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Abstract 

 

Channelopathies are disorders caused by inherited mutations of specific ion 

channels. Neurological channelopathies in particular offer a window into fundamental 

physiological functions such as action potential modulation, synaptic function and 

neurotransmitter release.  

 

One such channelopathy Episodic Ataxia type 1 (EA1), is caused by a mutation to 

the gene that encodes for the potassium channel subunit Kv1.1. This channel is 

predominantly found in presynaptic terminals and EA1 mutations have previously 

been shown to result in increased neuronal excitability and neurotransmitter release. 

A possible reason is that presynaptic action potential waveforms are affected in EA1. 

Thus far, direct electrophysiological recording of presynaptic terminals has been 

limited to large specialised synapses e.g. mossy fibre boutons, or axonal blebs, 

unnatural endings of transected axons. This is not representative of the vast majority 

of small synapses found in the forebrain. Using a novel technique termed Hopping 

Probe Ion Conductance Microscopy (HPICM) I have been able to directly record 

action potentials from micrometer sized boutons in hippocampal neuronal culture. I 

have shown that in a knockout model of Kv1.1 and in a knockin model of the V408A 

EA1 mutation, presynaptic action potentials are broader than in wild type; however 

action potentials are unaffected in the cell body. 
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Finally in some central synapses neurotransmitter release has been shown to 

depend on not only action potentials received in the presynaptic terminal, but also on 

slow subthreshold membrane potential fluctuations from the soma, termed analogue-

digital signalling. Kv1 channels have been implicated in partly mediating this form of 

signalling. I have shown via dual recordings from the soma and small presynaptic 

boutons, that analogue-digital signalling occurs in wild type and knockout of Kv1.1, 

but is abolished in the V408A EA1 mutation. This implies that analogue-digital 

signalling may not depend on Kv1.1 in particular, rather a change in the 

stoichiometry of the Kv1 channel. 

  



	
   5	
  

Acknowledgements 

 

I would like to take this opportunity to thank numerous friends who have helped me 

on this PhD journey.  

 

I am indebted to my primary supervisor, Professor Dimitri Kullmann. He is an 

inspiration to me. His endless helpful suggestions and encyclopaedic neuroscience 

knowledge were invaluable. I am also indebted to my secondary supervisor, Dr Kirill 

Volynski. His patient advice, especially with matters of microscopy were much 

appreciated. I also thank both for undertaking the unenviable task of proof reading 

this thesis (!). 

 

I count my time at the Department of Clinical and Experimental Epilepsy, UCL as 

one of the happiest in my career. So many amazing scientists provided help during 

my research but I thank in particular Dr Yarik Ermolyuk, Dr Rahima Begum, Dr 

Vincent Magloire, Dr Ivan Pavlov, Dr Alistair Jennings (for extracurricular help), Dr 

Elizabeth Nicholson, Jonathan Cornford and my clinical compatriot Dr Sarah Crisp. I 

would like to thank Dr Stuart Martin for help with genotyping. My deepest gratitude is 

extended to Dr Marife Cano and more recently Dr Andres Vicente for their crucial 

help in culturing neurons and genotyping. Juliet Solomon was encouraging, 

administration efficiency personified and an inexhaustible source of trivia! 

 



	
   6	
  

This project would not have progressed without the support of my collaborators, Dr 

Pavel Novak (now at QMUL) and Prof Yuri Korchev (Imperial). Their patience and 

continued help were much appreciated when I was learning about SICM. 

 

I am grateful to Dr Chris Turner, Dr Matthew Parton and Prof Matthew Walker for 

allowing me to join their muscle and epilepsy clinics respectively and sharing their 

clinical wisdom.  

 

I would like to thank Action Medical Research and especially the Wellcome Trust for 

awarding me a Clinical Research Fellowship to carry out this work. Without their 

unfailing commitment and support this project would not have happened.  

 

Finally I would like to thank my family. Words cannot express how grateful I am to 

my parents for the inexhaustible encouragement (and support financial and 

otherwise!) they have always provided me. My wife, Elizabeth, has been everything 

to me through this process – I promise no more writing up! And Noah maybe one 

day when you are bored you may read this, thank you for always making me smile. 

Finally I thank God for the opportunity of this PhD, and being there through the highs 

and lows. 

 

 

  



	
   7	
  

Publications 

 

1. Vivekananda U, Novak P, Bello OD, et al. (2017). Kv1.1 channelopathy abolishes 

presynaptic spike width modulation by subthreshold somatic depolarisation. PNAS 

114; 2395-2400 

2. Novak P, Gorelik J, Vivekananda U, et al. (2013). Nanoscale-targeted patch-

clamp recordings of functional presynaptic ion channels. Neuron 79; 1067-77 

 

Awards for this project 

 

Mansell Prize for Neuroscience Research, Medical Society of London. June 2017 

Gordon Holmes Prize in Neurosciences, Royal Society of Medicine. April 2016 

Queen Square Prize in Neurology. October 2015 

Wellcome Trust Clinical Research Fellowship. June 2012 

  



	
   8	
  

Table of contents 

Declaration           2 

Abstract           3 

Acknowledgements          5 

Publications and awards         7 

Table of figures          14 

Table of tables          17 

Abbreviations          18 

 

1.0 Introduction          22 

	
   1.1 Nerve excitability        25 

  1.1.1 The axon initial segment      27 

  1.1.2 The main axon       29 

  1.1.3 The axon terminal       30 

 1.2 The action potential        32 

  1.2.1 Cable theory        34 

  1.2.2 Transient signal spread      36 

  1.2.3 AP waveform        38 



	
   9	
  

  1.2.4 ‘Analogue’ and ‘Digital’ axonal signalling              41

    

 1.3 The synapse – Electrical and chemical synapses    45 

 1.3.1 Mechanism of chemical synaptic transmission   46 

1.4 The evolution of voltage gated channels     52 

  1.4.1 Voltage gated sodium channels     52 

  1.4.2 Voltage gated potassium channels     56 

   1.4.2.1 Molecular properties of VGKCs    59 

  1.4.3 Voltage gated calcium channels     63 

 1.5 Neurological channelopathies       66 

  1.5.1 Episodic Ataxias – Episodic ataxia type 1    70 

  1.5.2 Episodic Ataxia Type 2 and other CaV2.1 channelopathies 72 

 1.6 Pharmacological and genetic models for assessing KV1 channel 

 function          73 

  1.6.1 Recording of presynaptic action potential waveform and  

  modulation to date        78 

 

2.0 Hypotheses          82 

 



	
   10	
  

3.0 Methods          85 

 3.1 Animals and preparation       86 

 3.2 Hippocampal neuronal cultures      86 

  3.2.1  Preparation of hippocampal neuronal cultures   88  

  3.2.2 Hippocampal dissection and preparation of cortical astroglial  

  cells          89 

  3.2.3 Preparation of coverslips      91 

  3.2.4 Preparation of rat neuronal cultures    92 

  3.2.5 Mutant mouse cultures      93 

 3.3 The patch clamp - Electrophysiology      94 

  3.3.1 Scanning Ion Conductance Microscopy    95 

 3.3.2 Integrating Hopping Probe Ion Conductance Microscopy (HPICM) 

  with other parts of the experimental setup    98 

 3.3.3 Recording solutions               103 

  3.3.4 Patch clamp                103 

 

  3.3.5 data acquisition and statistical analysis            106 

 

4.0 Imaging presynaptic boutons and recording ion currents using HPICM     108  



	
   11	
  

  4.0.1 Identifying active presynaptic boutons and obtaining a high  

  resolution scan with HPICM              109 

 4.1 Properties of presynaptic boutons              110 

4.2 Controlled widening of scanning nanopipette to allow whole-cell patch 

clamp recording                 112 

 4.2.1 Attaining whole cell configuration of a presynaptic bouton using 

 SICM                  115 

 4.3 Na+, K+, and Ca2+ whole cell current recordings in presynaptic boutons 

  4.3.1 Introduction                117 

  4.3.2 Main aims                118 

  4.3.3 Results                  118 

  4.3.4 Conclusions                 123 

 

5.0 Recording of presynaptic action potentials              126 

  5.0.1 AP recording in rat hippocampal cultures – Introduction          127 

  5.0.2 Main aims                127 

  5.0.3 Method                 127 

  5.0.4 Results                 128 

  5.0.5 Conclusions                            129 



	
   12	
  

 5.1 AP recording from presynaptic boutons in Kv1.1 knockout   

 and knockin neurons               131 

  5.1.1 Main aims               132 

  5.1.2 Method                132 

  5.1.3 Results                133 

  5.1.4 Conclusions                136 

 

6.0 Simultaneous somatic and presynaptic bouton recordings in Kv1.1 mutant 

neurons                   138 

 6.0.1 Method                139 

 6.0.2 Results                140  

 6.0.3 Conclusions                142 

6.1 Spike latency                146 

  6.1.1 Main aims               147 

  6.1.2 Results and conclusion              147 

6.2 Simultaneous soma and bouton recordings in Kcna1a-/-, Kcna1aV408A/+ 

and wild type littermates 

 6.2.1 Main aims                150 

 6.2.2 Method                           150 



	
   13	
  

 6.2.3 Results                 151 

 6.2.4 Conclusions                 157 

 

7.0 ‘Analogue’ and ‘Digital’ axonal signalling            160 

  7.0.1 Introduction               161 

  7.0.2 Main aims               161 

  7.0.3 Method                162 

  7.0.4 Results                163 

  7.0.5 Conclusions                174 

 7.1 KV1 subunit expression in the genetic EA1 model 

  7.1.1 Main aims               177 

  7.1.2 Method                177 

  7.1.3 Results and conclusion             179 

 

8.0 Final conclusions and considerations             182 

 

References                 189 

 



	
   14	
  

Appendix I Exploratory: Modelling effects of the EA1 mutation on presynaptic 

action potentials using  NEURON              208 

Appendix II Exploratory: Intra-bouton calcium response to somatic excitation 

  Main aims                211 

  Method and results                         212 

  Conclusions                213 

 

  



	
   15	
  

Table of figures 

Figure 1.1 Cartoon of typical neuron      31 

Figure 1.2.3 Diagram of the two compartment model    37 

Figure 1.2.4 Schematic of analogue-digital facilitation    43 

Figure 1.3.1 Schematic of Ca2+ evoked vesicle fusion    51 

Figure 1.4.1 Schematic representation of the α- and β- subunits of VGSCs 

            54 

Figure 1.4.2 Cartoon of 2TM/P potassium channel variants             57 

Figure 1.4.2.1 Phylogenetic tree of 6TMD potassium channels             61 

Figure 1.6 Gating mechanisms for KV1 channels    76 

Figure 1.6.1 Different glutamatergic synapses in the CNS    80 

Figure 3.2 Configurations of patch-clamp     95 

Figure 3.3 Schematic of SICM and HPICM     96 

Figure 3.3.1 The experimental rig      98 

Figure 3.3.2 The recording chamber              100 

Figure 3.3.3 Light source options for bright field microscopy           101 

Figure 4.1 HPICM imaging of synaptic boutons            111 

Figure 4.2 Pipette widening procedure             114 

Figure 4.2.1 Whole-bouton recording              116 



	
   16	
  

Figure 4.3 Whole-bouton sodium traces             117 

Figure 4.3.1 Whole-bouton potassium traces             120 

Figure 4.3.2 Recording VGCC activity in presynaptic boutons          122 

Figure 5.1.3 Effect of DTx-K on spikes elicited at the bouton           134  

Figure 5.1.4 Summary of EA1 mutations versus wild type littermates for 

spikes elicited at the bouton                135 

Figure 6.0.1 Simultaneous somatic and presynaptic bouton recordings    141 

Figure 6.0.3 Dual recordings from the soma and small presynaptic bouton of 

the same neuron                 144 

Figure 6.1 Analysis of spike latency              148 

Figure 6.2.3 KV1.1 channels determine spike width            153 

Figure 6.3.1 Summary of EA1 mutations versus wild type littermates for 

spikes elicited by dual recording               156 

Figure 7.0.3 Blockade or deletion of Kv1.1 does not prevent analogue 

modulation of presynaptic spike width              164 

Figure 7.0.4 Subthreshold modulation of spike width when DTx-K applied 

                    166 

Figure 7.0.5 Subthreshold modulation of spike width in a Kcna1−/− neuron  

                    167 



	
   17	
  

Figure 7.0.6 A heterozygous Episodic Ataxia mutation abolishes analogue 

modulation of presynaptic spike width              170 

Figure 7.0.7 Prolonged prepulse data from Kcna1aV408A/+ neuron          172 

Figure 7.0.8 Subthreshold modulation and spike latency           173 

Figure 7.0.9 Subthreshold modulation of spike width when UK-78282 applied 

                             177 

Figure 7.1 Western blot analysis of Kv1 subunits expression in cortical 

synaptosomes from control WT and V408A Het KI mice           180 

Figure APP1 NEURON model of EA1 mutation on presynaptic action potential 

waveform                 210 

Figure APP2 Rat hippocampal calcium experiments           213 

  



	
   18	
  

Table of tables 

Table 1.4.1 NaV channel types and associated genes    54 

Table 1.4.2 KV channel types and associated genes    62 

Table 1.4.3 CaV channel types and associated genes    64 

Table 3.3.6 Dyes for identifying presynaptic boutons            106 

Table 5.0.4 AP waveform comparison between spikes elicited at bouton and 

soma in rat hippocampal cultures               128 

 Table APP1 Chosen parameters for ‘wild type’ and ‘mutant’ computer model 

                    209 

 

 

 

 

 

  



	
   19	
  

Abbreviations 

 

