

b−a
‖Z‖2(k)

}
.
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Proof. By von Neumann’s trace inequality (Theorem 7) we have

1
a
‖W −Z‖2F + 1

b−a
‖Z‖2(k) = 1

a

(
‖W‖2F +‖Z‖2F −2〈W | Z〉

)
+ 1
b−a

‖Z‖2(k)

≥ 1
a

(
‖σ(W )‖22 +‖σ(Z)‖22−2〈σ(W ) | σ(Z)〉

)
+ 1
b−a

‖σ(Z)‖2(k)

= 1
a
‖σ(W )−σ(Z)‖22 + 1

b−a
‖σ(Z)‖2(k).

Furthermore the inequality is tight if W and Z have the same ordered set of singular

vectors. Hence

min
Z∈Rd×m

{
1
a
‖W −Z‖2F + 1

b−a
‖Z‖2(k)

}
= min
z∈Rd

{
1
a
‖σ(W )−z‖22 + 1

b−a
‖z‖2(k)

}
= ‖σ(W )‖2box,

where the last equality follows by Proposition 61.

In other words, this result shows that the (scaled) squared spectral box-norm can be

seen as the Moreau envelope of a squared spectral k-support norm.

Finally, the computational considerations outlined in Section 3.3 can be naturally ex-

tended to the matrix setting by using 4.1. Using this result we can employ proximal gradient

methods to solve matrix regularization problems using the square of the spectral k-support

and box-norms, see Section 4.5.

4.2 Multitask Learning

We now briefly review multitask learning, which we introduced in Chapter 2, and which

we return to in the numerical experiments below. This is a framework in which a number

of learning tasks are solved concurrently in order to leverage commonalities between them

(Baxter, 2000; Romera-Paredes, 2014), with applications in particular in the fields of machine

vision (Torralba et al., 2004), natural language processing (Do and Ng, 2005) and biometrics

(Sun, 2008). Supervised learning applications frequently involve several learning problems

which are not completely independent. For example given a collection of images from a given

domain, we could expect a classifier for one object to be related to a classifier for a similar

object. A reasonable assumption is that both classifiers take advantage of the underlying

features in the input, hence aggregating the training data and solving the problems together

should give improved performance, in particular when limited training data is available for

each task. In this context, multitask learning is related to transfer learning, or learning to

learn (Pan and Yang, 2010), as well as multi-class logistic regression (Wright et al., 2009).

We focus on multitask learning approaches that use spectral regularizers to encode

the relationship between the tasks (Evgeniou et al., 2005; Argyriou et al., 2008; Jacob
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et al., 2009a). Each problem, or task, is represented by a single weight vector, and these

are stacked as the columns of a matrix W which is to be learned. By convention we use

T to denote the number of tasks, each of which is a vector in Rd. Given training points

(xt1,yt1), . . . ,(xtn,ytn) ∈ Rd×R for task t (for simplicity we assume that each task has the same

number n of training points), the problem is given by

min
W∈Rd×T

L(W ) +λΩ(W ), (4.2)

where W = [w1, . . . ,wT ] is the d×T matrix whose columns represent the task vectors, L is

the empirical error L(W ) = 1
Tn

∑T
t=1
∑n
i=1 `(yti ,

〈
wt | xti

〉
) for some convex loss function `,

and Ω is a regularizer which promotes structure between the tasks.

A number of different regularizers have been proposed to promote different relationships

between the tasks and we highlight two approaches below.

4.2.1 Hierarchical methods

Given tasks w1, . . . ,wT , hierarchical methods assume a relationship between the tasks of the

form

wt = w0 +vt, (4.3)

for each t. By encouraging vt to be small, the task vectors wt are all closely related to the root

component w0. One approach to this is given by penalizing the variance between the tasks

(Evgeniou and Pontil, 2004; Evgeniou et al., 2005; Torralba et al., 2004), using a regularizer

of the form

Ω(W ) = min
w0

1
λT

T∑
t=1
‖wt−w0‖22 + 1

1−λ‖w0‖22

= 1
T

 T∑
t=1
‖wt‖22 + 1−λ

λ

T∑
t=1

∥∥∥∥∥wt− 1
T

T∑
s=1

ws

∥∥∥∥∥
2

2

 ,
where λ ∈ [0,1] is a parameter to be tuned. For small values of λ, the tasks are closely aligned,

and as λ increases to 1, the tasks become less closely related.

4.2.2 Sparsity inducing penalties

A priori information may suggest that the weight vectors should be sparse in a given applica-

tion, and the support sets may be the same or they may vary between the tasks. For example,

when identifying how DNA microarrays cause related cancers, a common assumption is that

these are due to a small number of sets of genes present in the multiarray (Khan et al., 2001).
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A number of matrix `p,q-norms have been proposed as regularizers, that is

Ω(W ) = ‖W‖p,q =

 T∑
t=1

(
d∑
i=1
|wi,t|q

) p
q


1
p

,

for given values of p and q, or alternatively

Ω(W ) = ‖W>‖p,q =

 d∑
i=1

(
T∑
t=1
|wi,t|q

) p
q


1
p

.

These norms aggregate the `q-norms of the columns, respectively rows, of W via the `p-norms

of these values.

In particular setting q = 1 promotes sparsity of the task vectors, for different values of p

depending on the underlying assumptions. Applying the `1,∞-norm to the transpose of the

matrix, Turlach et al. (2005) shrink the `1-norm of the maximum value of each explanatory

variable across all the tasks, that is

‖W>‖1,∞ =
d∑
i=1

Tmax
t=1
|wi,t|.

Finally, we note that matrix completion can be formulated as an instance of multitask

learning (Srebro et al., 2005). In this framework, each user is a task, the input data are

indicators for the corresponding items, and the labels are the values of the entries.

4.2.3 Clustering the tasks

A natural assumption that arises in MTL applications is that the tasks are clustered. The

cluster norm was introduced by Jacob et al. (2009a) as a means to favour this structure and

we review the norm here. Recall that our general approach to multitask learning is based on

the regularization problem (4.2)

min
W∈Rd×T

L(W ) +λΩ(W ).

Jacob et al. (2009a) consider a composite penalty which encourages the tasks to be clustered

into Q< T groups. To introduce their setting we require some more notation. Let Jq ⊂ NT
be the set of tasks in cluster q ∈ NQ and let Tq = |Jq| ≥ 0 be the number of tasks in cluster

q, so that
∑Q
q=1Tq = T . The clustering uniquely defines the T ×T normalized connectivity

matrix M where Mst = 1
Tq

if s, t ∈ Jq and Mst = 0 otherwise. We let w̄ = 1
T

∑T
t=1wt be

the mean weight vector, w̄q = 1
Tq

∑
t∈Jq wt be the mean weight vector of tasks in cluster q

and define the T ×T orthogonal projection matrices U = 11>/T and Π = I−U . Note that
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WΠ = [w1− w̄, . . . ,wT − w̄]. Finally, let r = min(d,T ).

Using this notation, we introduce the three seminorms

Ωm(W ) = T‖w̄‖2 = tr
(
WUW>)

Ωb(W ) =
Q∑
q=1

Tq‖w̄q− w̄‖2 = tr
(
W (M −U)W>)

Ωw(W ) =
Q∑
q=1

∑
t∈Jq

‖wt− w̄q‖2 = tr
(
W (I−M)W>) ,

each of which captures a different aspect of the clustering: Ωm penalizes the total mean of

the weight vectors, Ωb measures how close to each other the clusters are (between cluster

variance), and Ωw measures the compactness of the clusters (within cluster variance). Scaling

the three penalties by positive parameters εm, εb, and εw respectively, we obtain the composite

penalty εmΩm + εbΩb + εwΩw. The first term Ωm does not depend on the connectivity matrix

M , and it can be included in the error term. The remaining two terms depend on M , which

in general may not be known a-priori. Jacob et al. (2009a) propose to learn the clustering by

minimizing with respect to matrix M , under the assumption that εw ≥ εb. This assumption

is reasonable as we care more about enforcing a small variance of parameters within the

clusters than between them. Using the elementary properties that M −U =MΠ = ΠMΠ and

I−M = (I−M)Π = Π(I−M)Π and letting M̃ =MΠ, we rewrite

εbΩb(W ) + εwΩw(W ) = tr
(
WΠ

(
εbM̃ + εw(I−M̃)

)
ΠW>

)
= tr

(
WΠΣ−1ΠW>) (4.4)

where we have defined Σ−1 = εbM̃ + εw(I−M̃). Since M̃ is an orthogonal projection, the

matrix Σ is well defined and we have

Σ = (ε−1
b − ε

−1
w )M̃ + ε−1

w I. (4.5)

The expression in the right hand side of equation (4.4) is jointly convex in W and Σ (see e.g.

Boyd and Vandenberghe, 2004), however the set of matrices Σ defined by equation (4.5),

generated by letting M̃ =MΠ vary, is nonconvex, because M takes values on a nonconvex

set. To address this, Jacob et al. (2009a) relax the constraint on matrix M̃ to the set

{0� M̃ � I, trM̃ ≤Q−1}. This in turn induces the convex constraint set for Σ

SQ,T =
{

Σ ∈ RT×T
∣∣∣ Σ = Σ>, ε−1

w I � Σ� ε−1
b I, tr Σ≤ (ε−1

b − ε
−1
w )(Q−1) + ε−1

w T
}
. (4.6)
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In summary Jacob et al. (2009a) arrive at the optimization problem

min
W∈Rd×T

L̄(W ) +λ‖WΠ‖2cl (4.7)

where L̄(W ) =L(W )+λεm tr(WUW>) and ‖ ·‖cl is the cluster norm defined by the equation

‖W‖cl =
√

inf
Σ∈SQ,T

tr(WΣ−1W>). (4.8)

4.3 The Cluster Norm and the Spectral Box-Norm

We now discuss the cluster norm in the context of the spectral box-norm. Jacob et al. (2009a)

state that the cluster norm of W equals what we have termed the spectral box-norm, with

parameters a= εw
−1, b= ε−1

b and c= (T −Q+ 1)ε−1
w + (Q−1)ε−1

b , that is referring to (4.6)

we get the constraint set

Sa,b,c =
{

Σ ∈ RT×T
∣∣∣ Σ = Σ>, aI � Σ� bI, tr Σ≤ c

}
, (4.9)

and we recover Equation (2.28) from Section 2.5.9 (Jalali et al., 2016). Here we prove this

fact. Denote by λi(·) the eigenvalues of a matrix which we write in non increasing order

λ1(·) ≥ λ2(·) ≥ . . . ≥ λd(·). Note that if θi are the eigenvalues of Σ then θi = λd−i+1(Σ−1).

We have that

tr(Σ−1W>W )≥
r∑
i=1

λd−i+1(Σ−1)λi(W>W ) =
r∑
i=1

σ2
i (W )
θi

where the inequality follows by Lemma 8 (see Chapter 2) for A= Σ−1 and B =W>W � 0.

Since this inequality is attained whenever Σ = Udiag(θ)U , where U are the eigenvectors of

W>W , we see that the cluster norm coincides with the spectral box-norm, that is ‖W‖cl =

‖σ(W )‖Θ for Θ =
{
θ ∈ [a,b]r

∣∣ ∑r
i=1 θi ≤ c

}
.

In light of our observations in Section 4.1, we also see that the spectral k-support norm

is a special case of the cluster norm, where we let a tend to zero, b = 1 and c = k, where

k = Q− 1. More importantly the cluster norm is a perturbation of the spectral k-support

norm. Moreover, as we outlined in Section 4.1, the methods to compute the norm and its

proximity operator (cf. Theorems 63 and 66) can directly be applied to the cluster norm

using von Neumann’s trace inequality.

4.4 Optimization with Centered Spectral Θ-Norms

Centering a matrix has been shown to improve learning in other multitask learning problems,

for example Evgeniou et al. (2005) reported improved results using the trace norm. It is
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therefore valuable to address the problem of how to solve a regularization problem of the

type

min
W∈Rd×T

L̄(W ) +λ‖WΠ‖2Θ (4.10)

in which the regularizer is applied to the matrix WΠ = [w1− w̄, . . . ,wT − w̄]. To this end, let

Θ be a bounded and convex subset of Rr++ which is invariant under permutation. We have

already noted that the function defined, for every W ∈ Rd×T , as

‖W‖Θ := ‖σ(W )‖Θ,

is an orthogonally invariant norm. In particular, problem (4.10) includes regularization with

the centered cluster norm outlined above.

Note that right multiplication by the centering operator Π, is invariant to a translation of

the columns of the matrix by a fixed vector, that is, for every z ∈Rd, we have [w1 +z, . . . ,wT +

z]Π =WΠ. The quadratic term εmtr(WUW>), which is included in the error, implements

square norm regularization of the mean of the tasks, which can help to prevent overfitting.

However, in the remainder of this section this term plays no role in the analysis, which equally

applies to the case that εm = 0.

In order to solve the problem (4.10) with a centered regularizer the following lemma is

key.

Lemma 73. Let r = min(d,T ) and let Θ be a bounded and convex subset of Rr++ which is

invariant under permutation. For every W = [w1, . . . ,wT ] ∈ Rd×T , it holds that

‖WΠ‖Θ = min
z∈Rd

‖[w1−z, . . . ,wT −z]‖Θ.

Proof. (Sketch) We define the set Θ(T ) =
{

Σ ∈ ST++
∣∣ λ(Σ) ∈Θ

}
and Θ(d) =

{
D ∈ Sd++

∣∣ λ(D) ∈Θ
}

and apply Lemma 8 to get

‖W‖2Θ ≡ ‖σ(W )‖2Θ = inf
Σ∈Θ(T )

tr
(
Σ−1W>W

)
= inf
D∈Θ(d)

tr
(
D−1WW>) .

The result then follows by using the definition of WΠ = [w1− w̄, . . . ,wT − w̄] and solving the

optimization problem, see Appendix C.

Using this lemma, we rewrite problem (4.7) as

min
W∈Rd×T

min
z∈Rd

L̄(W ) +λ‖[w1−z, . . . ,wT −z]‖Θ.
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Letting wt = wt−z, and W = [v1, . . . ,vT ], we obtain the equivalent problem

min
(W,z)∈Rd×T×Rd

L̄(V +z1>) +λ‖W‖2Θ. (4.11)

This problem is of the form f(V,z) +λg(V,z), where g(V,z) = ‖V ‖Θ. Using this formulation,

we can directly apply the proximal gradient method using the proximity operator computation

for the vector norm, since proxg(V0,z0) = (proxλ‖·‖Θ(V0),z0). This observation establishes

that, whenever the proximity operator of the spectral Θ-norm is available, we can use

proximal gradient methods with minimal additional effort to perform optimization with the

corresponding centered spectral Θ-norm. For example, this is the case with the trace norm,

the spectral k-support norm and the spectral box-norm or cluster norm.

4.5 Numerical Experiments
Argyriou et al. (2012) demonstrated the good estimation properties of the vector k-support

norm compared to the lasso and the elastic net. In this section, we investigate the matrix

norms and report on their statistical performance in matrix completion and multitask learning

experiments on simulated as well as benchmark real datasets. We also offer an interpretation

of the role of the parameters in the box-norm.

We compare the spectral k-support norm (k-sup) and the spectral box-norm (box) to the

baseline trace norm (trace) (see e.g. Argyriou et al., 2007a; Mazumder et al., 2010; Srebro

et al., 2005; Toh and Yun, 2011), matrix elastic net (el.net) (Li et al., 2012) and, in the case

of multitask learning, the Frobenius norm (fr), which we recall is equivalent to the spectral

k-support norm when k = d. As we highlighted in Section 4.4, centering a matrix can lead to

improvements in learning. For datasets which we expect to exhibit clustering we therefore

also apply centered versions of the norms, c-fr, c-trace, c-el.net, c-k-sup, c-box.1

We report test error and standard deviation, matrix rank (r), and optimal parameter

values for k and a, which are determined by validation. We used a t-test to determine the

statistical significance of the difference in performance between the regularizers, at a level of

p < 0.001.

To solve the optimization problem we used an accelerated proximal gradient method

(FISTA), (see e.g. Beck and Teboulle, 2009; Nesterov, 2007), using the percentage change

in the objective as convergence criterion, with a tolerance of 10−5 (10−3 for real matrix

completion experiments).

1As we described in Section 4.3, the cluster norm regularization problem from Jacob et al. (2009a) is equivalent
to regularization using the box-norm with a squared `2 norm of the mean column vector included in the loss function.
The centering operator is invariant to constant shifts of the columns, which allows the matrix to have unbounded
Frobenius norm when using a centered regularizer. The additional quadratic term regulates this effect and can
prevent against overfitting. We tested the effect of the quadratic term on the centered norms, however the impact on
performance was only incremental, and it introduced a further parameter requiring validation. On the real datasets
in particular, the impact was not significant compared to simple centering, so we do not report on the method below.
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As is typical with spectral regularizers such as the trace norm, we found that the spectrum

of the learned matrix exhibited a rapid decay to zero. In order to explicitly impose a low rank

on the final matrix, we included a thresholding step at the end of the optimization. For the

matrix completion experiments, the thresholding level was chosen by validation. Matlab code

used in the experiments is available at http://www0.cs.ucl.ac.uk/staff/M.Pontil/software.

html.

4.5.1 Simulated data

Matrix Completion. We applied the norms to matrix completion on noisy observations of

low rank matrices. Each d×d matrix was generated as W =AB>+E, where A,B ∈ Rd×r,

r� d, and the entries of A, B and E were set to be i.i.d. standard Gaussian. We set d= 100,

r ∈ {5,10} and we sampled uniformly a percentage ρ ∈ {10%,10%,20%,30%} of the entries

for training, and used a fixed 10% for validation. Following Mazumder et al. (2010) the error

was measured as

error =
‖wtrue−wpredicted‖2

‖wtrue‖2
,

and averaged over 100 trials. The results are summarized in Table 4.1. With thresholding, all

methods recovered the rank of the true noiseless matrix. The spectral box-norm generated

the lowest test errors in all regimes, with the spectral k-support norm a close second, and

both were significantly better than trace and elastic net.

Table 4.1: Matrix completion on simulated datasets, without (left) and with (right) thresholding.

dataset norm test error r k a test error r k a

rank 5 trace 0.8184 (0.03) 20 - - 0.7799 (0.04) 5 - -
ρ=10% el.net 0.8164 (0.03) 20 - - 0.7794 (0.04) 5 - -

k-sup 0.8036 (0.03) 16 3.6 - 0.7728 (0.04) 5 4.23 -
box 0.7805 (0.03) 87 2.9 1.7e-2 0.7649 (0.04) 5 3.63 8.1e-3

rank 5 trace 0.5764 (0.04) 22 - - 0.5209 (0.04) 5 - -
ρ=15% el.net 0.5744 (0.04) 21 - - 0.5203 (0.04) 5 - -

k-sup 0.5659 (0.03) 18 3.3 - 0.5099 (0.04) 5 3.25 -
box 0.5525 (0.04) 100 1.3 9e3 0.5089 (0.04) 5 3.36 2.7e-3

rank 5 trace 0.4085 (0.03) 23 - - 0.3449 (0.02) 5 - -
ρ=20% el.net 0.4081 (0.03) 23 - - 0.3445 (0.02) 5 - -

k-sup 0.4031 (0.03) 21 3.1 - 0.3381 (0.02) 5 2.97 -
box 0.3898 (0.03) 100 1.3 9e-3 0.3380 (0.02) 5 3.28 1.9e-3

rank 10 trace 0.6356 (0.03) 27 - - 0.6084 (0.03) 10 - -
ρ=20% el.net 0.6359 (0.03) 27 - - 0.6074 (0.03) 10 - -

k-sup 0.6284 (0.03) 24 4.4 - 0.6000 (0.03) 10 5.02 -
box 0.6243 (0.03) 89 1.8 9e-3 0.6000 (0.03) 10 5.22 1.9e-3

rank 10 trace 0.3642 (0.02) 36 - - 0.3086 (0.02) 10 - -
ρ=30% el.net 0.3638 (0.02) 36 - - 0.3082 (0.02) 10 - -

k-sup 0.3579 (0.02) 33 5.0 - 0.3025 (0.02) 10 5.13 -
box 0.3486 (0.02) 100 2.5 9e-3 0.3025 (0.02) 10 5.16 3e-4

http://www0.cs.ucl.ac.uk/staff/M.Pontil/software.html
http://www0.cs.ucl.ac.uk/staff/M.Pontil/software.html
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Figure 4.3: Clustered matrix and recovered solutions. From left to right: true, noisy, trace norm,
box-norm

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Role of Parameters. In the same setting we investigated the role of the parameters in the

box-norm. As previously discussed, parameter b can be set to 1 without loss of generality.

Figure 4.1 shows the optimal value of parameter a chosen by validation for varying signal to

noise ratios (SNR), keeping k fixed. We see that for greater noise levels (smaller SNR), the

optimal value for a increases, which further suggests that the noise is filtered out by higher

values of the parameter. Figure 4.2 shows the optimal value of k chosen by validation for

matrices with increasing rank, keeping a fixed, and using the relation k = c−da
b−a . We note that

as the rank of the matrix increases, the optimal k value increases, which is expected since it

is an upper bound on the sum of the singular values.

Clustered Learning. We tested the centered norms on a synthetic dataset which exhibited

a clustered structure. We generated a 100×100, rank 5, block diagonal matrix, where the

entries of each 20×20 block were set to a random integer chosen uniformly in {1, . . . ,10},

with additive noise. Table 4.2 illustrates the results averaged over 100 runs. Within each

group of norms, the box-norm and the k-support norm outperformed the trace norm and

elastic net, and centering improved performance for all norms. Figure 4.3 illustrates a sample

matrix along with the solution found using the box and trace norms.

4.5.2 Real data

Matrix Completion (MovieLens and Jester). In this section we report on the performance
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Table 4.2: Clustered block diagonal matrix, before (left) and after (right) thresholding.

dataset norm test error r k a test error r k a

ρ=10% trace 0.6529 (0.10) 20 - - 0.6065 (0.10) 5 - -
el.net 0.6482 (0.10) 20 - - 0.6037 (0.10) 5 - -
k-sup 0.6354 (0.10) 19 2.72 - 0.5950 (0.10) 5 2.77 -
box 0.6182 (0.09) 100 2.23 1.9e-2 0.5881 (0.10) 5 2.73 4.3e-3
c-trace 0.5959 (0.07) 15 - - 0.5692 (0.07) 5 - -
c-el.net 0.5910 (0.07) 14 - - 0.5670 (0.07) 5 - -
c-k-sup 0.5837 (0.07) 14 2.03 - 0.5610 (0.07) 5 1.98 -
c-box 0.5789 (0.07) 100 1.84 1.9e-3 0.5581 (0.07) 5 1.93 9.7e-3

ρ=15% trace 0.3482 (0.08) 21 - - 0.3048 (0.07) 5 - -
el.net 0.3473 (0.08) 21 - - 0.3046 (0.07) 5 - -
k-sup 0.3438 (0.07) 21 2.24 - 0.3007 (0.07) 5 2.89 -
box 0.3431 (0.07) 100 2.05 8.7e-3 0.3005 (0.07) 5 2.57 1.3e-3
c-trace 0.3225 (0.07) 19 - - 0.2932 (0.06) 5 - -
c-el.net 0.3215 (0.07) 18 - - 0.2931 (0.06) 5 - -
c-k-sup 0.3179 (0.07) 18 1.89 - 0.2883 (0.06) 5 2.36 -
c-box 0.3174 (0.07) 100 1.90 2.2e-3 0.2876 (0.06) 5 1.92 3.8e-3

of the norms on real datasets. We observe a subset of the (user, rating) entries of a matrix

and the task is to predict the unobserved ratings, with the assumption that the true matrix

is low rank (or approximately low rank). In the first instance we considered the MovieLens

datasets2. These consist of user ratings of movies, the ratings are integers from 1 to 5, and

all users have rated a minimum number of 20 films. Specifically we considered the following

datasets:

• MovieLens 100k: 943 users and 1,682 movies, with a total of 100,000 ratings;

• MovieLens 1M: 6,040 users and 3,900 movies, with a total of 1,000,209 ratings.

We also considered the Jester 3 datasets, which consist of user ratings of jokes, where the

ratings are real values from −10 to 10:

• Jester 1: 24,983 users and 100 jokes, all users have rated a minimum of 36 jokes;

• Jester 2: 23,500 users and 100 jokes, all users have rated a minimum of 36 jokes;

• Jester 3: 24,938 users and 100 jokes, all users have rated between 15 and 35 jokes.

