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ABSTRACT

We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern
machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling
relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation,
one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the
cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling
relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership
knowledge, this unrealistic case produces a wide fractional mass error distribution, with awidth of D » 0.87.
Interlopers introduce additional scatter, significantly widening the error distribution further ( D » 2.13). We
employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict
single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the
cluster center, SDM yields better than a factor-of-two improvement ( D » 0.67) for the contaminated case.
Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation
approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the
cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological
models.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: kinematics and dynamics –
gravitation – large-scale structure of universe – methods: statistical

1. INTRODUCTION

Galaxy clusters are the most massive gravitationally bound
systems in the universe. They are dark matter dominated, and
have halos of mass  -M h1014 1. The majority of multiple-
wavelength observations do not directly probe the dark matter
distribution, but the baryonic component of clusters: the hot gas
and tens to thousands of galaxies contained within the halo.
Clusters have complex substructure and internal dynamics, and
grow through hierarchical merging and the accretion of matter
from the cosmic web. Cluster abundance as a function of mass
and redshift is sensitive to the underlying dark matter and dark
energy content of the universe and can be used to test
cosmological models. See Voit (2005) andAllen et al. (2011)
for a review.

While measurements of cluster masses can be employed to
constrain cosmological parameters (e.g., Schuecker et al. 2003;
Henry et al. 2009; Vikhlinin et al. 2009; Mantz et al. 2010;
Rozo et al. 2010; Vanderlinde et al. 2010; Allen et al. 2011;
Sehgal et al. 2011; Planck Collaboration et al. 2014b; Mantz
et al. 2015), capitalizing on clusters as cosmological probes
requires a large, well-defined sample of cluster observations, a
connection linking the observations of the baryonic component
to the underlying dark matter, and a good understanding of the
intrinsic scatter in the mass-observable relationship. A variety
of methods connecting observables to cluster mass exist,
utilizing observations across multiple wavelengths. A subset of
these techniques, broadly labeled dynamical mass measure-
ments, are based on measurements of galaxy kinematics.
Dynamical mass measurements utilize line-of-sight (LOS)
velocities of the galaxies within the virial radius of the
clusterand may also take advantage of the unvirialized matter
falling toward the cluster.

The virial theorem approach considers cluster members’
LOS velocity dispersion, sv. This method scales halo mass, M,
with sv as a power law and famously led to Zwickyʼs (1933)
discovery of dark matter in the Coma cluster. Dynamical mass
measurements based on the virial theorem continue to be used
to determine cluster masses (e.g., Brodwin et al. 2010; Rines
et al. 2010; Sifón et al. 2013; Ruel et al. 2014; Bocquet
et al. 2015). Old et al. (2014) and Old et al. (2015) provide a
comparison of several dynamical mass techniques based on
galaxy observables. Even when cluster membership is perfectly
and fully known, there is scatter in the ( )sM v scaling relation.
This can be attributed to both physical effects and selection
effects, including halo environment and triaxiality (e.g., White
et al. 2010; Saro et al. 2013; Wojtak 2013; Svensmark
et al. 2014), projection effects (e.g., Cohn 2012; Noh &
Cohn 2012), mass-dependent tidal disruption (e.g., Munari
et al. 2013), the degree of relaxedness of the cluster (e.g.,
Evrard et al. 2008; Ribeiro et al. 2011), and galaxy selection
strategy (e.g., Old et al. 2013; Saro et al. 2013; Wu et al. 2013).
Halos undergoing mergers or matter accretion possess a telltale
wide, flat velocity probability distribution function (PDF)
(Ribeiro et al. 2011). Impure, incomplete cluster membership
catalogs increase scatter in the ( )sM v relationship further.
Reducing errors in cluster mass measurements is essential for
applying clusters as cosmological probes.
The galaxy dynamics beyond the virial radius of the cluster

is likewise informative, and nearby, unvirialized matter can
also be used for cluster mass measurements. The caustic
technique employs infalling matter and galaxy velocities to
determine a mass profile (e.g., Biviano & Girardi 2003; Serra
et al. 2011; Gifford & Miller 2013) and can be applied to
determine cluster masses (e.g., Rines & Diaferio 2006; Geller
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et al. 2013; Rines et al. 2013), performing well even in the case
of merging halos (e.g., Rines et al. 2003). Furthermore, the
nonvirialized infalling matter beyond the virial radius provides
cues that can be used to infer a cluster’s mass (e.g., Zu &
Weinberg 2013; Falco et al. 2014).

A machine learning (ML) approach to dynamical mass
measurements was explored in Ntampaka et al. (2015). Here,
we built on the virial theorem’s simple ( )sM v power law to
take advantage of the entire LOS velocity PDF for mock
observations with pure and complete cluster membership
information, using all relevant substructure within the R200c
of each cluster. Taking full advantage of the velocity PDF was
achieved by applying a nonparametric ML approach to a PDF
of LOS velocities from a mock cluster catalog. By employing
support distribution machines (SDMs), an ML class of
algorithms that learns from a distribution to predict a scalar,
the full velocity PDF was used to improve mass predictions. A
traditional power-law scaling relation yielded a wide fractional
mass error distribution (see Equation (3)) and extended high-
error tails. SDMs trained on LOS velocities resulted in almost a
factor-of-two reduction in mass errors compared to the
traditional approach, substantially reducing the number of
severely over- and underestimated halo masses in the ideal case
with pure and complete cluster membership information.

However, the idealized catalog used in this case did not
account for a primary source of error in dynamical mass
measurements: interloper galaxies in the fore- or background of
the true cluster, appearing to be cluster members. In an ideal
cluster catalog, all cluster members are known (complete) and
the observations contain only true members (pure). Cluster
observations that are impure due to contamination by
interlopers are subject to additional scatter in the ( )sM v
relationship (e.g., Mamon et al. 2010), and a variety of methods
have been developed to remove interloper galaxies from the
sample (e.g., Fadda et al. 1996; von der Linden et al. 2007;
Mamon et al. 2013; Pearson et al. 2015)

In this follow-up paper, we explore how a more realistically
prepared mock catalog influences both the ( )sM v scaling
relation as well as the SDM predictions of cluster mass. Cluster
members are selected within a cylinder defined by a projected
radius in the plane of the sky and a radial velocity along the
LOS. This technique produces a catalog of spectroscopic
member catalogs that are impure, containing interloping
galaxies that appear to be cluster members but do not reside
within the virial radius of the cluster. They are also incomplete,
excluding some true cluster members from the sample.

In Section 2, we discuss our methods: the simulation (2.1),
mock observation (2.2), power-law scaling relation (2.3), and
SDM implementation (2.4). Results are presented in Section 3
and discussed in Section 4. We present a summary of our
findings in Section 5. Finally, we explore how changes to our
mock catalog affect power-law and ML results in the
Appendix.

2. METHODS

2.1. Simulation

The mock cluster catalog is created from the publicly
available Multidark MDPL1 simulation.3 Multidark is an N-
body simulation containing 38403 particles in a box of length

-h1 Gpc1 and a mass resolution of ´ -M h1.51 109 1.
Multidark was run using the L-Gadget2 code. It utilizes a
ΛCDM cosmology, with cosmological parameters consistent
with Planck data (Planck Collaboration et al. 2014a):
W =L 0.69, W = 0.31m , W = 0.048b , h = 0.68, =n 0.96,
and s = 0.828 .
Halos are identified by Multidark’s BDMW algorithm,

which uses a bound density maximum (BDM) spherical
overdensity halo finder with ahalo average density equal to
200 times the critical density of the universe, denoted as M. All
halos and subhalos at redshift z=0 with mass

 -M M h1012 1 are included in our sample. For more
information on the Multidark simulation and BDMW halo
finder, see Klypin & Holtzman (1997), Riebe et al. (2013),
Klypin et al. (2014), and references therein.