AED  Antiepileptic drugs 

AFM  Atomic Force Microscopy 

AIS  Axon Initial Segment 

AMPA  2-1mino-3-(5-methyl1-3-oxo-1,2-oxazol-4-yl)propanoic acid 

AP  Action potential 

araC   Cytosine β-D-arabinofuranoside 

ATP  Adenosine-5’-triphosphate 

AZ  Active zone 

BSA  Bovine serum albumin 

CM  caesium methanosulphonate 

CNS  Central nervous system 

DIC  Differential interference contrast microscopy 

DIV  Days in vitro 

DL-AP5 DL-2-Amino-5-phosphonopentanoic acid 

DMEM/F12 Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 

DMSO Dimethyl sulfoxide 

DPBS  Dulbecco’s Phosphate Buffered Saline 



	
   20	
  

DTx-K  Dendrotoxin-K 

EA1  Episodic Ataxia Type 1 

EA2  Episodic Ataxia Type 2 

EB  Extracellular buffer 

EDTA  Ethylenediaminetetraacetic acid 

EGTA  Ethylene glycol tetraacetic acid 

EM  Electron microscopy 

EPSC  Excitatory post synaptic current 

EPSP  Excitatory post synaptic potential 

FHM  Familial Hemiplegic Migraine 

GABA  Υ-aminobutyric acid 

GFP  Green fluorescent protein 

GM  Glial medium 

GTP  Guanosine-5’-triphosphate 

HBSS  Hanks balanced salt solution 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HET  Heterozygous 

HOM  Homozygous 

HPICM Hopping Probe Ion Conductance Microscopy 



	
   21	
  

KGluc  Potassium gluconate 

KI  Knock-in 

KO  Knock-out 

LED  Light Emitting Diode 

NB  Neurobasal complete 

NBQX  2,3-dihydoxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione 

NMDA  N-methyl-D-aspartic acid 

NMJ  Neuromuscular junction 

P0  Postnatal day zero 

PTX  Picrotoxin 

RFP  Red fluorescent protein 

RMP  Resting membrane potential 

SICM  Scanning Ion Conductance Microscopy 

SNARE Soluble NSF attachment protein receptor 

SPM  Scanning Probe Microscopy 

SRC1  SynaptoRed C1 

t/2  Action potential half width 

TEA  Tetraethylammonium chloride 

TTX  Tetrodotoxin 



	
   22	
  

VGCC  Voltage gated calcium channel 

VGKC  Voltage gated potassium channel 

VGSC  Voltage gated sodium channel 

ω-aga  ω-agatoxin IVA 

WT  Wild type 

 

 

 

 

  

 

 	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

  



	
   23	
  

1. Introduction 
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Channelopathies are disorders caused by inherited mutations of specific ion 

channels. At a basic level neurological channelopathies provide unique insights into 

neuronal circuit development, synaptic function and neurotransmitter release. This 

information can in part explain the pathophysiology of common related paroxysmal 

disorders such as idiopathic epilepsy and migraine, affecting 1% and 10% of the 

population respectively (Kullmann, 2010).  

 

Conventional approaches to study the consequences of ion channel mutations using 

heterologous expression in Xenopus Laevis oocytes, human embryonal kidney cells 

and other simple systems only provide indirect insights into the consequences of ion 

channel mutations for action potential generation and neurotransmitter release. In 

principle, knock-in mouse models overcome this limitation. 

 

Some channelopathies are caused by mutations of genes encoding channels that 

are normally expressed at presynaptic terminals. Up to now, direct investigation of 

presynaptic ion channel activity has been limited to large specialised calyceal 

synapses, which are not representative of the majority of synapses in the brain. This 

thesis describes the application of a novel technique called Scanning Ion 

Conductance Microscopy (SICM) that was used to directly assess the ion channel 

function in these micrometre sized synaptic boutons. One early question posed was 

whether voltage-gated calcium channels that trigger vesicle release in small 

synapses are confined to the active zone.  
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This thesis also concentrates on the channelopathy Episodic Ataxia Type 1 (EA1), a 

disorder characterized by paroxysmal cerebellar incoordination and interictal 

myokymia (Rajakulendran et al., 2007). EA1 is caused by dominantly inherited 

mutations of KCNA1, which encodes the presynaptic and axonal potassium channel 

subunit KV1.1. EA1 mutations increase neuronal excitability and neurotransmitter 

release in neuronal cultures (Heeroma et al., 2009). Although this could be explained 

by impaired action potential repolarization, leading to an increase in presynaptic 

calcium influx, the action potential duration measured at the cell body was unaffected 

in this study. This leaves open the possibility that only the pre-synaptic action 

potential waveform is broadened in EA1, a question that now can be addressed 

using SICM. 

 

Finally in some central synapses neurotransmitter release has been shown to 

depend not only on action potential invasion of the presynaptic terminal, but also on 

slow subthreshold membrane potential fluctuations propagating from the soma, a 

process called analogue-digital signalling. Furthermore, due to their 

electrophysiological properties and axonal localization, KV1 channels have been 

proposed to underlie this form of modulation by affecting the presynaptic action 

potential shape. Using a Kv1.1 knockout mouse, and a mouse model of EA1, we 

have attempted to understand the role of KV1.1 in analogue-digital signalling.  

 

Thus the aims of the thesis are to 
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1. Optimise SICM to gain direct electrophysiological recording from small 

hippocampal synapses in neuronal cultures 

2. Use SICM to predict the location of voltage gated calcium channels in small 

synapses 

3. Compare the presynaptic action potential waveform in neurons from a Kv1.1 

knockout mouse, an Episodic Ataxia type 1 knock-in mouse, and wild type 

controls 

4. Understand the role of KV1 channels in axonal analogue-digital signalling.  

 

In this introduction I will discuss the fundamental mechanisms of action potential 

generation and synaptic neurotransmitter release, with a brief overview of the 

voltage-gated ion channels that play an integral part in these phenomena. I will also 

review the clinical manifestations of a number of the currently known neurological 

channelopathies, and in particular EA1. 

 

1.1 Nerve excitability 

 

It has long been known that ions play a crucial role in muscle and nerve excitability. 

In a seminal series of papers from 1881 to 1887 Sidney Ringer demonstrated that to 

maintain an isolated frog heart beating, the perfusing solution had to contain specific 

relative concentrations of sodium, potassium and calcium (Ringer and Buxton, 

1887). Work by Walter Nernst involving diffusion of electrolytes in solution to create 

electrical potentials strongly suggested an ionic mediator for bioelectric potentials 

(Nernst 1888). A negative resting membrane potential (RMP) was partly explained 
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by Bernstein, who proposed that (i) the cell membrane was selectively permeable to 

potassium ions (ii) intracellular potassium concentration was high and (iii) 

extracellular potassium concentration was low (Overbeek, 1956). Further explanation 

of the RMP was provided by the Donnan equilibrium, which accounts for the 

relatively high intracellular concentration of large molecular weight anions (e.g. 

negatively charged proteins) that maintains opposite potassium and chloride 

gradients across the membrane and sets a resting potential. It took two British 

physiologists, Alan Hodgkin and Andrew Huxley to show in their now famous squid 

giant axon experiments, that the internal voltage became markedly positive during an 

action potential (AP) (Hodgkin, 1939). They postulated that this flux was due to 

increased membrane permeability to sodium ions. Further analysis by the pair led to 

the Hodgkin-Huxley model for AP generation that is used today, which quantitatively 

predicts the relative membrane permeability to sodium and potassium ions to 

evolving membrane potential over time (Hodgkin and Huxley, 1952). 

 

A typical neuron consists of a cell body or soma, dendrites and an axon. The axon is 

responsible for the conduction of information from the cell body to the nerve terminal. 

I will now discuss the functional and molecular properties of the three key segments 

of the axon; the axon initial segment, the axon proper, and the presynaptic terminal. 
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1.1.1 The Axon Initial Segment (AIS) 

 

The AIS is located between 20 and 40µm from the soma in unmyelinated axons. The 

scaffolding protein ankyrinG (ankG) is crucial to assembly of the AIS, with sodium 

and KV7 channels targeted to the AIS by ankG (Garrido et al., 2003; Pan et al., 

2006). However targeting of Kv1 channels in the AIS is under the control of the 

postsynaptic density 93 (PSD-93) protein, a member of the membrane-associated 

guanylate kinase (MAGUK) family (Ogawa et al., 2008). 

 

Variations in membrane potential as a result of somato-dendritic integration of a 

number of synaptic inputs trigger an action potential at the initial segment of the axon 

(AIS) if they surpass a voltage threshold (Debanne et al., 2011). This proposed role 

for the AIS would require the region to be highly excitable. Immunohistochemistry 

(Lorincz and Nusser, 2008a), sodium imaging (Fleidervish et al., 2010) and outside-

out patch clamp recordings of the soma and axon (Hu 2009) have shown that 

sodium channels are present at a higher density in the AIS compared to the 

somato—dendritic compartment, in the region of 20 – 1000 fold higher (Boiko et al., 

2003; Kole et al., 2008; Wollner and Catterall, 1986). NaV1.1, NaV1.2 and NaV1.6 are 

the main isoforms responsible for spike initiation in cortical neurons in mammals. 

NaV1.1 is predominantly found in rodent GABAergic neurons (Ogiwara et al., 2007). 

NaV1.2 and NaV1.6 are found in myelinated and unmyelinated neurons, with NaV1.2 

initially expressed and gradually replaced by NaV1.6 through development (Boiko et 

al., 2001, 2003; Lorincz and Nusser, 2008a).  
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Potassium channels in the AIS are key in repolarising action potential and regulating 

neuronal excitability. As KV1 subunits have a relatively low activation threshold, and 

so a significant proportion of the current produced by these channels is activated at 

voltages close to the resting membrane potential (Dodson and Forsythe, 2004; Shu 

et al., 2007a). KV1.1 and KV1.2 are predominant in the AIS with 

immunohistochemistry evidence for these subunits in both excitatory and inhibitory 

neurons (Inda et al., 2006; Lorincz and Nusser, 2008a). KV1.1 and KV1.2 are found 

more distal to Nav1.6 in the AIS and are associated contribute to a greater current in 

this region than at the soma. Both subunits also contribute to determine spike 

duration in the axon (Geiger and Jonas, 2000). KV2.2 in the medial nucleus of the 

trapezoid body aids maintenance of high frequency firing by causing interspike 

hyperpolarisation (Johnston et al., 2008) Members of the KV7 family (KV7.2 – KV7.5) 

generate muscarinic agonist-sensitive, subthreshold and non-inactivating potassium 

current, the so-called M-current. KV7.2 and KV7.3 are also located in the AIS of 

hippocampal principal cells, where they regulate AP spiking and threshold (Shah et 

al., 2002, 2008; Yue and Yaari, 2006).  

 

Although sodium and potassium channels are sufficient to generate action potentials 

and repolarise the membrane, a further role for calcium channels has been identified 

in axons. T-and R-type voltage-gated calcium channels, are found in the AIS of 

Purkinje calls and neocortical pyramidal neurons and are involved in spike-timing, 

burst-firing, and action potential threshold. CaV2.1 (P/Q Section 4.3) and CaV2.1 (N-

type) channels have also been located in the Calyx of Held (Inchauspe et al., 2012), 
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the AIS of Layer 5 neocortical pyramidal neurons and activate BK potassium 

channels to affect cell excitability (Yu et al., 2010) (Figure 1.1). 

 

 1.1.2 Main axon 

 

In unmyelinated axons NaV1.2 channels are evenly distributed in order to facilitate 

action potential conduction (Boiko et al., 2003; Westenbroek et al., 1989) A number 

of potassium channels are also present in order to control excitability, including 

KV1.2 in Schaffer collaterals (Palani et al., 2010), KV1.3 in parallel fibre axons of 

cerebellar granule cells (Kues and Wunder, 1992), Kv3.3 and KV3.4 in hippocampal 

mossy fibre axons (Chang et al., 2007), and KV7 channels in CA1 pyramidal cell 

axons (Gu et al., 2005).  

 

In myelinated axons, Schwann cells, a type of glial cell, wrap multiple layers of their 

plasma membrane, myelin, around an axon. In addition, at regular intervals the 

myelin is interrupted by exposed patches of axon called Nodes of Ranvier, that 

regularly divide sections of myelination with intermodal distance ranging between 

200 µm and 2 mm (Lussier and Rushton, 1951). The molecular organisation of the 

node of Ranvier and juxtaparanodal region is dependent on interactions between 

proteins from the axon and myelinating glia. During development of the Node of 

Ranvier, NaV1.2 channels initially are present and then replaced by NaV1.6 (Boiko et 

al., 2001). Nodes of Ranvier have a very high density of sodium channels, one study 

reporting twice the density of NaV1.6 than at the AIS in central neurons (Lorincz and 
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Nusser, 2008a). An impulse is generated at the node and ‘jumps’ from node to node, 

termed saltatory conduction. Saltatory conduction is further enforced by the 

juxtaparanodal representation of potassium channels, namely KV1.1 and KV1.2, and 

nodal expression of KV3.1b and Kv7.2/KV7.3, that all act to decrease reexcitation of 

the axon (Devaux et al., 2003, 2004; Wang et al., 1993; Zhou et al., 1999).  