Following Toh and Yun (2011), for MovieLens we uniformly sampled ρ= 50% of the available

entries for each user for training, and for Jester 1, Jester 2 and Jester 3 we sampled 20, 20

and 8 ratings per user respectively, and we again used 10% for validation. The error was

measured as normalized mean absolute error,

NMAE =
‖wtrue−wpredicted‖2

#observations/(rmax− rmin) ,

2MovieLens datasets are available at http://grouplens.org/datasets/movielens/.
3Jester datasets are available at http://goldberg.berkeley.edu/jester-data/.
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Table 4.3: Matrix completion on real datasets, without (left) and with (right) thresholding.

dataset norm test error r k a test error r k a

MovieLens trace 0.2034 87 - - 0.2017 13 - -
100k el.net 0.2034 87 - - 0.2017 13 - -
ρ= 50% k-sup 0.2031 102 1.00 - 0.1990 9 1.87 -

box 0.2035 943 1.00 1e-5 0.1989 10 2.00 1e-5

MovieLens trace 0.1821 325 - - 0.1790 17 - -
1M el.net 0.1821 319 - - 0.1789 17 - -
ρ= 50% k-sup 0.1820 317 1.00 - 0.1782 17 1.80 -

box 0.1817 3576 1.09 3e-5 0.1777 19 2.00 1e-6

Jester 1 trace 0.1787 98 - - 0.1752 11 - -
20 per line el.net 0.1787 98 - - 0.1752 11 - -

k-sup 0.1764 84 5.00 - 0.1739 11 6.38 -
box 0.1766 100 4.00 1e-6 0.1726 11 6.40 2e-5

Jester2 trace 0.1767 98 - - 0.1758 11 - -
20 per el.net 0.1767 98 - - 0.1758 11 - -
line k-sup 0.1762 94 4.00 - 0.1746 11 4.00 -

box 0.1762 100 4.00 2e-6 0.1745 11 4.50 5e-5

Jester 3 trace 0.1988 49 - - 0.1959 3 - -
8 per line el.net 0.1988 49 - - 0.1959 3 - -

k-sup 0.1970 46 3.70 - 0.1942 3 2.13 -
box 0.1973 100 5.91 1e-3 0.1940 3 4.00 8e-4

where rmax and rmin are upper and lower bounds for the ratings (Toh and Yun, 2011),

averaged over 50 runs. The results are outlined in Table 4.3. In the thresholding case, the

spectral box-norm and the spectral k-support norm showed the best performance, and in the

absence of thresholding, the spectral k-support norm showed slightly improved performance.

Comparing to the synthetic datasets, this suggests that the parameter a did not provide any

benefit in the absence of noise. We also note that without thresholding our results for trace

norm regularization on MovieLens 100k agreed with those in Jaggi and Sulovsky (2010).

Multitask Learning (Lenk and Animals with Attributes). In our final set of experiments

we considered two multitask learning datasets, where we expected the data to exhibit

clustering. The Lenk personal computer dataset (Lenk et al., 1996) consists of 180 ratings of

20 profiles of computers characterized by 14 features (including a bias term). The clustering

is suggested by the assumption that users are motivated by similar groups of features. We

used the root mean square error of true vs. predicted ratings, normalised over the tasks,

averaged over 100 runs. We also report on the Frobenius norm, which in the multitask

learning framework corresponds to independent task learning. The results are outlined

in Table 4.4. The centered versions of the spectral k-support norm and spectral box-norm

outperformed the other penalties in all regimes. Furthermore, the results clearly indicate the

importance of centering, as discussed for the trace norm in Evgeniou et al. (2007).

The Animals with Attributes dataset (Lampert et al., 2009) consists of 30,475 images of

animals from 50 classes. Along with the images, the dataset includes pre-extracted features
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Table 4.4: Multitask learning clustering on Lenk dataset.

norm test error k a

fr 3.7931 (0.07) - -
trace 1.9056 (0.04) - -
el.net 1.9007 (0.04) - -
k-sup 1.8955 (0.04) 1.02 -
box 1.8923 (0.04) 1.01 5.5e-3
c-fr 1.8634 (0.08) - -
c-trace 1.7902 (0.03) - -
c-el.net 1.7897 (0.03) - -
c-k-sup 1.7777 (0.03) 1.89 -
c-box 1.7759 (0.03) 1.12 8.6e-3

for each image. The dataset has been analyzed in the context of multitask learning. We

followed the experimental protocol from Kang et al. (2011), however we used an updated

feature set, and we considered all 50 classes. Specifically, we used the DeCAF feature set

provided by Lampert et al. (2009) rather than the SIFT bag of word descriptors. These

updated features were obtained through a deep convolutional network and represent each

image by a 4,096-dimensional vector (Donahue et al., 2014). As the smallest class size is 92

we selected the first n= 92 examples of each of the T = 50 classes, used PCA (with centering)

on the resulting data matrix to reduce dimensionality (d = 1,718) retaining a variance of

95%, and obtained a dataset of size 4,600×1,718. For each class the examples were split

into training, validation and testing datasets, with a split of 50%, 25%, 25% respectively, and

we averaged the performance over 50 runs.

We used the logistic loss, yielding the error term

L(W ) =
T∑
t=1

Tn∑
i=1

log(1 + exp(−yt,i〈wt | xi〉))

where W = [w1, . . . ,wT ], x1, . . . ,xTn are the inputs and yt,i = 1 if xi is in class t, and yt,i =−1

otherwise.

The predicted class for testing example x was argmaxTt=1 〈wt | x〉 and the accuracy was

measured as the percentage of correctly classified examples, also known as multi-class

error. The results without centering are outlined in Table 4.5. The corresponding results

with centering showed the same relative performance, but worse overall accuracy, which is

reasonable as the data is not expected to be clustered, and we omit the results here.

The spectral k-support and box-norms gave the best results, outperforming the Frobenius

norm and the matrix elastic net, which in turn outperformed the trace norm. We highlight that

in contrast to the Lenk experiments, the Frobenius norm, corresponding to independent task

learning, was competitive. Furthermore, the optimal values of k for the spectral k-support

norm and spectral box-norm were high (38 and 33, respectively) relative to the maximum
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Table 4.5: Multitask learning clustering on Animals with Attributes dataset, no centering.

norm test error k a

fr 38.3428 (0.74) - -
tr 37.4285 (0.76) - -
el.net 38.2857 (0.73) - -
k-sup 38.8571 (0.71) 37.8 -
box 38.9100 (0.65) 32.8 2.1e-2

rank of 50, corresponding to a relatively high rank solution. The spectral k-support norm

and spectral box-norm nonetheless outperformed the other regularizers. Notice also that the

spectral k-support norm requires the same number of parameters to be tuned as the matrix

elastic net, which suggests that it somehow captures the underlying structure of the data in a

more appropriate manner.

We finally note as an aside that using the SIFT bag of words descriptors provided by

Lampert et al. (2009), which represent the images as a 2,000-dimensional histogram of

local features, we replicated the results for independent task learning (Frobenius norm

regularization) and single-group learning (trace norm regularization) of Kang et al. (2011)

for the subset of 20 classes considered in their paper.

4.6 Discussion

In this chapter we extended the vector k-support and box-norms to orthogonally invariant

matrix norms, we presented a number of theoretical results as well as experiments showing

the performance of the norms as regularizers. In this section we outline a number of exten-

sions to the norms discussed in this chapter. The first two topics we address in subsequent

chapters, so we do not elaborate here.

4.6.1 The k-support p-norm

A natural extension of the k-support norm follows by applying a p-norm, rather than the

Euclidean norm, in the infimal convolution definition of the k-support norm. We investigate

this in Chapter 5.

4.6.2 The tensor k-support norm

The k-support norm can further be extended to low rank tensor learning by restricting the

rank of the matricizations of a tensor. We discuss this in Chapter 6.

4.6.3 Kernels

The ideas discussed in this chapter can be used in the context of multiple kernel learning in a

natural way (see e.g. Micchelli and Pontil, 2007, and references therein). Let Kj , j ∈ Ns, be

prescribed reproducing kernels on a set X , and Hj the corresponding reproducing kernel
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Hilbert spaces with norms ‖ · ‖j . We consider the problem

min
{

n∑
i=1

`
(
yi,

s∑
`=1

f`(xi)
)

+λ
∥∥(‖f1‖1, . . . ,‖fs‖s

)∥∥2
Θ

∣∣∣ f1 ∈H1, . . . ,fs ∈Hs

}
.

The choice Θ =
{
θ ∈ Rd

∣∣ 0< θi ≤ 1,
∑d
i=1 θi ≤ k

}
, when k ≤ s, is particularly interesting. It

gives rise to a version of multiple kernel learning in which at least k kernels are employed.

4.6.4 Rademacher complexity

We briefly comment on the Rademacher complexity of the spectral k-support norm, namely

E sup
‖W‖(k)≤1

1
Tn

T∑
t=1

n∑
i=1

εti
〈
wt | xti

〉
where the expectations is taken with respect to i.i.d. Rademacher random variables εti,

i ∈ Nn, t ∈ NT and the xti are either prescribed or random datapoints associated with the

different regression tasks. The Rademacher complexity can be used to derive uniform

bounds on the estimation error and excess risk bounds (see Bartlett and Mendelson, 2002;

Koltchinskii and Panchenko, 2002, for a discussion). Although a complete analysis is beyond

the scope of this thesis, we remark that the Rademacher complexity of the unit ball of the

spectral k-support is a factor of
√
k larger than the Rademacher complexity bound for the

trace norm provided in Maurer and Pontil (Proposition 6 2013). This follows from the fact

that the dual spectral k-support norm is bounded by
√
k times the operator norm. Of course

the unit ball of the spectral k-support norm contains the unit ball of the trace norm, so the

associated excess risk bounds need to be compared with care.





Chapter 5

The (k,p)-Support Norm

In Chapter 3 we discussed the Θ-norm, defined as the square root of an infimum of quadratics,

and which captures a wide range of penalties by tuning the parameter set Θ. In Section 3.4

we generalized this notion to the Θ p-norm, which features a p-th power in the objective

of the primal norm, and the corresponding Hölder conjugate power in the dual norm. A

particular instance of the Θ-norm that we studied was the k-support norm. In the matrix

setting in particular, the norm has good estimation properties, as we showed for low rank

matrix completion and multitask learning problems in Section 4.5.

In this chapter, we introduce the (k,p)-support norm, which we show is an instance of

the Θ p-norm. An interesting property of the norm is that it interpolates between the `1 norm

(for k = 1) and the `p-norm (for k = d). It follows that varying both k and p the norm allows

one to learn sparse vectors which exhibit different patterns of decay in the non-zero elements.

The (k,p)-support norm is a symmetric gauge function, hence it induces the orthogonally

invariant spectral (k,p)-support norm. This interpolates between the trace norm (for k = 1)

and the Schatten p-norms (for k = d), and its unit ball has a simple geometric interpretation

as the convex hull of matrices of rank no greater than k and Schatten p-norm no greater than

one. This suggests that the new norm favors low rank structure and the effect of varying p

allows different patterns of decay patterns in the spectrum, allowing the model to adapt to a

variety of decay patterns of the singular values. We explicitly compute the norm, we provide

a conditional gradient method to solve regularization problems with the penalty, and we

derive an efficient algorithm to compute the Euclidean projection on the unit ball in the case

p =∞. In numerical experiments, we show that allowing p to vary significantly improves

performance over the spectral k-support norm on various matrix completion benchmarks,

and better captures the spectral decay of the underlying model.

This chapter is organized as follows. In Section 5.1 we introduce the (k,p)-support norm.

In Section 5.2 we compute the norm and in Section 5.3 we describe how to solve Ivanov

regularization problems using the vector and matrix (k,p)-support norms. Finally in Section
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5.4 we apply the spectral norm to matrix completion problems.

5.1 Extending the k-Support Norm
Recall that for every k ∈ Nd, the k-support norm ‖ · ‖(k) is defined as the norm whose unit

ball is given by

co
{
w ∈ Rd

∣∣ card(w)≤ k,‖w‖2 ≤ 1
}
, (5.1)

that is, the convex hull of the set of vectors of cardinality at most k and `2-norm no greater

than one (Argyriou et al., 2012). Equivalently, the k-support norm of a vector w ∈ Rd can be

expressed as an infimal convolution (Rockafellar, 1970, p. 34),

‖w‖(k) = inf
(vg)

{∑
g∈Gk

‖vg‖2
∣∣∣ ∑
g∈Gk

vg = w

}
, (5.2)

where Gk is the collection of all subsets of Nd containing at most k elements and the infimum

is over all vectors vg ∈ Rd such that supp(vg)⊂ g, for g ∈ Gk. Furthermore, the dual norm

has a simple form, namely the `2-norm of the k largest components,

‖u‖(k),∗ =

√√√√ k∑
i=1

(|u|↓i )2, u ∈ Rd, (5.3)

where |u|↓ is the vector obtained from u by reordering its components so that they are

nonincreasing in absolute value (Argyriou et al., 2012).

Recall that a norm is orthogonally invariant if and only if it is of the form ‖W‖= g(σ(W )),

where σ(W ) is the vector formed by the singular values of W , and g is a symmetric gauge

function (Von Neumann, 1937). As the set Gk includes all subsets of size k, ‖ · ‖(k) is a

symmetric gauge function and we used this fact to introduce the spectral k-support norm for

matrices in Chapter 4, by defining ‖W‖(k) = ‖σ(W )‖(k), for W ∈ Rd×m.

We can now introduce the (k,p)-support norm. This follows by applying the `p-norm,

rather than the Euclidean norm, in the infimal convolution definition of the norm (5.2).

Definition 74. Let k ∈Nd and p ∈ [1,∞]. The (k,p)-support norm of a vector w ∈Rd is defined

as

‖w‖(k,p) = inf
(vg)

{∑
g∈Gk

‖vg‖p
∣∣∣ ∑
g∈Gk

vg = w

}
. (5.4)

where the infimum is over all vectors vg ∈ Rd such that supp(vg)⊂ g, for g ∈ Gk.

Let us note that the norm is well defined. Indeed, positivity, homogeneity and non
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degeneracy are immediate. To prove the triangle inequality, let w,w′ ∈ Rd. For any ε > 0

there exist {vg} and {v′g} such that w =
∑
g vg, w

′ =
∑
g v
′
g,
∑
g ‖vg‖p ≤ ‖w‖(k,p) + ε/2, and∑

g ‖v′g‖p ≤ ‖w′‖(k,p) + ε/2. As
∑
g vg +

∑
g v
′
g = w+w′, we have

‖w+w′‖(k,p) ≤
∑
g

‖vg‖p+
∑
g

‖v′g‖p

≤ ‖w‖(k,p) +‖w′‖(k,p) + ε,

and the result follows by letting ε tend to zero.

Note that, since a convex set is equivalent to the convex hull of its extreme points,

Definition 74 implies that the unit ball of the (k,p)-support norm, denoted by Cpk , is given

by the convex hull of the set of vectors with cardinality no greater than k and `p-norm no

greater than 1, that is

Cpk = co
{
w ∈ Rd

∣∣ card(w)≤ k,‖w‖p ≤ 1
}
. (5.5)

Definition 74 gives the norm as the solution of a variational problem. Its explicit

computation is not straightforward in the general case, however for p= 1 the unit ball (5.5)

does not depend on k and is always equal to the `1 unit ball. Thus, the (k,1)-support norm

is always equal to the `1-norm, and we do not consider further this case in this section.

Similarly, for k = 1 we recover the `1-norm for all values of p. For p=∞, from the definition

of the dual norm it is not difficult to show that ‖ · ‖(k,p) = max{‖ · ‖∞,‖ · ‖1/k}. We return to

this in Section 5.2 when we describe how to compute the norm for all values of p.

Note further that in Equation (5.4), as p tends to∞, the `p-norm of each vg is increasingly

dominated by the largest component of vg. As the variational formulation tries to identify

vectors vg with small aggregate `p-norm, this suggests that higher values of p encourage each

vg to tend to a vector whose k entries are equal. In this manner varying p allows us adjust

the degree to which the components of vector w can be clustered into (possibly overlapping)

groups of size k.

As in the case of the k-support norm, the dual (k,p)-support norm has a simple expression.

Recall that the dual norm of a vector u ∈ Rd is defined by the optimization problem

‖u‖(k,p),∗ = max
{
〈u | w〉

∣∣ ‖w‖(k,p) = 1
}
. (5.6)

Proposition 75. If p ∈ (1,∞] then the dual (k,p)-support norm is given by

‖u‖(k,p),∗ =

∑
i∈Ik

|ui|q
 1

q

, u ∈ Rd,
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where q = p/(p−1) and Ik ⊂Nd is the set of indices of the k largest components of u in absolute

value. Furthermore, if p ∈ (1,∞) and u ∈ Rd\{0} then the maximum in (5.6) is attained for

wi =

sign(ui)
(

|ui|
‖u‖(k,p),∗

) 1
p−1

if i ∈ Ik,

0 otherwise.
(5.7)

If p=∞ the maximum is attained for

wi =


sign(ui) if i ∈ Ik,ui 6= 0,

λi ∈ [−1,1] if i ∈ Ik,ui = 0,

0 otherwise.

Proof. The proof follows by computing the dual norm, and using Hölder’s inequality. See

Appendix D.

Note that for p= 2 we recover the dual of the k-support norm in (5.3).

5.1.1 The (k,p)-support norm as a Θ-norm

In Section 3.4 we presented the Θ p-norm. Using that framework we can express the

(k,p)-support norm as follows.

Lemma 76 (The (k,p)-support norm is a Θ p-norm.). Let p,q ∈ [1,∞] satisfy 1
p + 1

q = 1.

Let Θ =
{
θ ∈ Rd

∣∣ 0< θi ≤ 1,
∑d
i=1 θi ≤ k

}
. The (k,p)-support norm and its dual norm are

respectively given, for w,u ∈ Rd, by

‖w‖(k,p) =
(

inf
θ∈Θ

d∑
i=1

|wi|p

θp−1
i

) 1
p

, (5.8)

‖u‖(k,p),∗ =
(

sup
θ∈Θ

d∑
i=1

θi|ui|q
) 1
q

. (5.9)

Proof. We first show that the dual norms are equivalent. Assume without loss of generality

that the components of u are nonnegative, and ordered nonincreasing, that is u1≥ . . .≥ud≥ 0.

By inspection the solution to (5.9) is given by choosing θ1 = . . . = θk = 1, and setting the

remaining components to zero, and we recover the `q-norm of the k largest components

of u, that is the dual of the (k,p)-support norm. It follows that that primal norms are also

equivalent and we are done.

This characterization shows that the (k,p)-support norm fits naturally within the frame-

work of the Θ p-norms.
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5.1.2 The spectral (k,p)-support norm

From Definition 74 it is clear that the (k,p)-support norm is a symmetric gauge function. This

follows since Gk contains all groups of cardinality k and the `p-norms only involve absolute

values of the components. Hence we can define the spectral (k,p)-support norm as

‖W‖(k,p) = ‖σ(W )‖(k,p), W ∈ Rd×m.

Since the dual of any orthogonally invariant norm is given by ‖ · ‖∗ = ‖σ(·)‖∗, see e.g.

Lewis (1995), we conclude that the dual spectral (k,p)-support norm is given by

‖Z‖(k,p),∗ = ‖σ(Z)‖(k,p),∗, Z ∈ Rd×m.

The next result characterizes the unit ball of the spectral (k,p)-support norm. Due to the

relationship between an orthogonally invariant norm and its corresponding symmetric gauge

function, we see that the cardinality constraint for vectors generalizes in a natural manner to

the rank operator for matrices.

Proposition 77. The unit ball of the spectral (k,p)-support norm is the convex hull of the set of

matrices of rank at most k and Schatten p-norm no greater than one.

In particular, if p=∞, the dual vector norm is given by u∈Rd, by ‖u‖(k,∞),∗=
∑k
i=1 |u|

↓
i .

Hence, for any Z ∈ Rd×m, the dual spectral norm is given by ‖Z‖(k,∞),∗ =
∑k
i=1σi(Z), that

is the sum of the k largest singular values, which is also known as the Ky-Fan k-norm, see e.g.

Bhatia (1997).

Proof. The proof follows by the Minkowski functional construction of Lemma 36, see Ap-

pendix D.

5.2 Computing the Norm
In this section we compute the norm, illustrating how it interpolates between the `1 and

`p-norms.

Theorem 78. Let p ∈ (1,∞). For every w ∈ Rd, and k ≤ d, it holds that

‖w‖(k,p) =
[∑̀
i=1

(|w|↓i )
p+
(∑d

i=`+1 |w|
↓
i

q
√
k− `

)p] 1
p

(5.10)

where 1
p + 1

q = 1, and for k = d, we set `= d, otherwise ` is the largest integer in {0, . . . ,k−1}
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satisfying

(k− `)|w|↓` ≥
d∑

i=`+1
|w|↓i . (5.11)

Furthermore, the norm can be computed in O(d logd) time.

Proof. (Sketch) We compute ‖w‖(k,p) as max
{∑d

i=1uiwi
∣∣ ‖u‖(k,p),∗ ≤ 1

}
, or equivalently

max
{
k−1∑
i=1

uizi+uk

d∑
i=k

zi

∣∣∣ k∑
i=1

uqi ≤ 1,u1 ≥ ·· · ≥ uk

}
, (5.12)

where zi = |w|↓i , and we obtain a k-dimensional problem. We use Hölder’s inequality to

find that the components of the maximizer u satisfy ui = (zi/Mk−1)p−1 if i ≤ k− 1, and

uk =
(∑d

i=`+1 zi/Mk−1
)p−1, where for every ` ∈ {0, . . . ,k− 1}, M` denotes the r.h.s. in

equation (5.10). The ordering constraints are satisfied if inequality (5.11) holds for `= k−1.

If this inequality is true we are done, otherwise we set uk = uk−1 and solve the lower

dimensional equivalent of problem (5.12) in the same fashion. Solving the general case in

this manner leads to (5.11). The computational complexity follows from the fact that M` is a

nondecreasing function of ` and using binary search.

Note that for k = d we recover the `p-norm and for p= 2 we recover the result in Section

3.3.

Remark 79 (Computation of the norm for p ∈ {1,∞}). Since the norm ‖ · ‖(k,p) computed

above for p ∈ (1,∞) is continuous in p, the special cases p= 1 and p=∞ can be derived by a

limiting argument. We readily see that for p= 1 the norm does not depend on k and it is always

equal to the `1-norm, in agreement with our observation in the previous section. For p=∞ we

obtain that ‖w‖(k,∞) = max(‖w‖∞,‖w‖1/k).

5.3 Optimization
In this section, we describe how to solve Ivanov regularization problems using the vector and

matrix (k,p)-support norms. We consider the constrained optimization problem

min
{
f(w)

∣∣ ‖w‖(k,p) ≤ α}, (5.13)

where w is in Rd or Rd×m, α > 0 is a regularization parameter and the error function f is

assumed to be convex and continuously differentiable.

A convenient tool to solve problem (5.13) is provided by the Frank-Wolfe method (Frank

and Wolfe, 1956), see also Jaggi (2013) for a recent account. The method is outlined in
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Algorithm 3 Frank-Wolfe algorithm.

Choose w(0) such that ‖w(0)‖(k,p) ≤ α
for t= 0, . . . ,T do

Compute g :=∇f(w(t))
Compute s := argmin

{
〈s | g〉

∣∣ ‖s‖(k,p) ≤ α}
Update w(t+1) := (1−γ)w(t) +γs, for γ := 2

t+2
end for

Algorithm 3, and it has worst case convergence rate O(1/T ). The key step of the algorithm is

to solve the subproblem

argmin
{
〈s | g〉

∣∣ ‖s‖(k,p) ≤ α}, (5.14)

where g =∇f(w(t)), that is the gradient of the objective function at the t-th iteration. This

problem involves computing a subgradient of the dual norm at g. It can be solved exactly and

efficiently as a consequence of Proposition 75. We discuss here the vector case and postpone

the discussion of the matrix case to Section 5.3.2. By symmetry of the `p-norm, problem

(5.14) can be solved in the same manner as the maximum in Proposition 75 and the solution

is given by si =−αwi, where wi is given by (5.7) .

Specifically, letting Ik ⊂ Nd be the set of indices of the k largest components of g in

absolute value, for p ∈ (1,∞) we have

si =

αsign(gi)
(

|gi|
‖g‖(k,p),∗

) 1
p−1

, if i ∈ Ik

0, if i /∈ Ik
(5.15)

and, for p=∞ we choose the subgradient

si =

αsign(gi) if i ∈ Ik, gi 6= 0,

0 otherwise.
(5.16)

5.3.1 Projection operator

An alternative method to solve (5.13) in the vector case is to consider the equivalent Tikhonov

problem

min
{
f(w) + δ{‖·‖(k,p)≤α}(w)

∣∣∣ w ∈ Rd
}
, (5.17)

where δC(·) is the indicator function of the convex set C, and use proximal gradi-

ent methods, as discussed in earlier chapters. The problem is of the general form

min
{
f(w) +λg(w)

∣∣ w ∈ Rd
}

, where f is a convex loss function with Lipschitz continuous
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gradient, and λ > 0 is a regularization parameter.

In the special case that g(w) = δC(w), where C is a convex set, the proximity operator

reduces to the projection operator onto C, see (2.9). For the case p=∞ of the (k,p)-support

norm, we can compute the projection onto the unit ball using the following result.