2.2. Mock Observations

Two mock observations are created: pure and contaminated.
For each of these two mock observations, a train sample and a
test sample are made. The pure catalog is ideal, in that all
cluster members above = -M M h10sub

12 1 within R200 are
included in the catalog. The train catalog has a flat mass
function, with 5028 unique halos with  -M M h1014 1.
Halos in this catalog eachcontributemultiple lines of sight,
such that low- and high-mass clusters are represented in equal
measures. The test catalog has 2278 unique halos with a lower-
mass cut of  ´ -M M h3 1014 1, and each unique halo
contributes exactly three lines of sight. It is discussed in further
detail in Ntampaka et al. (2015).
In contrast with the pure catalog, the contaminated catalog

includes more realistic observational selection effects. It
employs a simple, cylindrical cut around each cluster, allowing
interlopers to contaminate the sample. As with the pure catalog,
the contaminated catalog has both a train catalog with a flat
mass function, as well as a test catalog that uses three lines of
sight per cluster.
The contaminated catalog is constructed in the following

way.Each halo and subhalo is assumed to represent an
observable galaxy, with the galaxy inheriting its host’s position
and velocity. A simple cut is made around each cluster,
allowing for interlopers to contaminate the cluster observation.
To allow for interlopers across the box edge, the entire
simulation box is padded with a -h200 Mpc 1-thick slice from
across the periodic boundary to make a cube with length

-h1.4 Gpc 1. This cubic mock observation will be used to create
a mock cluster catalog that incorporates known observational
selection effects.
An intentionally simplistic cylindrical cut is made around

each cluster center. Only halos with  -M M h1014 1 with
centers that reside within the original -h1 Gpc 1 box volume are
considered to be “cluster candidates.” Following Old et al.
(2014), true cluster centers are assumed to be known by the
observer. Following Wojtak et al. (2007), the observer is placed
100 Mpc from the center of the cluster along the chosen LOS.

The full 3D galaxy velocity and position information is
reduced, then, to what can be observed along this LOS: plane-
of-sky x′- and y′-positions and LOS velocities. A galaxy’s net
velocity, v, is given by the sum of the peculiar velocity plus the
Hubble flow. An initial cylindrical cut defined by a circular
aperture with radius Raperture about the cluster center in the
plane of the sky and an LOS initial velocity cut of vcut about the

3 http://www.cosmosim.org/
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expected hubble flow velocity of an object located at a distance
of 100 Mpc from the observer.

The cylinder Raperture and vcut values are chosen to
correspond with the radius and s2 v, respectively, of a

´ -M h1 1015 1 cluster. The radius of a cluster of this mass
is -h1.6 Mpc 1. The s2 v is informed by the best-fit power law
found in Ntampaka et al. (2015), giving twice a typical velocity
dispersion of true cluster members of s » -2 2500 km sv

1 for a
cluster of mass of ´ -M h1 1015 1. These parameters are noted
in Table 1. A more thorough exploration of how Raperture and
vcut choices affect cluster mass predictions is presented in the
Appendix.

This initial cylinder is pared iteratively in velocity space,
with outliers beyond s2 v of the mean velocity being omitted
from the sample. Here, sv denotes the standard deviation of all
LOS velocities of the galaxies that reside in the cylinder. This
paring occurs until convergence is reached or until fewer than
20 members remain. Clusters with at least 20 members
remaining are added to the cluster catalog.

In order to create a representative training sample of how the
rare, high-mass clusters might appear when viewed from any
direction, the entire box is rotated and this process is repeated. The
first three rotations are chosen so that the observer views along the
box x-, y-, and z-directions. The remaining rotations are chosen
randomly on the surface of the unit sphere. To create the
contaminated train catalog, 1000 such rotations are performed.

The train catalog includes halos with  ´ -M M h1 1014 1.
It is created with a flat mass function, such that there are
exactly 1000 training clusters in each 0.1 dex mass bin. In bins
with fewer than 1000 clusters, this is done by assembling many
LOS views of rare halos. In mass bins with more than 1000
clusters, clusters are rank-ordered by mass and evenly removed
from the training sample.

In contrast with the contaminated train catalog, the
contaminated test catalog contains exactly three LOS views
of every halo: the box x-, y-, and z-directions. Because
boundary effects are expected near the edge of the training
sample, a minimum mass cut of  ´ -M M h3 1014 1 is
applied to the test catalogs. The single most massive halo has a
mass that will necessarily lie outside of the training sample, and
therefore is omitted from the test catalogs as well.

In summary, the contaminated catalog is created in the
following manner.

1. All halos and subhalos with masses greater than 
-M h1012 1

are assumed to represent a galaxy, with the galaxy inheriting
its host’s position and velocity.

2. Halos with massesgreater than 
-M h1014 1 are consid-

ered “cluster candidates.”

3. A cluster candidate’s center is assumed to be known, and
an observer is placed 100 Mpc from the cluster.

4. All galaxies in the box are given an appropriate velocity
that includes both Hubble flow and peculiar velocities.

5. A cylinder is cut around the cluster candidate center; this
cylinder is defined by an aperture radius, Raperture, and an
LOS velocity cut, vcut.

6. Galaxies outside of mean galaxy velocity s2 v are
iteratively removed from this cylinder until convergence
is reached.

7. This is repeated for all massive halos in the box, and
those with at least 20 members remaining are kept in the
sample.

8. The box is rotated, and steps 3–7 are repeated.
9. The contaminated train catalog is made of multiple LOS

projections, up to 1000 for the highest-mass cluster. The
number of projections per unique halo is chosen to create
a flat mass function for the train catalog.

10. The contaminated test catalog is made of the first three (x-
, y-, and z-directions) views of all halos above

= ´ -M M h3 1014 1. The most massive halo is also
excluded from the test catalog.

Figure 1 shows the average vlos and R distributions for the
train catalogs, divided into three [ ( )]

-M M hlog 1 bins. The
pure catalog is pure, in that there are no interlopers
contaminating the galaxy clusters. It is also complete, in that
all galaxies within the cluster R200 are known. In contrast, the
contaminated catalog includes interlopers and excludes some
true cluster members. The shape of vlos and R distributions are
mass-dependent, and this dependence on cluster mass can be
utilized in mass predictions. In Section 2.4, we will explore
ways to predict cluster mass by exploiting these mass-
dependent distributions using a distribution-to-scalar ML
technique.

2.3. Power Law

In a typical power-law scaling relation, one starts with the
virial theorem to find a relationship between the velocity
dispersion, sv, and halo mass, M. This power law is given as
s µ Mv

1 3, but can be rewritten more generally as

( ) ( )


s s=
a

-

⎛
⎝⎜

⎞
⎠⎟M

M

M h10
. 1v 15 15 1

where s15 is the typical velocity dispersion of galaxies residing
within a 

-M h1015 1 halo and the parameter α is allowed to
vary from the theoretically predicted a = 1 3 and is instead fit
to data. The best fit is then be used to predict cluster mass from

Table 1
Catalog Summary

Catalog Name Type Min. Halo Mass Raperture vcut scut Projections per Total s15 α

( )
-M h 1 ( )-hMpc 1 ( )-km s 1 Unique Halo Projections ( )-km s 1

Pure Train ´1 1014 L L L varies 15000 1244 0.382
Pure Test ´3 1014 L L L 3 6834 L L
Pure High-mass Test ´7 1014 L L L 3 945 L L
Contaminated ML Train ´1 1014 1.6 2500 2.0 varies 15000 L L
Contaminated PL Train ´3 1014 1.6 2500 2.0 varies 10213 753 0.359
Contaminated Test ´3 1014 1.6 2500 2.0 3 7449 L L
Contaminated High-mass Test ´7 1014 1.6 2500 2.0 3 951 L L

Note. For the pure catalogs, cluster radius and member galaxies are known. For further details on the creation of this catalog, see Ntampaka et al. (2015).
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a velocity dispersion of galaxies. When applied to the pure
catalog, this method will be denoted asPLP, and when applied
to the contaminated catalog, it will be denoted as PLC.