 

 1.1.3 Axon terminal 

 

Spike propagation down the axon ultimately results in the activation of synapses with 

the opening of presynaptic calcium channels, namely CaV2.1 and CaV2.2 (Holderith 

et al., 2012; Lenkey et al., 2015). Indeed, the CaV2.2 subunit possesses a specific 

binding amino acid motif to the presynaptic protein scaffold (Maximov and 

Bezprozvanny, 2002) and specific deletions to the synaptic protein interaction site in 

CaV2.1 inhibit its localisation to axon terminals (Mochida et al., 2003). KV channels 

also exhibit a great diversity in the axon terminal. KV1.1 and Kv1.2 are present at 

synaptic terminals in the middle molecular layer of the hippocampal dentate gyrus 

and terminals of cerebellar basket cells (Wang et al., 1994). Kv1.4 are richly 

represented in mossy fibre boutons, determining spike duration and neurotransmitter 

release (Geiger and Jonas, 2000). High voltage activated KV3 subunits have been 

found in the axon terminals of both excitatory and inhibitory neurons and act to limit 

action potential duration, and therefore calcium influx and release probability (Chow 

et al., 1999; Elezgarai et al., 2003; Goldberg et al., 2005).  
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Hyperpolarisation-activated cyclic nucleotide-gated cationic (HCN) channels are 

represented in the axon terminals of basket cells both at the hippocampus and 

cerebellum (Luján et al., 2005; Notomi and Shigemoto, 2004) with their role thought 

to involve stabalisation of membrane potential at the terminal. G protein inwardly 

rectifying potassium (GIRK) channels are also found at presynaptic terminals and in 

the cortex and cerebellum they are activated by GABAA receptors and function to 

control action potential duration (Ladera et al., 2008). 

 

Figure 1.1 Cartoon of typical neuron. Channel subunits thought to be associated 

with particular axonal regions are included. Typical action potential seen at the action 

initial segment (red) and typical back propagated action potential seen at cell body 

(blue). Adapted from (Debanne et al., 2011). 

NaV 1.1,1.2,1.6 
KV 1,7 
CaV 2.1,2.3 
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1.2 The action potential  

 

The biophysical mechanisms underlying an AP to the best of our current knowledge 

are as follows. As discussed before the resting membrane potential (RMP) in relation 

to the external environment is negative (around -70mV) due to the effect of 

potassium permeability and negatively charged intracellular proteins. As the axon 

receives a stimulus, membrane sodium channels open in a voltage-dependent 

manner causing an increased permeability to sodium. During an action potential, the 

membrane potential moves from near the RMP to close to the sodium reversal 

potential (around +40mV) as the rapid flux of sodium ions drives an inward current 

into the cell. To estimate how many sodium ions flow it is helpful to view the 

membrane as a capacitor. The capacitance of a typical patch of membrane is 

typically 1µF/cm2. As charge (Q in Coulomb) = V C, the charge resulting from a 0.11 

V shift is 0.11 x 10-6 = 1.1 x 10-7 Q. As one Coulomb represents the net charge of 6.2 

x 1018 monovalent ions, this leads to an estimate of the number of ions flowing 

through the membrane for an action potential as 6.82 x 1011 per cm2 or 6820 per 

µm2. This depolarisation is seen as the AP upstroke. In addition this inward current 

causes depolarisation of adjacent areas of membrane, which opens more channels 

in these areas causing further inward current and propagation of the nascent signal. 

The inward sodium current ceases when certain conditions are satisfied, including i) 

the cell reaches the equilibrium potential for sodium and ii) the already open sodium 

channels have inactivated, which commences the absolute refractory period 

(Hodgkin and Huxley, 1952). 
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The downstroke of the AP results from a contribution of fast inactivation of Na+ 

channels and activation of delayed rectifier potassium channels, which are voltage 

sensitive (Dodson and Forsythe, 2004; Doyle et al., 1998; Isomoto et al., 1997; 

Neusch et al., 2003). As these channels open upon depolarization, albeit more 

slowly than sodium channels, potassium ions flow out of the cell restoring the resting 

membrane potential. Furthermore, potassium channel de-activation is relatively slow 

compared to sodium channel kinetics, so there is temporary impermeability to 

sodium but sustained permeability to potassium, causing an after-hyperpolarisation, 

which takes the membrane to a slightly more negative potential, around -80mV. The 

refractory period is divided into absolute refractory period followed by relative 

refractory period. The absolute refractory period is due to the inactivation of sodium 

channels that remain inactivated until the membrane hyperpolarises. They then de-

inactivate and return to a responsive state. During this period no second AP can be 

generated. The relative refractory period accounts for the time between 

hyperpolarisation of the membrane and potassium conductance returning to a 

resting value. During this period the membrane is at a higher threshold, meaning a 

greater stimulus would be required to generate a second AP.  

 

Action potentials occur in an ‘all-or-none’ manner, and key to this phenomenon is the 

threshold for spike initiation. Interestingly it appears that the current threshold for 

spike initiation is lower in the distal AIS compared to the soma. Conversely the 

voltage threshold (defined as membrane potential where the rate of change of 

voltage passes an accepted value, usually 10-50V/s (Anderson et al., 1987)) is 

higher in the AIS compared to the soma. This is partly due to the abundant Na+ 

channels in the AIS causing a depolarising ramp immediately prior to an action 
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potential. NaV1.2 and NaV1.6 are asymmetrically distributed in the AIS; NaV1.2 is 

predominantly found in the 25 µm closest to the soma and requires substantial 

depolarisation for activation. NaV1.6 is found 25 – 50 µm from the soma and is 

activated by relatively little depolarisation. This configuration is thought to work as 

thus: depolarisation in the postsynaptic compartment spreads beyond the soma into 

the AIS. It will not be sufficient to activate the high threshold NaV1.2 channels in the 

proximal AIS but would activate the low threshold NaV1.6 channels in the distal axon, 

resulting in a forward propagating AP. The opening of NaV1.6 channels then drives 

opening of the initially bypassed NaV1.2 channels inducing a secondary wave of 

inward sodium current and causing a backpropagating AP.  As this occurs the 

NaV1.6 channels now in an inactivated state prevents the possibility of a secondary 

forward-propagating AP (Dulla and Huguenard, 2009; Hu et al., 2009). Variability in 

AP spike threshold may be dependent on the stochastic opening of voltage-gated 

channels, the temporal relationship between spikes, and the frequency of the 

subthreshold waveform during propagation.  

 

1.2.1 Cable theory 

 

Fast spread of neuronal activity occurs by electric current, dependent on basic 

properties of the nerve cell termed electrotonic properties. Our understanding of 

electrotonic properties have derived from unrelated work including heat conduction in 

solids (H.S. Carslaw and J.C. Jaeger, 1959) and submarine telegraph cables, hence 

the use of the word ‘cable’ when discussing neurons. The cable can then be 

subdivided into compartments, with its constituent organelles, for which an 
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equivalent electrical circuit can be derived including membrane capacitance (Cm), 

membrane resistance (rm), resting membrane potential (Er) and internal resistance 

(ri) (W. Rall, 1958).  

 

A key parameter determining electrotonic spread is the length constant (λ) of the 

cable. Under steady state conditions electrotonic potential obeys the formula:  

V = V0e-x/λ, where λ is the characteristic length of the cable and defined as square 

root of rm/ri and for an infinite cable and V0 is the potential at the site of input (i.e. x = 

0). Thus when x = λ, and values for internal and membrane resistance are assumed, 

electrotonic potential would decay by 63% of the value at the site of input. As the 

equation dictates, a larger membrane resistance is associated with a larger space 

constant resulting in reduced attenuation of electrotonic potential. Conversely a 

larger internal resistance is associated with a smaller λ leading to greater attenuation 

of V. Ri is estimated at 200Ω cm in mammalian neurons. By derivation λ is also 

related to the square root of diameter difference; thus a larger diameter axon will 

have a larger λ.   

 

An assumption of classical cable theory is that neuronal processes are infinitely long. 

To relate characteristic length of neurons (λ) to their ‘real’ length (L) the following 

equation is observed: L = x/λ. From this one can see that for very long axons, 

electrotonic potential would decay by only a small fraction of the original value for 

each λ, making it safe to assume it is of infinite length. However this would not be the 
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case for other neuronal processes such as dendritic branches. As this thesis 

concerns axonal propagation, we can consider them as infinite cables. 

 

 1.2.2  Transient signal spread 

 

In addition to the steady state electrotonic properties, passive spread of transient 

potentials depends on membrane capacitance. The membrane capacitance (Cm) and 

membrane resistance (Rm) are responsible for defining the time constant (τ) of the 

membrane (τ = RmCm). τ is the voltage response of the membrane in terms of the 

electrotonic properties of the patch when a transient potential such as a current step 

is applied. This is important as the charging and discharging of the membrane in 

response to a current step are determined by τ.  

 

Signal spread may be explained by a two compartment model (Shepherd and Koch, 

1998)(Figure 1.2.3). Localised conductance changes across a membrane, for 

example during an action potential or current step, propagate via two routes. First, 

the inward positive charge in a particular compartment opposes the negative charge 

on the inside of the lipid membrane (the charge responsible for the negative action 

potential), thus depolarising the membrane capacitance (Cm); and flows as a current 

through the membrane via the resistance of open ionic membrane channels (Rm). 

Second, the charge spreads via internal resistance (Ri) to the neighbouring 

compartment. This is called a local current. 
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Figure 1.2.3 Diagram of the two compartment model. Cm membrane capacitance; Rm 

membrane resistance; Ri internal resistance. Adapted from (Squire et al., 2003)  

 

In an unmyelinated axon, which is the focus of this thesis, local current spreading 

through the internal resistance to the neighbouring compartment permitting the 

action potential to propagate along the axonal membrane. Speed of propagation is 

dependent on the electrotonic properties of the axon and the kinetics of the action 

potential. Cm is important in controlling rate of change of membrane potential in 

response to brief signals such as APs. Ri increases opposition to electrotonic 

current, especially in thin axons with shorter characteristic lengths. Increasing Rm 

promotes current further along the membrane and increases the characteristic 

length. However it also increases membrane τ, slowing the response of the 

neighbouring compartment.  Finally diameter of the axon reduced Ri thus increasing 

the characteristic length. Other factors include channel density. The greater the 
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density of sodium channels, the steeper the AP upstroke, thus creating a larger 

spatial voltage gradient. This means that the depolarization of the nearby axonal 

segment is quicker, resulting in an increased conduction velocity. Axonal patch-

clamp recordings have measured conduction velocity to be 0.2 m/s in unmyelinated 

axons such as Schaffer collaterals and mossy fibre axons (Andersen et al., 2000; 

Kress et al., 2008) and 0.38 m/s in CA3 pyramidal axons (Meeks and Mennerick, 

2007).  

 

Briefly, myelinated axons are equipped for fast conduction. Myelination effectively 

introduces more series resistances and capacitances in the circuit, and therefore 

increasing Rm and decreasing Cm. The Hursh factor states that rate of propagation of 

an impulse in a myelinated axon is six times the diameter of the axon in micrometres 

(Hursh, 1939). as mentioned above, Node of Ranvier. Therefore a myelinated axon 

is a passive cable with active booster sites.  

 

1.2.3 AP waveform  

 

The presynaptic AP shape has an important role in controlling neurotransmitter 

release and synaptic strength. The waveform itself determines the calcium signal 

produced in order to promote synaptic vesicle fusion. In hippocampal mossy fibre 

boutons (MFBs), large specialised presynaptic terminals that made by axons of 

dentate granule cells on CA3 pyramidal neurons, it has been estimated that the 

calcium influx scales roughly linearly with AP width (Geiger and Jonas, 2000). At 
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these presynaptic boutons AP width is roughly half of that recorded at the soma. 

However during repetitive stimulation, AP width at the terminal increases but at the 

soma remains fixed. Using pre- and postsynaptic recordings at granule cell/CA3 

neurons, it was demonstrated that AP broadening caused increased presynaptic 

calcium influx and doubled EPSC amplitude (Geiger and Jonas, 2000). It has been 

suggested that presynaptic AP broadening is due to inactivation of potassium 

channels. Potential candidates include KV1.1 and KV1.4 as both subunits have been 

identified at MFBs; however both demonstrate relatively small single-channel 

conductances (Wei et al., 2005). KV3 channels have been reported to show around a 

10-fold greater repolarisation efficacy compared to KV1 with a suggested role of 

promoting brevity of presynaptic AP (Alle et al., 2011). Large-conductance calcium 

and voltage-activated potassium channels (BKCa) have also been found at MFBs, 

and are thought to mediate fast activating/fast inactivating and sustained potassium 

current during long depolarisations (Knaus et al., 1996; Kues and Wunder, 1992).  

 

Cumulative sodium channel inactivation from repetitive stimulation also causes a 

decrement in AP amplitude (Williams and Stuart, 1999). Depolarisation of the 

presynaptic terminal results in synaptic depression in hippocampal cells (He et al., 

2002) and Shaffer collateral-CA1 synapses (Meeks and Mennerick, 2007). 

Interestingly this phenomenon is not seen in GABAergic synapses (Meeks and 

Mennerick, 2007). 	
  

 

 

1.2.4 ‘Analogue’ and ‘Digital’ axonal signalling 
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Neuronal circuitry operations have conventionally been viewed as occurring through 

the “analogue” interaction of synaptic potentials in the dendrite and soma, followed 

by the initiation of an action potential in the axon, in an all-or-none or “digital” 

manner. More recently it has been shown that voltage fluctuations associated with 

dendrosomatic synaptic activity propagate significant distances along the axon, and 

that modest changes in the somatic membrane potential of the presynaptic neuron 

modulate the amplitude and duration of axonal action potentials. This hybrid 

analogue-digital modulation of synaptic transmission has been described in 

invertebrates (Nicholls and Wallace, 1978; Shimahara and Peretz, 1980), cortical 

CNS synapses (Kole et al., 2007a; Shu et al., 2006), cerebellar (Bouhours et al., 

2011; Christie et al., 2011) and, of relevance to this project, hippocampal synapses 

(Bialowas et al., 2015; Debanne et al., 1997; Sasaki et al., 2011; Scott et al., 2008) 

(Figure 1.2.4). 