Proposition 80. For every w ∈ Rd, the projection x of w onto the unit ball of the (k,∞)-norm

is given by

xi =

sign(wi)(|wi|−β), if ||wi|−β| ≤ 1,

sign(wi), if ||wi|−β|> 1,
(5.18)

where β = 0 if ‖w‖1 ≤ k, otherwise β ∈ (0,∞) is chosen to maximize
∑d
i=1 |xi| subject to the

constraint
∑d
i=1 |xi| ≤ k. Furthermore, the projection can be computed in O(d logd) time.

Proof. (Sketch) We assume without loss of generality that the components of w are non zero.

We solve the optimization problem

min
x∈Rd

{
d∑
i=1

(xi−wi)2
∣∣∣ |xi| ≤ 1,

d∑
i=1
|xi| ≤ k

}
. (5.19)

We consider two cases. If
∑d
i=1 |wi| ≤ k, then the problem decouples and we solve it

componentwise. If
∑d
i=1 |wi| > k, we solve problem (5.19) by minimizing the Lagrangian

function L(x,β) =
∑d
i=1(xi−wi)2 +2β(

∑d
i=1 |xi|−k) with nonnegative multiplier β, which

can be done componentwise. Finally, both cases can be combined into the form of (5.18).

The complexity follows by taking advantage of the monotonicity of xi(β).

We can use Proposition 80 to project onto the unit ball of radius α > 0 by a rescaling

argument.

Remark 81. In order to project onto the unit ball of radius α > 0, we solve the optimization

problem min
{∑d

i=1(xi−wi)2
∣∣∣ x ∈ Rd, |xi| ≤ α,

∑d
i=1 |xi| ≤ αk

}
. To do so, we make the

change of variables x′i = xi/α and note that the problem reduces to computing the projection x′

of w′ onto the unit ball of the norm, where w′i = wi/α, which is the problem that was solved

in (5.19). Once this is done, our solution is given by xi = αx′i(β), where x′(β) is determined in

accordance with Proposition 80.

5.3.2 Matrix problem

Given data matrix X ∈ Rd×m for which we observe a subset of entries, we consider the

constrained optimization problem

min
W∈Rd×m

{
‖Ω(X)−Ω(W )‖F

∣∣ ‖W‖(k,p) ≤ α} (5.20)
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where the operator Ω applied to a matrix sets unobserved values to zero. As in the vector case,

the Frank-Wolfe method can be applied to the matrix problems. Algorithm 3 is particularly

convenient in this case as we only need to compute the largest k singular values, which

can result in a computationally efficient algorithm. The result is a direct consequence of

Proposition 75 and von Neumann’s trace inequality (Theorem 7). Specifically, we solve the

optimization problem

min
S

{
〈S |G〉

∣∣ ‖S‖(k,p) ≤ α},
where G is the gradient of the objective function at the t-th iteration. Equivalently we

consider

max
R

{
〈R |G〉

∣∣ ‖R‖(k,p) ≤ α},
where R=−S. The solution is given by

R= Ukdiag(r)V >k

where Uk and Vk are the top k left and right singular vectors of the gradient G of the objective

function in (5.20) evaluated at the current solution, whose singular values we denote by g,

and r is obtained from g as

ri =

α
(

gi
‖g‖(k,p),∗

) 1
p−1

, if i ∈ Ik

0, if i /∈ Ik
(5.21)

and, for p=∞

ri =

α if i ∈ Ik, gi 6= 0,

0 otherwise
(5.22)

for p ∈ (1,∞) and p=∞, respectively, where Ik = [1, . . . ,k]. It follows that a subgradient for

the matrix problem is R=−Ukdiag(s)V >k .

Note also that the proximity operator of the norm and the Euclidean projection on

the associated unit ball both require the full singular value decomposition to be performed.

Indeed, recall that the proximity operator of an orthogonally invariant norm ‖ · ‖= g(σ(·))

at W ∈ Rd×m is given by prox‖·‖(W ) = Udiag(proxg(σ(W )))V >, where U and V are the

matrices formed by the left and right singular vectors of W , see e.g. Argyriou et al. (2011,

Prop. 3.1), and this requires the full decomposition.
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Table 5.1: Matrix completion on synthetic datasets with decaying spectrum. The improvement of the
(k,p)-support norm over the k-support norm is statistically significant at a level < 0.001.

dataset norm test error k p

rank 5 trace 0.8184 (0.03) - -
ρ=10% k-supp 0.8036 (0.03) 3.6 -

kp-supp 0.7831 (0.03) 1.8 7.3

rank 5 trace 0.4085 (0.03) - -
ρ=20% k-supp 0.4031 (0.03) 3.1 -

kp-supp 0.3996 (0.03) 2.0 4.7

rank 10 trace 0.6356 (0.03) - -
ρ=20% k-supp 0.6284 (0.03) 4.4 -

kp-supp 0.6270 (0.03) 2.0 4.4

5.4 Numerical Experiments
In this section we apply the spectral (k,p)-support norm to matrix completion (collaborative

filtering problems), in which we want to recover a low rank, or approximately low rank,

matrix from a small sample of its entries, see e.g. Jaggi and Sulovsky (2010). One prominent

method of solving this problem is trace norm regularization: we look for a matrix which

closely fits the observed entries and has a small trace norm (Jaggi and Sulovsky, 2010;

Mazumder et al., 2010; Toh and Yun, 2011). In Chapter 4 we showed that the spectral

k-support norm can outperform the trace norm in some applications. We now apply the

(k,p)-support norm to this framework and we investigate the impact of varying p, and we

compare the spectral (k,p)-support norm to the trace norm and the spectral k-support norm

(p= 2) in both synthetic and real datasets. In each case, we solve the optimization problem

(5.20) using the Frank-Wolfe method as outlined in Section 5.3. We determine the values of

k and p≥ 1 by validation, averaged over a number of trials.

Impact of p. A key motivation for the additional parameter p is that it allows us to tune

the norm to the decay of the singular values of the underlying matrix. In particular the

variational formulation of (5.4) suggests that as the spectrum of the true low rank matrix

flattens out, larger values of p should be preferred.

We ran the method on a set of 100×100 matrices of rank 12, with decay of the non zero

singular values σ` proportional to exp(−`a), for 26 values of a between 10−6 and 0.18, and

we determined the corresponding optimal value of p. Figure 5.1 illustrates the optimum

value of p as a function of a. We clearly observe the negative slope, that is the steeper the

slope the smaller the optimal value of p. Figure 5.2 shows the spectrum and the optimal p for

several decay values.

Note that k is never equal to 1, which is a special case in which the norm is independent of

p, and is equal to the trace norm. In each case the improvement of the spectral (k,p)-support

norm over the k-support and trace norms is statistically significant at a level < 0.001.
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Figure 5.1: Optimal p vs. decay a, optimal k selected by validation.
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Figure 5.2: Optimal p fitted to matrix spectra with various decays.

Figure 5.3 illustrates the impact of the curvature p on the test error on synthetic and

real datasets. We observe that the error levels off as p tends to infinity, so for these specific

datasets the major gain is to be had for small values of p. The optimum value of p for both

the real and synthetic datasets is statistically different from p= 2 (k-support norm), and p= 1

(trace norm).

Simulated Data. We replicated the experimental setting of Chapter 4 for synthetic matrix

completion, see also McDonald et al. (2014b). Each 100× 100 matrix is generated as

W = UV >+E, where U,V ∈ R100×r, r � 100, and the entries of U , V and E are i.i.d.

standard Gaussian. The error is measured as ‖true−predicted‖2/‖true‖2, standard deviations

are shown in brackets and the mean values of k and p are selected by validation. Table 5.1

illustrates the results. We found that the (k,p)-support norm outperformed the standard

k-support norm, as well as the trace norm, at a statistically significant level.

We note that although Frank Wolfe method for the (k,p)-support norm does not generally

converge as quickly as proximal methods (which are available in the case of the k-support
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Table 5.2: Matrix completion on real datasets. The improvement of the (k,p)-support norm over the
k-support and trace norms is statistically significant at a level < 0.001.

dataset norm test error k p

MovieLens trace 0.2017 - -
100k k-supp 0.1990 1.9 -

kp-supp 0.1971 2.0 3.0

Jester 1 trace 0.1752 - -
k-supp 0.1739 6.4 -
kp-supp 0.1731 2.0 6.5

Jester 3 trace 0.1959 - -
k-supp 0.1942 2.1 -
kp-supp 0.1924 5.0 5.0

norm as discussed in Chapter 3), the computational cost can be mitigated using a continuation

method. Specifically given an ordered sequence of parameter values for p we can proceed

sequentially, initializing its value based on the previously computed value. Empirically we

tried this approach for a range of values of p and found that the total computation time

increased only moderately.

Real Data. Finally, we applied the norms to real collaborative filtering datasets. We observe

a subset of the (user, rating) entries of a matrix and predict the unobserved ratings, with

the assumption that the true matrix is likely to have low rank. We report on the MovieLens

100k dataset (http://grouplens.org/datasets/movielens/), which consists of ratings of movies,

and the Jester 1 and 3 datasets (http://goldberg.berkeley.edu/jester-data/), which consist of

ratings of jokes. Following McDonald et al. (2014b); Toh and Yun (2011), for MovieLens for

each user we uniformly sampled ρ= 50% of available entries for training, and for Jester 1

and Jester 3 we sampled 20, respectively 8 ratings per user, using 10% for validation. We

used normalized mean absolute error,

NMAE = ‖true−predicted‖2

#obs./(rmax− rmin) ,

where rmin and rmax are lower and upper bounds for the ratings (Toh and Yun, 2011), and

we implemented a final thresholding step as in McDonald et al. (2014b).

The results are outlined in Table 5.2. The spectral (k,p)-support outperformed the trace

norm and the spectral k-support norm, and the improvement is statistically significant at a

level < 0.001 (the standard deviations, not shown here, are of the order of 10−5). In summary,

the experiments suggest that the additional flexibility of the p parameter indeed allows the

model to better fit both the sparsity and the decay of the true spectrum.
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Figure 5.3: Test error vs. curvature (p). Left axis: synthetic data (blue crosses); right axis: Jester 1
dataset (red circles).

5.5 Discussion
We presented a generalization of the k-support norm, the (k,p)-support norm, where the

additional parameter p is used to better fit the decay of the components of the underlying

model. The norm belongs to the Θ p-norm family introduced in Chapter 3. We studied its

properties and found that while the additional parameter requires us to validate over a larger

space, numerical experiments in low rank matrix completion justify the additional cost.





Chapter 6

The Tensor k-Support Norm

In previous chapters we considered the well known problems of learning a sparse vector or

a low rank matrix. A related problem which increasingly is being explored in recent years

is learning a tensor from a set of linear measurements. Applications include collaborative

filtering (Karatzoglou et al., 2010), medical imaging (Gandy et al., 2011), multitask learning

(Romera-Paredes et al., 2013), video processing (Liu et al., 2009), and many more, see e.g.

the recent review by Cichocki et al. (2015) and references therein.

The number of entries of an N -way tensor grows exponentially with the number of

modes, hence it is crucial to impose prior knowledge into the learning problem in order to

avoid overfitting. In line with the approaches that we have investigated in previous chapters,

a common approach is to encourage low rank tensors via convex penalties which approximate

the rank function. However, unlike the matrix case, there are several notions of tensor rank

that one may consider (see e.g. Kolda and Bader, 2009, for a review) and it is not apparent

which one is most effective for a particular application. A natural notion of tensor rank is

that of CP-rank: the minimum number of rank one tensors, each formed by the outer product

of N vectors of the corresponding dimensions, which sum to the original tensor. In the case

m= 2 the CP-rank reduces to the standard rank of a matrix. Unfortunately computing the

CP-rank is an NP-hard problem (Hillar and Lim, 2013). A more tractable alternative, which

has been considered in a number of papers, is provided by the Tucker rank (Gandy et al.,

2011; Liu et al., 2009; Romera-Paredes and Pontil, 2013; Signoretto et al., 2014). This is the

vector composed by the rank of every matricization of a tensor.

Even though the Tucker rank can be computed efficiently (for example via the singular

value decomposition of each matricization), deriving a convex relaxation remains difficult. By

convex relaxation we mean a convex function, typically a norm, whose unit ball approximates

well the set of low rank tensors over a prescribed bounded convex set. An alternative

approach considers the convex envelope (Rockafellar, 1970) of the sum of the components

of the Tucker rank over a bounded convex set. In the latter setting Gandy et al. (2011)
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proposed a relaxation formed by the sum of the nuclear norms of each matricization of a

tensor. However, as argued by Romera-Paredes and Pontil (2013) this relaxation is not tight.

Their improved relaxation nevertheless is difficult to employ within first order optimization

algorithms, because the proximity operator cannot be computed in a finite number of steps.

Yet another approach is provided by Mu et al. (2014), however it can be applied only with

tensors of four or more modes.

In this chapter, we propose a tight convex relaxation for the Tucker rank which is linked

to the notion of the k-support norm. We consider the set defined by the convex hull of the

union of tensors whose matricizations have bounded rank.

We show that the convex hull of this set is the unit ball of a norm which we call the

tensor k-support norm, and provide the expression for the dual norm. A special case of this

formulation yields the latent tensor trace norm of Tomioka et al. (2011).

For simplicity we focus on the problem of tensor completion, that is, learning a tensor

from a subset of its entries. We present numerical experiments on one synthetic dataset and

three real datasets, which indicate that the proposed method improves significantly over the

method by Tomioka et al. (2011) (see also Tomioka and Suzuki, 2013) in terms of estimation

error, while remaining computationally efficient.

The chapter is organized as follows. In Section 6.1 we review basic concepts and

terminology for tensors. In Section 6.2 we present the tensor k-support norm and we

establish some of its basic properties. In Section 6.3 we discuss a method to solve the

corresponding regularization problem. In Section 6.4 we present our numerical experiments.

Section 6.5 contains final remarks.

6.1 Background

In this section we recall the notion of the k-support norm and introduce some basic termi-

nology from multilinear algebra. Recall from Chapter 5 that for every k ∈ {1, . . . ,d}, and for

every p ∈ [1,∞], the (k,p)-support norm ‖ · ‖(k,p) is defined as the norm whose unit ball is

given by

conv
{
w ∈ Rd

∣∣ card(w)≤ k, ‖w‖p ≤ 1
}
,

that is, the convex hull of the set of vectors of cardinality at most k and `p-norm no greater

than one. For p= 2 the norm is the standard k-support norm of Argyriou et al. (2012), and

we denote it by ‖ · ‖(k). Recall further that the dual of the (k,p)-support norm is given, for

every u ∈ Rd, by

‖u‖(k,p),∗ =
( k∑
i=1

(|u|↓i )
q

) 1
q

(6.1)
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where |u|↓ is the vector obtained from u by reordering its components so that they are

non-increasing in absolute value, and q ∈ [1,∞] is computed by the formula 1
p + 1

q = 1.

6.1.1 Multilinear algebra

We now introduce some notions from multilinear algebra. Let N be an integer greater than

one and let d1, . . . ,dN be strictly positive integers. Let W ∈ Rd1×···×dN be an N -way tensor,

that is

W =
(
Wi1,...,iN

∣∣ 1≤ i1 ≤ d1, . . . ,1≤ iN ≤ dN
)
.

A mode-n fiber is a vector formed by the elements of W obtained by fixing all indices but

those corresponding to the n-th mode. For every n ∈ {1, . . . ,N}, let Dn =
∏
6̀=n d`. The

n-th matricization of a tensor W , denoted by W (n), is the dn×Dn matrix obtained by

arranging the mode-n fibers of W such that each of them forms a column of W (n). By way of

example, a 3-way tensor W ∈ R3×4×2 admits the matricizations W (1) ∈ R3×8, W (2) ∈ R4×6,

and W (3) ∈ R2×12. We also denote by Mn : Rd1×···×dN → Rdn×Dn the linear transformation

which associates a tensor to its n-th matricization, that is, Mn(W ) = W (n). Note that the

adjoint of Mn, that is, the operator M>n : Rdn×Dn → Rd1×···×dN , is the reverse matricization

along mode n.

In contrast to the matrix setting, the rank of a tensor can be defined in a number of ways.

Two important notions are the CP-rank and Tucker-rank. The CP-rank of an N -way tensor

W ∈ Rd1×···×dN is defined as the smallest nonnegative R such that

W =
R∑
r=1

a
(r)
1 ⊗·· ·⊗a

(r)
N (6.2)

for some vectors a(r)
n ∈ Rdn , n ∈ {1, . . . ,N}, r ∈ {1, . . . ,R}. In other words, the CP-rank is

the minimum number of rank-one tensors which sum to W , where each rank-one tensor

is an outer product of N vectors of the corresponding dimensions. Computing the CP-rank

is an NP-hard problem (Hillar and Lim, 2013), hence it is a difficult notion to which to

apply a convex relaxation in order to lead to convex regularization problems. In fact, simply

computing the nuclear norm of a tensor is an NP-hard problem (Friedland and Lim, 2016).

This has motivated the study of simpler notions of tensor rank, which can be computed

efficiently and which are amenable to tractable convex relaxations. In this work we follow a

recent line of works (Gandy et al., 2011; Liu et al., 2009; Romera-Paredes and Pontil, 2013;

Signoretto et al., 2014) which employ the notion of Tucker rank. This is defined as the vector
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formed by the rank of each matricization of a tensor, that is

Tucker-rank(W ) =
(

rank(W (1)), . . . ,rank(W (N))
)
.

In the vector case, the convex relaxation of the cardinality operator, also referred to as

the `0-‘norm’, on the unit `∞-ball is the `1-norm (Fazel et al., 2001) as discussed in Chapter

2, and likewise the convex envelope of the rank function on the unit spectral-norm ball is the

nuclear norm1.

In the multilinear setting, a popular approach to learn low rank tensors is to apply

low rank matrix regularizers to the matricizations of a tensor and a number of these have

been studied. The overlapped nuclear norm2 is defined (Gandy et al., 2011; Liu et al., 2009;

Romera-Paredes and Pontil, 2013; Tomioka et al., 2011) as the sum of the nuclear norms of

the mode-n matricizations, namely

‖W ‖over =
N∑
n=1
‖Mn(W )‖nuc.

The corresponding dual norm of a tensor U is

‖U‖over,∗ = inf
{

max
1≤n≤N

‖Mn(V n)‖sp
∣∣∣ N∑
n=1

V n = U

}
.

Tomioka and Suzuki (2013) observed that the overlapped nuclear norm does not perform

well when a tensor is only low-rank in one of its modes. This motivated the authors to consider

a different norm. Specifically, let α1, . . . ,αN be strictly positive reals. The scaled latent nuclear

norm is defined by the variational problem

‖W ‖lat = inf
{

N∑
n=1

1
αn
‖Mn(V n)‖nuc

∣∣∣ N∑
n=1

V n = W

}
. (6.3)

The case αn = 1 is presented in Tomioka and Suzuki (2013), and we will refer to this as

the latent tensor trace norm. The case αn =
√
dn is presented in Wimalawarne et al. (2014).

We also observe that the dual norm of (6.3) is given, for every tensor U ∈ Rd1×···×dN by the

expression

‖U‖lat,∗ = max
1≤n≤N

αn‖Mn(U)‖sp.

We next present an extension of this formulation which is linked to the k-support norm,

and which has a natural interpretation as a convex relaxation of a set of tensors with bounded

1For consistency with the tensor literature, we refer to the norm as the nuclear norm rather than trace norm
throughout this chapter.

2Also sometimes referred to as sum of nuclear norms in Gandy et al. (2011); Mu et al. (2014) and others.
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Tucker rank.

6.2 Tensor k-Support Norm

In this section, we introduce the proposed norm and establish some of its basic properties.

Our starting point is to consider the set of tensors for which the rank of every matricization

is bounded by some value. Specifically, for each mode n ∈ {1, . . . ,N} we choose a positive

integer kn ∈ {1, . . . ,dn} which bounds the rank of the n-th matricization, a real pn ∈ [1,∞]

and we define the set

An =
{

W ∈ Rd1×···×dN
∣∣∣ rank(W (n))≤ kn,‖W (n)‖pn ≤ 1

}
(6.4)

where ‖ · ‖pn is the Schatten pn-norm of a matrix. A simpler setting is kn = k and pn = 2 for

all n ∈ {1, . . . ,N}, however for now we allow for the most general case. The sets An can be

used to construct a unit ball of a norm in two natural ways, either by considering their union

or their intersection. The latter leads to a problem which is not tractable, and which requires

approximating, hence we leave the analysis to a later date. Following the former approach,

we consider the set of tensors

C = conv
⋃
n

An, (6.5)

that is the convex hull of the set of tensors for which at least one matricization is bounded in

norm and in rank in accordance with the constraints in (6.4). The set C is bounded, convex,

balanced, and absorbing, hence by Lemma 36 it is the unit ball of a norm, which we denote

by ||| · |||. This norm is given by the Minkowski functional of the set C, that is

|||W ||| = inf
{
λ
∣∣∣ λ > 0, 1

λ
W ∈ C

}
. (6.6)

Note that the alternative of considering conv
⋂
nAn corresponds to the set of tensors for

which each matricization is bounded in norm and in rank. We do not expand further on this

construction in this work.

The next result characterizes the norm and the associated dual norm.

Proposition 82. For every tensor W ∈ Rd1×···×dN we have that

|||W |||= inf
{

N∑
n=1
‖Mn(V n)‖(kn,pn)

∣∣∣ N∑
n=1

V n = W

}
(6.7)

where the infimum is over the tensors V n ∈ Rd1×···×dN for n ∈ {1, . . . ,N}.
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Furthermore the dual norm of U ∈ Rd1×···×dN is given by

|||U |||∗ = max
1≤n≤N

‖Mn(U)‖(kn,pn),∗

Proof. To simplify our presentation we use the shorthand notation ‖W ‖[n] = ‖Mn(W )‖(kn,pn)

and ‖U‖[n],∗ = ‖Mn(U)‖(kn,pn),∗. The expression for the primal norm follows by noting that

C = conv
⋃
n

{
W ∈ Rd1×···×dN

∣∣∣ ‖W ‖[n] ≤ 1
}

and using the formula (6.6). To identify the dual norm, we note, for every U ∈ Rd1×···×dN ,

that

|||U |||∗ = sup
{
〈U |W 〉

∣∣ |||W ||| ≤ 1
}

= sup
{
〈U |W 〉

∣∣ W ∈ An, 1≤ n≤N
}

= sup
{

max
1≤n≤N

〈
U (n) |W (n)

〉 ∣∣∣ W ∈ An
}

= max
1≤n≤N

sup
{〈
U (n) |W (n)

〉 ∣∣∣ W ∈ An
}

= max
1≤n≤N

‖U (n)‖(kn,pn),∗

where, for each n ∈ {1, . . . ,N}, U (n) = Mn(U), W (n) = Mn(W ) and we have used the

fact that 〈W |U〉 =
〈
W (n) | U (n)

〉
for every n and the fact that the maximum of a linear

functional over a compact convex set is attained at an extreme point of that set (Proposition

42). The last equality follows by Equation (6.1).

At last, we note that setting kn = 1 and pn = 1, for every n ∈ {1, . . . ,N} we recover the

latent tensor trace norm presented in Tomioka and Suzuki (2013), cf. Equations (6) and (7).

6.2.1 Rademacher bound

We now give a bound on the empirical Rademacher average of the linear function class

associated with the tensor k-support norm. This quantity plays a key role in deriving uniform

bounds in empirical risk minimization, see for example Bartlett and Mendelson (2002).

Let m be a strictly positive integer. Given a set of data tensors X1, · · · ,Xm ∈ Rd1×...×dN ,

the Rademacher average of the class
{

X 7→ 〈W | X〉
∣∣ |||W ||| ≤ 1

}
is defined as

R= 2
n
Eε sup
|||W |||≤1

m∑
j=1

εj〈Xj |W 〉

where ε1, . . . , εn are i.i.d. Rademacher random variables. Note that the above expression

depends on the data tensors. In particular, in the case of tensor completion the data tensors
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are masks, each of which measures one entry in the tensor. If Ω is the set of observed entries,

the corresponding empirical Rademacher average, which we denote by RΩ, has the form

RΩ = 2
n
Eε sup
|||W |||≤1

∑
(i1,...,iN )∈Ω

εi1,...,iNWi1,...,iN .

Proposition 83. There holds the bound

R≤ 2
m

max
1≤n≤N

k
1
qn
n Eε

∥∥∥Mn

( m∑
j=1

εjXj
)∥∥∥

sp
+ 8C

√
logN
m

where qn ∈ [1,∞] satisfies 1
pn

+ 1
qn

= 1 and

C =

√√√√ Nmax
n=1

sup
‖Mn(W )‖(kn,pn)≤1

1
m

m∑
j=1
〈W | Xj〉2.

In particular for tensor completion we have

RΩ ≤ 2k∗
[

1√
m

+
√

2log(N + 1)
m

]
+ 8
√

logN
m

where k∗ = max1≤n≤N k
1
qn
n .

Proof. See Appendix E.

An interesting feature of the bound is that it depends only logarithmically on the

number of modes N , and it depends only on the maximum upper bound on the rank of

the matricizations. Using this bound one may then apply the well established technique in

Bartlett and Mendelson (2002) to derive associated risk bounds.