To account for a potentially changing slope caused by the
cylindrical cut used for the contaminated catalog, a lower-mass
cut of ´ -M h3 1014 1 will be applied to the data used to
fit the power law. We find a least-squares fit to ( )s =log v

( )a b+Mlog for the PL train catalog.
While PLP is well-described by a = 0.382, s =15

-1244 km s 1, PLC has a shallower slope and smaller velocity
dispersion expected for a 

-M h1015 1 halo, a = 0.359 and
s = -753 km s15

1, respectively. These best-fit parameters to the
( )sM v power law (Equation (1)) for each catalog are noted in

Table 1. The scaling relation best fit for the contaminated
catalog is shallower and has a smaller s15 compared to that of
the pure catalog, therefore, applying the PLP fit to observed
clusters with interlopers can introduce additional errors. We
additionally caution that these parameters are a fit for a
particular simulation and cylindrical cut and should be applied
to observational data with care.

The introduction of interlopers is a large source of scatter in
( )sM v . Figure 2 shows a two-dimensional histogram of sv

versusM for the contaminated catalog. Overlaid is a best fit
with 1σand 2σ lognormal errors calculated for clusters with

masses above ´ -M h3 1014 1 and extrapolated down to lower
masses. This lognormal scatter, sgauss, is determined by the
standard deviation of the residual, δ, defined as

( ) ( ) ( )d s s= -log log . 2measured expected

Here, smeasured is the velocity dispersion of the galaxies within
the pared cylinder and sexpected is the typical velocity dispersion
expected for a cluster of a given mass, found by applying
Equation (1) with true cluster mass M and best-fit parameters
s15 and α. Of halos with  ´ -M M h3 1014 1, 1% reside
above the s+2 dotted line and 4% reside below the s-2 dotted
line. However, of halos with  ´ < ´-M h M1 10 314 1


-M h1014 1, 8% reside above s+2 and 4% below s-2 . The

scatter found for the higher-mass clusters is clearly not
descriptive of the lower-mass clusters; this is explored further
in the Appendix.
The PLP and PLC approaches rely on a single summary

statistic, sv, to describe the dynamics of the cluster members.
However, mergers and infalling matter, for example, can distort
the shape of the velocity PDF and cause the cluster’s mass to be
overpredicted by a traditional power-law approach. Next, we will
explore a ML approach for predicting cluster masses that learns
from a distribution, rather than from a single summary statistic.

Figure 1. Top: average distribution of galaxy LOS velocities from stacked clusters in three [ ( )]
-M M hlog 1 bins, in increasing mass from left to right. While the pure

catalog (green dashed) consists solely of galaxies residing within the virial radius of the cluster, the contaminated catalog (blue solid) contains contaminating
interlopers (red dotted) and excludes some true cluster members. In the top right panel, the exclusion of true cluster members is evident where the blue solid line dips
below the green dashed line. Bottom: average distribution of galaxy projected radii from the cluster center. Both vlos and R distributions change shape and amplitude
with cluster mass, even for the contaminated catalog; this mass-dependent shape can be exploited by a distribution-to-scalar ML technique to learn cluster masses from
distributions of data like the examples shown here.
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2.4. Support Distribution Machines

SDMs (Sutherland et al. 2012) are a class of ML algorithms
built upon support vector machines (SVMs; Drucker et al. 1997;
Schölkopf & Smola 2002). Given a training set of (distribution,
scalar) pairs, the goal of SDM is to learn a function that predicts
a scalar from a distribution. They will be applied here to learn
from distributions of galaxy observables such as galaxy LOS
velocity and projected distance from cluster center. These
distributions of galaxy observables will then be implemented to
predict the log of the cluster mass, ( )Mlog .

The SDM method applied requires the divergence between
pairs of distributions in the training and test sets. For this
purpose, we employ the Kullback–Leibler divergence, and
estimate the divergence via the estimator from Wang et al.
(2009). This is a k-nearest-neighbor-based estimator. In
practice, we use k=3. The relative divergences from training
data are used to select SDM best-fit kernel parameters C and σ,
the loss function parameter and Gaussian kernel parameter,
respectively, via three-fold cross-validation. These are used to
train the regression model with the selected best-fit kernel,
which in turn is used to predict masses for the test data. For a
full discussion of SVM formalism as well as a discussion of
how SDM deviates from the SVM base case, see Sutherland
et al. (2012) and Ntampaka et al. (2015).

In order to take full advantage of the available data, we
cyclically learn from 90% of the clusters and predict masses
from the remaining, independent 10%; this is repeated 10times
until the masses of all clusters in the contaminated catalog have
been predicted. To prepare the mock cluster catalog for SDM
implementation, clusters are rank-ordered by mass and
sequentially assigned to one of 10folds. Multiple LOS views
of a unique cluster are all assigned to the same fold, ensuring
that each time SDM is implemented, a unique cluster is used
either for training or for predicting, but never both.

Of the 10folds, 9 from the contaminated train catalog are
used to select SDM best-fit kernel parameters C and σ and
subsequently train the regression model with the selected

kernel. This regression model is then used to predict the masses
of the clusters in the tenth fold of the contaminated test catalog.
The process is repeated 10 times, training on 9 train catalog
folds and predicting the tenth test catalog fold, until masses for
the entire contaminated test catalog have been predicted.
We implement SDM with four sets of galaxy features: the

PDF of galaxy LOS absolute velocity (∣ ∣vlos ), the PDF of
normalized velocity (∣ ∣ sv vlos ), the PDF of projected distance
from the cluster center (R), and combinations thereof. As
discussed in Ntampaka et al. (2015), features must be chosen
with care because features uncorrelated with mass tend to wash
out the effects of the more important features. The motivation
for features implemented here is as follows.

1. MLv: the use of velocities is motivated by the virial
theorem, as we have seen in Figure 2that velocity
dispersion of galaxies, sv, relatesto mass as a power law,
albeit with significant scatter. The MLv catalog uses
absolute value of galaxy LOS velocities, ∣ ∣vlos , as a single
feature for training and testing by means of SDM.

2. MLR: even in the presence of interlopers, galaxy density
profiles can be used to determine cluster mass (e.g.,
Hansen et al. 2005; Pearson et al. 2015). This is
motivated by Figure 3, which shows stacked halos from

Figure 2. Velocity dispersion, sv, vs. cluster mass, M, for a simple cylindrical
cut with iterative 2σ paring. Clusters above ´ -M h3 1014 1 (vertical black
dash dotted) inform the fit (black solid) and determine the lognormal scatter
(68% and 95%, dashed and dotted, respectively). The presence of interlopers
introduces significant scatter, particularly at low masses, where the effect of
interlopers is more pronounced.

Figure 3. Top: average number of galaxies per unit plane-of-sky area,
dN/dA, vs. projected distance from the center of the cluster, R, for three

[ ( )]
-M M hlog 1 ranges in the contaminated test catalog, in 0.1 -hMpc 1 bins.