 

Analogue-digital facilitation by subthreshold somatic depolarization leads to 

increases in glutamate (Kole et al., 2007) or GABA release (Christie et al., 2011). 

Two independent mechanisms have been reported to account for the analogue–

digital enhancement of transmission in central synapses: increase in basal Ca2+ 

concentration and inactivation of presynaptic K+ channels. Propagated depolarization 

can facilitate synaptic transmission by the opening of voltage-gated calcium (CaV) 

channels, which results in an increase in basal Ca2+ concentration in presynaptic 

terminals. It appears that CaV2.1 and to a lesser extent CaV2.2 channels are 

responsible for this facilitation, whether in the axon terminal (Bouhours et al., 2011) 
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or in the axon itself (Yu et al., 2010), The increase in basal Ca2+ concentration 

triggered by subthreshold depolarization may directly promote neurotransmitter 

release or accelerate the recruitment of vesicles to the active zone (Neher and 

Sakaba, 2008).  

 

Axons contain a high density of voltage-gated K+ (KV) channels. Initially it was shown 

that activation of an IA like potassium conductance could locally abort propagation of 

presynaptic action potentials in CNS axons (Debanne et al., 1997). It was then 

thought that depolarization of the somatic region of the presynaptic neuron could 

facilitate synaptic transmission as a consequence of voltage-inactivation of a specific 

type of K+ channel. In neocortical and hippocampal pyramidal neurons, for example, 

the KV1 channels generate a fast-activating but slowly-inactivating D-type current (ID) 

that reduces spike duration and thus controls neurotransmitter release (Boudkkazi et 

al., 2011; Shu et al., 2007a). Pharmacological inactivation of ID with 4-aminopyridine 

or dendrotoxin enhances synaptic strength at hippocampal and neocortical synapses 

possibly by broadening the presynaptic spike in the terminal, resulting in higher 

release of neurotransmitter (Saviane et al., 2003). Also, the kinetics of the analogue–

digital enhancement fit well with the inactivation kinetics of ID (Kole et al., 2007a; Shu 

et al., 2006). Finally, voltage inactivation of KV1 channels causes a significant 

enhancement of the calcium transient in the presynaptic terminal evoked by the 

propagating spike in the presynaptic terminal (Yu et al., 2010). Enhanced 

neurotransmitter release by the inactivation of KV1 channels is not restricted to just 

depolarization of the presynaptic neuron. Extrinsic signals, such as glutamate 

released from astrocytes, that are present abundantly adjacent to hippocampal 
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axons and their terminals can also modulate the width of action potentials in axons 

and enhance synaptic transmission in an analogue manner (Debanne et al., 2013; 

Sasaki et al., 2011). 

 

Figure 1.2.4 Schematic of analogue-digital facilitation (a) Spatial gradient of hybrid 

and digital (top) and analogue-digital (bottom) transmission. Due to cable properties, 

analogue-digital transmission is restricted to proximal presynaptic boutons (b1), 

whereas pure digital transmission occurs at distal boutons (b2); Vm, membrane 

voltage (b) Facilitation resulting from voltage-inactivation of voltage-gated KV1 

channels. With digital-only signalling (top neuron), the neuronal membrane voltage 
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(Vm) rests at −65 mV and KV1 channels remain open, resulting in a rapid termination 

of the spike response. Analogue subthreshold depolarization (bottom neuron; −50 

mV at the soma) propagates from the somatic compartment and along the axon to 

the terminal (the gradual decay in depolarization is indicated by red-to-blue shading), 

resulting in closure of KV1 channels and attenuated K+ efflux. This produces a 

broader action potential and results in enhanced spike-evoked Ca2+ entry and 

incremented neurotransmitter release (single black arrow). Adapted from (Debanne 

et al., 2013). 
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1.3  The synapse 

Electrical and Chemical Synapses  

 

To our knowledge, chemical synapses number trillions in the adult human brain and 

have a crucial role in information processing between neurons. Synapses are 

broadly divided into electrical and chemical synapses. Electrical synapses are 

composed of direct intercellular connections or gap junctions that allow the direct 

passive flow of univalent ions between cells.  The main function of electrical 

synapses is to synchronize electrical activity among populations of neurons (Bennett 

and Zukin, 2004).  

 

However most synapses are chemical. Chemical neurotransmission involves the 

release of neurotransmitters or neuropeptides from the pre-synaptic cell, and their 

diffusion across a space or synaptic cleft, which typically measures between 15 and 

25 nm, to act on postsynaptic receptors (Südhof, 1995). The chemical 

neurotransmitters that are released from the presynaptic cell are packaged into 

synaptic vesicles in the presynaptic membrane.  These vesicles fuse with the 

presynaptic membrane, releasing the neurotransmitter into the synaptic cleft.  

Various different types of chemical neurotransmitter exist and can be classified either 

by structure into amino acids (such as glutamate, γ-aminobutyric acid (GABA and 

glycine), monoamines (including dopamine, noradrenaline and serotonin), peptides 

(including somatostatin, substance P and opioids) and others such as acetylcholine; 

or by their action i.e. whether they are excitatory or inhibitory.  Glutamate is the 

predominant excitatory neurotransmitter in the central nervous system (CNS), 
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binding to multiple different excitatory receptors including NMDA receptors, AMPA 

receptors and kainate receptors, which allow influx of positively charged ions and 

subsequent depolarization of the postsynaptic neuron.   

 

1.3.1 Mechanism of chemical synaptic transmission 

 

Initially neurotransmitters are synthesised in the cell body or at the presynaptic 

terminal.  Neurotransmitters are then loaded into synaptic vesicles via active 

transport, a process involving an electrochemical gradient created by a proton pump 

which transports H+ ions (Ahnert-Hilger et al., 2003).  Neurotransmitter uptake into 

vesicles occurs via specific vesicular transporters that use either the proton or the 

electrical gradient.  The synaptic vesicles containing neurotransmitter then dock near 

the synaptic terminal adjacent to presynaptic Ca2+ channels due to the action of a 

protein complex containing RIM proteins (Südhof, 2013). The area where the 

synaptic vesicles cluster is known as the “active zone”, an electron dense region 

directly opposite the postsynaptic density.  At small central glutamatergic synapses 

typically 8-10 vesicles are docked and thought to be immediately ready for release 

(Schikorski and Stevens, 2001; Xu-Friedman et al., 2001).  

 

Resting intracellular calcium concentration is around 0.1 µM, with a reversal potential 

of +50 mV.  The action potential at the presynaptic nerve terminal membrane triggers 

a conformational change in VGCCs, which allows entry of Ca2+ from the extracellular 

space (Katz and Miledi, 1967; Schneggenburger and Neher, 2005).  The subsequent 



	
   47	
  

increase in intracellular Ca2+, which, at the release site, reaches a concentration in 

the order of tens of micromoles per litre. There are two phases to calcium evoked 

neurotransmitter release; a synchronous fast phase that occurs up to 0.5ms. after 

calcium influx, and a slower asynchronous release. Members of the synaptotagmin 

family (Syt1, Syt2, and Syt9) function as calcium sensors for synchronous release 

and Syt7 for asynchronous release (Südhof, 2013). Most is known about Syt1, a 

synaptic vesicle protein with two cytoplasmic C2 domains (C2A and C2B) that bind 

Ca2+. It has been proposed that upon Ca2+ influx, Ca2+ binding to the C2B domain 

especially of Syt1 promotes bringing vesicle and plasma membranes together and in 

tandem with C−terminal zippering of the SNARE complex (as discussed later), 

causes membrane fusion.  

 

It is thought that for vesicle and presynaptic nerve terminal membrane fusion to 

occur, the respective bilayers bend to cause destabilisation and create a stalk where 

the proximal leaflets have fused and the distal leaflets create a fusion pore that then 

expands (Chernomordik and Kozlov, 2008). SNARE proteins are key to exocytosis 

and include the synaptic vesicle protein Synaptobrevin/VAMP (vesicle-associated 

membrane protein) and the plasma membrane proteins SNAP−25 and Syntaxin−1 

(Rizo and Xu, 2015). One model involves the three SNAREs forming into a tight 

complex that draws the membranes close to each other. Another model suggests 

that the starting point of exocytosis may be with Syntaxin−1 in a self-inhibited 

conformation, that then binds to Munc18-1 (a member of the Sec1/Munc18 protein 

family) to form a complex on the plasma membrane, which orchestrates a partially 

assembled SNARE complex, thus priming the membrane for fusion (Südhof and 

Rothman, 2009). Indeed intermediates where only the N−terminal half of the SNARE 
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complex has assembled either in zig−zag or half zippered array, have been viewed 

in vitro (Kümmel et al., 2011; Li et al., 2014). Another small soluble protein 

associated with the SNARE complex named Complexin has an intriguing role in both 

promoting and inhibiting exocytosis, with evidence of its interaction with Syt1 and 

SNAREs (Dai et al., 2007; Tang et al., 2006). It is thought the central helix of 

Complexin stabalises the SNARE complex whereas the accessory helix has an 

inhibitory role. A model would be that before calcium influx into the presynaptic 

terminal, the negatively charged accessory helix of Complexin prevents membrane 

fusion through electrostatic repulsion. However Syt1 interacts with Complexin 

resulting in dissolution of the accessory helix, relieving the inhibition and inducing 

fusion (Tang et al., 2006). Once the synaptic vesicles have fused with the 

presynaptic nerve terminal membrane, the neurotransmitters can diffuse across the 

synaptic cleft and subsequently bind to specific receptors on the postsynaptic 

membrane. Also after fusion the SNARE complex is dismantled by NSF, an ATPase 

from the AAA family, and SNAPs in order to be recycled for another round of fusion 

(Mohrmann et al., 2010).  

 

In response to neurotransmitter binding, ligand-gated receptors undergo a 

conformational change that leads to opening of an ion channel. Binding of 

neurotransmitters to G protein-coupled receptors triggers signalling pathways 

including, depending on the receptor subtype, adenylate cyclase, protein kinase C, 

and G-protein-coupled potassium channels.  For ligand-gated ion channels, 

depending on their ion selectivity, the postsynaptic membrane will either be 

depolarized (cations) or hyperpolarized (anions). If the ligand-gated ion channel is 

cation-permeable, as is the case for ionotropic AMPA, kainate or NMDA glutamate 
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receptors, the postsynaptic current is depolarizing. If it is large enough it will induce 

an action potential in the post-synaptic cell (Figure 1.3.1). 

 

Synaptic transmission is a dynamic process. Repeated use of synapses can either 

cause synaptic facilitation or depression. Synaptic facilitation has been shown to be 

presynaptic in origin with short-term enhancement dependent on presynaptic 

intracellular calcium (Brain and Bennett, 1995; Kita and Van der Kloot, 1974). It is 

thought that Ca2+ acting at sites distinct to the fast low-affinity site triggering 

exocytosis (Delaney and Tank, 1994; Regehr et al., 1994) is responsible for synaptic 

enhancement, via a number of potential mechanisms. In the ‘buffer saturation’ 

model, initial calcium influx to the first action potential is buffered, but subsequent 

action potentials result in increased Ca2+ targeting release sites as the buffer 

saturates. Another theory based on Ca2+ diffusion simulations suggests that the slow 

residual Ca2+ kinetics govern length of synaptic enhancement. One muted sensor for 

residual calcium has been Syt7 (Jackman et al., 2016) as it is a presynaptic protein 

with high affinity and slow kinetics. Synaptic depression is likely secondary to 

decrease of neurotransmitter release upon a period of elevated activity as a result of 

depletion of the ready release pool of vesicles (Zucker and Regehr, 2002) 

 

After exocytosis vesicles undergo endocytosis and recycle and refill with 

neurotransmitter for a new round of exocytosis in a “trafficking cycle” (Sudhof, 2004). 

This recycling process is important as small presynaptic nerve terminals only contain 

a few hundred vesicles on average and an efficient recycling process is necessary to 

preserve synaptic transmission and synaptic morphology (Klingauf et al., 1998; 
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Rothman et al., 2016).  A number of different mechanisms of synaptic vesicle 

recycling have been proposed.  These include (1) so-called “kiss and stay” whereby 

vesicles are re-acidified and refilled with neurotransmitter without undocking (van 

Kempen et al., 2011), (2) “kiss and run” where vesicles undock and recycle locally to 

re-acidify and refill with neurotransmitter via a transient pore between the synaptic 

membrane and the vesicle (Ceccarelli et al., 1973; Harata et al., 2006; Klingauf et 

al., 1998; Richards et al., 2005), and (3) a process by which vesicles endocytose via 

clathrin–coated pits and then refill with neurotransmitters either immediately or via an 

endosomal intermediate (Sudhof, 2004).  	
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Figure 1.3.1 Schematic of the molecular machinery involved in Ca2+ evoked vesicle 

fusion. (A) A synapse with Ca2+ channels in blue and vesicles denoted SV. (B) A 

summary of the fusion process as described above. Taken from (Südhof, 2013). 
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 1.4 The evolution of voltage gated channels 

 

Ion channels are broadly characterised as either ligand-gated (also known as 

ionotropic receptors) or voltage-gated. Ion channels of both types are multimeric 

proteins, generally glycosylated on their extracellular segments. Although there are 

some homomultimers, the majority of channels are assembled from a number of 

subunits, each one coded for by a separate gene (heteromultimers).  

 

Voltage-gated channels are constituted of one or more pore forming subunits (α 

subunit) and variable numbers of accessory subunits (β,γ… subunit). They mainly 

respond to membrane potential depolarization by opening, although some mixed 

cation permeable channels open, in contrast, upon hyperpolarization. The subunits 

determine ion selectivity and mediate the voltage-sensing functions of the channel. I 

will concentrate on the voltage gated sodium, potassium and calcium channels 

(VGSCs, VGKCs and VGCCs) as they are the focus of my experiments.  