6.3 Optimization

In this section, we consider regularization with the tensor k-support norm. We restrict our

analysis to the case pn = 2 for all n ∈ {1, . . . ,N} as the proximity operator for the correspond-

ing vector norm is known (Chatterjee et al., 2014), but to our knowledge it is not known

in the general case pn 6= 2. Furthermore, to ease our presentation we restrict our discussion

to the setting of tensor completion, however our observations can be easily extended to

the more general problem of estimating a tensor from a set of linear measurements; an

important such case which may be studied in a future work is multilinear multitask learning

(Romera-Paredes and Pontil, 2013).

Let W ∈ Rd1×...×dN be an underlying (unknown) tensor we wish to learn. We consider
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the linear model

y = L(W ) + ξ

where L : Rd1×...×dN → Rm is a sampling operator which measures m linear functionals and

the components of the vector ξ ∈ Rm are i.i.d. zero mean noise variables, e.g. zero mean

Gaussians. In tensor completion the linear operator L samples a subset

Ω⊂ {1, . . . ,d1}× · · ·×{1, . . . ,dN}

of the tensor entries3. We also let Y ∈ Rd1×...×dN be any tensor such that L(Y ) = y.

We denote by PΩ the orthogonal projector onto the linear space formed by all tensors,

the components of which are zero outside the index set Ω. That is, for every W ∈Rd1×...×dN

and

(i1, . . . , iN ) ∈ {1, ...,d1}× · · ·×{1, ...,dN},

the (i1, . . . , iN )-component of PΩ(W ) equals to Wi1,...,iN if (i1, . . . , iN ) ∈ Ω and zero other-

wise.

We attempt to estimate the tensor by solving the Tikhonov regularization problem

minimize
W

1
2‖PΩ(W )−PΩ(Y )‖22 +λ|||W |||, (6.8)

where the norm ||| · ||| is given by equation (6.7) and λ is a positive parameter which may

be chosen by cross-validation. We see that problem (6.8) is equivalent to the problem of

minimizing the objective function

1
2

∥∥∥∥PΩ

( N∑
n=1

V n−Y
)∥∥∥∥2

2
+λ

N∑
n=1

∥∥Mn(V n)
∥∥

(kn), (6.9)

over the tensors V n ∈ Rd1×...×dN , n ∈ {1, . . . ,N}.

This optimization problem is of the general form

minimize
x∈H

f(x) +g(x) (6.10)

where x≡ (V 1, · · · ,V N ) and H is a Hilbert space (in our case finite dimensional), and can

be solved by proximal gradient methods as discussed in previous chapters. In particular, we

employ the forward-backward algorithm (Combettes and Pesquet, 2011), which consists of

3For simplicity we assume that each entry is sampled at most once.
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the iterative scheme

xt = proxsg(xt−1−s∇f(xt−1)), t ∈ N (6.11)

for some starting point x0 ∈H and step size s > 0. It is well-known that the iterates (6.11)

converge to a solution of the optimization problem (6.10) provided the function f is smooth

with L-Lipschitz continuous gradient and s ≤ 2/L. Furthermore, for such values of s, the

sequence of objective values
{
f(xt) +g(xt)

∣∣ t ∈ N
}

is monotonically non increasing (see e.g.

Combettes and Pesquet, 2011, for a review).

In our setting we need to solve the optimization problem

Minimize
V 1,...,V M

f(V 1, . . . ,V N ) +g(V 1, . . . ,V N )

where we defined

f(V 1, . . . ,V N ) = 1
2

∥∥∥∥PΩ

( N∑
n=1

V n−Y
)∥∥∥∥2

2

and

g(V 1, . . . ,V N ) = λ

N∑
n=1

∥∥M>n V n

∥∥
(kn).

Clearly the error term f is smooth. The gradient of 1
2 ||PΩ(W −Y )||2 w.r.t. W is simply given

by the tensor PΩ(W −Y ), that is the tensor, the entries of which are equal to that of W −Y

if the entry belongs to the set Ω, and zero otherwise. Using this observation we obtain, for

every n ∈ {1, . . . ,N}, the formula

∇V nf(V 1, . . . ,V N ) = PΩ

( N∑
n=1

(
V n−Y

))
.

Note also that since PΩ is an orthogonal projection, the Lipschitz constant of the gradient is

equal to 1.

Next we observe that the proximity operator of the function g at (V 1, . . . ,V N ) is given

by the concatenation of the proximity operators of the functions λ‖ · ‖(k1), . . . ,λ‖ · ‖(kN ), that

is

proxg(V 1, . . . ,V N ) =
(

proxλ‖·‖(kn)
(V n)

)
1≤n≤N .

Finally, given the proximity operator of a symmetric gauge function g, using von Neu-

mann’s trace inequality (Von Neumann, 1937) the proximity operator of its induced orthogo-

nally invariant norm ‖ · ‖= g(σ(·)) is given, for every W (n) ∈ Rdn×Dn , by the formula

proxs‖·‖(W (n)) = Udiag(proxg(σ(W (n))))V >
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where U and V are the matrices formed by the left and right singular vectors of W (n). It

follows that we can compute the proximity operator each norm ‖ · ‖kn using the formula for

the proximity operator of the vector norm, which is detailed in Chatterjee et al. (Theorem 2

2014).

At last we note that when the squared error term is replaced by a smooth function we

still have a simple expression of the gradient, and the above method can be readily applied.

On the other hand, when the error function is convex but not smooth we may solve the

regularization problem by the Douglas-Rachford optimization method (see e.g. Combettes

and Pesquet, 2011).

6.4 Experiments

In this section we report on the performance of the tensor k-support norm (ks) in low

rank tensor completion experiments. We consider the case pn = 2 for all n and compare a

range of settings for (k1, . . . ,kN ) to the latent tensor trace norm (tr) (Tomioka et al., 2011)

which corresponds to the case kn = 1 for all n ∈ {1, . . . ,N}. For the optimization we used

the proximal gradient method outlined in Section 6.3. As convergence criterion we use a

relative tolerance of 10−3 in the iterates, we average each experiment over a number of

trials and we perform a t-test at a level p < 0.001 to confirm statistical significance of the

improvements. Our goal with the experiments is to show that by tuning one or more of the kn

parameters we can improve learning relative to the trace norm. While the potential number

of combinations of parameters (k1, . . . ,kN ) is large, our aim is not to exhaustively explore

the space, but to demonstrate that for some reasonable ranges we can obtain statistically

significant improvement, without the brute force approach.

6.4.1 Simulated data

Each d×d×d tensor was generated with CP-rank R as W = A ◦B ◦C+ ξ, where each of

A,B and C is d×R, with i.i.d. standard Gaussian entries, and ξ is a tensor of i.i.d. noise

with a specified standard deviation.

We set d = 40, R ∈ {5,10} and for simplicity we considered the parameter settings

k1 = k2 = k3 = k, for k ∈ {1,2, . . . ,d}. We choose k by validation, along with the regularization

parameter λ ∈ 10(−3,−2.75,...,3). We sampled uniformly a percentage ρ ∈ {5%,10%,20%} of

the observed entries for training, used 10% for validation, and allocated the remaining entries

for testing. The errors were measured as ‖true−predicted‖/‖true‖ following Tomioka et al.

(2011), and we report the mean test error and standard deviation over 100 trials. Table 6.1

illustrates the results.

We note that the tensor k-support norm outperforms the latent trace norm and the

improvement is statistically significant. For each trial the optimal value of k identified by
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Table 6.1: Tensor completion on synthetic datasets. W ∈R40×40×40, rank r ∈ {5,10}, training set size
ρ ∈ {5%,10%,20%}. Test error and mean optimal k are shown. The improvement of ks
relative to tr is significant (p < 0.001).

Data Norm Test Err k
(STD)

rank 5 tr 0.9300 (0.0103) -
ρ= 5% ks 0.9297 (0.0105) 2.29

rank 5 tr 0.8228 (0.0172) -
ρ= 10% ks 0.8217 (0.0170) 1.91

rank 5 tr 0.6892 (0.0235) -
ρ= 20% ks 0.6891 (0.0235) 2.25

rank 10 tr 0.9603 (0.0047) -
ρ= 5% ks 0.9601 (0.0048) 2.34

rank 10 tr 0.8735 (0.0088) -
ρ= 10% ks 0.8728 (0.0087) 2.97

rank 10 tr 0.7319 (0.0130) -
ρ= 20% ks 0.7316 (0.0129) 3.85

validation is an integer, and we report their mean value.

As shown by Tomioka et al. (2011), the latent tensor trace norm outperforms the tensor

trace norm (Gandy et al., 2011; Liu et al., 2009), that is the sum of nuclear norms of the

matricizations of a tensor, in a number of tensor completion settings, so we do not compare

to this method here. We further compared the results to the Euclidean, or `2-norm, but the

performance of the latter was poor, and we do not report on it here.

6.4.2 Real datasets

Schools Dataset. We next report our empirical results on the Inner London Education Au-

thority (ILEA) dataset, Schools (http://www.bristol.ac.uk/cmm/learning/support/datasets).

This comprises examination marks between 1 and 70 of 15362 students each of whom is

described by categorical attributes. Following Romera-Paredes and Pontil (2013) we consider

five attributes, corresponding to school, ethnicity, year, gender and verbal reasoning band.

This gives rise to a sparse 5-way tensor W ∈ R139×11×3×2×3 whose values are the mean

examination mark of all students with the corresponding attributes, with a total of 3998

entries.

We uniformly sampled a training set of size ρ = 30%. We used 10% of the entries for

validation, and used the remaining entries for testing. As in the vector case, an advantage of

the tensor k-support norm is that tailoring the k parameters can allow the model to better

fit the data, at the computational cost of additional validation efforts. When the modes

of the data tensor correspond to inhomogeneous attributes, varying the corresponding kn
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Table 6.2: Tensor completion on real datasets. School exams (139×11×3×2×3), Knee MRI (256×
256× 27) and Brain MRI (256× 256× 22) datasets. Training size ρ = 30%, (k,1,1,1,1),
k ∈ {1,2, . . . ,30} for Schools, and (k,k,1), k ∈ {1,3,6,9,15,18} for MRI datasets.

Data Norm Test Err (k1, . . . ,kn)
(STD)

Schools tr 22.682 (0.1785) -
ρ= 30% ks 22.464 (0.1851) (12,1,1,1,1)
Knee tr 0.7606 (7.53e-4) -
ρ= 30% ks 0.5245 (7.32e-4) (6,6,1)
Brain tr 0.7920 (9.33e-4) -
ρ= 30% ks 0.5961 (4.69e-4) (12,12,1)

parameters can be done in a targeted manner rather than brute force testing all combinations.

In this instance the school category is by some margin the largest dimension. Moreover,

recall that along mode n we require kn ≤ dn. Consequently we considered (k,1,1,1,1), for

k ∈ {1,2, . . . ,30}, in addition to (2,2,2,2,2) and (139,11,3,2,3), where the latter corresponds

to the Euclidean norm. This gave a total of 32 parameter settings which we explored via

validation. Following Romera-Paredes and Pontil (2013) we measured the error as root mean

square error (RMSE).

The results are presented in Table 6.2. The improvement over the latent tensor trace

norm is statistically significant at a level p < 0.001. The results suggest that tuning selected

kn can lead to improved performance over the latent tensor trace norm.

MRI. The second set of datasets comes from OsiriX (http://www.osirix-viewer.com/

resources/dicom-image-library). These are collections of MRI scans of patients. Each collec-

tion is a series of cross sectional images of size 256×256, which when stacked correspond to

a three dimensional representation of the underlying body part. We analyzed two datasets:

Knee, of size 256×256×27, and Brain, of size 256×256×22, which we then standardized.

Compared to the Schools dataset, the tensors are an order of magnitude larger, hence choos-

ing a reasonably small number of parameter settings is important to minimize additional

computational overhead. To account for the relative sizes of the dimensions, we considered

(k,k,1) for k ∈ {1,3,6,9,12,15} for both datasets. We used 30% for training, 10% for vali-

dation, and ran 10 trials with RMSE as before. The results are outlined in Table 6.2. The

k-support norm outperforms the baseline latent tensor trace norm, even for this modest

selection of k values, with statistical significance at a level p < 0.001. In both cases the

optimal setting was for k 6= 1. With additional tuning over a wider selection of parameters

the error could reasonably be further reduced, however as our goal is to motivate using

k-support norm we do leave extensive computer simulations to another occasion.
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Figure 6.1: Test error vs. k for (k,1,1,1,1), k ∈ {1,2, . . . ,30} on Schools dataset (139×11×3×2×3).
Improvement vs. the latent tensor trace norm (k = 1) without exhaustively exploring the
entire parameter space.

Parameter Selection. Our experimental results show that the additional hyperparame-

ters kn can lead to improved performance relative to the latent tensor trace norm, however it

is necessary to be selective in the choice of parameter ranges. With real datasets in particular,

we would typically expect the modes to be inhomogeneous, and potentially with large differ-

ences in dimension. Our results suggest that larger k values may be preferred along modes

where the dimension is high, and smaller k values for the lower dimensional modes. In such

cases our experiments suggest that by tuning kn only along the larger dimension(s), and set-

ting the remaining kn values to 1, performance can be improved relative to the latent tensor

trace norm, without fully exploring the potential parameter space. Figure 6.1 illustrates this

effect on the Schools dataset, and shows the test error for (k,1,1,1,1), with k ∈ {1,2, . . . ,30}.

The x-axis corresponds to the value of k, with the test error for the latent tensor trace norm

on the far left (k = 1), and we found that performance depends reasonably on the value of

the parameter k1, hence by tuning this parameter only we can obtain improved performance,

without exhaustively exploring the entire potential parameter space.

6.5 Discussion

In this chapter we presented the tensor k-support norm for learning low Tucker rank tensors.

In its simplest form, the unit ball of the norm is the convex hull of the union of sets of tensors,

for which one of the matricizations has rank bounded by k and Frobenius norm bounded by

one. We established some basic properties of this norm and addressed numerical algorithms

for solving the associated regularization problem. Our numerical experiments indicate that
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the norm performs well and is a valuable alternative to other convex regularizers for learning

tensors.

In future work, we would like to further study risk bounds for empirical error minimiza-

tion with the proposed norm. On the optimization side, it would be interesting to study

iterative schemes to solve the regularization problem in the general case that p 6= 2. This may

be possible for Ivanov regularization when p=∞, following ideas in McDonald et al. (2016a).

A further area of study is the case where we consider as the unit ball the set comprised of the

intersection of the sets An, which leads to an optimization problem involving the proximity

operator of the (k,p)-support norm, which, as we mentioned in Chapter 5, is not known for

finite values of p 6= 2.

At last we note that the proposed norm naturally extends to the case in which we wish

to bound the rank of generalized matricizations of a tensor, which are associated with a

partition of the set of modes {1, . . . ,N} into two sets. When all such partitions are taken into

account, this construction would give rise to a norm which forms a relaxation for the so-called

matrix-product-state decompositions (Vidal, 2003), which find important applications to

quantum information systems.



Chapter 7

Optimal Interpolation Norms

In Chapter 2 we reviewed a range of structured sparsity penalties, and we highlighted that

norms defined by a variational formulation have increasingly been studied, enjoying strong

estimation properties over numerous learning problems. The vector k-support norm is a

particular example of such penalties, deriving from the group lasso with overlap of Jacob et al.

(2009b). In the previous chapters we generalized the norm to apply to matrices (Chapter

4) and tensors (Chapter 6), and numerical experiments showed statistically significant

improvement over the standard regularizers in the literature. An extension of the k-support

norm to introduce a parameter p further allows the penalty to be tuned, which in the matrix

case corresponds to tuning the decay of the singular values.

Each of the k-support norms is perhaps most easily characterized via its unit ball. In

the case of the vector (k,p)-support norm, its unit ball corresponds to the convex hull of

vectors with cardinality k and unit `p-norm, with similar constructions in the matrix and

tensor frameworks. However, as we have seen, the norms also admit a characterization as an

infimal convolution. For example, for the (k,p)-support norm of Chapter 5 (Definition 5.4)

we have

‖w‖(k,p) = inf
(vg)

{∑
g∈Gk

‖vg‖p
∣∣∣ ∑
g∈Gk

vg = w

}
. (7.1)

where the infimum is over all vectors vg ∈ Rd such that supp(vg)⊆ g, for g ∈ Gk.

In this chapter we define a general framework for norms which generalizes the infimal

convolution construction in (7.1). Specifically, we propose a class of norms defined via an

optimal interpolation problem involving the composition of norms and a linear operator. This

framework is very general and encompasses a number of norms which have been used as

regularizers in machine learning and statistics, including the k-support norms and allows us

to construct more via an optimal interpolation problem involving simpler norms and a linear

operator.
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Specifically, the norm of w ∈ Rd is defined as

‖w‖= inf
v∈RN
Bv=w

|||F (v)|||, (7.2)

where ||| · ||| is a monotone norm (e.g., an `p norm), F a vector-valued mapping the com-

ponents of which are also norms, and B a d×N real matrix. As we shall see, this concise

formulation encompasses many classes of regularizers, either via the norm (7.2) or the

corresponding dual norm, which we investigate in this chapter. Furthermore, while we focus

on norms, the construction (7.2) provides a scheme for a broader range of regularizers of the

form

ϕ(w) = inf
v∈RN
Bv=w

h
(
F (v)

)
, (7.3)

where the components of F and h are convex functions that satisfy certain properties. Such

functions generalize the notion of infimal convolution (see Bauschke and Combettes, 2011,

Proposition 12.35) and are found in signal recovery formulations, see, for example, Becker

and Combettes (2014).

Optimal interpolation and, in particular, the problem of finding a minimal norm inter-

polant to a finite set of points has a long history in approximation theory; see, for example,

Cheney and Light (2000) and the references therein. A special case of this setup occurs when

we do minimal norm interpolation in a Hilbert space. Specifically, we choose the Sobolev

space

Hs(Rd) =
{
f ∈ L2(Rd)

∣∣∣ ‖f‖Hs =

√
(2π)−n

∫
Rd

(1 + |ξ|2)s|f̂(ξ)|2dξ <∞
}
,

where f̂ denotes the Fourier transform of f ∈ L2(Rd). The norm ‖ · ‖Hs makes Hs(Rd)

into a reproducing kernel Hilbert space, and so, the solution of the minimal interpolation

problem with function evaluation constraints on a finite set of points x1, . . . ,xm ∈ Rd, yields

an interpolant which is formed from the reproducing kernel of Hs(Rd).

In machine learning, the problem (7.3) has been investigated in Argyriou et al. (2010)

and Micchelli and Pontil (2005). Special cases of our setting based on (7.2) appear in

Maurer and Pontil (2012); Tomioka and Suzuki (2013), where ||| · ||| is an `p norm and

the components of F are `2 norms. On the other hand, the atomic norms considered in

Chandrasekaran et al. (2012b) correspond, in the case of a finite number of atoms, to setting

F = Id and ||| · ||| = ‖ · ‖1 in (7.2). The general fact that the construction (7.2) preserves

convexity is known. However, to the best of our knowledge, the observation that optimal

interpolation can be used as a framework to generate norms is novel. On the numerical front,
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we shall take advantage of the fact that the mapping F and the operator B can be composed

of a large number of “simple” components to create complex structures, leading to efficient

algorithms to solve problems involving regularizers of the form (7.2).

The remainder of this chapter is organized as follows. In Section 7.1 we introduce the

general class of regularizers and establish some of their basic properties. In Section 7.2 we

give a number of examples of norms in this framework. In Section 7.3 we provide a random

block-coordinate algorithm to solve learning problems involving these penalties. In Section

7.4 we report on numerical experiments with this algorithm.

7.1 A Class of Norms
We first establish the mathematical foundation of our framework. We begin with a scheme to

construct convex functions on Rd.

Proposition 84. Let m, d, and N be strictly positive integers. Let K = Rm− , let B ∈ Rd×N , and

let F : RN → Rm be K-convex in the sense that, for every α ∈ ]0,1[ and every (u,v) ∈ RN ×RN

F
(
αu+ (1−α)v

)
−αF (u)− (1−α)F (v) ∈K. (7.4)

Let h : Rm→ ]−∞,+∞] be a proper convex function such that, for every (x,y) ∈ ranF × ranF ,

x−y ∈K ⇒ h(x)≤ h(y). (7.5)

Define, for every w ∈ Rd,

ϕ(w) = inf
v∈RN
Bv=w

h
(
F (v)

)
. (7.6)

Then h◦F and ϕ are convex.

Proof. It is enough to show that h ◦F is convex, as this will imply that ϕ is likewise by

Bauschke and Combettes (2011, Proposition 12.34(ii)) or Rockafellar (1970, Theorem 5.7).

Let α ∈ ]0,1[ and let u and v be points in RN . Combining (7.4) and (7.5) yields

h
(
F (αu+ (1−α)v)

)
≤ h(αF (u) + (1−α)F (v)). (7.7)

Therefore, by convexity of h, we obtain

(h◦F )
(
αu+ (1−α)v

)
≤ α(h◦F )(u) + (1−α)(h◦F )(v), (7.8)

which establishes the convexity of h◦F .

We are now ready to define the class of norms induced by optimal interpolation. As



128 Chapter 7. Optimal Interpolation Norms

we shall see below, the construction involves several norms and their duals in a manner

which produces a very flexible framework. In order to minimize confusion due to notation,

throughout this chapter we refer to the principle norm as ||| · |||, and the constituent norms

will be given by f and g, with duals denoted respectively by ||| · |||∗, f∗ and g∗.

Assumption 85. Let m, d, and (rj)1≤j≤m be strictly positive integers, set N =
∑m
j=1 rj , and

let v = (vj)1≤j≤m denote a generic element in RN where, for every j ∈ {1, . . . ,m}, vj ∈ Rrj .

Furthermore:

1. F : v 7→ (fj(vj))1≤j≤m where, for every j ∈ {1, . . . ,m}, fj is a norm on Rrj with dual

norm fj,∗.

2. ||| · ||| is a norm on Rm which is monotone in the sense that, for every (x,y) ∈ Rm+ ×Rm+ ,

x−y ∈ Rm− ⇒ |||x||| ≤ |||y|||, (7.9)

and ||| · |||∗ denotes its dual norm.

3. For every j ∈ {1, . . . ,m}, Bj ∈ Rd×rj , and B = [B1 · · · Bm] has full rank.

Let, for every w ∈ Rd,

‖w‖= min
v∈RN
Bv=w

|||F (v)|||= min
v∈RN∑m

j=1Bjvj=w

∣∣∣∣∣∣(f1(v1), . . . ,fm(vm)
)∣∣∣∣∣∣. (7.10)

Proposition 86. Consider the setting of Assumption 85. Then ||| · ||| ◦F is a norm on RN and

its dual norm at t ∈ RN is

(||| · ||| ◦F )∗(t) = |||
(
f1,∗(t1), . . . ,fm,∗(tm)

)
|||. (7.11)

Proof. We show that ||| · ||| ◦F satisfies the properties of a norm and compute its dual norm,

see Appendix F.

Remark 87. Let w ∈ Rd, set C =
{
v ∈ RN

∣∣ Bv = w
}

, and let dC be the distance function to C

associated with the norm ||| · ||| ◦F (see Proposition 86), that is,

(∀z ∈ RN ) dC(z) = inf
v∈C
|||F (v−z)|||. (7.12)

Note that C is a closed affine subspace and it follows from (7.12) and (7.10) that

dC(0) = inf
v∈C
|||F (v−0)|||= inf

v∈C
|||F (v)|||= ‖w‖. (7.13)
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Thus, the function ‖ ·‖ in (7.10) is defined via a minimal norm interpolation process. Hence, the

optimization problem underlying (7.10) is that of minimizing the norm ||| · ||| ◦F over the closed

affine subspace C. It therefore possesses a solution, namely the minimum norm element in C.

In the next result we establish that the construction described in Assumption 85 does

provide a norm, and we compute its dual norm.

Theorem 88. Consider the setting of Assumption 85. Then the following hold:

1. ‖ · ‖ is a norm.

2. The dual norm of ‖ · ‖ at u ∈ Rd is

‖u‖∗ =
∣∣∣∣∣∣(f1,∗(B>1 u), . . . ,fm,∗(B>mu)

)∣∣∣∣∣∣
∗. (7.14)

Proof. We show that the function ‖ · ‖ satisfies the properties of the norm and compute its

dual norm, see Appendix F.

A special case of Theorem 88 is the following corollary, which appears in Maurer and

Pontil (2012, Theorem 7).

Corollary 89. Let p, q, r, and s be numbers in [1,+∞] such that 1/p+1/q= 1 and 1/r+1/s= 1.