The shape and amplitude of this effective column density vary with the mass of
the primary halo. Bottom: probability of finding a galaxy per unit area, dp/dA,
vs. R. The shape and amplitude of this measure also varies with primary halo
mass. Arrows denote the characteristic radius of a halo with [ ( )]

-M M hlog 1

indicated. SDM trained on the feature R takes advantage of how the distribution
of subhalo radius changes with mass to predict a halo mass based on the
distribution of R.
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the contaminated test catalog divided into three
[ ( )]

-M M hlog 1 bins. Despite the fixed aperture, the
number of galaxies per unit plane-of-sky area (dN/dA) in
concentric rings has a markedly different distribution for
the low-, middle-, and high-mass halos. The probability
of finding a galaxy per unit plane-of-sky area (dp/dA)
also exhibits a unique shape for each mass bin. For this
reason, we will consider an MLR catalog, with the galaxy
radii from the halo center, R, as the sole feature.

3. MLv R, : decreasing velocity dispersion profiles have been
noted in clusters (e.g., Rines et al. 2003). Because vlos and
R individually can provide information about cluster
mass, it seems reasonable that the joint probability
distribution of ∣ ∣vlos and R may be informative as well.
MLv R, will learn from the joint distribution of the LOS
velocity feature, ∣ ∣vlos , and the galaxy radius feature, R, in
a two-dimensional feature space.

4. sMLv R, , : the shape of the velocity PDF can be indicative
of mass accretion and mergers (Evrard et al. 2008;
Ribeiro et al. 2011). As found in Ntampaka et al. (2015),
explicitly normalizing vlos by its width, sv, can emphasize
these shape differences and improve mass predictions,
particularly at the high-mass end. We will consider a
training set, sMLv R, , , that employs ∣ ∣vlos , ∣ ∣ sv vlos , and R in
a three-dimensional features space.

These ML method names and corresponding distribution features
are summarized in Table 2 for reference and will be used by
SDM to predict cluster masses. Next, we will explore how the
PL’s scaling relation and ML’s distribution-to-scalar approach
predicted masses of clusters from the mock cluster catalog.

3. RESULTS

3.1. Power Law

Figure 4 shows the predicted versustrue cluster masses for
the pure and contaminated catalogs. When a power law is
applied to the pure catalog, there is significant scatter in mass
predictions. The bottom panel of Figure 4 shows the median
and 68% scatter in the fractional mass error, ò, given by

( ) ( ) = -M M M, 3pred

where M is the true cluster mass and Mpred is the predicted
cluster mass. The scatter in PLP errors can be attributed to both
physical and selection effects. For example, infalling matter
tends to create a velocity PDF with negative kurtosis, tending
to overpredict the mass. Cluster mergers (Evrard et al. 2008),
galaxy selection effects (Saro et al. 2013), and dynamical
friction and tidal disruption (Munari et al. 2013) can each play
a role in contributing to this scatter.

Figure 4 also shows results for the power-law scaling
relation applied to the contaminated catalog. Impure and
incomplete clusters introduce further scatter and errors increase
significantly. This scatter is most notable at the low-mass end,
where the inclusion of interlopers is most prominent.

PLP and PLC serve as upper and lower bounds for errors for
a power-law scaling relation: PLPʼs pure and complete clusters
show the level of scatter that remains when interlopers are
completely eliminated, while PLCʼs simplistic interloper
removal technique highlights how interlopers can affect
scatter in an extreme case. More effective interloper removal
methods are available, applying more discriminating statistical
techniques (e.g., Fadda et al. 1996; von der Linden et al. 2007;
Mamon et al. 2013), with some considering only red elliptical
galaxies, which preferentially reside in clusters (e.g., Saro
et al. 2013). We expect a more refined interloper removal
scheme to reside between the two benchmark cases shown in
Figure 4.
One may consider the possibility of improving mass

predictions by extending mass range for training. However,
due to the existence of many high-error, high-sv clusters shown
in Figure 2, decreasing the lower-mass limit may not improve
mass predictions. Even without this high-error population, the
power-law dynamical mass approach has significant scatter
exacerbated by the presence of interlopers. Furthermore, the
potentially informative infalling galaxy observations have not
been considered, nor have the baseline LOS velocity PDF
shapes indicative of a nonvirialized or merging system. Next,
we will explore the results of learning on full distributions with
an ML approach.

3.2. Machine Learning

Figure 5 shows the SDM predictions for each of the four
feature sets: MLv, MLR, MLv R, , and sMLv R, , . As in Figure 4,
the top panel shows predicted versustrue mass median with
68% and 95% scatter. Each of the ML methods reduces scatter
significantly compared to PLC, the power law that is applied to
the same catalog as these ML methods. One should not overly
interpret the fluctuations in the two largest mass bins, as they
contain only six unique clusters, a small fraction of the total
clusters in the sample. The bottom panel shows median error ò
(see Equation (3)) with 68% scatter. The 68% scatter is
dramatically reduced compared to the power-law relation with
the same catalog, PLC, and is comparable to the power-law
relation with a catalog of pure and complete clusters, PLP.

sMLv R, , has median binned mass predictions that are closest to
the true mass, while MLR has the smallest error width, but all
four ML methods outperform PLC by a large margin.
A comparison of mass predictions is presented in Figure 6.

PL provides two benchmarks: while the PLC error shows what
we might expect from a impure and incomplete interloper

Table 2
Feature Summary

Case Approach Train and Test Catalogs Summary Stats Distribution Features Color

PLP Power Law Pure sv L Red
PLC Power Law Contaminated sv L Blue
MLv Machine Learning: SDM Contaminated L ∣ ∣vlos Green
MLR Machine Learning: SDM Contaminated L R Orange
MLv R, Machine Learning: SDM Contaminated L ∣ ∣vlos and R Brown

sMLv R, , Machine Learning: SDM Contaminated L ∣ ∣vlos , ∣ ∣ sv vlos , and R Purple
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catalog, PLP gives a best-case scenario where cluster members
are perfectly known and interlopers are entirely excluded.
Across the entire mass range considered, MLv and sMLv R, ,
exhibit a dramatically tighter error distribution than a power
law applied to the contaminated catalog. Even in comparison to
the pure catalog, SDM produces a tighter error distribution.

Figure 7 shows a PDF of errors for all clusters above
´ -M h3 1014 1 and for those above ´ -M h7 1014 1. The

PLC curve shows the PDF of errors associated with ( )sM v
power law with the contaminated catalog’s simple cylindrical
cut about cluster centers. In contrast, the PLP curve shows the
PDF of erros associated with the ( )sM v power law of the pure
catalog, built from perfect knowledge of cluster members. For
both MLv and sMLv R, , , the number of extreme overpredicted
masses with   0.6 is dramatically reduced over even the PLP
power law. The extreme underpredicted masses with   -0.6
are reduced compared to PLC.