 

 1.4.1 Voltage gated sodium channels 

 

The voltage gated sodium channel (VGSC) gene family consists of nine homologous 

members (SCN1A to SCN11A) that code for the sodium selective ion channels 

NaV1.1 to NaV1.9 (Table 1.4.1). SCN6A and SCN7A encode the Nax channel, which 

is structurally related to other VGSCs but activated by change in sodium 

concentration rather than membrane depolarisation. VGSCs are composed of a 
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large α subunit (~260 kDa) containing four homologous domains, each of which 

consists of six transmembrane segments. Only one α subunit alone is necessary to 

form a functional channel, but α subunits also combine with β-subunits (β1-4 

encoded by SCN1B to SCN4B), which modulate the biophysical and trafficking 

properties of the channel (Eijkelkamp et al., 2012). The transmembrane domains S1-

S4 in each domain of the VGSC constitute the voltage sensor domain (VSD) and S5-

S6 arrange to form the sodium selective pore (Catterall et al., 2005) (Figure 1.4.1a). 

The selectivity filter, the narrowest part of the channel’s open pore, is lined with 

amino acid residues that specifically interact with the permeating ion, plays a major 

role in determining sodium selectivity. Different sodium channels have different 

selectivity filters, which vary in the symmetry, number, charge, arrangement, and 

chemical type of the metal-ligating groups and pore size. As mentioned above 

(Section 1.2) VGSCs are generally closed at resting membrane potential, and 

require membrane depolarisation to be activated, generating the upstroke in the AP. 

VGSCs inactivate within milliseconds of activation or faster, terminating the AP 

upstroke and helping to initiate its downstroke (Figure 1.4.1b). VGSC activation is 

thought to occur via the movement of the S4 segment in the VSDs of domains I-IV. 

The S4 segments contain a repeated pattern of positively charged amino acids 

(typically arginines) interleaved by two or three hydrophobic residues, arranged in an 

α helix. Outward movement of S4 segments in domains I-III results in a 

conformational change in the protein, opening the ion channel pore. Inactivation 

closes the channel and prevents it from reopening until there has been sufficient time 

for recovery, which helps to determine the frequency of action potential firing. 

VGSCs exhibit both fast and slow inactivation. Fast inactivation occurs by a ‘ball-

and-chain’ or ‘hinged lid’ mechanism, in which a cytoplasmic region (the inactivating 
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particle) occludes the pore by binding to a region nearby (the docking site). The 

inactivating particle consists of a portion of the cytoplasmic linker connecting 

domains III and IV, with the crucial region centring on a four amino acid stretch 

consisting of isoleucine, phenylalanine, methionine and threonine (IFMT) (Figure 

1.4.1b). The docking site consists of multiple regions including the cytoplasmic 

linkers connecting segments 4 and 5 (S4-S5) in domains III and IV and the 

cytoplasmic end of the S6 segment in domain IV. Slow inactivation is a separate 

process that does not involve the III-IV linker inactivation particle. It is likely that slow 

inactivation involves a significant conformational change of the channel that includes 

a rearrangement of the pore, but the actual mechanism that prevents ionic flow is still 

unknown (Goldin, 2003). 
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Figure 1.4.1 (a) Schematic representation of the α- and β-subunits of the VGSC. 

The four homologous domains (I–IV) of the α-subunit are represented; S5 and S6 

are the pore-lining segments and S4 is the core of the voltage sensor. In the 

cytoplasmic linker between domains III and IV the IFMT (isoleucine, phenylalanine, 

methionine, and threonine) region or ‘inactivation gate’ is indicated (b) Mechanism of 

voltage sensitive gating of VGSCs. The left channel represents a VGSC in a 

deactivated (closed) state. A small depolarization of the membrane potential causes 

a movement of the positively charged S4 voltage-sensor domain (green) leading to a 

conformational change in the protein and opening of the pore (middle channel). 

Following activation, the pore is rapidly occluded by the inactivation gate, resulting in 

inactivation of the sodium channel (right channel) (Savio-Galimberti et al., 2012)  

 

Gene NaV channel 
type 

Distribution 

SCN1A NaV1.1 Central neuron cell bodies ‘Brain type I’  

SCN2A NaV1.2 ‘Brain type II’ central neurons 

Mainly unmyelinated/premyelinated axons 

SCN3A NaV1.3 Central neuron cell bodies (embryonic);  

SCN4A NaV1.4 Skeletal muscle 

SCN5A NaV1.5 Denervated skeletal muscle 

SCN8A NaV1.6 Somatodendritic distribution in cerebellar/ 
cerebral cortex/hippocampal output neurons. 

Purkinje cell – cerebellar granule cell layer; 
astrocytes and Schwann cells; DRG; 
CNS/PNS Nodes of Ranvier;  

SCN9A NaV1.7 DRG neurons; sympathetic neurons, Schwann 
cell; neuroendocrine cells 

SCN10A NaV1.8 DRG neurons (Verkerk et al., 2012)  
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SCN11A NaV1.9 DRG c-type neurons (nociceptive) 

SCN7A NaX Neurons of DRG, hippocampus, thalamus, 
cerebellum, median preoptic nucleus;  

 

Table 1.4.1 summarises the genes that encode the known NaV channel types and 

their cellular expression. Adapted from (Savio-Galimberti et al., 2012) DRG: dorsal 

root ganglia; CNS: central nervous system; PNS: peripheral nervous system;  

 

 1.4.2. Potassium channels 

 

Potassium channels represent the most diverse group of ion channels for a number 

of reason including the large number of genes coding for potassium channel 

subunits, with further possibility conferred by alternative splicing, heteromeric 

assembly of different subunits, possible RNA editing and posttranslational 

modification (Coetzee et al., 1999). During development, potassium (K+) currents are 

the first voltage-gated currents to appear in neurons (Veh et al., 1995). The channel 

expression varies substantially among different types of neurons. Hippocampal 

neurons possess a distinct pattern of potassium channels, which are sorted to the 

axonal or dendritic compartment in a cell-specific manner (Prüss et al., 2010). The 

time-dependent K+ channel appearance during development suggests profound 

regulatory mechanisms linked to synaptogenesis and synaptic activity (Frotscher et 

al., 2000; Maletic-Savatic et al., 1995).  
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Over 100 different subunits of distinct types of potassium channels have been 

identified, including voltage gated, ligand-activated potassium channels, inward 

rectifiers, and “leak” potassium channels. The standard potassium channel clusters 

four subunits to create the ion permeation pathway across the membrane. Two 

transmembrane helices (2TM) with a short loop between them (termed the P loop) is 

a universal feature of all potassium channels. Indeed potassium subunits can be 

divided broadly into four groups depending on the number of transmembrane 

domains they possess; either six (voltage gated potassium channels, ligand-

activated potassium channels), four (“Leak” potassium channels), two (inward 

rectifier potassium channels) or eight with 2 P loops (8TM/2P that are hybrids of 

6TM/P and 2TM/P and first identified in yeast) (Figure 1.4.2).  

 

Figure 1.4.2. (a) 2TM/P channels exemplified by inwardly rectifying K+ channels (b) 

6TM/P channels, which are exemplified by ligand-gated and voltage-gated 
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K+ channels (c) 8TM/2P channels (d) 4TM/2P channels, which consist of two repeats 

of 2TM/P channels and exemplified by “leak” channels. S4 is marked with plus signs 

to indicate its role in voltage sensing in the voltage-gated K+ channels (Taken from 

(Choe, 2002). 

 

Inward rectifying (Kir) channels were first identified by expression cloning. To date 

there are seven subfamilies of Kir (Kir1 – Kir7). The “inward-rectifying” property 

enables positive charge moves more easily into the cell than out of the cell, 

suggesting a role for stabilising resting membrane of potential of a cell. Although 

postulated by Hodgkin and Huxley, the existence of “leak” potassium channels were 

proven relatively recently in Saccharomyces cerevisiae and Caenorhabditis elegans 

(Ketchum et al., 1995). “leak” or Two−P potassium channels demonstrate a voltage-

independent portal with Goldman-Hodgkin-Katz rectification. There are 15 known 

members of the Two−P channel family (K2P1.1 – K2P18.1 channels) (Goldstein et al., 

2005). 

 

Potassium channels are highly selective. Ion selectivity takes place at the narrowest 

part of the ion-permeation pathway, known as the selectivity filter (Bezanilla and 

Armstrong, 1972). The crystal studies of the bacterial potassium channel KcsA 

estimated the filter as ≈ 12 Å long and ≈ 2.5 Å in diameter and showed that the main 

constituents of the filter are carbonyl oxygens from the amino-acid residues Thr–Val–

Gly–Tyr–Gly, which are characteristic of the P loop (Doyle et al., 1998). From this 

evidence it appears the selectivity process is a series of stereochemical checkpoints, 

with each checkpoint consisting of four oxygen atoms that form the corners of a 
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square. This would allow the hydration shell of the potassium ions to be replaced 

with pore oxygens as they enter the channel. Six potassium binding sites have been 

identified along the selectivity filter; four internal (P1 – P4) and two external (P0 – 

P5). P1 – P4 are found between two adjacent oxygen squares, to provide eight 

oxygen atoms that can coordinate a potassium ion. P0 is at the external entrance 

and P5 is at the internal entrance to the filter. It is this configuration that provides a 

low energy barrier and therefore greater selectivity for potassium ions compared with 

other cations; such as sodium ions where the energy barrier is ≈ 1000 time greater 

(Bernèche and Roux, 2001). 

 

 1.4.2.1 Molecular properties of VGKCs 

 

Molecular characterisation of KV channels has been a difficult process, mainly due to 

the diversity of KV channel α subunits and their potential for oligomerisation. The first 

breakthrough came from isolating cDNAs encoding the KV channel α subunit at the 

Shaker gene locus in the fruit fly Drosophila melanogaster (Kamb et al., 1987; 

Papazian et al., 1987). This work proposed that the KV α subunit was analogous to 

one of the four internally repeated homologous domains of a NaV or CaV channel, 

and that KV channels were functional tetramers of individual α subunits. Other 

potassium channel genes were then identified; Shab encoding KV2, Shaw encoding 

KV3 and Shal encoding KV4 channels. From the first isolation of mammalian KV1.1 

cDNA, the remaining Shaker-related members, KV1.2 – KV1.7 (corresponding to the 

KCNA1 – 7 genes) were isolated. Heterologous cell expression demonstrated 

distinct functional properties between the KV1 subunits, and that different KV1 
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subunits could coassemble to form heterotetrameric channels with functional 

properties different to their homotetrameric equivalents.  

 

VGKCs are composed of four homologous α subunits. Each subunit contains six 

transmembrane segments (S1–S6), linked by extracellular and intracellular loops. 

Both N‐ and C‐termini are cytoplasmic (Figure 1.4.2b). The specific 2TM/P domain is 

flanked by cytoplasmic protein interacting domains, including a conserved amino – 

terminal tetramerization domain. Flow rate through these channels is approximately 

equivalent to the diffusion limit of the cation. To determine the conductivity of VGKCs 

a gating mechanism is present. One of the transmembrane segments (S4) has 

several positively charged amino acids, and spectroscopic studies have shown that 

this S4 helix undergoes conformational change upon membrane depolarization on a 

timescale equivalent to voltage activation of the channel (Glauner et al., 1999). In the 

closed state of the channel, the positive residues associated with the S4 helix lie 

within a narrow space that is open to the intracellular solution. As the channel opens, 

S4 rotates anticlockwise and tilts leaving the charged residues now exposed to the 

extracellular side (Cha et al., 1999). This movement underlies voltage‐dependent 

channel activation (opening of the ion pore). Fast inactivation (or closure in the face 

of continued depolarization) occurs through an inactivation ball that resides at the 

amino – terminal end of the protein and can physically plug the pore. Despite there 

being four identical balls, only one inactivation peptide is required to inactivate the 

channel. Figure 1.4.2 represents the phylogenetic tree of 6 transmembrane domain 

channels and Table 1.4.2. summarises the distribution and function of known KV 

subtypes. Heterologous studies have indicated that KV1 α subunits can generate 

either transient (KV1.4) or sustained (KV1.1 – KV1.3, KV1.5, KV1.6) currents. 
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In addition to the four α subunits, voltage‐gated potassium channels of the KV family 

also contain accessory cytoplasmic β subunits. The majority of KV1 channel 

complexes in the mammalian brain have associated KVβ subunits. Four KVβ genes 

have been identified in humans with the possibility for many more isoforms via 

alternative splicing. The inclusion of KVβ alters the functional properties of the 

channel; for example inclusion of KVβ1.1 in KV1.1 or KV1.2 containing channels 

significantly alters gating properties from delayed-rectifier type to rapidly inactivating 

or A-type. Accessory subunits for KV4 channels are two types of proteins, calcium 

binding KChIPs and dipeptidyl-peptidase-like protein (DPPX) (An et al., 2000; Nadal 

et al., 2003). In addition “electrically silent” α subunit-like polypeptides have been 

reported (Patel et al., 1997) although their function and expression is unclear. 
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Figure 1.4.2.1 Phylogenetic tree of 6TMD voltage-gated and calcium-activated K+ 

channels generated by parsimony. Bootstrap values generated using PAUP 3.1.1 

are shown on the tree when available, and they represent a measure of node 

robustness (Trimmer and Rhodes, 2004) 

KV channel type Gene Main localisation Function 
KV1  Axon   
KV1.1 KCNA1  Controlling AP waveform 

Setting firing rate in layer 
II/III pyramidal neurons 

KV1.2 KCNA2  Intracortical processing in 
layer V pyramidal neurons 

KV1.3 KCNA3   
KV1.4 KCNA4  Regulate Ca2+ influx and 

neurotransmitter release in 
mossy fibre axons 

KV1.6 KCNA6  “D” current in interneurons 
    
KV2  Soma, proximal dendrite Delayed rectifier channels 
KV2.1 KCNB1   
KV2.2 KCNB2   
    
KV3   High frequency firing in 

neocortex and 
hippocampus 

KV3.1 KCNC1 Axon  (3.1b) 
somatodendritic  (3.1a) 

3.1a/b splice variants of 3.1 

KV3.2 KCNC2 Soma, dendrite  
KV3.3 KCNC3 Axon Shaping depolarising 

events in cerebellum 
Purkinje cells 

KV3.4 KCNC4   
    
KV4  Soma, dendrite A-type KV channels 
KV4.1 KCND1   
KV4.2 KCND2   
KV4.3 KCND3   
    
KV7   Slowly activating and 

noninactivating M current 
that suppresses neuronal 
firing 

KV7.2 KCNQ2 Axon  
KV7.3 KCNQ3 Axon, soma, dendrite  
KV7.5 KCNQ5 Soma, dendrite  
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Table 1.4.2. Identification of potassium channel α-subunits thus far. GP – Globus 

pallidus; SNpr – substantia nigra pars reticulata; IN – interneuron; DG – Dentate 

granule cell; PC – pyramidal cell; PV – parvalbumin; SOM – somatostatin; Cal – 

Calbindin. Adapted from (Vacher et al., 2008). 