Then the function ‖ · ‖ defined at w ∈ Rd by

‖w‖= min
v∈RN∑m

j=1Bjvj=w

‖(‖v1‖p, . . . ,‖vm‖p)‖r (7.15)

is a norm and the dual norm at u ∈ Rd is given by

‖u‖∗ = ‖(‖B>1 u‖q, . . . ,‖B>mu‖q)‖s. (7.16)

Proof. This construction is a special case of Assumption 85 with ||| · |||= ‖ · ‖r and f1 = · · ·=

fm = ‖ · ‖p. The function ||| · ||| is an absolute norm, that is, ||| · ||| = ||| · ||| ◦Λ, for every

Λ = diag(λ1, . . . ,λm) such that (∀j ∈ {1, . . . ,m}) λj ∈ {−1,1}. By Horn and Johnson (1991,

Theorem 5.4.19) a norm is monotone if and only if it is absolute. The result follows by

applying Theorem 88.

Remark 90. Suppose that, in Proposition 84, F is the identity mapping and h an arbitrary

norm. Then, arguing as in the proof of Theorem 88, we obtain that the function ϕ of (7.6) is a

norm and that the dual norm at u ∈ Rd is |||B>u|||∗.

Remark 91. Any norm ‖ · ‖ can trivially be written in the form of (7.6), by simply letting

||| · |||= ‖ ·‖, F be the identity operator, and B be the identity matrix. However we are interested
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in exploiting the structure of the construction (7.6) in cases in which the norms ||| · ||| and

(fj)1≤j≤m are chosen from a “simple” class and give rise, via the optimal interpolation problem

(7.6), to a “complex” norm ‖ · ‖ which we shall use as a regularizer in a statistical learning

setting. In particular, when using proximal splitting methods, the computation of prox‖·‖ will

typically not be easy whereas that of prox|||·||| and proxF will be. This will be exploited in

Section 7.3 to devise efficient splitting algorithms to solve problems involving ‖ · ‖ which use the

functions (fj)1≤j≤m and the operators (Bj)1≤j≤m separately.

7.2 Examples

In this section, we observe that the construct presented in Section 7.1 encompasses in a

unified framework a number of existing regularizers. For simplicity, we focus on the norms

captured by Corollary 89. Our main aim here is not to derive new regularizers but, rather, to

show that our analysis captures existing ones and to derive their dual norms.

A number of examples that we present in this section were discussed in Chapter 2. In

order to show how these norms fit into the framework introduced in this chapter, we recall

the definitions and we adapt the notation to the framework presented here.

Given w ∈ Rd and J ⊂ {1, . . . ,d}, recall that w|J ∈ Rd is the vector w restricted to the

support set defined by J , where the support of w is supp(w) =
{
i
∣∣ 1≤ i≤ d ,wi 6= 0

}
.

7.2.1 Latent group lasso

The first example we consider is known as the latent group lasso (LGL), or group lasso with

overlap, which goes back to Jacob et al. (2009b). Let (Gj)1≤j≤m be nonempty subsets of

{1, . . . ,d} such that
⋃m
j=1Gj = {1, . . . ,d} and define the vector space

Z =
{
z = (zj)1≤j≤m

∣∣ (∀j ∈ {1, . . . ,m}) zj ∈ Rd and supp(zj)⊂Gj
}
. (7.17)

The latent group lasso penalty is defined, for w ∈ Rd, as

‖w‖LGL = min
{

m∑
j=1
‖zj‖p

∣∣∣ z ∈ Z, m∑
j=1

zj = w

}
. (7.18)

The optimal interpolation problem (7.18) seeks a decomposition of vector w in terms of

vectors (zj)1≤j≤m whose support sets are restricted to the corresponding group of variables

in Gj . If the groups overlap then the decomposition is not necessarily unique, and the

variational formulation involves those zj such that the aggregate `p norm is minimal. On

the other hand, if the group are pairwise disjoint, that is {G1, . . . ,Gm} forms a partition of

{1, . . . ,d}, the latent group lasso coincides with the “standard” group lasso (Yuan and Lin,
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2006), which is defined, for w ∈ Rd, as

‖w‖GL =
m∑
j=1
‖w|Gj‖p. (7.19)

In the general case (7.18) has no closed form expression due to the overlapping of the groups.

However, in special cases which exhibit additional structure, it can be computed in a finite

number of steps; an important example is provided by the (k,p)-support norm (McDonald

et al., 2016b), in which the groups consists of all subsets of {1, . . . ,d} of cardinality no greater

than k, for some k ∈ {1, . . . ,d}, see Chapter 5. The case p= 2 has been studied in Argyriou

et al. (2012) and McDonald et al. (2014a), see Chapter 3.

Proposition 92. For every j ∈ {1, . . . ,m}, set pj = |Gj |. The latent group lasso penalty (7.18)

is a norm of the form (7.10) with fj = ‖·‖p, ||| · |||= ‖·‖1, and d×pj matrices Bj = [ei | i∈Gj ],

where ei is the ith standard unit vector in Rd. Furthermore, the dual norm of w ∈Rd is given by

‖w‖LGL,∗ = max
1≤j≤m

‖w|Gj‖q.

Proof. The expression for the primal norm follows immediately by the change of variable

zj = Bjvj , which also eliminates the support constraint. The dual norm follows by (7.14)

noting that ||| · |||∗ is the max norm, fj,∗ = ‖ · ‖q for all j and B>j w =Bjw = w|Gj .

7.2.2 Overlapping group lasso

An alternative generalization of the group lasso is the overlapping group lasso (Jenatton

et al., 2011b; Zhao et al., 2009), which we write as ‖ · ‖OGL. It has the same expression of the

group lasso in (7.19), except that we drop the restriction that the set of groups {G1, . . . ,Gm}

form a partition of the index set {1, . . . ,d}. That is, we require only that the union of sets Gj

be equal to {1, . . . ,d}. Our next result establishes that the overlapping group lasso penalty is

captured by a dual norm of type (7.14).

Proposition 93. Let p ∈ [1,+∞]. Let rj = |Gj |, j ∈ {1, . . . ,m}, let fj = ‖ ·‖q, let ||| · |||= ‖ ·‖∞,

and the d× rj matrices Bj = [ei | i ∈Gj ]. Then then norm (7.10) evaluated at w ∈ Rd is

‖w‖= inf
{

max
1≤j≤m

‖vj‖q
∣∣∣ m∑
j=1

Bjvj = w

}

and ‖ · ‖∗ = ‖ · ‖OGL.

Proof. Note that ||| · |||∗ = ‖ · ‖1 and (∀j ∈ {1, . . . ,m}) fj,∗ = ‖ · ‖p. Therefore, the duality

assertion follows from (7.14) by noting that ‖B>j u‖p = ‖u|Gj‖p.

The case p= +∞ corresponds to the iCAP penalty in Zhao et al. (2009). We may also
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consider other choices for the matrices Bj . For example, an appropriate choice gives various

total variation penalties Micchelli et al. (2011). A further example is obtained by choosing

m = 1 and B1 to be the incidence matrix of a graph, a setting which is relevant in online

learning over graphs Herbster and Lever (2009). In particular, for p= 1, this corresponds to

the fused lasso penalty Tibshirani and Saunders (2005).

7.2.3 The ordered weighted `1-norm

The ordered weighted `1-norm (OWL) was introduced for regression problems with correlated

coefficients (Bogdan et al., 2013; Zeng and Figueiredo, 2014; Figueiredo and Nowak, 2016).

It is defined, for w ∈ Rd, as

‖w‖OWL =
〈
λ | |w|↓

〉
, (7.20)

where λ ∈ Rd+ is a vector of weights such that λ1 ≥ . . .≥ λd, and λ1 > 0. The norm satisfies

λ1‖w‖∞ ≤ ‖w‖OWL ≤ λ1‖w‖1, with equalities when λ2 = . . . = λd = 0, or λ1 = . . . = λd,

respectively. Our next result establishes that the ordered weighted `1-norm is captured by a

dual norm of type (7.14).

Proposition 94. Let λ ∈ Rd+ such that λ1 ≥ . . .≥ λd and these are not all zero, and let n= d!.

The ordered weighted `1-norm defined by (7.20) is a norm of the form (7.14) with fj = ‖ · ‖∞,

‖| · |‖ = ‖ · ‖1, and matrices Bj be the d×d matrices given by Bj = diag(λj), where λj is the

j-th permutation of (λ1, . . . ,λd).

Proof. Let Π be the set of permutations on Rd and let π∗ ∈Π be the permutation defined by

π∗ : |u|↓ 7→ |u|. We have

‖u‖OWL =
〈
λ | |u|↓

〉
= max
π∈Π

〈
π(λ) | |u|↓

〉
= max
π∈Π

〈
π∗(π(λ)) | π∗(|u|↓)

〉
= max
π′∈Π

〈
π′(λ) | |u|

〉
= nmax

j=1

〈
λj | |u|

〉
= nmax

j=1
‖Bju‖1,

as required, where we have used the Hardy-Littlewood-Polya inequality, Theorem 10, which

states that any vectors x,y ∈Rd satisfy the inequality 〈x | y〉 ≤
〈
x↓ | y↓

〉
, the fact that 〈x | y〉=

〈π(x) | π(y〉) for any π ∈Π and the fact that Π is closed under composition.

7.2.4 Θ-norms

In Chapter 3 we considered the Θ-norms, a family of norms which is parameterized by a

convex set; see also Bach et al. (2012); Micchelli et al. (2013). We consider the generalized

form introduced in Section 3.4. Specifically, let Θ⊂Rd++ be nonempty, convex, and bounded,

let p ∈ [1,∞] and define q ∈ [1,∞] by 1
p + 1

q = 1, and define φp : R+ 7→ R+ by φp(x) = xp.
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Then the expressions

inf
θ∈Θ

φ−1
p

(
d∑
i=1

θiφp

(
|wi|
θi

))
(7.21)

and

sup
θ∈Θ

φ−1
q

(
d∑
i=1

θiφq(|ui|)
)

(7.22)

define norms, which we refer to as the primal and dual norms, respectively. Norms which are

included in this family include the `p-norms, and the (k,p)-support norm. We now consider

the case when Θ is a polyhedron.

Proposition 95. Let Θ be a nonempty subset of Rd++ such that Θ̄ = conv{θ(1), . . . ,θ(m)}, where

(∀j ∈ {1, . . . ,m}) θ(j) ∈ Rd+. Then the norms defined in (7.21) and (7.22) can be written in the

form (7.10) and (7.14) respectively, with ||| · ||| = ‖ · ‖1 and (∀j ∈ {1, . . . ,m}) fj = ‖ · ‖p and

Bj = diag
(
(θ(j))

1
q
)
.

Proof. For every j ∈ {1, . . . ,m}, set Bj = diag
(
(θ(j))

1
q
)

and let fj,∗ be the `q-norm on Rd.

Furthermore, let ||| · |||∗ be the `∞-norm on Rm. Then the dual norm of ‖ · ‖ at u ∈ Rd is

derived from (7.14) to be

‖u‖∗ = max
1≤j≤m

‖B>j u‖p

= max
1≤j≤m

(
d∑
i=1

θ
(j)
i |ui|

q

) 1
q

= max
θ∈Θ̄

(
d∑
i=1

θi|ui|q
) 1
q

(7.23)

= sup
θ∈Θ

(
d∑
i=1

θi|ui|q
) 1
q

,

where equality (7.23) uses the fact that a linear function on a compact convex set attains

its maximum at an extreme point of the set. It follows that the dual norms coincide, and

consequently the same holds for the primal norms.

7.2.5 Polyhedral norms

Polyhedral norms (Hiriart-Urruty and Lemaréchal, 1993) are characterized by having as their

unit ball a polyhedron, that is, a finite intersection of closed affine halfspaces. Specifically, let

m be an even strictly positive integer and let E = {b1, . . . , bm}⊂Rd be such that span(E) =Rd

and E =−E. Let C = conv(E) and let ‖ · ‖PH be the polyhedral norm with unit ball C. We
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have the following characterization of a polyhedral norm (Körner, 2011, Section 1.34),

‖w‖PH = min
{

m∑
j=1
|vj |

∣∣∣ v ∈ Rm,
m∑
j=1

vjbj = w

}
. (7.24)

Using this expression we have the following result, which follows directly by Remark 90.

Proposition 96. The polyhedral norm on Rd defined by (7.24) can be written in the form of

(7.10) for r1 = · · ·= rm = 1, Bj = [bj ], ||| · |||= ‖ · ‖1, and F the identity mapping.

Recall that the polar of a set C is the set C� =
{
u ∈ Rd

∣∣ supw∈C 〈u | w〉 ≤ 1
}

. The dual

norm ‖ · ‖PH,∗ is also polyhedral, and its unit ball is the convex hull of E	 = {b	1 , . . . , b	r },

where E	 is the polar cone of E and r is an even positive integer. Indeed, the dual norm at

u ∈ Rd is given by

‖u‖PH,∗ = max
{
〈u | w〉

∣∣ w ∈ C}= max
1≤j≤m

〈u | bj〉. (7.25)

It follows that ‖w‖PH can also be written as a maximum of scalar products over the set of

extreme points of the unit ball of the dual norm, that is, ‖w‖PH = max
{
〈w | b〉

∣∣ b ∈ E	},

where E	 is the set of extreme points of the dual unit ball C�. Geometrically, the unit balls

are related by polarity.

7.2.6 Tensor norms

Recently a number of regularizers have been proposed to learn low rank tensors. We discuss

three of them. The first two are based on the nuclear norm of the matricizations of a tensor.

Recall that the nuclear norm (or trace norm) of a matrix, ‖·‖nuc, is the sum of its singular

values. Its dual norm ‖ · ‖sp is given by the largest singular value. The overlapped nuclear

norm (Romera-Paredes and Pontil, 2013; Tomioka et al., 2011) is defined as the sum of the

nuclear norms of the mode-j matricizations, namely

‖W ‖ONN =
m∑
j=1
‖Mj(W )‖nuc. (7.26)

The next result, which is easily proved, captures the overlapped nuclear norm in our frame-

work.

Proposition 97. The overlapped nuclear norm (7.26) can be written in the form (7.14) for

||| · |||∗ = ‖ · ‖1, fj,∗ = ‖ · ‖nuc and B>j =Mj . Furthermore, the dual norm of a matrix U is

‖U‖ONN,∗ = inf
{

max
1≤j≤m

‖Vj‖sp
∣∣∣ m∑
j=1

M>j Vj = U

}
. (7.27)
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Let α1, . . . ,αm be strictly positive reals. The scaled latent nuclear norm is defined by

variational problem

‖W ‖LNN = inf
{

m∑
j=1

1
αj
‖Vj‖nuc

∣∣∣ m∑
j=1

M>j Vj = W

}
. (7.28)

The case αj = 1 is presented in Tomioka and Suzuki (2013) and the case αj =
√
dj in

Wimalawarne et al. (2014).

Proposition 98. The latent nuclear norm (7.28) can be written in the form (7.10) for ||| · |||=

‖ · ‖1, fj = ‖ · ‖nuc/αj and Bj =M>j . Furthermore, the dual norm of a matrix U is

‖U‖LNN,∗ = max
1≤j≤m

αj‖Mj(U)‖sp.

Proof. Immediate, upon identification of ||| · |||, F , the matrices (Bj)1≤j≤m, and noting that

(∀j ∈ {1, . . . ,m}) fj,∗ = αj‖ · ‖sp.

The final tensor norm that we consider is the tensor k-support norm that we defined in

Chapter 6. Recall from Equation (6.7) that the primal and dual norms are defined, for W ,U

∈ Rd1×···×dm , respectively, as

|||W |||= inf
{

m∑
j=1
‖Mj(V j)‖(kj ,pj)

∣∣∣ m∑
j=1

V j = W

}
(7.29)

|||U |||∗ = max
1≤j≤m

‖Mj(U)‖(kj ,pj),∗ (7.30)

where the infimum in the primal equation is over the tensors V j ∈ Rd1×···×dm for j ∈

{1, . . . ,m}.

Proposition 99. The tensor k-support norm can be written in the form (7.10) for ||| · |||= ‖ ·‖1,

fj = ‖ · ‖(kj ,pj) and Bj =M>j .

Proof. Immediate from the dual norm.

7.2.7 Norms induced by reproducing kernels

We give an infinite-dimensional example. Let X be a set; for every every j ∈ {1, . . . ,m},

let Kj : X×X → R be a positive semidefinite kernel, denote by Hj the reproducing kernel

Hilbert space (RKHS) associated to Kj ,and denote by ‖ · ‖j the norm induced by the inner

product in Hj . For background on RKHS’s we refer to Aronszajn (1950).

Let H = ∪1≤j≤mHj . Using our framework we can endow H with the norm, defined at

h ∈H, as

‖h‖=
{
|||(‖h1‖1, . . . ,‖hm‖m)|||

∣∣∣ m∑
j=1

hj = h
}
. (7.31)
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The very special case that m= 2 and ||| · ||| is the `2 norm is discussed in (Aronszajn, 1950,

p. 353). The important case that ||| · ||| is the `1 norm has been considered in a number of

papers, in which (7.31) is employed as a regularizer in multiple kernel learning problems,

see for example Bach et al. (2012) and references therein. The extension where ||| · ||| is the

`p norm is presented in Micchelli and Pontil (2005); Kloft et al. (2011).

It is interesting to note that, for a special choice of the kernels K1, . . . ,Km, the norm

(7.31) includes the latent group lasso norm described earlier, see also Bach et al. (2012);

Micchelli et al. (2013) for related observations. Specifically, we choose X = Rd, and (∀j ∈

{1, . . . ,m}, ∀(x,z) ∈Rd×Rd) let Kj(x,z) = 〈x | Pjz〉, where Pj is the projection to the linear

span of the standard coordinates vectors associated to the index set Gj ⊂ {1, . . . ,d}. For

this choice, Hj is the space of linear functions x 7→ 〈wj | Pjx〉, for some wj ∈ Rd. Therefore

setting vj = Pjwj , we see that (7.31) rewrites in the form of (7.18) for p= 2.

7.3 Random Block-Coordinate Algorithm
The purpose of this section is to address some of the numerical aspects associated with

the class of norms introduced in Assumption 85. Since such norms are nonsmooth convex

functions, they could in principle be handled via their proximity operators in the context

of proximal splitting algorithms (Bauschke and Combettes, 2011). However, the proximity

operator of the composite norm ‖ · ‖ in (7.10) is usually too complicated for this direct

approach to be viable. We circumvent this problem by formulating the problem in such a way

that it involves only the proximity operators of the functions (fj)1≤j≤m, which will typically

be available in closed form. The main features and novelty of the algorithmic approach we

propose are the following:

• It can handle general nonsmooth formulations: the functions present in the model need

not be differentiable.

• It adapts the recent approach proposed in Combettes and Pesquet (2015) to devise a

block-coordinate algorithm which allows us to select arbitrarily the blocks functions

(fj)1≤j≤m to be activated over the course of the iterations. This makes the method

amenable to the processing of very large data sets in a flexible manner by adapting the

computational load of each iteration to the available computing resources.

• The computations are broken down to the evaluation of simple proximity operators of

the functions fj and of those appearing in the loss function, while the linear operators

are applied separately.

• It guarantees the convergence of the iterates to a solution of the minimization problem

under consideration; convergence of the function values is also guaranteed.
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We are not aware of alternative frameworks which achieve simultaneously these properties.

In particular, it is noteworthy that the convergence of the iterates is achieved although only a

portion of the proximity operators are activated at each iteration.

We consider a supervised learning problem in which a vector w ∈Rd is to be inferred from

n input-output data points (ai,βi)1≤i≤n, where ai ∈ Rd and βi ∈ R. A common formulation

for such problems is the regularized convex minimization problem

minimize
w∈Rd

n∑
i=1

`i(〈w | ai〉,βi) +λ‖w‖, (7.32)

where `i : R2→ R is a loss function (for simplicity we take it to be real-valued but extended

functions can also be considered) such that, for every β ∈ R, `i(·,β) is convex, λ ∈ ]0,+∞[ is

a regularization parameter, and ‖ ·‖ assumes the general form (7.10). For simplicity, we focus

in this section and the subsequent experiments on the case when ||| · |||= ‖ · ‖1. As discussed

in Section 7.2, this choice covers many instances of practical interest in machine learning.

We can rewrite (7.32) as

minimize
w∈Rd

v1∈Rr1 ,...,vm∈Rrm∑m
j=1Bjvj=w

n∑
i=1

`i(〈w | ai〉,βi) +λ

m∑
j=1

fj(vj). (7.33)

We can therefore solve the optimization problem

minimize
v1∈Rr1 ,...,vm∈Rrm

n∑
i=1

`i

( m∑
j=1
〈Bjvj | ai〉,βi

)
+λ

m∑
j=1

fj(vj), (7.34)

and derive from one of its solutions (vj)1≤j≤m a solution w =
∑m
j=1Bjvj to (7.33). The

algorithm adapts the block-coordinate approach of Combettes and Pesquet (2015) to our

setting, with a novel update step for the loss function. We present the full derivation in

Appendix F, and outline the key steps below. We first introduce the functions

Φ: (v1, . . . ,vm) 7→ λ

m∑
j=1

fj(vj) (7.35)

and

Ψ: (η1, . . . ,ηn) 7→
n∑
i=1

ψi(ηi), (7.36)

where, for every i ∈ {1, . . . ,n},

ψi : ηi 7→ `i(ηi,βi). (7.37)
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We next designate by A ∈ Rn×d the matrix the rows of which are (ai)1≤i≤n and define

L= [L1 · · ·Lm] ∈ Rn×N , (7.38)

where, for every j ∈ {1, . . . ,m},

Lj =ABj ∈ Rn×rj . (7.39)

Then L=AB, where B = [B1 · · ·Bm], and we can rewrite problem (7.34) as

minimize
v∈RN

Φ(v) + Ψ(Lv). (7.40)

Note that in this concise formulation, the functions Φ ∈ Γ0(RN ) and Ψ ∈ Γ0(Rn) are nons-

mooth. Now let us introduce the functions

F : (v,s) 7→ Φ(v) + Ψ(s) and G = ιV , (7.41)

where V = graL =
{

(v,s) ∈ RN ×Rn
∣∣ Lv = s

}
is the graph of L, and ιV is the indicator

function of V . Using the variable x = (v,s), we see that (7.40) reduces to the problem

minimize
x∈RN+n

F (x) +G(x) (7.42)

involving the sum of two functions in Γ0(RN+n) and which can be solved with the Douglas-

Rachford algorithm (Bauschke and Combettes, 2011, Section 27.2). Let x0 ∈ RN+n, let

y0 ∈ RN+n, let z0 ∈ RN+n, let γ ∈ ]0,+∞[, and let (µk)k∈N be a sequence in ]0,2[ such that

infk∈N µn > 0 and supk∈N µn < 2. The Douglas-Rachford algorithm

for k = 0,1, . . .
xk+1 = proxγG yk

zk+1 = proxγF (2xk+1−yk)

yk+1 = yk+µk(zk+1−xk+1)

(7.43)

produces a sequence (xk)k∈N which converges to a solution to (7.42) (Bauschke and Com-

bettes, 2011, Corollary 27.4).

We can express the components of the proximity operators proxγF and proxγG in terms

of the proximity operators of proxγψi and proxγfj , for i= 1, . . . ,n and j = 1, . . . ,m, and we

obtain a block coordinate Rouglas-Rachford algorithm of the general form of (7.43).

Furthermore, rather than evaluating each block i and j at every iteration, following the

analysis of Combettes and Pesquet (2015, Corollary 5.5) we can update a randomly chosen

subset of the blocks, while still guaranteeing convergence of the algorithm.
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We defer the details of the derivation to Appendix F and we obtain the algorithm outlined

below. To this end we introduce some additional notation, and set, for every j ∈ {1, . . . ,m},

Rj = L>j (Id +LL>)−1 = L>j

(
Id +

m∑
j=1

LjL
>
j

)−1
. (7.44)

We denote by xj,k ∈ Rrj the jth component of xk, by vj,k ∈ Rrj the jth component of vk,

by zj,k ∈ Rrj the jth component of zk. Finally, we denote by ηi,k ∈ R the ith component of

yk, by τi,k ∈ R the ith component of tk, and by σi,k ∈ R the ith component of sk. The result

follows.

Theorem 100. Let D = {0,1}m+nr {0}, let γ ∈ ]0,+∞[, let (µk)k∈N be a sequence in ]0,2[

such that infk∈N µn > 0 and supk∈N µn < 2, let (vj,0)1≤j≤m and (xj,0)1≤j≤m be in RN , let

y0 = (ηi,0)1≤i≤n ∈ Rn, and let (εk)k∈N = (ε1,k . . . ,εm+n,k)k∈N be identically distributed D-

valued random variables such that, for every i ∈ {1, . . . ,m+n}, Prob[εi,0 = 1]> 0. Iterate

for k = 0,1, . . .

qk =
∑m
j=1Ljxj,k−yk

for j = 1, . . . ,m vj,k+1 = vj,k +εj,k
(
xj,k−Rjqk−vj,k

)
xj,k+1 = xj,k +εj,kµk

(
proxγλfj (2vj,k+1−xj,k)−vj,k+1

)
sk+1 =

∑m
j=1Ljvj,k+1

for i= 1, . . . ,n⌊
ηi,k+1 = ηi,k +εm+i,kµk

(
proxγψi(2σi,k+1−ηi,k)−σi,k+1

)
.