The mean error (̄ ) and median with central 68% width
(  D ) of these PDFs are summarized in Table 3. Here we
see PL’s tendency to overpredict (positive ò and ̄ ) in contrast
with ML’s tendency to underpredict (negative ò and ̄ ). ML’s
underpredictions are caused by the hard upper mass limit and
dearth of unique training halos at the high-mass end. The
resulting underprediction is most conspicuous in MLv (both the
contaminated test and contaminated high-mass test) and in
MLv R, (contaminated high-mass test only). MLv R, has the
smallest error offset (−0.04), but does so at the cost of

underpredicting the highest-mass clusters. This bias is most
evident at the higher-mass end, where halos’ masses are
systematically underpredicted. Because of this pronounced
bias, MLv R, is therefore identified as a disfavored method.
The relative error widths ( D ) for all ML methods for all

methods are more than a factoroftwo smaller than PLC (69%,
69%, 58%, and 64% for MLv, MLR, MLv R, ,and sMLv R, , ,
respectively). Even compared to PLP, which is applied to the
pure catalog, SDM produces a smaller relative error width
(23%, 23%, 3%, and 12% for MLv, MLR, MLv R, , and sMLv R, , ,
respectively).
As we saw in Figures 2 and 4, there is a wide scatter in sv

associated with the contaminated test catalog. Shown in the
right panel of Figure 7 are the clusters for which PLC severely
overestimated cluster mass. These objects are particularly
worrisome, as are predicted by PLC as being much more
massive than they truly are, appearing to be rare, high-mass
clusters. These outliers are isolated by their residual, δ
(Equation (2)); each has d s´1.5 gauss. We find that the
ML error PDF for these objects is centered on zero, with a PDF
width only slightly wider than the one shown in the left panel
of Figure 7 for the full catalog. Furthermore, while the PLC
method over predicts catastrophically, the ML methods predict
much more reasonable masses.
Figure 8 shows a comparison of the five methods applied to

the contaminated catalog: PLC, MLv, MLR, MLv R, , and
sMLv R, , . The difference in absolute errors, denoted as

Figure 4. Left: power-law scaling relation applied to the pure catalog (method PLP). Predicted vs. true mass, binned in 0.1 dex [ ( )]
-M M hlog 1 bins, with mean

(black solid), median (red solid), 68% (dashed), and 95% (dotted) scatter shows that significant scatter exists even when applying a scaling relation to a catalog of pure
and complete clusters (top). Though the mass error median (red solid) is nearly zero (gray solid), it has significant 68% scatter (red dashed; bottom). Right: power-law
scaling relation applied to the contaminated catalog, which contains impure and incomplete clusters (method PLC). The imperfect catalog introduces additional scatter
in ò compared to the PLP case, most notably at low masses where the sample impurity is particularly pronounced. These two plots provide best (left) and worst (right)
case scenario benchmarks for applying an ( )sM v power-law scaling relation to cluster observation.
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Figure 5. Top left: SDM results for MLv (green). The predicted vs. true mass is binned in 0.1 dex [ ( )]
-M M hlog 1 bins. Mean (black solid), median

(colored solid), 68% (dashed), and 95% (dotted) scatter are shown (top). The median error (solid) and error 68% scatter (dashed) are also shown (bottom). MLv

gives better than a factor-of-two reduction in the width of error compared to a standard scaling relation applied to the same catalog. Top right: SDM results for
MLR (orange). MLR and MLv minimize the width of the error distribution. Bottom left: SDM results for MLv R, (brown). MLv R, underpredicts at high masses
and is therefore identified as a disfavored method. Bottom right: SDM results for sMLv R, , (purple). sMLv R, , minimizes the tendency to underpredict across
mass range.
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∣ ∣ ∣ ∣ -row column , gives a measure of how well the row method
predicts compared to the column method; values below zero are
indicative of the row method predicting more accurately. The
left column of this plot shows a comparison of ML to PL; all
four ML methods consistently predict masses with a much
smaller error than PLC. The mean difference in theabsolute
value of errors, denoted as ∣ ∣ ∣ ∣ - PLI

, is summarized in
Table 3. This summary statistic quantifies the mean value
shown in the left column of Figure 8. The more negative this
value is, the more reduced a model’s errors arecompared to
PLC. Model MLR decreases error ò by an average of 0.61
compared to PLC; MLR is the best ML method by this measure.
The right three columns of Figure 8 compare the ML
techniques to one another. MLv R, is shown here to be the
weakest of the ML methods; though it outperforms PLC by a
large margin, SDM produces more accurate mass predictions
when applied with other feature sets.

As in Ntampaka et al. (2015), pairing ∣ ∣vlos with the feature
∣ ∣ sv vlos accentuates differences in velocity PDF shape and
highlights, for example, the wide, flat hallmark PDF of a halo
experiencing infalling matter. As a result of this additional
feature, the mean and median errors edge closer to the desired
values of zero. This offers an explanation as to why the three-
feature set of sMLv R, , shows a mean error closer to zero (0.01)
compared to MLv and MLR. sMLv R, , is identified as the
preferred feature set for minimizing error bias.

Though MLv R, employs two features that are highly
correlated with mass, these features reside in a two-dimensional
feature space. The joint distribution of ∣ ∣vlos and R is likely too
sparsely sampled by the galaxies in an individual cluster to
make a strong correlation between this joint distribution and
cluster mass. This effect becomes particularly pronounced for
rare, massive clusters, which are underpredicted by MLv R, .

sMLv R, , , however, predicts the masses of these clusters well.
This may be explained by the nature of the third feature,
∣ ∣ sv vlos . Though the probability distribution employed by

sMLv R, , resides in a three-dimensional feature space, the
combination of ∣ ∣vlos with ∣ ∣ sv vlos constrains individual

clusters’ distributions to lie on a plane. These planes are sorted
in the three-dimensional space by their slope, sv. This sorting
effectively isolates high-sv clusters from low-sv ones. As we
have seen with PLC, sv is a predictor of mass, albeit with
significant scatter.
By taking advantage of the full LOS velocity and projected

radius distributions, the SDM approach to determining cluster
mass from galaxy observables reduces the distribution of errors
by roughly a factor of two, and also predicts masses well even
in the cases where PLC catastrophically over predicts, making it
a valuable tool for probing cosmological models with
observations of galaxy clusters.

4. DISCUSSION

Reducing errors and eliminating biases in cluster mass
measurements are crucial to utilizing clusters to discern and
constrain cosmological models. The halo mass function and its
evolution are sensitive to cosmological parameters such as s8,
WM , WDE, and w (e.g., Schuecker et al. 2003; Henry et al. 2009;
Vikhlinin et al. 2009; Mantz et al. 2010; Rozo et al. 2010;
Allen et al. 2011). Therefore, accurate measurements of cluster
abundance as a function of mass and redshift can be used to
understand the underlying cosmology. The limiting factor in
constraining parameters and evaluating cosmological models
with cluster counts, however, is in accurately connecting
galaxy observables to halo mass to reproduce the halo mass
function.
Figure 9 shows how the scatter and biases in each model

affect the halo mass functions recovered by PLP, PLC, MLv,
and MLv,P (SDM applied to the pure catalog with feature ∣ ∣vlos ,
as in Ntampaka et al. 2015) in comparison to the simulation’s
true mass function. The scatter about the scaling relation in
PLP coupled with the rapidly declining shape of the mass
function causes the abundant, low-mass clusters with high δ to
populate the high-mass bins in the mass function, causing the
upscattering at high masses. This effect is exacerbated in PLC,
where the scatter about the scaling relation is much larger and

Figure 6. Top: error 16th and 84th percentiles (i.e., 68% scatter) as a function of mass for MLv (green) as compared to a power-law approach applied to the pure
catalog (PLP, red) and to the contaminated catalog (PLC, blue). Bottom: error scatter as a function of mass for sMLv R, , (purple) compared to PLP and PLC. The errors
of a dynamical mass power-law approach with a more refined interloper removal scheme should be bounded by PLC and PLP. However, even when trained on the
impure and incomplete catalog that produced the blue PLC results, MLv and sMLv R, , have ò widths comparable to or smaller than the best-case PLP power law.
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the high-δ clusters may be catastrophically overpredicted (as
shown in Figure 7). This effect, known as Eddington bias
(Eddington 1913), alters the shape and amplitude of the
measured halo mass function from the true value. This results
in PLCʼs measured mass function dramatically overreporting
the number of high-mass clusters.