 

1.4.3 Voltage-gated calcium channels 

 

Neuronal calcium currents are classified into L-, N-, P-, Q-, R- and T-type – all of 

which demonstrate unique physiological and pharmacological properties (Bean, 

1989; Catterall, 2000; Dolphin, 2006; Hess, 1990; Llinás et al., 1992; Reuter, 1967; 

Tsien et al., 1988). The main pharmacological features of Ca2+ channels are 

governed by the pore-forming α1 subunit of 190 kDa. The α1 subunit amino acid 

sequence contains four highly homologous domains in tandem analogous to the 

VGSC, each of which resembles a voltage‐gated potassium channel α subunit. They 

probably evolved through two duplications of a potassium channel, and are 

phylogenetically older than sodium channels. Each domain contains six 

transmembrane segments in the same way as the potassium channels, and 

movement of the four S4 segments governs activation. Only one α1 subunit is thus 

required to form a channel. Table 1.4.3 below illustrates the roles of the different 

calcium channel α1 subunits. Four highly conserved glutamate residues line the 

selectivity filter of calcium channels. Of importance to my project is the P/Q subtype. 

The P-type was found in cerebellar Purkinje cells, and blocked by the peptide ω -

agatoxin IVA, a constituent of the venom produced by the Agelenopsis aperta or 

American funnel web spider. Q-type channels found in cerebellar granule cells, are 
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physiologically analogous to P-type but with a lower affinity for ω -agatoxin IVA. It is 

currently thought that the P- and Q-type channels either have different configurations 

of subunits (Richards et al., 2007)  or more likely are splice variants of the same 

gene (Bourinet et al., 1999).  

 

Calcium channels are associated with accessory α2δ, β, and γ subunits with the 

typical subunit composition being α1α2βγ in a 1:1:1:1: ratio (Catterall, 2000). 

Heterogeneity among the CaV accessory units is important in determining expression 

level, localisation and function of the CaV α1 subunit (Hofmann et al., 1994). Both α2δ 

and β promote channel trafficking to the plasma membrane and modulate voltage-

dependent gating.  

 

α1 
code 

Ca2+ 
channel 
name 

Current type Gene Main  

Localisation 

Function 

α1C Cav1.2 L CACNA1C Neurons Gene regulation 

α1D Cav1.3 L CACNA1D Neurons Gene regulation 

α1A Cav2.1 P/Q  

(Llinas et 
al., 1989; 
Randall and 
Tsien,1995) 

CACNA1A Nerve 
terminals, 
dendrites 

Neurotransmitter 
release 

α1B Cav2.2 N (Nowycky 
et al., 1985) 

CACNA1B  Nerve 
terminals, 
dendrites 

 

α1E Cav2.3 R CACNA1E Nerve 
terminals, 
dendrites, cell 
bodies 

Neurotransmitter 
release 

α1G Cav3.1 T (Llinas 
and Yarom, 

CACNA1G Neurons Repetitive firing 
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1981) 

α1H Cav3.2 T CACNA1H Neurons Repetitive firing 

α1I Cav3.3 T CACNA1I Neurons Repetitive firing 

 

Table 1.4.3. Identification of calcium channel α-subunits in neurons thus far. DHP: 

1,4-dihydropyridine; ω -aga: ω -agatoxin; ω -ctx: ω –conotoxin 
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 1.5 Neurological channelopathies 

 

Several neurological diseases including neuromuscular disorders, movement 

disorders, migraine, and epilepsy can be caused by ion channel disruption. 

Channelopathies can be divided into three main types. The first is genetic, where 

specific mutations of genes encoding ion channels of muscle, nerve or glia alter 

cellular, organ or circuit function (Griggs and Nutt, 1995; Lehmann-Horn and Jurkat-

Rott, 1999). The second type is autoimmune, in which autoantibodies against ligand- 

or voltage-gated ion channels cause disorders of the central and peripheral nervous 

system (Vincent et al., 2006). Recent studies have provided growing evidence for the 

existence of a third type - transcriptional channelopathies - which result from 

changes in the expression of non-mutated channel genes. An example is some 

forms of peripheral nerve injury, which lead to altered expression of some sodium 

channels in spinal sensory neurons, affecting the excitability of these cells and 

possibly contributing to neuropathic pain (Waxman, 2001). 

 

The genetic neurological channelopathies offer an unprecedented insight into the 

diversity of cellular mechanisms underlying the abnormal function of neuronal 

circuits. Indeed, the breakthroughs in understanding these diseases have raised 

expectations that the causes of far commoner idiopathic neurological diseases, in 

particular primary generalized epilepsy, will soon be understood. Due to their wide 

distribution, ion channel mutations can affect any aspect of the nervous system, 

causing a variety of different symptoms including paroxysmal disturbances of brain, 

spinal cord, peripheral nerve or skeletal muscle function. Indeed the list of these 
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channelopathies is expanding rapidly, as is the phenotypic range associated with 

each channel. Heterologous expression studies have shed light on the 

consequences of these mutations for ion channel assembly and electrophysiological 

function. However, to further understand channelopathies and their paroxysmal 

nature, knowing the biophysical changes caused by the mutation on the channel is 

not sufficient. It is also necessary to know where the mutant channel is expressed, 

and to define the effect of channel disruption on neuron or myocyte function, and on 

the circuit it operates in. Explaining the symptoms the patient experiences is 

therefore a substantial challenge. 

 

Most currently known channelopathies are dominantly inherited and as such a 

positive family history of the disorder is common. A striking feature of many 

channelopathies is that patients often experience discrete paroxysms (seizures, 

migraine, paralysis, ataxia, dyskinesia) with preserved neurodevelopment and 

normal function in between attacks. Paroxysms may become less marked with age. 

Possible explanations for this phenomenon include changes in the expression of 

individual channels, maturation and compensatory alterations in circuit function. It is 

important to note, however, that different mutations of the same gene can lead to a 

range of phenotypes, and conversely, a given phenotype can be caused by 

mutations of different ion channels. 

 

Epilepsy:  Channelopathies can cause both focal and generalised seizures ranging 

from benign neonatal convulsion conditions to more severe epileptic 

encephalopathies associated with development regression. Mutations in the KCNQ2 
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and KCNQ3 genes affect the potassium channel subunits KV7.2 and 7.3 

respectively, clinically manifesting as Benign Familial Neonatal Seizures (BFNS) and 

Early Onset Epileptic Encephalopathy (EOEE). Mutations of the SCN1A, SCN2A and 

SCN1B genes affect the sodium channel subunits NaV1.1, NaV1.2 and NaVβ1 

respectively, clinically manifesting (in most cases) as Generalised Epilepsy with 

Febrile Seizures (GEFS), Severe Myoclonic Epilepsy in Infancy (SMEI) or Dravet 

syndrome, and Benign Non-Familial Infantile Seizures (BNFIS). More recently de 

novo mutations in the SCN8A gene that encodes NaV1.6 (Chapter 1.2) have been 

identified in patients with two types of disorders, epileptic encephalopathy and 

intellectual disability (O’Brien and Meisler, 2013) Mutations of the GABRA1 and 

GABRG2 genes affect the α1 and γ2 GABAA receptor subunits and are also 

associated with GEFS in addition to Childhood Absence Epilepsy. Mutations of the 

CHRNA2, CHRNA4, and CHRNB2 genes affect the acetylcholine receptor subunits 

α2, α4, β2 respectively, and clinically manifest as Autosomal Dominant Nocturnal 

Frontal Lobe Epilepsy.  

 

Neuromuscular disorders: Channelopathies can either decrease or increase muscle 

fibre excitability. Periodic paralysis manifests as episodes of hypotonia and global 

weakness. Mutations in the SCN4A sodium channel gene and CACN1A calcium 

channel gene are responsible for the most common periodic paralyses. Myotonia is 

associated with increased muscle excitability and manifests as muscle stiffness. 

Mutations to the CLCN1 chloride channel gene causes myotonia congenita (muscle 

stiffness alleviated by exercise) and mutations to the SCN4A gene causes 

paramyotonia congenita (muscle stiffness caused by exercise or cold temperature). 

Mutations in the SCN9A gene cause Primary Erythromelalgia, a rare neurovascular 
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peripheral pain disorder. A gain of function mutation in the SCN10A gene causes 

small fibre neuropathy, likely caused by Dorsal Root Ganglia hyperexcitability (Han 

et al., 2014). Mutations in the KCNJ2 gene, which codes for the inward rectifier 

potassium channel Kir2.1, cause Anderson-Tawil syndrome, which manifests as 

cardiac arrhythmias, periodic paralysis and dysmorphic features. The transient 

receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) 

demonstrate high calcium permeability and have an integral role in pain, neurogenic 

inflammation and sensory nerve activation (Fernandes et al., 2012). A range of 

congenital myasthenic syndromes have been identified that affect either presynaptic 

function that present in infancy (CHAT and COLQ mutations), post synaptic function 

including acetylcholine receptor kinetics that present with predominant bulbar and 

respiratory weakness (CHRNE, CHRNA, CHRNB, CHRND mutations) or 

acetylcholine receptor aggregation that present with proximal muscle weakness 

(DOK7 mutation). 

 

Cerebellar ataxia will be discussed in more detail later in this chapter.  Excessive 

startle to stimulus or hypereplexia is caused by mutations to the glycine receptor 

genes GLRA1 and GLRB.  
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1.5.1 Episodic Ataxias  

   Episodic Ataxia Type 1 (EA1) 

 

EA1 was first described in 1975 by Van Dyke et al. as an inherited disorder 

characterized by persistent myokymia as well as discrete episodes of cerebellar 

incoordination, manifesting as tremor of the head, arms, and legs, and loss of 

coordination and balance (VanDyke et al., 1975). The disease is due to dominantly 

inherited mutations of the KCNA1 gene (Browne et al., 1994). Distinct mutations are 

associated with variable manifestations including, in some patients, cramps, 

contractures, titubation and seizures (Eunson et al., 2000; Zuberi et al., 1999). EA1 

usually presents in the first or second decade with patients experiencing disabling 

attacks of midline cerebellar dysfunction, manifesting as truncal and limb ataxia, 

dysarthria, and visual symptoms such as oscillopsia and visual blurring. These are 

normally brief, lasting between seconds and minutes. The attacks can be triggered 

by emotional stress, startle and sudden postural changes (Rajakulendran et al., 

2007). Another predominant feature is the presence of continuous interictal motor 

activity in the form of myokymia, a result of peripheral nerve hyperexcitability. This 

most commonly manifests as fine rippling in perioral or periorbital muscles.  

 

Brain MRI and routine laboratory blood tests including serum concentration of 

creatine kinase and electrolytes are usually normal. Electromyogram may display a 

pattern of either rhythmically or arrhythmically occurring singlets, duplets, or 

multiplets. In specialized centres, electrophysiological assessments of motor nerve 
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excitability performed according to the TROND protocol (using Qtrac© software; UCL 

Institute of Neurology) allows differentiation of individuals with EA1 from normal 

controls with high sensitivity and specificity (Tomlinson et al., 2010). Muscle biopsy is 

usually not helpful in establishing the diagnosis, although bilateral calf hypertrophy, 

enlargement of type 1 and type 2 gastrocnemius muscle fibres, and variable 

glycogen depletion have been observed (Demos et al., 2009; Kinali et al., 2004; 

VanDyke et al., 1975). Nevertheless, these changes have not been consistently 

reported among individuals with EA1. A diagnosis of EA1 can be established by 

finding a heterozygous variant in KCNA1 via Sanger or next-generation sequencing. 

It is not known if copy number variants also manifest as EA1. 

 

A multi-gene panel can be sought if considering differential diagnoses. These include 

Episodic Ataxia type 2 (discussed below) and even more rarely EA3, 4, 5, 6, 7 and 8 

and Spastic Ataxia Type 1 (SPAX1). Other differential diagnoses include Paroxysmal 

Kinesigenic Dyskinesia (PKD), Paroxysmal Non-Kinesigenic Dyskinesia (PNKD), 

and Isaac’s Syndrome or acquired neuromyotonia.  