(7.45)

Suppose that the random vectors (εk)k∈N and (xk,yk)k∈N are independent. Then, for

every j ∈ {1, . . . ,m}, (vj,k)k∈N converges almost surely to a vector vj and w =
∑m
j=1Bjvj is a

solution to (7.32).

Proof. It follows from Combettes and Pesquet (2015, Corollary 5.5) that (v1,k, . . . ,vm,k)k∈N
converges almost surely to a solution to (7.34). In turn, w solves (7.32).

Remark 101. The matrices (Rj)1≤j≤m of (7.44) are computed off-line only once and they

intervene in algorithm (7.45) only via matrix-vector multiplications.

Remark 102. It follows from the result of Combettes and Pesquet (2015) that, under suitable

qualification conditions, the conclusions of Theorem 88 remain true for a general choice of the

functions fj ∈ Γ0(Rrj ) and, for every β ∈ R, `i(·,β) ∈ Γ0(R), and also when B does not have

full rank. This allows us to solve the more general versions of (7.33) in which the regularizer is

not a norm but a function of the form (7.3).
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7.4 Numerical Experiments

In this section we present numerical experiments applying the random sweeping stochastic

block algorithm outlined in Section 7.3 to sparse problems in which the regularization penalty

is a norm fitting our interpolation framework, as described in Assumption 85. The goal

of these experiments is to show concrete applications of the class of norms discussed in

this chapter and to illustrate the behavior of the proposed random block-iterative proximal

splitting algorithm. Let us stress that these appear to be the first numerical experiments

on this kind of iteration-convergent, block-coordinate method for completely nonsmooth

optimization problems.

The setting we consider is binary classification with the hinge loss and a latent group

lasso penalty (Jacob et al., 2009b). Each data matrix A ∈ Rn×d is generated with i.i.d.

Gaussian entries and each row ai of A is normalized to have unit `2 norm. Similarly the

weight vector w ∈ Rd has i.i.d. Gaussian entries and is normalized after applying a sparsity

constraint. The n observations are generated as βi = sign(〈ai | w〉). A randomly chosen subset

of the observations have their sign reversed, with the value of the noise determining the size

of the subset, expressed as a percentage of the total observations. For the implementation of

the algorithm, we require the proximity operators of the functions fj and ψi in Theorem 88.

In this case, these are the `2-norm and the hinge loss, which have straightforward proximity

operators.

In large-scale applications it is impossible to activate all the functions and all the blocks

due to computing and memory limitations. Our random sweeping algorithm gives us the

possibility of activating only some of them by toggling the activation variables εj,k and

εm+i,k. The vectors are updated only when the corresponding activation variable is equal

to 1; otherwise it is equal to 0 and no update takes place. In our experiments we always

activate the latter as they are associated to the set of training points, which is typically small

in sparsity regularization problems. On the other hand, only a fraction α of the former

parameters are activated, which is achieved by sampling, at each iteration k, a subset bmαc

of the components j ∈ {1, . . . ,m} uniformly without replacement. In light of Theorem 88, α

can be very small, while still guaranteeing convergence of the iterates. It is natural to ask to

what extent these selective updates slow down the algorithm with respect to the hypothetical

fully updated version in which sufficient computational power and memory are available.

To investigate this aspect, in our first experiment A is 1000×10000, the true model vector

w has sparsity 5%, and we apply 25% classification noise. The relaxation parameter µ is set

to 1.99, the proximal parameter γ is set to 0.01, the regularization parameter λ is set to 0.1.

Convergence is measured as the percentage of change in iterates, and we use a tolerance of

106. As penalty we used the chain latent group lasso, whereby the groups define contiguous
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Figure 7.1: Objective for hinge loss classification with the latent group lasso (top), and distance to
solution for the same (bottom).

sequences of length 10, with an overlap of length 3. The number of groups is given by

the smallest integer no smaller than d−overlap
length−overlap , that is 1429. Table 7.1 presents the time,

number of iterations, and number of normalized iterations by the activation rate for the hinge

loss and latent group lasso penalty for α in {0.05,0.1,0.2, . . . ,1.0}. Scaling the iterations by

the activation rate allows for a fair comparison between regimes since the computational

requirements per iteration of the algorithm is proportional to the number of activated blocks.

We observe that while the absolute number of iterations increases as the activation rate

decreases, scaling these by α reveals that the computational cost is remarkably stable across

the different regimes. It follows that using a small value of α does not affect negatively the
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Table 7.1: Time, iterations, and normalized iterations to convergence for hinge loss classification with
the latent group lasso. A ∈ R1000×10000, m= 1429.

activation time (s) actual normalized
rate iterations iterations

1.0 24912 14515 14515
0.9 24517 16047 14443
0.8 26124 18080 14464
0.7 28975 20633 14443
0.6 28223 23872 14323
0.5 29304 28308 14154
0.4 36983 34392 13757
0.3 38100 44080 13224
0.2 50484 62664 12533
0.1 62213 100829 10083
0.05 92368 166111 8306

computational performance, and this can be beneficial when applied to penalties with a

large number of blocks. We stress that in large scale problems in which memory space and

processing power are limited, the standard optimization algorithm with full activation rate

is not suitable (see (F.31) in Appendix F), whereas our random sweeping procedure can be

easily implemented. Interestingly, Table 1 indicates that the normalized number of iterations

are not affected and in fact slightly improves as the activation rate decreases.

To investigate this further, we present a second experiment using the k-support

norm penalty of Argyriou et al. (2012). In this case A is 20× 25 and k = 4, for α in

{0.005,0.001,0.005,0.01,0.05,0.1,0.2, . . . ,1.0}. As the number of groups is given by
(d
k

)
, even

for this modest setting the number of groups is m = 12650, which considerably exceeds d

and n. Table 7.2 shows the same metrics as the first experiment. We again observe that

performance is consistent over the range of α.

Figure 7.1 depicts (top) the objective values for classification with the hinge loss and

a latent group lasso chain penalty, and (bottom) the distance to the limiting solution for

various activation rates. The iterations were normalized by the activation rate. We note that

the paths are similar for all activation rates, and the convergence is similarly fast for small α.

This reinforces our findings that choosing an activation rate lower than 100% does not lead

to any deterioration in performance, and in some cases we can even make computational

gains.

Finally, for completeness we also consider a standard lasso regression problem (Tibshi-

rani, 1996) with the square loss function and the `1-norm penalty. In this case we found that,

in spite of its greater generality, our random sweeping algorithm remains competitive with

FISTA and the forward-backward algorithms, which are both applicable only to the case of

differentiable loss functions with Lipschitz gradients. In addition, these experiments indicate

that the iterates of our algorithm have a faster convergence rate when the distance to the
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Table 7.2: Time, iterations and normalized iterations to convergence for hinge loss classification with
the k-support norm. A ∈ R20×25, k = 4, m= 12650.

activation time (s) actual normalized
rate iterations iterations

1.0 388 463 463
0.9 453 610 549
0.8 446 681 544
0.7 526 773 541
0.6 454 894 536
0.5 425 1065 533
0.4 482 1281 512
0.3 389 1694 508
0.2 423 2557 511
0.1 469 4851 485
0.05 1054 9402 470
0.010 1625 41633 416
0.005 1907 77066 385
0.0010 4583 294481 294
0.0005 7369 471137 236

solution is concerned.

We let A be 2000× 5000, and set λ = 0.01 and γ = 1. The observations b ∈ Rn are

generated as b=Aw+ r where the components of r are i.i.d. Gaussian noise with a standard

deviation of 0.001. The number of groups is 5000, and we vary α in {0.05,0.1,0.2, . . . ,1.0}.

Figure 7.2 depicts the objective values, and Table 7.3 depicts running time, iterations and

normalized iterations for the random sweeping algorithm. As in the non smooth experiments,

we observe the same favorable behaviour relative to the choice of α.

With respect to parameter selection, we found that choosing µ close to 2 generally

worked well. Furthermore, in each experimental setting, the random sweeping algorithm

is robust to the value of γ, which only affects the speed of convergence. We found that in

general choosing γ in {0.01,0.1,1} gave good performance, in particular when γ and λ were

related by only a few orders of magnitude.

As it can be seen from the plots, our method works well for various ranges of activation

rates and remains competitive even for small activation rates. Furthermore, our method

remains competitive with FISTA and the forward-backward splitting algorithms despite its

greater generality and the fact that, unlike the former, it guarantees the convergence of the

iterates. What is most remarkable in the experiments is that the iterates of our algorithm have

a faster convergence to the solution to the underlying optimization problem. This highlights

the fact that in problems in which convergence of the iterates is the main focus, looking at

the convergence of the objective values may be misleading.
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Table 7.3: Time, iterations and normalized iterations to convergence for regression with square loss
and `1-norm penalty. A ∈ R2000×5000, m= 5000.

activation time (s) iterations iterations
rate (normalized)

1.0 5373 1643 1643
0.9 690 215 194
0.8 426 141 113
0.7 349 124 87
0.6 299 125 75
0.5 289 138 69
0.4 320 164 66
0.3 344 213 64
0.2 497 313 63
0.1 674 613 61
0.05 1140 1191 60
0.010 4406 5607 56
0.005 10637 10780 54
0.0010 37566 46108 46
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Figure 7.2: Objectives for square loss regression with `1 penalty (top), and distance to final solution
for same (bottom).



Chapter 8

Conclusions

In this thesis we investigated penalties for structured sparsity. In particular we studied norms

which are defined by a variational problem. Compared to simple norms such as the `1-norm,

the penalties are more complex, for instance being intractable in the general case, or requiring

an iterative algorithm to compute. Nonetheless, the additional structure that these norms

provide can lead to improved learning.

We showed that the k-support norm can be written as a so called Θ norm, an infimum

of quadratics parameterized over particular a convex set. A natural generalization of the

k-support norm leads to the box-norm, which we showed is a Moreau envelope of the former.

We provided an efficient computation of the proximity operator, which allows large scale

regularization problems to be solves using optimal first order numerical algorithms, such as

ISTA.

Turning our attention to matrices, we introduced the orthogonally invariant spectral

k-support norm and spectral box-norm, each of which is induced by the respective vector

norms. We showed that that spectral box-norm is essentially equal to the cluster norm for

multitask learning, and we showed how to solve regularization problems with the centered

norm. Finally we provided numerical experiments which empirically validate the performance

of the norms on real data sets for low rank matrix learning and multitask learning.

We introduced two further extensions of the k-support norm. The (k,p)-support norm

allows us to tune the curvature of the sorted underlying components. When applied to the

matrix setting, this allows us to tune the spectral decay of the underlying model. A further

generalization of the norm is to tensors. In this setting the k-support norm constrains the rank

of one of the matricizations of the tensor. In numerical experiments on real low rank matrix

and low rank tensor datasets we showed the norms outperforms the respective baseline

regularizers.

Finally, we introduced a framework for norms which are defined as an optimal inter-

polation problem. The k-support norms, along with a number of well known penalties are
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captured by this general formulation. For the particular instance of norms which are defined

via an infimal convolution we provided a random sweeping algorithm which can be used

to solve Tikhonov regularization problems including when the loss is non smooth, and we

illustrated the sensitivity of the algorithm to the sweeping parameter.

In conclusion, the structured norms that we introduced can lead to improved perfor-

mance in structured sparsity problems across a variety of domains, and the benefits outweigh

the complexity inherent in these penalties.

8.1 Further Work
The material that we presented in this thesis can naturally be extended in a number of

directions. For each of the norms discussed our primary focus was the properties of the norm,

including its dual norm, its relationship to existing penalties, and optimization considerations.

Aside from Rademacher complexities, a key omission from our study are statistical guarantees

for the performance of the penalties. Various authors have started to fill the gaps. In particular

we highlight Chatterjee et al. (2014); Chen and Banerjee (2016), who provide bounds for

the Gaussian width of the k-support norm and spectral k-support norm, Gunasekar et al.

(2015), who analyze the consistency of matrix completion with the spectral k-support norm

and Richard et al. (2014), who compute the statistical dimension of the vector norm. A

similar analysis for the vector and box-norms, and further analysis such as support recovery

guarantees would be of interest in future work.

We provided an algorithm to compute the proximity operator for the (k,p)-support norm

in the case where p is finite, however in the p =∞ case we were not able to do so, and it

would be of interesting to complete the analysis for this case.

The tensor k-support norm was introduced via its unit ball, which is a union of sets of

matricizations of bounded rank, which means that one of the matricizations is constrained. It

would be interesting to consider the set defined as the intersection of the same sets. This

smaller unit ball relates to tensors for which all of the matricizations have a rank restriction.

The optimization is challenging to perform in general, however the case of p=∞ lends itself

to analysis, using the projection operator of the (k,p)-support norm. We leave the details to a

future work.

The Θ-norms form a rich class of penalties, subsuming for example the Λ-norms of

Micchelli et al. (2013), and the k-support norm. It can be shown that the (k,p)-support norm

is included in this class when p ∈ [1,2], but it is not known whether this holds for p ∈ [2,∞);

indeed we conjecture that this is not the case. As we outlined, the generalization to the Θ

p-norms allows us to naturally include the (k,p)-norms in the class. An interesting point for

further research is whether, given an arbitrary norm, it is possible to conclude whether this

norm can be expressed as a primal or dual Θ-norm or a Θ p-norm, and how to determine the
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parameter set Θ in the affirmative cases.

We introduced a very general optimal interpolation framework in Chapter 7. The

algorithm that we provided caters only to the case where the principle constituent norm is the

`1-norm, that is the objective is evaluated as a sum. The case of the max (`∞-norm) would

be of interest to study, as would more general formulations. The framework further lends

itself to defining new norms, simply by choosing the constitutent components appropriately.

In future work it would be of interest to introduce new regularization penalties which are

motivated by machine learning problems, and show that their performance improves upon

existing penalties.
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Appendix: Background

In this appendix we present derivations for Chapter 2. For completeness we restate each

result throughout the appendices.

Proposition 3 (Hölder Inequality). Let x,y ∈ Rd, and let p,q ∈ (1,∞) such that 1
p + 1

q = 1.

Then

〈x | y〉 ≤ ‖x‖p‖y‖q, (A.1)

and equality holds when wi = αsign(yi)(|yi|)
q
p , for any α ∈ R+. Similarly

〈x | y〉 ≤ ‖x‖1‖y‖∞, (A.2)

and equality holds when

xi =

αsign(yi) if i ∈ I

0 if i /∈ I
, (A.3)

where I =
{
i= 1 . . .n

∣∣∣ i= argmaxdi=1 |yi|
}

, for any α ∈ R+.

Proof. The inequalities follow by duality, so it remains to prove the two cases of equality. For

p,q ∈ (1,∞), substituting the proposed value for xi the left hand side becomes

d∑
i=1

xiyi =
d∑
i=1

αsign(yi)(|yi|)
q
p yi = α

d∑
i=1

(|yi|)
q
p+1 = α

d∑
i=1

(|yi|)q = α‖y‖qq, (A.4)

using the fact that p and q are Hölder conjugates. The right hand side becomes

‖x‖p‖y‖q =
(

d∑
i=1

(|αsign(yi)(|yi|)
q
p |)p

) 1
p
(

d∑
i=1

(|yi|)q
) 1
q

= α

(
d∑
i=1

(|yi|)q
) 1
p+ 1

q

= α‖y‖qq,

(A.5)
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as required. For the second equality, substituting the corresponding value for xi the left hand

side becomes

d∑
i=1

xiyi = α
∑
i∈I

sign(yi)yi = αc|ym|, (A.6)

where m ∈ I hence ym is the largest component of y in absolute value and c= |I|. The right

hand side becomes

‖x‖1‖y‖∞ =
(

d∑
i=1
|xi|

)
|ym|= α

(∑
i∈I

1
)
|ym|= αc|ym|, (A.7)

as required. See also Marshall and Olkin (1979, Ch. 16 Sec. D.1).

Proposition 6. Let ‖ · ‖ be an orthogonally invariant norm induced by the symmetric gauge

function g. Then, for Y ∈ Rd×m the dual norm is given by ‖Y ‖∗ = g∗(σ(Y )) where g∗ is the

dual of g.

Proof. Let Y have singular value decomposition Y =AΣY B>. Applying the definition of the

dual norm,

‖Y ‖∗ = sup
{
〈Y |X〉

∣∣ ‖X‖ ≤ 1
}

(A.8)

= sup
{

tr(Y >X)
∣∣ ‖X‖ ≤ 1

}
(A.9)

= sup
{

tr(BΣ>Y A>AΣXB>)
∣∣ ‖ΣX‖ ≤ 1

}
(A.10)

= sup
{

tr(ΣY ΣX)
∣∣ g(σ(X))≤ 1

}
(A.11)

= sup
{
〈σ(Y ) | σ(X)〉

∣∣ g(σ(X))≤ 1
}

(A.12)

= g∗(σ(Y )), (A.13)

where ΣX is the matrix of singular values ofX, we have used the facts that ‖·‖ is orthogonally

invariant, ΣY is diagonal, and we may choose X to have the same ordered system of left and

right singular values as Y .

Lemma 36. Let C ⊂X be a bounded, convex, balanced, and absorbing set. The Minkowski

functional µC of C is a norm on X.

Proof. We give a direct proof that µC satisfies the properties of a norm. Clearly µC(w)≥ 0

for all w, and µC(0) = 0. Moreover, as C is bounded, µC(w)> 0 whenever w 6= 0.

Next we show that µC is one-homogeneous. For every α ∈ R, α 6= 0, let σ = sign(α) and
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note that

µC(αw) = inf
{
λ > 0

∣∣∣ 1
λ
αw ∈ C

}
= inf

{
λ > 0

∣∣∣ |α|
λ
σw ∈ C

}
= |α| inf

{
λ > 0

∣∣∣ 1
λ
w ∈ σC

}
= |α| inf

{
λ > 0

∣∣∣ 1
λ
w ∈ C

}
= |α|µC(w),

where we have made a change of variable and used the fact that σC = C.

Finally, we prove the triangle inequality. For every v,w ∈X, if v/λ ∈ C and w/µ ∈ C

then setting γ = λ/(λ+µ), we have

v+w

λ+µ
= γ

v

λ
+ (1−γ)w

µ

and since C is convex, then v+w
λ+µ ∈ C. We conclude that µC(v+w) ≤ µC(v) +µC(w). The

proof is completed.

Example 38. Examples of conjugates.

a) Let C ⊂X and let f = δC . Then f∗ = σC , that is, the conjugate is the support function.

b) Let f be a norm ‖ · ‖. Then f∗ = δB∗ , where B∗ =
{
u ∈X

∣∣ ‖u‖∗ ≤ 1
}

, that is, the

conjugate is the characteristic function of the unit ball of the dual norm.

c) Let f = 1
2‖ · ‖

2. Then f∗ = 1
2‖ · ‖

2
∗.

Proof. a) By direct computation

f∗(u) = sup
x∈X
〈u | x〉− δC(x) = sup

x∈C
〈u | x〉

= σC(u).

b) We have

f∗(u) = sup
x∈X
〈u | x〉−‖x‖= sup

x∈X
‖x‖
(
‖u‖∗−1

)
=

0 if ‖u‖∗ ≤ 1

∞ if ‖u‖∗ > 1

= δB∗(u),

where we have used Hölder’s inequality (Proposition 2).
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c) We have

f∗(u) = sup
x∈X
〈u | x〉−‖x‖

= sup
x∈X
‖x‖
(
‖u‖∗−

1
2‖x‖

)
,

again using Hölder’s inequality. Writing t= ‖x‖, the quantity t(‖u‖∗−2t) is a concave

quadratic in t ∈ R, with roots at t ∈ {0,2‖u‖∗}, hence it attains its maximum when

t= ‖u‖∗. Substituting this value we get the desired result.

Lemma 31. A norm is convex and proper.

Proof. Let x,y ∈X, λ ∈ [0,1] and let ‖ · ‖ be a norm on X. Then

‖λx+ (1−λ)y‖ ≤ ‖λx‖+‖(1−λ)y‖= λ‖x‖+ (1−λ)‖y‖, (A.14)

hence ‖ · ‖ is convex. By positivity the norm is bounded below, hence it is also proper.

Lemma 32. Let f :X → R be positive, homogeneous and convex. Then f satisfies the triangle

inequality. If f moreover is only 0 at the origin, then f is a norm.

Proof. Let x,y ∈X. By convexity for any λ ∈ [0,1] we have

2f(λx+ (1−λ)y)≤ 2λf(x) + 2(1−λ)f(y),

hence choosing λ= 1
2 and using homogeneity we get

f(x+y)≤ f(x) +f(y),

as required, hence f satisfies all the requirements to be a norm, as required.

Lemma 34. Let f,g :X → R be convex. Then f +g is convex.

Proof. Let λ ∈ [0,1], and let x,y ∈X. Then

(f +g)(λx+ (1−λ)y) = f(λx+ (1−λ)y) +g(λx+ (1−λ)y)

≤ λf(x) + (1−λ)f(y) +λg(x) + (1−λ)g(x)

= λ(f +g)(x) + (1−λ)(f +g)(y).

Note that if either of f or g is strictly convex, then the inequality becomes strict.
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Lemma 49 (Best rank k matrix approximation). Let X ∈ Rd×m have singular value de-

composition X = U diag(σ(X))V > and let k ≤ q = min(d,m). Then the closest rank k ma-

trix to X in Frobenius norm is given by the matrix Z = U diag(σ(Z))V >, where σ(Z) =

(σ1(X), . . . ,σk(X),0, . . . ,0).

Proof. We solve the problem

min
{
‖X−Z‖fro

∣∣∣ Z ∈ Rd×m,rank(Z)≤ k
}
. (A.15)

Using the orthogonal invariance of the Frobenius norm, this is equivalent to

min
{
‖diag(σ(X))−U>ZV ‖fro

∣∣∣ Z ∈ Rd×m,rank(Z)≤ k
}
. (A.16)

As the first term in the norm is diagonal, we minimize the expression by choosing the second

term to be diagonal as well, that is by choosing Z = U diag(σ(Z))V >, for some vector σ(Z),

hence the problem reduces to

min
{
‖σ(X)−σ(Z)‖2

∣∣∣ σ(Z) ∈ Rq,card(σ(Z))≤ k
}
, (A.17)

that is

min
{

q∑
i=1

(σi(X)−σi(Z))2
∣∣∣ σ(Z) ∈ Rq,card(σ(Z))≤ k

}
. (A.18)

As the singular values of X are ordered non increasing by convention, and we are free to

choose at most k non negative singular values for Z, the solution is given by identifying the

k largest singular values of Z and X, and setting the remainder to zero, as required.

Proposition 48. Let H be a finite dimensional Euclidean space, let L be continuous, convex,

proper and coercive on H and let Ω be a norm on H. Let λ,α,β ∈ R+. In each of the problems

(2.1), (2.2) and (2.3) the set of solutions is nonempty and compact.

Proof. For each setting we consider the extended problem

f̃(x) =

f(x) if x ∈X

∞ otherwise.
(A.19)

Proposition 47 then provides that the set of minima of f over X is nonempty and compact if

X is closed, f is lower semicontinuous at each x ∈X (hence f̃ is closed by Proposition 26),

and one of the following conditions holds:

i) X is bounded.
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ii) Some set
{
x ∈X

∣∣ f(x)≤ γ
}

is nonempty and bounded.

iii) f̃ is coercive.

For the optimization problems in question we have as follows

a) For Tikhonov regularization (2.1), X is the entire Euclidean space, and f = L+λΩ.

b) For Ivanov regularization (2.2), X =
{
x
∣∣ Ω(x)≤ β

}
, and f = L.

c) For Morozov regularization (2.3), X =
{
x
∣∣ L(x)≤ γ

}
, and f = Ω.

In each case X is closed, f is continous, hence lower semicontinuous, and f̃ is coercive,

hence Proposition 47 applies as claimed.
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Appendix: The Θ-norm

In this appendix we present derivations for Chapter 3.

Lemma 52. For p ∈ [1,∞] we have

‖w‖p =


‖w‖Θ, Θ =

{
θ ∈ Rd++

∣∣∣ ∑d
i=1 θ

p
2−p
i ≤ 1

}
, for p ∈ [1,2),

‖w‖Θ = ‖w‖Θ,∗, Θ =
{
θ ∈ Rd++

∣∣∣ 0< θi ≤ 1
}
, for p= 2,

‖w‖Θ,∗, Θ =
{
θ ∈ Rd++

∣∣∣ ∑d
i=1 θ

p
p−2
i ≤ 1

}
, for p ∈ (2,∞].

Note that the case p = 2 follows from the cases p ∈ [1,2) and p ∈ (2,∞] by taking the

limit as p tends to 2 from below or above, respectively.