Any cosmological analysis of the HMF that employs such
mass measurements must correct for this upscatter at high
masses. Understanding the nature of the intrinsic scatter and
observational selection effects is a crucial step to correct the
observed HMF for Eddington bias. Analytic approaches exist
to correct for the simple case of lognormal scatter (e.g.,
Mortonson et al. 2011; Evrard et al. 2014), while a more
complicated scatter may be more difficult to correct. Before
correction for Eddington bias, the large scatter and errors
associated with traditional power-law mass measurements lead
to the failure to recover the true mass function, which limits the
constraining power of dynamical mass measurements of galaxy

clusters. PLPʼs altered shape mimics the mass function of a
simulation with a higher s8 and WM . This is particularly
pronounced in the fractional difference, Dy y, between the
Multidark and mock HMFs, which shows that the presence of
interlopers causes the PL HMF to deviate from the simulation
HMF, particularly at high masses.
At the low-mass end, the underabundance of clusters is not

caused by Eddington bias, but is an artifact of the hard lower-
mass limits of the test catalogs. This downscattering should not
be interpreted as a dearth of low-mass clusters predicted by the
PL and ML methods, but rather as a limitation of the test
catalogs.
In addition to the halo mass functions from the methods

highlighted in this work, mock HMFs that include scatter of
other common cluster mass measurement techniques are
included for comparison. Cluster masses can be deduced from
a variety of techniques, and here we show three different
methods for determining cluster mass: the Sunyaev–Zel’dovich

Figure 7. Left: PDF of fractional mass errors for the full test catalogs. A power-law ( )sM v scaling relation for a catalog of pure and complete clusters shows
significant errors (PLP, red solid). The error distribution widens further when interlopers contaminate the clusters (PLC, blue dashed). Remarkably, SDM (MLv, green
dotted, and sMLv R, , , purple dash dotted) applied to the contaminated catalog outperform the ( )sM v scaling relation applied to the pure catalog. Center: PDF of errors
for the high-mass test catalogs (  ´ -M M h7 1014 1) shows a similar trend for rare, high-mass halos; the ML approaches minimize error significantly over a power-
law scaling relation applied to the same catalog. Right: PDF of the high-δ, high-PLC-error population of clusters. While the power law catastrophically overestimates
the masses of these outlying objects, ML approaches perform well, with a PDF of fractional mass errors for these outliers that is only slightly wider than is found for
the full catalog.

Table 3
Method Comparison

Case Summary Color Catalog ̄ a   D b D c ∣ ∣ ∣ ∣ - PLC
d

PLM ( )sM v Power Law, Pure Red Test 0.128 -
+0.05 0.36

0.51 0.871 L
High-mass Test 0.093 -

+0.02 0.29
0.44 0.731 L

PLC ( )sM v Power Law, Contaminated Blue Test 0.508 -
+0.13 0.73

1.40 2.131 L
High-mass Test 0.409 -

+0.18 0.68
1.15 1.829 L

MLv ML with vlos Green Test −0.052 - -
+0.12 0.27

0.40 0.670 −0.63

High-mass Test −0.059 - -
+0.10 0.31

0.38 0.686 −0.47

MLR ML with R Orange Test −0.016 - -
+0.08 0.28

0.39 0.670 −0.64

High-mass Test −0.040 - -
+0.10 0.26

0.37 0.635 −0.49
MLv R, ML with ∣ ∣vlos and R Brown Test 0.078 - -

+0.04 0.34
0.56 0.899 −0.54

High-mass Test −0.032 - -
+0.11 0.33

0.45 0.783 −0.42

sMLv R, , ML with ∣ ∣vlos , ∣ ∣ sv vlos , & R Purple Test 0.011 - -
+0.07 0.31

0.46 0.763 −0.61

High-mass Test −0.044 - -
+0.09 0.29

0.36 0.649 −0.49

Notes.
a Mean fractional mass error.
b Median fractional mass error±68% scatter.
c Width of ò 68% scatter.
d Mean difference between model and PLC errors.
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(SZ) effect, weak gravitational lensing (WL), and X-ray. The
SZ effect, first proposed by Sunyaev & Zeldovich (1972) can
be used to determine a temperature-weighted gas mass, and we
model its intrinsic scatter according the Battaglia et al. (2012)
scaling relation for z=0 with AGN feedback. Weak
gravitational lensing probes structure along the LOS, and we
model scatter in this technique according to the Becker &
Kravtsov (2011) prescription for z=0.25,  ´M 2.0c500


-M h1014 1 clusters. X-ray observations can be used to infer

a gas mass profile; scatter in this –M YX relation of s = 0.06Mln
is adopted from Fabjan et al. (2011), and it should be noted that
this is intrinsic scatter and does not include observational
effects. The mass–concentration relation from Bhattacharya
et al. (2013) and the NFW density profile from Navarro et al.
(1996) are implemented to convert all masses to M200c for
comparison.

Figure 9 shows the halo mass functions recovered by SZ,
WL, and X-ray methods compared to the range of scatters
achievable with SDM: MLv,P with a pure and complete cluster
membership catalog and MLv with a large cylindrical cut
around each cluster allowing many interlopers. It should be
noted that the HMF presented assumes a complete large mock
observation of 6834 (7449) clusters in the pure (contaminated)
catalog. Figure 9 also shows the Poisson error associated with a
more reasonable observation of 500 clusters. Current cluster
surveys (e.g., de Haan et al. 2016) contain on the order of
hundreds of clusters, and the choice of 500 clusters is chosen
to show the errors accessible through current catalogs.

Note that the small number of high-mass objects limit the
accuracy with which the tail end of the HMF can be
determined. As is shown in, e.g., Ntampaka et al. (2016), a
binned HMF has the most power to resolve s8–Wm models at
the lowest masses because, while high-mass clusters are
sensitive to changes in these cosmological parameters, the
Poisson error bars on these rare objects dominates. For the
mass ranges where the HMF can best resolve changes in s8 and
Wm, SDM produces a competitive HMF to these other mass
proxies, though it has a larger deviation from the true HMF at
the high-mass tail.
However, it should be noted that these cluster mass methods

utilize different wavelength observations with different sys-
tematic errors, biases, and limitations. Therefore, while Figure 9
shows that five different cluster mass techniques—PL, ML, SZ,
X-ray, and WL—in a direct comparison, it should not be overly
interpreted as a definitive guide to cluster mass measurement.
For example, weak lensing is difficult and expensive to apply
to high-redshift clusters due to a lack of adequate background
galaxies. Biases in X-ray and SZ cluster masses may arise
because of nonthermal pressure support (e.g., Evrard 1990;
Rasia et al. 2004; Lau et al. 2009;this bias is not modeled in
Figure 9 because this effect is typically corrected for, though
uncertainty in the bias may produce further disagreement
between observed and true HMF). When SZ masses are
calibrated on simulation, the calibration is dependent on correct
modeling of the gas physics (e.g., Nagai 2006; Battaglia
et al. 2012), which may also introduce a bias.

Figure 8. Summary comparison of the five methods trained and tested on the contaminated catalog, with difference in absolute error, ∣ ∣ ∣ ∣ -row column , as a function of
mass (see Equation (3)). Values below the solid black 0 line indicate that the row method is performing better than the column method for a given mass bin. The left
column summarizes a comparison of the four new SDM methods to the PLC power law; SDM with any of the four feature combinations improves mass predictions in
all mass bins. While MLv R, outperforms PLC, it performs poorly at high masses compared to the other ML methods.
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Dynamical and ML masses, however, can be directly
compared as they are produced from the same data from the
same mock catalog and are affected by the same observational
selection effects. From their direct comparison, it can be
concluded that the ML method presented in this work is more
competitive than a power-law scaling relation for decreasing
errors in cluster mass measurements. While MLv over predicts
the abundance of high-mass clusters, the upscatter is smaller
than PLPʼs. MLv provides a much better match to the
simulation’s true mass function across a larger mass range,
comparable to those of SZ, WL, and X-ray for the large
mock observation of ( )» -h1 Gpc 1 3. This agreement with the
true HMF is primarily due to the small spread in errors
associated with these methods; abundant, low-mass clusters
tend not to be catastrophically overpredicted by methods
with small intrinsic scatter. The smaller errors produced in
SDM’s mass prediction results in a more accurate representa-
tion of the halo mass function, particularly at the high-mass
end. SDM’s ability to more accurately recreate the true
halo mass function makes it a valuable tool for producing
cluster mass functions to evaluate cosmological models.