 

No single medication has been proven to be very effective. Acetazolamide, a 

carbonic-anhydrase inhibitor, may reduce the frequency and severity of the attacks 

in some but not all affected individuals. The mechanism by which acetazolamide 

reduces the frequency and severity of the attacks is unclear. Chronic treatment may 

result in side effects including tiredness, paraesthesias, rash, and formation of renal 

calculi (D’Adamo et al., 2015; Graves et al., 2014). Antiepileptic drugs (AEDs) may 

significantly reduce the frequency of the attacks in responsive individuals; however, 
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the response is variable and some individuals are particularly resistant to drugs 

(Eunson et al., 2000). Phenytoin has been shown to improve muscle stiffness and 

motor performance (Kinali et al., 2004); carbamazepine and lamotrigine have also 

been used (Eunson et al., 2000). 

 

 1.5.2 Episodic Ataxia Type 2 and other CaV2.1 channelopathies 

 

Different mutations of the CACNA1A gene encoding the pore-forming subunit of 

voltage-gated CaV2.1 (P/Q-type) Ca2+ channels (Ophoff et al., 1996) can cause 

clinically distinct conditions, including Familial Hemiplegic Migraine (FHM)(Inchauspe 

et al., 2012), Episodic Ataxia Type 2 (EA2), and Spinocerebellar Ataxia Type 6. 

Autoantibodies directed against the same channel cause Lambert-Eaton myasthenic 

syndrome. EA2 is an autosomal dominant paroxysmal cerebellar disorder, 

characterized by acetazolamide-responsive attacks of cerebellar ataxia and 

migraine-like symptoms, interictal nystagmus, and cerebellar atrophy (von Brederlow 

et al., 1995). It usually presents in the second decade and is commonly caused by 

nonsense, frame-shift or splice-site mutations (Denier et al., 2001), or deletions, 

resulting in a loss of channel function (Guida et al., 2001; Kullmann, 2010). How this 

leads to ataxia is not clear, but it has been suggested that loss of CaV2.1 leads to an 

impairment of inositol 1,4,5−triphosphate receptor type 1 (ITPR1)−dependent 

plasticity in Purkinje cells (Rajakulendran et al., 2010).  
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 1.6. Pharmacological and genetic models for assessing KV1 channel 

 function 

 

The role of potassium channels in influencing AP repolarisation and repetitive AP 

generation has historically been investigated using pharmacological blockers. Initial 

identification of two potassium currents, A- and D- currents, were dissected using 4- 

aminopyridine (4-AP) and dendrotoxin (Wu and Barish, 1992). 4-AP is a non-

selective potassium channel blocker. Tetraethylamminium (TEA) is another often 

used voltage-gated potassium channel blocker.  

 

Dendrotoxins are a class of presynaptic neurotoxins produced by mamba snakes 

(Dendroaspis) that act as reversible inhibitors of KV1 channels in neurons. 

Dendrotoxins are ~7kDa proteins consisting of a single peptide chain of 

approximately 57-60 amino acids. It is thought the mode of action involves 

electrostatic interactions between the positively charged amino acid residues in the 

cationic domain of dendrotoxin and the negatively charged residues in the ion 

channel pore. There are three main dendrotoxin subtypes. α-Dendrotoxin is isolated 

from Dendroaspis angusticeps snake venom (Benishin et al., 1988).  α-Dendrotoxin 

blocks KV1.1 and KV1.2 channels (IC50= 0.4 to 4 nM, and 1.1 to 12 nM, in oocytes 

respectively, with higher values for mammalian cells). In addition the toxin was 

shown to block also KV1.6 (IC50= 9-25 nM) (Harvey, 2001). The role of presynaptic 

KV1 channels in spike broadening in hippocampal mossy fibre boutons was 

investigated using α-DTX at 1 µM (Geiger and Jonas, 2000). Dendrotoxin–I is 

isolated from Dendroaspis polylepis snake venom (Schweitz et al., 1990). 

Dendrotoxin-I blocks KV1.2 and KV1.1 channels (IC50=0.13 and 3.1 nM in oocytes 
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respectively) as well as heteromultimeric channels containing these, with other Kv1 

isoforms. The role of KV1 in action potential waveform in cortical axons has been 

studied using 50-100 nM DTx-I (Kole et al., 2007a). 

 

Dendrotoxin-K (molecular formula: C294H462N84O75S6.) is also isolated from 

Dendroaspis polylepis snake venom (Schweitz et al., 1990). It blocks mainly Kv1.1 

(IC50= 2.5 nM for homomers) but also Kv1.2 channels. The K26 and W25 residues 

from the β-turn and the K3 and K6 residues in the 310-helix are important for DTx-K 

binding to KV1.1 containing channels. Residues in the 310-helix are crucial for 

recognition of KV1 channels by DTx-K. K3 and K26 are around 14 Å apart, which is 

compatible to the estimated width (22-34 Å) for the outer vestibule of potassium 

channels. Low threshold potassium currents in the medial nucleus of the trapezoid 

body were investigated using DTx-K at 100nM (Dodson et al., 2002). DTx-K was 

used at 100 nM to explore the roles of potassium channels in action potential shape 

in cerebellar basket cells (Begum et al., 2016). Due to the selectivity of DTx-K for 

KV1.1 containing channels, this toxin was used for our experiments (see Section 

6.1). 

 
 
In addition to pharmacological blockade of KV1.1, genetic deletion of KV1.1 in mouse 

models provide complementary insights into the normal roles of KV1.1 and effects of 

mutations on neuronal properties. The KCNA1 gene encodes the potassium channel 

subunit KV1.1. KV1.1 is widely expressed throughout the nervous system, most 

notably in the presynaptic terminals of cerebellar basket cells, but also in the axons 

of hippocampal neurons. KV1.1 assembles with other KV1 members to form 

heterotetrameric channels (Wang et al., 1993). KV1.1-containing channels exhibit 
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variable kinetics depending on the other pore-forming subunits and associated 

cytoplasmic subunits (Lai and Jan, 2006; Rettig et al., 1994). The functional 

consequences of KCNA1 mutations have been examined by expression of mutant 

and/or wild-type (WT) KV1.1 in non-neuronal cells (Adelman et al., 1995; Boland et 

al., 1999; Bretschneider et al., 1999; D’Adamo et al., 1998; Eunson et al., 2000; Rea 

et al., 2002; Zerr et al., 1998; Zuberi et al., 1999). Most mutations confer a loss of 

KV1.1 function through altered kinetics or reduced current density, in some cases 

with impaired trafficking (Manganas et al., 2001; Rea et al., 2002). The variable 

clinical severity of distinct mutations correlates imperfectly with their in vitro 

consequences (Eunson et al., 2000; Rea et al., 2002).  

 

The two models I used were a homozygous knock-out mouse (Kcna1a-/-) (Smart et 

al., 1998) and a heterozygous knock-in EA1 mouse (Kcna1aV408A/+) (Herson et al., 

2003). The homozygous null mouse has a phenotype different from EA1, and is 

characterized by focal seizures and temperature-dependent “shivering”. 

Heterozygous mice do not have a detectable phenotype.  

 

The EA1 mouse expresses a heterozygous V408A mutation in Kcna1. This is one of 

several mutations clustered at the cytoplasmic end of S6 that have been identified in 

EA1. Whilst the majority of EA1 mutations lead to a loss of function, heterologous 

expression of some mutations such as E325D and V408A, residing near the 

cytoplasmic ends of S5 and S6 of KV1.1, can confer a both a loss of function by 

inducing an unstable open state compared to wild type (WT) resulting in a tenfold 

increase in the deactivation rate, and a paradoxical gain of function by the slowing of 
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1-induced N-type inactivation with a tenfold increase in recovery from N-type 

inactivation (Adelman et al., 1995; Maylie et al., 2002). The extent to which the 

paradoxical gain of function associated with the V408A mutation outweighs the loss 

of function is unclear but appears to be dependent on which subunits are assembled 

with KV1.1. This is illustrated in Figure 1.6. The effects of V408A are conferred on 

heteromeric channels formed with wild-type KV1.1 or KV1.2 subunits, roughly in 

proportion to the number of V408A subunits incorporated into the tetrameric channel 

(D’Adamo et al., 1998; Zerr et al., 1998).  

 

Phenotypically, the V408A knock-in mouse recapitulates a human EA1 mutation and 

is more severe than the gene deletion, consistent with a dominant-negative effect on 

other KV1 potassium channel family members. However this dominant-negative 

effect has not been demonstrated in heterologous studies to date. Homozygous 

Kcna1aV408A/V408A mice die after embryonic day 3. Kcna1aV408A/+ mice exhibit stress-

induced loss of motor coordination that improves with acetazolamide, analogous to 

human with EA1.  Juvenile animals were used (typically E18 to P1 pups) with 

hippocampi extracted to make primary dissociated neuronal cultures. 

Figure 1.6 Gating mechanisms of KV1 channel.  In response to depolarisation KV1 

opens an intracellular gate (open) allowing K+ to pass at rates close to diffusion. 
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However open channels can be directly blocked by an N-terminal inactivating gate 

(inactivated) (Gonzalez et al., 2011). 

 

KV1 channels modulate neuronal firing and neurotransmitter release. In mossy fibre 

boutons, a major excitatory synapse in the hippocampus, cumulative inactivation of 

Kv1 channels contributes to activity-dependent spike broadening.  This leads to an 

increase in calcium ions entering the synaptic terminal per action potential and thus 

facilitation of evoked excitatory post synaptic currents (EPSC) in CA3 pyramidal 

neurons (Geiger and Jonas, 2000). More recently it has been recognised that KV3 

and BKCa channels in addition to KV1 play an important role in AP repolarisation at 

the mossy fibre bouton (Alle et al., 2011). Relatively little is known of the effects of 

EA1-associated Kv1.1 mutations on presynaptic APs. Lentivector- mediated 

overexpression of the C-terminus-truncated R417 stop mutation, which is associated 

with severe drug-resistant EA1, in rat hippocampal neurons in culture leads to 

increased neuronal excitability and neurotransmitter release (Heeroma et al., 2009).  

Overexpression of wild type Kv1.1 had the opposite effects. 

 

In fast spiking cells, a prominent subtype of GABAergic interneurons, KV1 channels 

and in particular KV1.1 in the AIS have been implicated in suppressing near-

threshold excitability and AP threshold, which accounts for at least some of the firing 

pattern diversity observed within the FS cell class (Goldberg et al., 2008). 
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 1.6.1 Recording of presynaptic action potential morphology and 

 modulation to date  

 

KV1.1 is found predominantly in the axonal and presynaptic compartment. To 

understand the role of KV1.1 in action potential morphology and modulation, direct 

electrophysiological recording of the axonal/presynaptic compartment was required. 

However conventional patch-clamp recordings of neuronal cultures rely on 

diffraction-limited optical microscopy to navigate the patch-clamp pipette to the target 

structure. The smallest cellular structures successfully targeted using differential 

interference contrast (DIC) optics, such as hippocampal mossy fibre boutons (∼2–

5 µm diameter) (Bischofberger et al., 2006; Ruiz et al., 2010) are an order of 

magnitude larger than the optical diffraction limit (∼200 nm). Recordings from narrow 

axons have recently been obtained using pipettes coated with fluorescently 

conjugated albumin; however, this method only allows cell-attached recordings of AP 

waveforms (Sasaki et al., 2011). Indirect methods such as extracellular or cell-

attached patch-clamp recording from axons of cerebellar Purkinje cells (Kawaguchi 

and Sakaba, 2015) do not allow the action potential shape to be measured directly. 

Presynaptic voltage-sensitive fluorescence measurements or loose patch clamp of 

fluorescent-dye loaded axons may not detect sub-millisecond differences in action 

potential shape, although major parameters like action potential peaks have been 

shown to be reduced by KV3.1b and KV1 in small CNS nerve terminals using this 

method (Hoppa et al., 2014). 
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Investigations of presynaptic spike modulation have relied heavily on recordings from 

blebs that form after axons have been transected (Kim, 2014; Kole et al., 2007a; Shu 

et al., 2006, 2007a). A potential pitfall of this method is that the ion channels present 

in blebs may not be representative of the normal complement of channels at an 

unperturbed bouton. A further difficulty is that the attenuation of voltage with distance 

from the soma is likely to be smaller than when recording from an intact axon. 

Indeed, classical cable theory predicts that steady-state somatic voltage should 

decrease by approximately 63% at one length constant if the axon is represented by 

an infinite cable, but only by ~35% if it is sealed at the same point (Rall, 1959). The 

discrepancy increases as the axon is made shorter: if the axon is cut at half a length 

constant, the attenuation of steady-state voltage at its termination is only ~29% of 

that predicted for an infinite cable. Given that the length constant of unmyelinated 

axons in the CNS has been estimated in the range of 400 – 600 µm (Alle and 

Geiger, 2006; Jackson, 1993; Scott et al., 2008; Shu et al., 2006), this implies that 

the modulation of action potential shape by passively propagating subthreshold 

somatic depolarization may have been greatly overestimated.  

 

Modulation of action potentials at mossy fibre boutons (Fig 1.6.1a) and large calyceal 

synapses have been demonstrated (Awatramani et al., 2005a; Steinert et al., 2011). 

However the modulation demonstrated in these specialised synapses may not apply 

to the far more abundant small presynaptic boutons of the forebrain (Fig 1.6.1b), 

arguing the need for alternative recording methods to resolve the role of spike 

broadening.  
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We have adapted a method called Scanning Ion Conductance Microscopy (SICM), 

which overcomes the optical diffraction limit. It allows a topographical image to be 

obtained of small synapses in neuronal culture at a resolution down to 50nm in 3D, 

and also allows one to obtain direct electrophysiological data from such structures.	
   