Proof. Consider the case p ∈ [1,2), define a= 2
p and b= 2

2−p and note that a,b ∈ [1,∞), and
1
a + 1

b = 1. We have for any θ ∈Θ

(‖w‖p)p =
d∑
i=1

|wi|p

θ
p
2
i

θ
p
2
i ≤

(
d∑
i=1

|xi|2

θi

) p
2 ( d∑

i=1
θ

p
2−p
i

) 2−p
2

≤

(
d∑
i=1

|xi|2

θi

) p
2

, (B.1)

hence

‖w‖p ≤ inf
θ∈Θ

(
d∑
i=1

|xi|2

θi

) 1
2

. (B.2)

Now let θ̃ = |wi|2−p

(
∑d
j=1 |wj |p)

2−p
p

, and note that
∑d
i=1 θ̃i

p
2−p = 1. Furthermore for this choice we
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have equality, as

(
d∑
i=1

|wi|2

θ̃i

) 1
2

=

 d∑
i=1
|wi|p

 d∑
j=1
|wj |p


2−p
p


1
2

=


 d∑
j=1
|wj |p


p+2−p
p


1
2

(B.3)

=

 d∑
j=1
|wj |p

 1
p

= ‖w‖p. (B.4)

It follows that ‖w‖p = ‖w‖Θ. For the case p ∈ (2,∞], note that the Hölder conjugate q = p
p−1

lies in [1,2), and we have p
2−p = q

q−2 . By the first part of the proof it follows that

‖w‖p = ‖w‖q,∗ = ‖w‖Θ,∗. (B.5)

The case p= 2 follows from both cases by continuity.

For Proposition 55 we recall the seminorm:

‖w‖γ =

√√√√ ∑
i:γi>0

w2
i

γi
.

Proposition 55. Let γ1, . . . ,γm ∈ Rd+ such that
∑m
`=1 γ

` ∈ Rd++ and let Θ be defined by Θ ={
θ ∈ Rd++

∣∣ θ =
∑m
`=1λ`γ

`, λ ∈∆m−1}. Then we have, for every w ∈ Rd, that

‖w‖Θ = inf
{

m∑
`=1
‖v`‖γ`

∣∣∣ v` ∈ Rd, supp(v`)⊂ supp(γ`), ` ∈ Nm,
m∑
`=1

v` = w

}
. (B.6)

Moreover, the unit ball of the norm is given by the convex hull of the set

m⋃
`=1

{
w ∈ Rd

∣∣ supp(w)⊂ supp(γ`),‖w‖γ` ≤ 1
}
. (B.7)

Proof. Let A` =
{
w ∈ Rd

∣∣ ‖w‖γ` ≤ 1, supp(w)⊂ supp(γ`)
}

, and define

C = co
m⋃
`=1

A`.

Note that C is bounded and balanced, since each set A` is so. Furthermore, the hypothesis

that
∑m
`=1 γ

` > 0 ensures that C is absorbing. Hence, by Lemma 36 the Minkowski functional

µC defines a norm. We rewrite µC(w) as

µC(w) = inf
{
λ
∣∣∣ λ > 0, w = λ

m∑
`=1

α`z`, z` ∈A`, α ∈∆m−1
}
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where the infimum is over λ, the vectors z` ∈ Rd and the vector α= (α1, . . . ,αm), and recall

∆m−1 denotes the unit simplex in Rm.

The rest of the proof is structured as follows. We first show that µC(w) coincides

with the right hand side of equation (B.6), which we denote by ν(w). Then we show that

‖w‖Θ = µC(w) by observing that both norms have the same dual norm.

Choose any vectors v1, . . . ,vm ∈ Rd which satisfies the constraint set in the right hand

side of (B.6) and set α` = ‖v`‖γ`/(
∑m
k=1 ‖vk‖γk) and z` = v`/‖v`‖γ` . We have

w =
m∑
`=1

v` =
( m∑
k=1
‖vk‖γk

) m∑
`=1

α`z`.

This implies that µC(w) ≤ ν(w). Conversely, if w = λ
∑m
`=1α`z` for some z` ∈ A` and

α ∈∆m−1, then letting v` = λα`z` we have

m∑
`=1
‖v`‖γ` =

m∑
`=1
‖λα`z`‖γ` = λ

m∑
`=1

α`‖z`‖γ` ≤ λ.

Next, we show that both norms have the same dual norm. When Θ is the interior of

co{γ1, . . . ,γm}, the dual norm of ‖ · ‖Θ, described in Proposition 51, can be written as

‖u‖Θ,∗ = sup
θ∈Θ

√√√√ d∑
i=1

θiu2
i = mmax

`=1

√√√√ d∑
i=1

γ`iu
2
i .

We now compute the dual of the norm µC ,

max
w∈C
〈w | u〉= max

{
〈w | u〉

∣∣ w ∈ ∪m`=1A`
}

= mmax
`=1

max
w∈A`

〈w | u〉= mmax
`=1

√√√√ d∑
i=1

γ`iu
2
i . (B.8)

It follows that the norms share the same dual norm, hence µC(·) coincides with ‖ · ‖Θ.

Theorem 63. For every w ∈ Rd it holds that

‖w‖2box = 1
b
‖wQ‖22 + 1

p
‖wI‖21 + 1

a
‖wL‖22,

where wQ = (|w|↓1, . . . , |w|
↓
q), wI = (|w|↓q+1, . . . , |w|

↓
d−`), wL = (|w|↓d−`+1, . . . , |w|

↓
d), q and ` are

the unique integers in {0, . . . ,d} that satisfy q+ `≤ d,

|wq|
b
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wq+1|
b

,
|wd−`|
a
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wd−`+1|

a
,

p= c− qb− `a and we have defined |w0|=∞ and |wd+1|= 0. Furthermore, the minimizer θ
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has the form

θi =


b, if i ∈ {1, . . . , q},

p |wi|∑d−`
j=q+1 |wj |

, if i ∈ {q+ 1, . . . ,d− `},

a, otherwise.

Proof. We solve the constrained optimization problem

inf
{

d∑
i=1

w2
i

θi

∣∣∣ a≤ θi ≤ b, d∑
i=1

θi ≤ c

}
. (B.9)

To simplify the notation we assume without loss of generality that wi are positive and ordered

nonincreasing, and note that the optimal θi are ordered non increasing. To see this, let

θ∗ = argminθ∈Θ
∑d
i=1

w2
i
θi

. Now suppose that θ∗i < θ∗j for some i < j and define θ̂ to be

identical to θ∗, except with the i and j elements exchanged. The difference in objective

values is

d∑
i=1

w2
i

θ̂i
−

d∑
i=1

w2
i

θ∗i
= (w2

i −w2
j )
(

1
θ∗j
− 1
θ∗i

)
,

which is negative so θ∗ cannot be a minimizer.

We further assume without loss of generality that wi 6= 0 for all i, and c≤ db (see Remark

63a below). The objective is continuous and we take the infimum over a closed bounded set,

so a solution exists and it is unique by strict convexity. Furthermore, since c≤ db, the sum

constraint will be tight at the optimum. Consider the Lagrangian function

L(θ,α) =
d∑
i=1

w2
i

θi
+ 1
α2

(
d∑
i=1

θi− c

)
, (B.10)

where 1/α2 is a strictly positive multiplier, and α is to be chosen to make the sum constraint

tight, call this value α∗. Let θ∗ be the minimizer of L(θ,α∗) over θ subject to a≤ θi ≤ b.

We claim that θ∗ solves equation (B.9). Indeed, for any θ ∈ [a,b]d, L(θ∗,α∗)≤ L(θ,α∗),

which implies that

d∑
i=1

w2
i

θ∗i
≤

d∑
i=1

w2
i

θi
+ 1

(α∗)2

(
d∑
i=1

θi− c

)
.

If in addition we impose the constraint
∑d
i=1 θi ≤ c, the second term on the right hand side
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is at most zero, so we have for all such θ that

d∑
i=1

w2
i

θ∗i
≤

d∑
i=1

w2
i

θi
,

whence it follows that θ∗ is the minimizer of (B.9).

We can therefore solve the original problem by minimizing the Lagrangian (B.10) over

the box constraint. Due to the coupling effect of the multiplier, the problem is separable, and

we can solve the simplified problem componentwise (see Micchelli et al., 2013, Theorem

3.1). For completeness we repeat the argument here. For every wi ∈ R and α > 0, the unique

solution to the problem min
{
w2
i
θ + θ

α2

∣∣∣ a≤ θ ≤ b} is given by

θ =


b, if α|wi|> b,

α|w|, if b≥ α|wi| ≥ a,

a, if a > α|wi|.

(B.11)

Indeed, for fixed wi, the objective function is strictly convex on Rd++ and has a unique

minimum on (0,∞) (see Figure 1.b in Micchelli et al. (2013) for an illustration). The

derivative of the objective function is zero for θ = θ∗ := α|wi|, strictly positive below θ∗

and strictly increasing above θ∗. Considering these three cases the result follows and θ is

determined by (B.11) where α satisfies
∑d
i=1 θi(α) = c.

The minimizer then has the form

θ = (b, . . . , b︸ ︷︷ ︸
q

,θq+1, . . . ,θd−`,a, . . . ,a︸ ︷︷ ︸
`

),

where q,` ∈ {0, . . . ,d} are determined by the value of α which satisfies

S(α) =
d∑
i=1

θi(α) = qb+
d−∑̀
i=q+1

α|wi|+ `a= c,

i.e. α= p/
(∑d−`

i=q+1 |wi|
)

, where p= c− qb− `a.

The value of the norm follows by substituting θ into the objective and we get

‖w‖2box =
q∑
i=1

|wi|2

b
+ 1
p

( d−∑̀
i=q+1

|wi|
)2

+
d∑

i=d−`+1

|wi|2

a
= 1
b
‖wQ‖22 + 1

p
‖wI‖21 + 1

a
‖wL‖22,

as required. We can further characterize q and ` by considering the form of θ. By construction
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we have θq ≥ b > θq+1 and θd−` > a≥ θd−`+1, or equivalently

|wq|
b
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wq+1|
b

and
|wd−`|
a
≥ 1
p

d−∑̀
i=q+1

|wi|>
|wd−`+1|

a
.

The proof is completed.

Remark 63a. The case where some wi are zero follows from the case that we have considered

in the theorem. If wi = 0 for n < i ≤ d, then clearly we must have θi = a for all such i. We

then consider the n-dimensional problem of finding (θ1, . . . ,θn) that minimizes
∑n
i=1

w2
i
θi

, subject

to a ≤ θi ≤ b, and
∑n
i=1 θi ≤ c′, where c′ = c− (d−n)a. As c ≥ da by assumption, we also

have c′ ≥ na, so a solution exists to the n-dimensional problem. If c′ ≥ bn, then a solution is

trivially given by θi = b for all i= 1, . . . ,n. In general, c′ < bn, and we proceed as per the proof

of the theorem. Finally, a vector that solves the original d-dimensional problem will be given by

(θ1, . . . ,θn,a, . . . ,a).

Proposition 68. Let Θ ⊂ Rd++ be convex and bounded, and let p ∈ [1,∞] and let q ∈ [1,∞]

satisfy 1
p + 1

q = 1. Define the following for w,u ∈ Rd

‖w‖= inf
θ∈Θ

φ−1
p

(
d∑
i=1

θiφp

(
|wi|
θi

))
, (B.12)

‖u‖∗ = sup
θ∈Θ

φ−1
q

(
d∑
i=1

θiφq(|ui|)
)
. (B.13)

Then the expressions define norms, and furthermore they are dual to each other.

In order to prove Proposition 68 we require the following auxiliary result, see e.g.

Louditski (2016, Remark 3.2.1 ).

Lemma 68a. If f(x,y) : Rd×Rd→ R is jointly convex, and the function

g(x) = inf
y
f(x,y)

is proper, then g is convex.

We further require the following result, see e.g. Borwein and Vanderwerff (2010, Th.

5.4.6.).

Lemma 68b. Let ‖ · ‖ be a norm on Rd, with dual norm ‖ · ‖∗. Let h(w) = 1
p‖w‖

p. Then the

Fenchel conjugate h∗ satisfies h∗(u) = 1
q ‖u‖

q
∗, where 1

p + 1
q = 1.

The proof of Proposition 68 follows, using the same proof method as in Proposition 51.
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Proof. First note that the objective in (3.29) is positive, homogeneous and nondegenerate.

Furthermore, it is proper as it is nowhere −∞, and for example, it takes the value zero at the

origin. It is jointly convex in w and θ, hence by Lemma 68a, Equation B.12 is convex in w. By

Lemma 32 it also satisfies the triangle inequality, hence it is a norm. Conversely expression

(3.30) defines a norm as it is a supremum of norms.

Let q > 1. Define h∗(u) = 1
q ‖u‖

q
∗, for some q > 1, and let p be such that 1

p + 1
q = 1. By

Lemma 68b we have, for w ∈ Rd, h∗∗(w) = 1
p‖w‖

p. Moreover, as h∗ is convex, proper and

zero at the origin, h∗∗ = h. We compute h explicitly for w ∈ Rd:

h(w) = sup
u
〈w | u〉−f∗(u) = sup

u

d∑
i=1

wiui− sup
θ

d∑
i=1

1
q
θi|ui|q = sup

u
inf
θ

d∑
i=1

wiui−
1
q
θi|ui|q,

where we have used the relation −maxf = min(−f). As in Proposition 51, this is a minimax

problem in the sense of von Neumann (Prop. 2.6.3 in Bertsekas et al., 2003), and we can

exchange the order of the inf and the sup, and solve the latter componentwise. The gradient

with respect to ui is wi− θi|ui|q−1 sign(ui), which is zero when |ui|q−1 = wi
θi

sign(ui). We

therefore require sign(ui) = sign(wi) and the condition becomes ui = sign(wi)
(
|wi|
θi

) 1
q−1

.

Substituting we obtain

h(w) = inf
θ

d∑
i=1

wi sign(wi)
(
|wi|
θi

) 1
q−1
− 1
q
θi

(
|wi|
θi

) q
q−1

(B.14)

= inf
θ

d∑
i=1

(
|wi|
θi

) 1
q−1

(
|wi|−

(
1− 1

p

)
θi
|wi|
θi

)
(B.15)

= inf
θ

d∑
i=1

(
|wi|
θi

)p−1
|wi|

1
p

(B.16)

= 1
p

inf
θ

d∑
i=1

|wi|p

θp−1
i

(B.17)

= 1
p
‖w‖p, (B.18)

where we have used q
q−1 = 1 + 1

q−1 , 1
q = 1− 1

p and 1
q−1 = p−1. It follows that the Fenchel

conjugate of h∗ is 1
p‖ · ‖

p, hence (B.12) and (B.13) are dual norms to each other as required.
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Appendix: Spectral Norms

In this appendix we present derivations for Chapter 4.

Proposition 71. The unit ball of the spectral k-support norm is the convex hull of the set of

matrices of rank at most k and Frobenius norm no greater than one.

Proof. For any W ∈ Rd×T , define the following sets

Tk =
{
W ∈ Rd×T

∣∣∣ rank(W )≤ k, ‖W‖F ≤ 1
}
, Ak = co(Tk),

and consider the following functional

λ(W ) = inf
{
λ > 0

∣∣W ∈ λAk}, W ∈ Rd×T . (C.1)

We will apply Lemma 36 to the set Ak. To do this, we need to show that the set Ak is

bounded, convex, symmetric and absorbing. The first three are clearly satisfied. To see that it

is absorbing, let W ∈ Rd×T have singular value decomposition UΣV >, and let r = min(d,T ).

If W is zero then clearly W ∈Ak, so assume it is non zero.

For i ∈ Nr let Si ∈ Rd×T have entry (i, i) equal to 1, and all remaining entries zero. We

then have

W = UΣV > = U

(
r∑
i=1

σiSi

)
V > =

(
d∑
i=1

σi

)
r∑
i=1

σi∑r
j=1σj

(USiV >) =: λ
r∑
i=1

βiZi.

Now for each i, ‖Zi‖F = ‖Si‖F = 1, and rank(Zi) = rank(Si) = 1, so Zi ∈ Tk for any k ≥ 1.

Furthermore βi ∈ [0,1] and
∑r
i=1βi = 1, that is (β1, . . . ,βr) ∈ ∆r−1, so 1

λW is a convex

combination of Zi, in other words W ∈ λAk, and we have shown that Ak is absorbing. It

follows that Ak satisfies the hypotheses of Lemma 36, where we let C =Ak, hence λ defines

a norm on Rd×T with unit ball equal to Ak.

Since the constraints in Tk involve spectral functions, the sets Tk and Ak are invariant

to left and right multiplication by orthogonal matrices. It follows that λ is a spectral function,
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that is λ(W ) is defined in terms of the singular values of W . By von Neumann’s Theorem

(Theorem 5) the norm it defines is orthogonally invariant and we have

λ(W ) = inf
{
λ > 0

∣∣W ∈ λAk}= inf
{
λ > 0

∣∣ σ(W ) ∈ λCk
}

= ‖σ(W )‖(k)

where we have used Corollary 57, which states that Ck is the unit ball of the k-support norm.

It follows that the norm defined by (C.1) is the spectral k-support norm with unit ball given

by Ak.

Lemma 73. Let r = min(d,T ) and let Θ be a bounded and convex subset of Rr++ which is

invariant under permutation. For every W = [w1, . . . ,wT ] ∈ Rd×T , it holds that

‖WΠ‖Θ = min
z∈Rd

‖[w1−z, . . . ,wT −z]‖Θ.

Proof. Given the set Θ we define the set Θ(T ) =
{

Σ ∈ ST++
∣∣ λ(Σ) ∈Θ

}
and Θ(d) ={

D ∈ Sd++
∣∣ λ(D) ∈Θ

}
. It follows from Lemma 8 that

‖W‖2Θ ≡ ‖σ(W )‖2Θ = inf
Σ∈Θ(T )

tr
(
Σ−1W>W

)
= inf
D∈Θ(d)

tr
(
D−1WW>) .

Using the second identity and recalling that WΠ = [w1− w̄, . . . ,wT − w̄], we have that

‖WΠ‖2Θ = inf
D∈Θ(d)

tr((WΠ)>D−1(WΠ))

= inf
D∈Θ(d)

T∑
t=1

(wt− w̄)>D−1(wt− w̄) = inf
D∈Θ(d)

min
z∈Rd

T∑
t=1

(wt−z)>D−1(wt−z)

where in the last step we used the fact that the quadratic form
∑T
t=1(wt−z)>D−1(wt−z) is

minimized at z = w̄. The result now follows by interchanging the infimum and the minimum

in the last expression and using the definition of the Θ-norm.
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Appendix: The (k,p)-Support Norm

In this appendix we present derivations for Chapter 5.

Recall that the dual norm of a vector u ∈ Rd is defined by the optimization problem

‖u‖(k,p),∗ = max
{
〈u | w〉

∣∣ ‖w‖(k,p) = 1
}
. (D.1)

Proposition 75. If p ∈ (1,∞] then the dual (k,p)-support norm is given by

‖u‖(k,p),∗ =

∑
i∈Ik

|ui|q
 1

q

, u ∈ Rd,

where q = p/(p−1) and Ik ⊂Nd is the set of indices of the k largest components of u in absolute

value. Furthermore, if p ∈ (1,∞) and u ∈ Rd\{0} then the maximum in (D.1) is attained for

wi =

sign(ui)
(

|ui|
‖u‖(k,p),∗

) 1
p−1

if i ∈ Ik,

0 otherwise.
(D.2)

If p=∞ the maximum is attained for

wi =


sign(ui) if i ∈ Ik,ui 6= 0,

λi ∈ [−1,1] if i ∈ Ik,ui = 0,

0 otherwise.
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Proof. For every u ∈ Rd we have

‖u‖(k,p),∗ = max
{

d∑
i=1

uiwi

∣∣∣ w ∈ Cpk
}

= max
{

d∑
i=1

uiwi

∣∣∣ card(w)≤ k,‖w‖p ≤ 1
}

= max
{∑
i∈Ik

uiwi

∣∣∣ ∑
i∈Ik

|wi|p ≤ 1
}

=

∑
i∈Ik

|ui|q
 1

q

,

where the first equality uses the definition of the unit ball (5.5) and the second equality is true

because the maximum of a linear functional on a compact set is attained at an extreme point

of the set (Proposition 42). The third equality follows by using the cardinality constraint,

that is we set wi = 0 if i /∈ Ik. Finally, the last equality follows by Hölder’s inequality in Rk,

Proposition 3.

The second claim is a direct consequence of the cardinality constraint and Hölder’s

inequality in Rk.

Proposition 77. The unit ball of the spectral (k,p)-support norm is the convex hull of the set of

matrices of rank at most k and Schatten p-norm no greater than one.

To prove Proposition 77 we follow the method of Proposition 71 and again refer to

Lemma 36.

Proof. Define the set

T pk =
{
W ∈ Rd×m

∣∣ rank(W )≤ k,‖σ(W )‖p ≤ 1
}
,

and its convex hull Apk = co(T pk ), and consider the Minkowski functional

λ(W ) = inf
{
λ > 0

∣∣W ∈ λApk}, W ∈ Rd×m. (D.3)

We show that Apk is absorbing, bounded, convex and symmetric, and it follows by Lemma 36

that λ defines a norm on Rd×m with unit ball equal to Apk. The set Apk is clearly bounded,

convex and symmetric. To see that it is absorbing, let W in Rd×m have singular value

decomposition UΣV >, and let r = min(d,m). If W is zero then clearly W ∈Apk, so assume it

is non zero.

For i ∈ Nr let Si ∈ Rd×m have entry (i, i) equal to 1, and all remaining entries zero. We
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then have

W = UΣV >

= U

(
r∑
i=1

σiSi

)
V >

=
(

d∑
i=1

σi

)
r∑
i=1

σi∑r
j=1σj

(USiV >)

=: λ
r∑
i=1

λiZi.

Now for each i, ‖σ(Zi)‖p = ‖σ(Si)‖p = 1, and rank(Zi) = rank(Si) = 1, so Zi ∈ T pk for any

k ≥ 1. Furthermore λi ∈ [0,1] and
∑r
i=1λi = 1, that is (λ1, . . . ,λr) lies in the unit simplex in

Rd, so 1
λW is a convex combination of elements of Zi. In other words W ∈ λApk, and we

have shown that Apk is absorbing. It follows that Apk satisfies the hypotheses of Lemma 36,

and λ defines a norm on Rd×m with unit ball equal to Apk.

Since the constraints in T pk involve spectral functions, the sets T pk and Apk are invariant

to left and right multiplication by orthogonal matrices. It follows that λ is a spectral function,

that is λ(W ) is defined in terms of the singular values of W . By von Neumann’s Theorem

(Von Neumann, 1937) the norm it defines is orthogonally invariant and we have

λ(W ) = inf
{
λ > 0

∣∣W ∈ λApk}
= inf

{
λ > 0

∣∣ σ(W ) ∈ λCpk
}

= ‖σ(W )‖(k)

where we have used Equation (5.5), which states that Cpk is the unit ball of the (k,p)-support

norm. It follows that the norm defined by (D.3) is the spectral (k,p)-support norm with unit

ball given by Apk.

Theorem 78. Let p ∈ (1,∞). For every w ∈ Rd, and k ≤ d, it holds that

‖w‖(k,p) =
[∑̀
i=1

(|w|↓i )
p+
(∑d

i=`+1 |w|
↓
i

q
√
k− `

)p] 1
p

(D.4)

where 1
p + 1

q = 1, and for k = d, we set `= d, otherwise ` is the largest integer in {0, . . . ,k−1}

satisfying

(k− `)|w|↓` ≥
d∑

i=`+1
|w|↓i . (D.5)

Furthermore, the norm can be computed in O(d logd) time.
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Proof. Note first that in (D.4) when `= 0 we understand the first term in the right hand side

to be zero, and when `= d+ 1 we understand the second term to be zero.

We need to compute

‖w‖(k,p) = max
{

d∑
i=1

uiwi

∣∣∣ ‖u‖(k,p),∗ ≤ 1
}

where the dual norm ‖ · ‖(k,p),∗ is described in Proposition 75. Let zi = |w|↓i . The problem is

then equivalent to

max
{

d∑
i=1

ziui

∣∣∣ k∑
i=1

uqi ≤ 1,u1 ≥ ·· · ≥ ud

}
. (D.6)

This further simplifies to the k-dimensional problem

max
{
k−1∑
i=1

uizi+uk

d∑
i=k

zi

∣∣∣ k∑
i=1

uqi ≤ 1,u1 ≥ ·· · ≥ uk

}
.

Note that when k = d, the solution is given by the dual of the `q-norm, that is the `p-norm.

For the remainder of the proof we assume that k < d. We can now attempt to use Holder’s

inequality, which states that for all vectors x such that ‖x‖q = 1, 〈x | y〉 ≤ ‖y‖p, and the

inequality is tight if and only if

xi =
(
|yi|
‖y‖p

)p−1
sign(yi).

We use it for the vector y = (z1, . . . ,zk−1,
∑d
i=k zi). The components of the maximizer u

satisfy ui =
(

zi
Mk−1

)p−1
if i≤ k−1, and

uk =
(∑d

i=`+1 zi

Mk−1

)p−1

.

where for every ` ∈ {0, . . . ,k−1}, M` denotes the r.h.s. in equation (D.4). We then need to

verify that the ordering constraints are satisfied. This requires that

(zk−1)p−1 ≥

(
d∑
i=k

zi

)p−1

which is equivalent to inequality (D.5) for ` = k−1. If this inequality is true we are done,



169

otherwise we set uk = uk−1 and solve the smaller problem

max
{
k−2∑
i=1

uizi+uk−1

d∑
i=k−1

zi

∣∣∣ k−2∑
i=1

uqi + 2uqk−1 ≤ 1, u1 ≥ ·· · ≥ uk−1

}
.