The predictive power of SDM to reproduce the true halo
mass function and its implications for constraining cosmolo-
gical parameters s8 and WM will be explored in detail in an
upcoming work.
The Appendix explores how the aperture and, less directly,

the purity and completeness of the cluster sample, affect the
scatter in both power law and ML dynamical masses. We find
that the power-law fit changes as a function of aperture,
shallowing with smaller aperture. When a large aperture is
used, the distribution of errors at low masses is not lognormal,
but is better described by a double Gaussian (see Figure 11).
With the simple cylindrical cut and 2σ paring used in this

work, mock cluster observations performed with a large
aperture will tend to be more complete (compared to a mock
observation made with a smaller aperture), with cluster
members near the edges of the cluster being included in the
sample. Mock observations with a smaller aperture will tend
to be more pure, with fewer interlopers contaminating the
observation. As we will show in the Appendix, SDM performs
slightly better with a large aperture, showing a preference for
completeness over one for purity.

Figure 9. Halo mass functions of dynamical cluster mass estimates with intrinsic scatter only (pure catalog) and intrinsic scatter plus observational selection effects
(contaminated catalog). Any scatter in the mass-observable relationship, if uncorrected, will affect the observed halo mass function. The large scatter associated with
the power-law scaling relation (PLP, red squares, and PLC, blue circles) causes an upscatter at high masses, while ML methods (MLv,P, purple stars, and MLv, green
triangles) have a smaller intrinsic scatter and more accurately reproduce the true Multidark cluster abundance (dark gray solid curve). While 6834 (7449) clusters
contribute to the HMF for the pure (contaminated) catalog, a more moderate observation of 500 clusters yields larger Poisson error bars (light gray band). Right: HMF
of ML methods compared to mock HMF with the typical intrinsic scatter of Sunyaev–Zel’dovich (pink diamond), weak lensing (brown x), and X-ray (orange octagon)
cluster masses. The biases and the observational effects associated with SZ, WL, and X-ray masses may introduce additional scatter, causing the HMF to deviate
further from the simulation HMF.
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One may consider improving SDM mass predictions further
by training and testing features beyond simply R and vlos,
applying a more accurate cluster interloper removal technique,
or limiting the training sample to a particular subpopulation of
galaxies. Because elliptical galaxies preferentially reside in
galaxy clusters (Dressler 1980), limiting the training sample to
this population may provide a straightforward and natural
approach to excluding many interlopers while still providing
limited information about infalling matter. However, before
such a training set can be explored and applied to observational
data, there remains a need for a reliable training N-body
simulation that is large, high resolution, and realistically
populated with galaxies.

5. CONCLUSIONS

We compare cluster mass predictions from a standard ( )sM v
power-law scaling relation to those generated by SDMs, an ML
class of algorithms that learnsfrom a distribution of data to
predict a scalar.

We focus on mass predictions for a mock catalog of impure
and incomplete clusters. This catalog is created from the
publicly available Multidark MDPL1 simulation, with an
intentionally simplistic cylindrical cut imposed around the
known centers of clusters with true mass  ´ -M h1 1014 1.
The aperture ( = -R h1.6 Mpcaperture

1) and initial velocity cut
( = -v 2500 km scut

1) correspond to a typical radius and s´2 v
of a halo with amass of ´ -M h1 1015 1. Velocity outliers
beyond s2 v are iteratively pared until convergence, and only
clusters with at least 20 cluster members are kept in the sample.
This creates a catalog of clusters that are both impure
(interlopers contaminate the clusters) as well as incomplete
(some true cluster members are excluded from the sample). A
second catalog, both pure and complete, is also prepared for
comparison.

Cluster masses are predicted in two ways: in the PL
approach, a standard ( )sM v power law is used to train and test,
while in the ML approach, SDM is utilized. Four feature sets
are considered with SDM: MLv (absolute value of the LOS
velocity, ∣ ∣vlos ), MLR (galaxy projected distance from the cluster
center, R), MLv R, (∣ ∣vlos and R), and sMLv R, , (∣ ∣vlos , ∣ ∣ sv vlos , and
R). Results for halos with true mass  ´ -M M h3 1014 1 are
reported.

Our main conclusions can be summarized as follows.

1. MLv and MLR (SDM with ∣ ∣vlos feature only and SDM
with R feature only, respectively) reduce errors by 69%
compared to a power law applied to the same
contaminated catalog.

2. Furthermore, though a simple cylindrical cut causes
significant scatter in the ( )sM v power law compared to
when the cluster membership is perfectly known, both
SDM methods each outperform PLP, a power law applied
to a catalog with pure and complete clusters. Compared to
this ideal power law, MLv and MLR each reduce error
by 23%.

3. Though it reduces error width, MLv R, (SDM with ∣ ∣vlos
and R) systematically underpredicts the highest-mass
clusters. It is identified as a disfavored method.

4. sMLv R, , (SDM with ∣ ∣vlos , ∣ ∣ sv vlos , and R) minimizes the
bias for the high-mass clusters (  ´ -M M h7 1014 1).
It reduces error by 64% and 12% compared to PLC and
PLP, respectively.

5. In some instances, a higher-than-expected sv causes a
catastrophic overprediction by method PLC. The ML
methods, however, predict reasonable masses for even
these outliers.

The SDM approach to determining cluster mass from galaxy
observables reduces errors by more than a factor of two
compared to a standard power-law scaling approach applied to
a cluster catalog with impure, incomplete cluster membership
information. SDM predicts cluster masses well even when a
traditional ( )sM v approach fails. Additionally, this technique
works well even with catalogs of impure and incomplete
clusters created with a simplistic cylindrical cut about the
cluster center. Ultimately, high-resolution, large-volume simu-
lations are needed for training before SDM can be applied to
observation. With such a simulation for training, the reduced
errors and more accurate predictions for impure, incomplete,
nonvirialized systems makes SDM a valuable tool for
constraining cosmological models.
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APPENDIX

Here, we explore how our choices of Raperture and vcut affect
the PL and ML predictions and results. Two new catalogs
are prepared to correspond to a ´ -M h3 1014 1 cluster
( = -R h1.1 Mpcaperture

1 and = -v 1570 km scut
1, denoted

“Small Aperture”) and ´ -M h3 1015 1 cluster ( =Raperture
-h2.3 Mpc 1 and = -v 3785 km scut

1, denoted “Large Aper-
ture”). The contaminated catalog used in the main body of this
work has been renamed “medium aperture” for clarity. As
before, a 2σ iterative paring scheme is applied to the initial
cylindrical cut. With the exception of the Raperture and vcut
values, the methods described in Section 2 are followed. These
catalogs, along with the pure catalog, are summarized in
Table 4.
Figure 10 shows how the choice of Raperture and vcut affect

the power-law fits. This two-dimensional histogram of sv
versusM shows that the best-fit α and sv, as well as the scatter
about the best-fit line, changes as a function of initial cylinder
size. Overlaid on the two-dimensional histogram is a best fit
with 1σand 2σ lognormal errors, calculated for clusters with
massesabove ´ -M h3 1014 1 and extrapolated down to
lower masses. Additionally overlaid is the best-fit power law
for PLP.
When the small aperture cuts are applied, this overly small

cylinder clips the sv values at the high mass. This leads toa
shallow slope (a = 0.209) and small velocity dispersion
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associated with a 
-M h1015 1 cluster (s = -569 km s15

1). In
contrast, a large cylindrical fit increases scatter at the low-mass
end. The resulting fit for the large aperture catalog is steep
(a = 0.384) and has a higher normalization (s = -895 km s15

1)
caused by the many high-sv objects and the substantial fraction
of outliers above the 2σ line. These catalogs and fits are
summarized in Table 4 for reference.

As the large aperture catalog’s cuts are used to probe lower
masses, a bimodal distribution emerges with a second
population of clusters residing far above the best fit; this
second population is visible in Figure 2. These high-sv, low-
mass objects increase scatter at the low-mass end. More
worrisome, they have a velocity dispersion typically associated
with clusters of roughly an order of magnitude larger in mass.
Of halos with  ´ -M M h3 1014 1, 3% reside above the

s+2 dotted line and 3% reside below the s-2 dotted
line. However, of halos with  ´ < ´-M h M1 10 314 1


-M h1014 1, 20% reside above s+2 and 3% below s-2 . The

best fit and lognormal scatter found for the higher-mass clusters
in the large aperture catalog is clearly not descriptive of the
lower-mass clusters.

To further explore this outlier population, we will consider
the residual, δ (Equation (2)). Figure 11 shows that the large
aperture catalog has a residual PDF is adequately described by
a single Gaussian, parameterized by

( ) ( )d m
s

µ
- -⎡

⎣
⎢⎢

⎤
⎦
⎥⎥PDF exp

2
, 4

2

gauss
2

with best-fit width s = 0.13gauss and a nearly zero off-
set, m = 0.01.

However, when the lower-mass limit of this large aperture
catalog is decreased to ´ -M h1 1014 1, the δ PDF is better
described by the sum of two Gaussians, as shown Figure 11.
The relative amplitude and width of high-δ Gaussian is
dependent on the minimum mass cut applied to the catalog,
and our choice of ´ -M h1 1014 1 is for illustrative purposes
only. Note, however, that the zero-centered Gaussian has
s = 0.16gauss and m = 0.03, comparable to the single Gaussian
fit found previously. This is suggestive that a single lognormal

scatter describes the population that is well-characterized by the
( )sM v power law, while a second population of high-sv outliers

emerges at low masses. Exploring observational methods for
describing and identifying members of this outlier population
will be considered in future work.
Figure 12 shows that the resulting large scatter produces PLC

error PDF that is wide and flat as before, with the shape of the
PLC PDF dependent on the cylindrical cut parameters. For the
small aperture catalog, the shallow fit coupled with the large
number of clusters with large negative δ contribute to the
substantial population of clusters being underestimated by an
order of magnitude or more (  -0.1). SDM produces a
slightly wider error distribution for this small initial cylinder
compared to the Medium Aperture cuts, though still reducing
D compared to both PLC and PLP. Distributions of error as a

function of mass are comparable to those seen in Figure 5,
regardless of the training catalog, though ̄ tends to decrease
and D tends to widen for small initial cylinders.
As before, there are also a number of catastrophically

overpredicted clusters by applying the PLC scaling relation to
the small aperture catalog. These overpredicted objects are
identified by their residual relative to the lognormal scatter:
d s´1.5 gauss. The shallow slope leads to the overprediction

being much more pronounced. However, Figure 12 shows that,
even in this case, SDM predicts reasonably accurate masses for
these objects.

Figure 10. Left: small aperture catalog’s LOS velocity dispersion of galaxies, sv, vs. cluster mass, M, shown as a 2D histogram. Only clusters above ´ -M h3 1014 1

(black dash dotted) are used to determine the best-fit power law (black solid); the small aperture and vcut lead to smaller-than-expected svʼs for the high-mass halos and
result in a shallow fit. The ( )sM v fit for pure and complete clusters (PLP, red) is overlaid for reference. Center: medium aperture catalog. If the lognormal scatter in sv

was consistent across the entire mass range, the 1σand 2σ errors (black dashed and dotted, respectively) calculated at the high-mass end would describe the scatter in
sv even at low masses. However, a clear trend emerges, with increased scatter in sv at lower masses. Right: large aperture catalog. The slope of the power law has
steepened. This is due to the larger Raperture and vcut used for this catalog, which capture more true members of the high-mass clusters, allowing these objects to be
more accurately described. Though the high-mass clusters are now well-represented by their measured sv, a clear second population emerges at low-mass and high sv,
with 20% of halos with < ´ -M M h3 1014 1 lying above the 2σ dotted line.

Table 4
Catalog Summary

Catalog Type Raperture vcut s15 α

Name ( )-hMpc 1 ( )-km s 1 ( )-km s 1

Small PL Train 1.1 1570 569 0.209
Aperture
Medium PL Train 1.6 2500 895 0.384
Aperture
Large PL Train 2.3 3785 900 0.400
Aperture
Pure Train L L 1244 0.382
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The population of high-sv, low-mass, high-δ objects in the
large aperture catalog similarly produces a substantial number
of catastrophically overpredicted clusters. These large-ò objects

shown in Figure 12 are also well-predicted by SDM. While the
PLC gives a large range of errors, SDM can more accurately
predict these cluster masses despite overly large or small

Figure 11. Left: PDF of residual, δ, for the large aperture catalog. With a lower-mass cut of = ´ -M M h3 1014 1, the PDF of clusters’ δ (thin black) is well-
described by a single Gaussian (thick blue). Right: when the mass limit of the large aperture catalog is lowered to = ´ -M M h1 1014 1, the PDF is better described
by a double Gaussian. Observational methods for identifying members of this outlier population will be explored in a later work.

Figure 12. Top left: PDF of errors for the small aperture catalog. When this small cut is imposed on the mock observation, the shallow slope of the fit causes large-
negative-δ population to be underpredicted in mass by an order of magnitude or more, creating the abundance of clusters with   0.1. Top center: small aperture
catalog, high-mass halos only (  ´ -M M h7 1014 1), has a similar abundance of underpredicted halo masses. Top right: PDF of errors for the high-error objects.
The shallow small aperture fit also results in a number of catastrophically overpredicted clusters. SDM, however, predicts reasonable masses for even these outliers.
Bottom left: PDF of errors for the large aperture catalog. The large cut leads to more interlopers, but SDM predicts better than a scaling relation applied to a pure and
complete catalog. Bottom center: large aperture catalog, high-mass halos only. Bottom right: PDF of high-error objects for the large aperture catalog. SDM predicts
reasonably accurate masses here, though a power-law scaling relation fails catastrophically.
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cylindrical cuts that contribute to significant impurity or
incompleteness in the mock clusters.

MLv and sMLv R, , produce the smallest D when the initial
cylinders are large, with D = 0.670 and 0.763, respectively,
for the medium aperture catalog and D = 0.660 and 0.752 for
the large aperture catalog. The small aperture catalog error
distribution is wider: D = 0.809 and 0.898. However, in all
cases except sMLv R, , applied to the small aperture cylinder, the
width of error distribution is narrower than the pure catalog
power law, which has D = 0.871. SDM performs better with
impurity over incompleteness, with larger cylinders producing
slightly more accurate mass predictions.

Errors produced by a power-law scaling relation are clearly
dependent on the choices of Raperture and vcut, sometimes
catastrophically overpredicting cluster masses. Though stan-
dard power-law scaling fits and error distributions are sensitive
to choices in cuts, SDM can predict accurately under a wide
range of scenarios, provided the training and test data have the
same imposed cuts.
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