We use again Hölder’s inequality and keep the result if the ordering constraints are fulfilled.

Continuing in this way, the generic problem we need to solve is

max
{∑̀
i=1

uizi+u`+1

d∑
i=`+1

zi

∣∣∣ ∑̀
i=1

uqi + (k− `)uq`+1 ≤ 1, u1 ≥ ·· · ≥ u`+1

}

where ` ∈ {0, . . . ,k−1}. Without the ordering constraints the maximum, M`, is obtained by

the change of variable u`+1 7→ (k− `)
1
q u` followed by applying Hölder’s inequality. A direct

computation provides that the maximizer is ui =
(
zi
M`

)p−1
if i≤ `, and

(k− `)
1
q u`+1 =

( ∑d
i=`+1 zi

(k− `)
1
qMp

`

)p−1

.

Using the relationship 1
p + 1

q = 1, we can rewrite this as

u`+1 =
(∑d

i=`+1 zi

(k− `)Mp
`

)p−1

.

Hence, the ordering constraints are satisfied if

zp−1
` ≥

(∑d
i=`+1 zi

k− `

)p−1

,

which is equivalent to (D.5). Finally note that M` is a nondecreasing function of `. This is

because the problem with a smaller value of ` is more constrained, namely, it solves (D.6)

with the additional constraints u`+1 = · · ·= ud. Moreover, if the constraint (D.5) holds for

some value ` ∈ {0, . . . ,k−1} then it also holds for a smaller value of `, hence we maximize

the objective by choosing the largest `.

The computational complexity stems from using the monotonicity of M` with respect to

`, which allows us to identify the critical value of ` using binary search.

Proposition 80. For every w ∈ Rd, the projection x of w onto the unit ball of the (k,∞)-norm

is given by

xi =

sign(wi)(|wi|−β), if ||wi|−β| ≤ 1,

sign(wi), if ||wi|−β|> 1,
(D.7)
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where β = 0 if ‖w‖1 ≤ k, otherwise β ∈ (0,∞) is chosen to maximize
∑d
i=1 |xi| subject to the

constraint
∑d
i=1 |xi| ≤ k. Furthermore, the projection can be computed in O(d logd) time.

Remark 80a. The intuition behind the proof follows from the general case study, which comprises

four cases for the two constraints, assuming all wi > 0:

1. |wi| ≤ 1 for all i, and
∑
i |wi|< k : set x= w, neither constraint will be tight;

2. |wi|> 1 for some i, and
∑
i |wi|<k : separable case, x= sign(w)min(|w|,1), `1 constraint

will not be tight;

3. |wi| ≤ 1 for all i, and
∑
i |wi| ≥ k : line search for β, x= sign(w)(|wi|−β). `1 constraint

will be tight;

4. |wi|> 1 for some i, and
∑
i |wi| ≥ k : two subcases

(a)
∑

min(|wi|,1)<k: separable case after applying `∞ constraint, x= sign(w)min(|wi|,1),

`1 constraint will not be tight;

(b)
∑

min(|wi|,1)≥ k: line search for β, x= sign(w)min(|wi|−β,1), `1 constraint will

be tight.

Note that case 1 is a subset of case 2, and both can be grouped with case 4a. Similarly cases

3 and 4b can be grouped. Note that in 1, 2, and 4a the critical condition is
∑

min(|wi|,1)< k,

and in 3 and 4b it is
∑

min(|wi|,1)≥ k. We can therefore write the above as

1.
∑

min(|wi|,1)< k

(a) |wi| ≤ 1 for all i,
∑
i |wi|< k: set x= w, neither constraint will be tight;

(b) |wi|> 1 some i,
∑
i |wi|< k : separable case, x= sign(w)min(|w|,1), `1 constraint

will not be tight;

(c) |wi| > 1 some i,
∑
i |wi| ≥ k : separable after applying `∞ constraint, x =

sign(w)min(|w|,1), `1 constraint will not be tight.

2.
∑

min(|wi|,1)≥ k

(a) |wi| ≤ 1 for all i,
∑
i |wi| ≥ k : line search β, x = sign(w)(|wi|−β), `1 constraint

will be tight;

(b) |wi| ≤ 1 some i,
∑
i |wi| ≥ k : line search β, x = sign(w)min(|wi| −β,1), `1 con-

straint will be tight.

Finally we note that in the last analysis, 1a, 1b, and 1c can be summarized in a single case,

as can 2a and 2b.
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1.
∑

min(|wi|,1) < k : separable, if necessary after first applying `∞ constraint, x =

sign(w)min(|wi|,1), `1 constraint will not be tight;

2.
∑

min(|wi|,1)≥ k : line search β, x= sign(w)min(|wi|−β,1), `1 constraint will be tight.

The full proof of Proposition 80 follows.

Proof. We solve the optimization problem

min
x∈Rd

{ d∑
i=1

(xi−wi)2 ∣∣ |xi| ≤ 1,
d∑
i=1
|xi| ≤ k

}
(D.8)

by considering the different cases. When
∑d
i=1 min(|wi|,1) < k, the solution is separable,

and is given by

xi =


−1, if wi <−1,

wi, if −1≤ wi ≤ 1,

1, if wi > 1,

(D.9)

or equivalently

xi = sign(wi)min(|wi|,1). (D.10)

Assuming wi 6= 0 for all i, and
∑d
i=1 min(|wi|,1)≥ k the Lagrangian with nonnegative

multiplier 2β becomes

L(x,β) = 1
2

d∑
i=1

(xi−wi)2 + 2β
(

d∑
i=1

min(|xi|,1)−k
)

= 1
2

d∑
i=1

(xi−wi)2 +β

(
d∑
i=1

(|xi|+ 1−||xi|−1|)−k
)

using min(a,b) = 1
2 (a+ b−|a− b|).

We find the derivative ∂L
∂xi

= xi−wi+ 1
2βsign(xi)(1− sign(|xi|−1)). Setting to zero we

get

xi = wi−
1
2βsign(xi)(1− sign(|xi|−1)),

multiplying by sign(xi) we get

|xi|= sign(xi)wi−
1
2β(1− sign(|xi|−1)). (D.11)
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The second term on the RHS is nonnegative, so since the LHS is also nonnegative we need

sign(xi) = sign(wi). The first term on the RHS then becomes sign(xi)wi = sign(wi)wi = |wi|,

so we get

0≤ |xi|= |wi|−
1
2β(1− sign(|xi|−1)), (D.12)

hence we require

|wi| ≥
1
2β(1− sign(|xi|−1)). (D.13)

Considering the RHS of (D.13), note that when |xi| ≤ 1 the RHS is β, that is we require

|wi| ≥ β. If |xi|> 1, the RHS evaluates to zero, and (D.13) is trivially satisfied, however this

case will be excluded by the `∞ constraint.

When wi ≥ 0, xi ≥ 0, and by assumption wi ≥ β, we have

xi = wi−β, (D.14)

and imposing |xi| ≤ 1 this becomes

xi =

wi−β, if 0≤ wi−β ≤ 1,

1, if wi−β > 1,
. (D.15)

The case wi ≤ 0 follows by symmetry and we find

xi =



−1, if wi+β <−1,

wi+β, if −1≤ wi+β ≤ 0,

wi−β, if 0≤ wi−β ≤ 1,

1, if wi−β > 1,

, (D.16)

hence we can concisely write (D.16) as

xi = sign(wi)(min(|wi|−β,1). (D.17)

where β is zero when
∑
imin(|wi|,1)< k, otherwise it is chosen to maximize

∑
i |xi|, specifi-

cally achieving
∑
imin(|xi|,1) = k.

Remark 80b. The case where some components of w are zero follows from the case that we

have considered above. Specifically, we form the vector w′ from the non zero components of w

and solve the corresponding problem using Proposition 80 to obtain x′. The solution x to the
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general problem is then given by identifying its components to those of x′ on the support set of w,

and setting the remaining components to zero, which maintains the optimality of the objective in

(D.8).





Appendix E

Appendix: The Tensor k-Support Norm

In this appendix we present derivations for Chapter 6.

Proposition 83. There holds the bound

R≤ 2
m

max
1≤n≤N

k
1
qn
n Eε

∥∥∥Mn

( m∑
j=1

εjXj
)∥∥∥

sp
+ 8C

√
logN
m

where qn ∈ [1,∞] satisfies 1
pn

+ 1
qn

= 1 and

C =

√√√√ Nmax
n=1

sup
‖Mn(W )‖(kn,pn)≤1

1
m

m∑
j=1
〈W | Xj〉2.

In particular for tensor completion we have

RΩ ≤ 2k∗
[

1√
m

+
√

2log(N + 1)
m

]
+ 8
√

logN
m

where k∗ = max1≤n≤N k
1
qn
n .

Proof. Recall the shorthand notation ‖W ‖[n] = ‖Mn(W )‖(kn,pn) and ‖U‖[n],∗ =

‖Mn(U)‖(kn,pn),∗ introduced earlier. Using the definition of the dual norm we have

R= 2
n
Eε sup
|||W |||≤1

〈
m∑
j=1

εjXj |W

〉

= 2
n
Eε |||

m∑
j=1

εjXj |||∗

= 2
n
Eε‖

m∑
j=1

εjXj‖[n],∗

= 2
n

max
1≤n≤N

Eε‖
m∑
j=1

εjXj‖[n],∗+ 8
√
C

logN
m

(E.1)
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where the last step follows by (Corollary 3 Maurer et al., 2014) with

C = max
1≤n≤N

sup
‖W ‖n≤1

1
n

m∑
j=1
〈W | Xj〉2.

This proves the first bound.

In the tensor completion case a crude bound gives

m∑
j=1
〈W | Xj〉2 =

∑
(i1,...,iN )∈Ω

W 2
i1,...,iN ≤ ‖W ‖

2
Frob ≤ 1

bounding the second term in the r.h.s. of (E.1). To bound the first term, we let D =
∑m
j=1 εjXj

and note that

Eε‖
m∑
j=1

εjXj‖[n],∗ ≤ Eε

{
kn∑
`=1

[
σ`
(
Mn(D)

)]qn} 1
qn

≤ k
1
qn
n Eε‖Mn(D)‖sp.

It remains to bound Eε‖Mn(D)‖sp. To this end we use Proposition 6 of Maurer and Pontil

(2013) which, adapted to our notation, gives

Eε‖Mn(D)‖sp ≤

√√√√‖∑
t

mt∑
j=1

xtj⊗xtj‖sp +

√
2max

t

{
mt

mtmax
j=1
‖xtj‖2

}
log(N + 1)

where t= (i1, ..., in−1, in+1, ..., iN ) and xtj ∈ Rdn is a vector the components of which are all

equal to zero expect one component. This component, in(j) is uniquely determined by the

condition that (i1, ..., in−1, in(j), in+1, ..., iN ) ∈ Ω. Hence ‖xtj‖2 = 1 for every j and t. The

sum over the index j runs over the set of observed tensor entries in which the multi-index t

is fixed and the single index in varies. The result then follows by noting that mt ≤m and

‖
∑
t

mt∑
j=1

xtj⊗xtj‖sp ≤tr
(∑

t

mt∑
j=1

xtj⊗xtj
)

=
∑
t

mt∑
j=1
‖xtj‖2 =m.
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Appendix: Interpolation Norms

In this appendix we present derivations for Chapter 7. Recall first the following proposition

and assumption.

Proposition 84. Let m, d, and N be strictly positive integers. Let K = Rm− , let B ∈ Rd×N , and

let F : RN → Rm be K-convex in the sense that, for every α ∈ ]0,1[ and every (u,v) ∈ RN ×RN

F
(
αu+ (1−α)v

)
−αF (u)− (1−α)F (v) ∈K. (F.1)

Let h : Rm→ ]−∞,+∞] be a proper convex function such that, for every (x,y) ∈ ranF × ranF ,

x−y ∈K ⇒ h(x)≤ h(y). (F.2)

Define, for every w ∈ Rd,

ϕ(w) = inf
v∈RN
Bv=w

h
(
F (v)

)
. (F.3)

Then h◦F and ϕ are convex.

Assumption 85. Let m, d, and (rj)1≤j≤m be strictly positive integers, set N =
∑m
j=1 rj , and

let v = (vj)1≤j≤m denote a generic element in RN where, for every j ∈ {1, . . . ,m}, vj ∈ Rrj .

Furthermore:

1. F : v 7→ (fj(vj))1≤j≤m where, for every j ∈ {1, . . . ,m}, fj is a norm on Rrj with dual

norm fj,∗.

2. ||| · ||| is a norm on Rm which is monotone in the sense that, for every (x,y) ∈ Rm+ ×Rm+ ,

x−y ∈ Rm− ⇒ |||x||| ≤ |||y|||, (F.4)

and ||| · |||∗ denotes its dual norm.

3. For every j ∈ {1, . . . ,m}, Bj ∈ Rd×rj , and B = [B1 · · · Bm] has full rank.
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Let, for every w ∈ Rd,

‖w‖= min
v∈RN
Bv=w

|||F (v)|||= min
v∈RN∑m

j=1Bjvj=w

∣∣∣∣∣∣(f1(v1), . . . ,fm(vm)
)∣∣∣∣∣∣. (F.5)

Proposition 86. Consider the setting of Assumption 85. Then ||| · ||| ◦F is a norm on RN and

its dual norm at t ∈ RN is

(||| · ||| ◦F )∗(t) = |||
(
f1,∗(t1), . . . ,fm,∗(tm)

)
|||. (F.6)

Proof. Let v and t be in RN . We first deduce from Assumption 85.1 that

(∀α ∈ R) |||F (αv)|||= |||(f1(αv1), . . . ,fm(αvm))|||

= |||(|α|f1(v1), . . . , |α|fm(vm))|||

= |α| |||(f1(v1), . . . ,fm(vm))|||

= |α| |||F (v)||| (F.7)

and that

|||F (v)|||= 0 ⇔ F (v) = 0

⇔ (∀j ∈ {1, . . . ,m}) fj(vj) = 0

⇔ (∀j ∈ {1, . . . ,m}) vj = 0

⇔ v = 0. (F.8)

Let us now check the triangle inequality. By Assumption 85.1, F (v+ t)−F (v)−F (t) ∈ Rm− .

Hence, we derive from (F.4) that

|||F (v+ t)||| ≤ |||F (v) +F (t)||| ≤ |||F (v)|||+ |||F (t)|||. (F.9)

Finally, to establish (F.6), observe that

〈v | t〉=
m∑
j=1
〈vj | tj〉 ≤

m∑
j=1

fj(vj)fj,∗(tj)≤ |||F (v)||| |||F∗(t)|||∗. (F.10)

Since for every t we can choose v so that both equalities are tight, the result follows.

Recall further the folowing remark.

Remark 87. Let w ∈ Rd, set C =
{
v ∈ RN

∣∣ Bv = w
}

, and let dC be the distance function to C
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associated with the norm ||| · ||| ◦F (see Proposition 86), that is,

(∀z ∈ RN ) dC(z) = inf
v∈C
|||F (v−z)|||. (F.11)

Note that C is a closed affine subspace and it follows from (F.11) and (F.5) that

dC(0) = inf
v∈C
|||F (v−0)|||= inf

v∈C
|||F (v)|||= ‖w‖. (F.12)

Thus, the function ‖ · ‖ in (F.5) is defined via a minimal norm interpolation process. Hence, the

optimization problem underlying (F.5) is that of minimizing the norm ||| · ||| ◦F over the closed

affine subspace C. It therefore possesses a solution, namely the minimum norm element in C.

Theorem 88. Consider the setting of Assumption 85. Then the following hold:

1. ‖ · ‖ is a norm.

2. The dual norm of ‖ · ‖ at u ∈ Rd is

‖u‖∗ =
∣∣∣∣∣∣(f1,∗(B>1 u), . . . ,fm,∗(B>mu)

)∣∣∣∣∣∣
∗. (F.13)

Proof. 1: We first note that, since ranB = Rd, dom‖ ·‖= Rd. Next, we derive from (F.5) that,

for every w ∈ Rd and every α ∈ R,

‖αw‖= |α|‖w‖. (F.14)

On the other hand, it is clear that F satisfies (F.1), that ||| · ||| satisfies (F.2), and that (F.5)

assumes the same form as (F.3). Hence, by Proposition 84 the function ‖ · ‖ is convex. In

view of (F.14), we therefore have, for every (w,t) ∈ Rd×Rd, ‖w+ t‖ ≤ ‖w‖+‖t‖. Now let

w ∈ Rd be such that ‖w‖ = 0 and set C =
{
v ∈ RN

∣∣ Bv = w
}

. Then it follows from (F.12)

that dC(0) = 0 and, since C is closed, we get 0 ∈C. Therefore, w =B0 = 0. Altogether ‖ ·‖ is

a norm.

2: Let u ∈ Rd. Then

‖u‖∗ = max
{
〈w | u〉

∣∣ w ∈ Rd, ‖w‖ ≤ 1
}

= max
{
〈w | u〉

∣∣∣ w ∈ Rd, min
Bv=w

|||F (v)||| ≤ 1
}

= max
{
〈Bv | u〉

∣∣ v ∈ RN , |||F (v)||| ≤ 1
}

= max
{〈
v |B>u

〉 ∣∣ v ∈ RN , |||F (v)||| ≤ 1
}

=
(
||| · ||| ◦F

)
∗(B

>u), (F.15)
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where last step follows from Proposition 86. We conclude by applying (F.6).

Derivation of the random block-coordinate algorithm
In this section we present the full derivation of the algorithm. Recall that we write the

regularization problem as

minimize
w∈Rd

v1∈Rr1 ,...,vm∈Rrm∑m
j=1Bjvj=w

n∑
i=1

`i(〈w | ai〉,βi) +λ

m∑
j=1

fj(vj). (F.16)

We can therefore solve the optimization problem

minimize
v1∈Rr1 ,...,vm∈Rrm

n∑
i=1

`i

( m∑
j=1
〈Bjvj | ai〉,βi

)
+λ

m∑
j=1

fj(vj), (F.17)

and derive from one of its solutions (vj)1≤j≤m a solution w =
∑m
j=1Bjvj to (F.16). To make

the structure of this problem more apparent, let us introduce the functions

Φ: (v1, . . . ,vm) 7→ λ

m∑
j=1

fj(vj) (F.18)

and

Ψ: (η1, . . . ,ηn) 7→
n∑
i=1

ψi(ηi), (F.19)

where, for every i ∈ {1, . . . ,n},

ψi : ηi 7→ `i(ηi,βi). (F.20)

Let us also designate by A ∈ Rn×d the matrix the rows of which are (ai)1≤i≤n and define

L= [L1 · · ·Lm] ∈ Rn×N , (F.21)

where, for every j ∈ {1, . . . ,m},

Lj =ABj ∈ Rn×rj . (F.22)

Then L=AB, where B = [B1 · · ·Bm], and we can rewrite problem (F.17) as

minimize
v∈RN

Φ(v) + Ψ(Lv). (F.23)

Note that in this concise formulation, the functions Φ ∈ Γ0(RN ) and Ψ ∈ Γ0(Rn) are nons-

mooth. Now let us introduce the functions

F : (v,s) 7→ Φ(v) + Ψ(s) and G = ιV , (F.24)
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where V = graL =
{

(v,s) ∈ RN ×Rn
∣∣ Lv = s

}
is the graph of L, and ιV is the indicator

function of V . Using the variable x = (v,s), we see that (F.23) reduces to the problem

minimize
x∈RN+n

F (x) +G(x) (F.25)

involving the sum of two functions in Γ0(RN+n) and which can be solved with the Douglas-

Rachford algorithm (Bauschke and Combettes, 2011, Section 27.2). Let x0 ∈ RN+n, let

y0 ∈ RN+n, let z0 ∈ RN+n, let γ ∈ ]0,+∞[, and let (µk)k∈N be a sequence in ]0,2[ such that

infk∈N µn > 0 and supk∈N µn < 2. The Douglas-Rachford algorithm

for k = 0,1, . . .
xk+1 = proxγG yk

zk+1 = proxγF (2xk+1−yk)

yk+1 = yk+µk(zk+1−xk+1)

(F.26)

produces a sequence (xk)k∈N which converges to a solution to (F.25) (Bauschke and Com-

bettes, 2011, Corollary 27.4). However,

proxF : (v,s) 7→ (proxΦ v,proxΨ s), (F.27)

and

proxG : (x,y) 7→ (v,Lv), where v = x−L>(Id +LL>)−1(Lx−y), (F.28)

is the projection operator onto V . Hence, upon setting R= L>(Id +LL>)−1, we can rewrite

(F.26) as

for k = 0,1, . . .

qk = Lxk−yk
vk+1 = xk−Rqk
sk+1 = Lvk+1

zk+1 = proxγΦ(2vk+1−xk)

tk+1 = proxγΨ(2sk+1−yk)

xk+1 = xk+µk(zk+1−vk+1)

yk+1 = yk+µk(tk+1−sk+1),

(F.29)

where we have set xk = (vk,sk) ∈ RN ×Rn, yk = (xk,yk) ∈ RN ×Rn, and zk = (zk, tk) ∈

RN ×Rn. It follows from the above result that (vk)k∈N converges to a solution to (F.23). Let

us now express (F.29) in terms of the original variables (vj)1≤j≤m of (F.17). To this end set,



182 Appendix F. Appendix: Interpolation Norms

for every j ∈ {1, . . . ,m},

Rj = L>j (Id +LL>)−1 = L>j

(
Id +

m∑
j=1

LjL
>
j

)−1
. (F.30)

Moreover, let us denote by xj,k ∈ Rrj the jth component of xk, by vj,k ∈ Rrj the jth compo-

nent of vk, by zj,k ∈ Rrj the jth component of zk. Furthermore, we denote by ηi,k ∈ R the

ith component of yk, by τi,k ∈ R the ith component of tk, and by σi,k ∈ R the ith component

of sk. Thus, (F.29) becomes

for k = 0,1, . . .

qk =
∑m
j=1Ljxj,k−yk

for j = 1, . . . ,m
vj,k+1 = xj,k−Rjqk
zj,k+1 = proxγλfj (2vj,k+1−xj,k)

xj,k+1 = xj,k+µk(zj,k+1−vj,k+1)

sk+1 =
∑m
j=1Ljvj,k+1

for i= 1, . . . ,n τi,k+1 = proxγψi(2σi,k+1−ηi,k)

ηi,k+1 = ηi,k+µk(τi,k+1−σi,k+1).

(F.31)

In large-scale problems, a drawback of this approach is that m+n proximity operators must

be evaluated at each iteration, which can lead to impractical implementations in terms of

computations and/or memory requirements. The analysis of (Combettes and Pesquet, 2015,

Corollary 5.5) shows that the proximity operators in (F.31) can be sampled by sweeping

through the indices in {1, . . . ,m} and {1, . . . ,n} randomly while preserving the convergence

of the iterates. This results in partial updates of the variables which lead to significantly

lighter iterations and remarkable flexibility in the implementation of the algorithm. Thus, a

variable vj,k is updated at iteration k depending on whether a random activation variable

εj,k takes on the value 1 or 0 (each component ηi,k of the vector yk is randomly updated

according to the same strategy). The method resulting from this random sampling scheme is

presented in the next theorem.

Theorem 88. Let D = {0,1}m+nr {0}, let γ ∈ ]0,+∞[, let (µk)k∈N be a sequence in ]0,2[

such that infk∈N µn > 0 and supk∈N µn < 2, let (vj,0)1≤j≤m and (xj,0)1≤j≤m be in RN , let

y0 = (ηi,0)1≤i≤n ∈ Rn, and let (εk)k∈N = (ε1,k . . . ,εm+n,k)k∈N be identically distributed D-
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valued random variables such that, for every i ∈ {1, . . . ,m+n}, Prob[εi,0 = 1]> 0. Iterate

for k = 0,1, . . .

qk =
∑m
j=1Ljxj,k−yk

for j = 1, . . . ,m vj,k+1 = vj,k +εj,k
(
xj,k−Rjqk−vj,k

)
xj,k+1 = xj,k +εj,kµk

(
proxγλfj (2vj,k+1−xj,k)−vj,k+1

)
sk+1 =

∑m
j=1Ljvj,k+1

for i= 1, . . . ,n⌊
ηi,k+1 = ηi,k +εm+i,kµk

(
proxγψi(2σi,k+1−ηi,k)−σi,k+1

)
.

(F.32)

Suppose that the random vectors (εk)k∈N and (xk,yk)k∈N are independent. Then, for

every j ∈ {1, . . . ,m}, (vj,k)k∈N converges almost surely to a vector vj and w =
∑m
j=1Bjvj is a

solution to (7.32).

Proof. It follows from (Combettes and Pesquet, 2015, Corollary 5.5) that (v1,k, . . . ,vm,k)k∈N
converges almost surely to a solution to (F.17). In turn, w solves (F.16).
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