 

Figure 1.6.1. Different glutamatergic synapses in the CNS. (a) Patch clamp of a 

mossy fibre bouton in a mouse brain slice (Bischofberger et al., 2006) (b) 

Reconstruction of a small hippocampal bouton, using serial electron microscopy data 

(inset). Adapted from (Schikorski and Stevens, 2001); scale bar 0.1 µm. 

 

Originally developed to image the topography of nonconducting surfaces (Hansma et 

al., 1989), SICM was further refined by the Korchev group (Novak et al., 2009) to 

enable live imaging at sub-micrometre resolution, and in collaboration we have 

optimised its application in patch-clamp recording from small CNS synapses 

(diameter ~1µm) that predominate throughout the mammalian brain. This semi-

automated approach allows precise targeted recordings from small synaptic 
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terminals in cultured hippocampal neurons in all four configurations of the patch-

clamp method (cell-attached, inside-out, whole-cell, and outside-out). I will further 

describe this technique in the methods section. 

 

 

 

  



	
   82	
  

2.0  Hypotheses 
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Although the consequences of the KCNA1 mutations for ion channel kinetics are 

known, there are several unanswered questions about their effects on synaptic 

function, and so the disease mechanisms of EA1 remain incompletely understood. 

Key to progress is to examine the kinetics of the pre-synaptic action potential, 

because this is what determines how calcium channels open and how calcium influx 

triggers exocytosis of neurotransmitter vesicles.  

 

Parallel work from the laboratory produced direct evidence for increased action 

potential width by recording from cerebellar basket cell terminals in EA1 knock in 

mice (Begum et al., 2016). However, it is not known whether this holds for forebrain 

synapses, nor whether particular patterns of activity lead to excessive 

neurotransmitter release as a result of action potential broadening. Because KV1.1 

assembles with other potassium channel subunits in different combinations, and 

these have different kinetic properties, it is not possible to extrapolate from 

heterologous expression studies to predict the effects on action potential shape. 

Indeed, abundant evidence exists for homeostatic compensation for the effects of 

chronic pharmacological blockade of neuronal ion channels and synaptic receptors 

(Turrigiano and Nelson, 2004). It remains possible therefore, that dysfunction of 

KV1.1 is compensated for by changes in expression of other ion channels. 

 

Subthreshold membrane potential fluctuations at the cell body also spread passively 

along the axon and affect the shape of action potentials invading presynaptic 

terminals (‘analogue signalling’) and consequently calcium influx and 

neurotransmitter release (Section 1.2.4). Inactivation of axonal Kv1 family channels 
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contributes to ‘analogue’ signalling by broadening presynaptic action potentials 

(Bialowas et al., 2015; Kim, 2014; Kole et al., 2007a; Shu et al., 2007a). Although 

this phenomenon has been investigated in transected axons or highly specialized 

presynaptic terminals, the role of KV1.1 in small presynaptic terminals has not been 

studied.  

 

The recent development of SICM now makes it possible addressing the following 

hypotheses: 

 

1. Deletion or pharmacological blockade of Kv1.1, or the V408A mutation in the EA1 

mouse model, prolongs the action potential repolarization phase at glutamatergic 

synapses in the hippocampus. 

2. Loss of Kv1.1 or the V408A affect sub-threshold signalling in the axon, because 

KV1.1 activates and inactivates at relatively negative potentials. 
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3.0 Methods 
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3.1 Animals and preparation 

 

Newborn (P0) Sprague Dawley rats from UCL Central Biological Unit were used to 

produce primary rat hippocampal neuronal cultures. All animal procedures were 

carried out in adherence to Home Office regulations under the UK Animal (Scientific 

Procedures) Act 1986. Animals were kept under controlled environmental conditions 

(24−25°C; 50−60% humidity; 12 hour light/dark cycles) with free access to food and 

water.  

 

Two mutant mouse strains were used - (Kcna1a-/-) (Smart et al., 1998) and knock-in 

(Kcna1aV408A/+) (Herson et al., 2003) – the latter a kind gift from the Maylie lab. Litters 

were weaned at three weeks and ear-tagged in order to ascertain genotype (PCR 

based genotyping was performed by Dr. Stuart Martin of the Biosciences Huxley 

Building Molecular Biology Facilities). For the knockout mice Kcna1+/- was bred with 

Kcna1+/- to generate homozygous-null pups. For the knockin mice Kcna1aV408A/+ 

female mice were crossed with wild-type C57/BL6 mice.  

 

3.2 Hippocampal neuronal cultures 

 

The technique of culturing neuronal tissue was first described by Ross Harrison in 

1910 (Harrison, 1910). Since then this technique has advanced considerably and is 
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a useful tool in investigating synaptic function and development (Banker and Goslin, 

1988; Kaech and Banker, 2006; Vicario-Abejón, 2004; Viesselmann et al., 2011). 

 

Dissociated neuronal cultures were suitable for my experiments for a number of 

reasons. Due to their low three-dimension spatial density as compared with intact 

neural tissue (such as brain slices); external factors such as temperature and 

extracellular bathing solution can be easily controlled. The two dimensional 

architecture of neuronal cultures is easy to view with light microscopy and lends itself 

to patch clamp experiments due to its easy accessibility. Currently SICM is not 

possible in hippocampal slices, although it is being trialled in organotypic cultures. 

The exposed nature of dissociated neuronal cultures permit the facile perfusion of 

drugs and toxins, which will be used to pharmacologically dissect action potential 

shape and whole cell currents in the following experiments. 

 

One of the limitations of dissociated neuronal cultures is that physiological neuronal 

connections are lost during dissociation, and this may in turn affect neuronal 

function. However as juvenile animals are used (typically E18 to P1 pups), normal 

dendritic arborisation is incomplete at the time of preparation. In addition these 

cultures form extensive synaptically-connected networks after several days 

(Friedman et al., 2000). 

 

The hippocampus is a very popular model for investigation of brain function. This is 

mainly due to its relatively simple layered structure when compared with other brain 
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regions, with few cell types and morphologically distinct excitatory (pyramidal) and 

inhibitory (interneurons) cells (Benson et al., 1994; Buchhalter and Dichter, 1991; 

Grosse et al., 1998; Miyawaki and Hirano, 2011). Hippocampal neuronal cultures are 

rich in small synaptic boutons (around 1µm), which are the regions of interest for my 

experiments. 90% of synaptic boutons are glutamatergic in hippocampal cultures 

(Benson et al., 1994). 

 

Instead of primary neuronal cultures, co-cultures with glial cells were developed. 

Contact between neurons and glial cells is important for neuronal survival (Lasek et 

al., 1977), axonal and dendritic growth (Gasser and Hatten, 1990; Piontek et al., 

2002), synaptogenesis (Hama et al., 2004) and synaptic efficacy (Pfrieger and 

Barres, 1997). 

 

3.2.1 Preparation of hippocampal neuronal cultures 

 

Although for the majority of the project senior laboratory technician Dr Marife Cano 

prepared neuronal cultures, initially I was involved in their production. The protocol 

used was derived from that outlined in Dr Felicity Alder’s PhD thesis (Alder, 2011), 

which I will summarise.  

 

The protocol has three main stages: 

1. Preparation and expansion of cortical glial cells 
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2. Preparation of coverslips and plating of the glial cell feeding layer 

3. Isolation of hippocampal neurons 

 

3.2.2 Hippocampal dissection and preparation of cortical astroglial 

cells 

 

P0 rat pups were culled and decapitated. The heads were rinsed in 70% ethanol, 

washed four times in 30ml of wash solution (comprised of 500ml HBSS and 5ml 

10mM HEPES), and placed onto a 10cm. dissection plate containing wash solution. 

The skin of the head was removed using Dumont No. 5 forceps, the skull pierced at 

the lambda and the parietal bones removed, exposing the brain.  

 

The brain was removed from the skull vault and placed onto a 6cm. dissection plate, 

filled with wash solution. Under microscope guidance, the cerebral hemispheres 

were separated from the brainstem using Dupont 55 forceps. All meninges were 

removed with fine forceps, leaving the hippocampus exposed. Cerebral hemispheres 

and hippocampi were transferred to separate plates containing dissection solution 

(comprised of 40ml wash solution and 10ml 20% FBS) and finely chopped using 

small dissection scissors.  

 

Ice cold solutions were used in all preceding steps up to trypsinisation. The pieces of 

cerebral hemisphere were placed in a 50ml. tube containing 9.5ml CMF-HBSS, 
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1.5ml 2.5% trypsin and 1.5ml DNAse (10mg/ml). The tube was incubated for 5 

minutes at 37°C in a water bath. The tissue was triturated through a 10ml. pipette ten 

times in order to prevent clumping of cells, before being returned to the water bath 

for a further ten minutes. A further trituration using a 5ml pipette was performed until 

the suspension was homogeneous. The cell suspension was filtered through a 70µm 

filter, into a 50ml tube containing 15ml of glial medium (comprised of 500ml MEM, 

6.7ml D−glucose, 5ml 1% penicillin-streptomycin, 50ml 10% horse serum, 5ml 1% 

L−Glutamine). This suspension was centrifuged for ten minutes at 2000RPM to 

remove the enzyme and lysed cells. The supernatant was removed and the pellet 

resuspended in 20ml of glial medium. Cells were plated at a density of 7-10 x 106 

cells per T75 flask, and topped up to a final volume of 12ml with glial medium. The 

flasks were transferred to an incubator at 37°C, 5% CO2. The following day, medium 

was exchanged in order to remove dead cells, and thereafter media were changed 

every 3 days, until cells reached 90−95% confluence. 

 

When confluent, the glial cells were split with each T75 flask divided into 8 to amplify 

the colony. The cells were rinsed with 10ml of warmed CMF-HBSS, and treated with 

2ml of trypsin/EDTA to dislodge the cells. The trypsin/EDTA was then inactivated by 

8ml GM, and the cells pelleted (10 minutes at 2000RPM). The pellet was 

resuspended in GM and again divided between 8 flasks. This process was repeated 

to multiply cell numbers.  

 

The cells were frozen in cryotubes and stored in liquid nitrogen to provide an 

accessible stock of glia. They were defrosted two weeks prior to neuronal 
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preparation to form a feeding layer on glass coverslips. One tube was defrosted and 

resuspended in ice cold glial medium, before pelleting to remove DMSO. The pellet 

was then suspended in warmed glial medium and plated in T75 flasks. As before, 

medium was exchanged the following day and cells grown to attain near 100% 

confluence over several days.  

 

 3.2.3 Preparation of coverslips 

 

18mm glass coverslips were stacked in ceramic racks and submerged in 70% nitric 

acid for three days. They were rinsed four times for two hours in ddH20 before being 

baked overnight at 225°C. The coverslips were placed in 12 well plates (6 coverslips 

per plate) and coated with 100µl PLL solution. They were incubated overnight, and 

rinsed twice the following morning with ddH20. 

 

Glial cells were dislodged with trypsin/EDTA, resuspended in glial medium and 

plated onto coated coverslips at a density of 60K per cm2. Media was exchanged the 

day after, and cells left to form a monolayer before the neuronal preparation was 

applied. 
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3.2.4 Preparation of rat neuronal cultures 

 

Dissected hippocampi (Section 3.1.3) were placed in a 60mm dish with dissection 

buffer (comprised of 40ml wash solution and 10ml 20% FBS) and transferred to a 

15ml centrifuge tube and washed five times in 5ml wash buffer. The hippocampal 

tissue was transferred to a tube containing digestion mix (comprised of 25mg 

Trypsin, 2.5ml Digestion solution and 10µl DNAse) and incubated for ten minutes at 

37°C. The enzyme was then inhibited by 5ml of dissection buffer, before being rinsed 

twice with 5ml of dissection buffer and twice with 5ml of wash buffer. The digested 

tissue was triturated in 2ml dissociation mix (comprised of 2.5ml Dissociation 

solution and 12.5µl DNAse) for five strokes with a half-diameter fire-polished, cotton-

plugged Pasteur pipette. 1ml of cell solution was removed to a 15ml tube (to 

minimise cell death by mechanical trituration), then the remnant triturated with a 

third-diameter, fire-polished Pasteur pipette. The remaining cell solution was then 

added to the 15ml tube. 10ml dissection solution was added and cells centrifuged for 

five minutes at 2000RPM. 

 

The supernatant was discarded and the cell pellet was disrupted. Cells were 

resuspended in Complete Neurobasal A (NB) and counted using a haemocytometer. 

Glial medium was removed from the glial cell coated coverslips and 1ml NB added 

instead to each well. The cell solution was diluted to a concentration of 30K cells per 

ml and 1ml added to each well (ending with a density of around 10K cells/cm2). The 

cell density was important for reasons explained in Section 4.2. Cells were returned 

to the incubator and stored at 37°C and 5% CO2. On day 7 post plating 1ml of 
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medium was removed from each well and 1ml of fresh medium applied. Cultures 

were then used 14-18 days after plating, because synaptogenesis generally is 

attained by day 14.  

 

3.2.6 Mutant mouse cultures 

 

As mice tended to produce smaller litters (around 6-12 pups) and their hippocampi 

when dissected were smaller, a few alterations were made to the above process. 

The genotype was established via PCR (by Stuart Martin) on tail clippings post 

culturing. Six to eight pups were dissected at one sitting, with surgical instruments 

cleaned between each with 70% ethanol to prevent cross contamination of 

genotypes. Four coverslips were plated per pup. After genotyping heterozygous 

knockouts were discarded. Wild type and knockout were compared in one set of 

experiments performed on the same day to control for differences in development; 

wild type and knockin were compared in another set of experiments performed on 

the same day.  
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 3.3 Electrophysiology − The patch clamp 

 

Much of what we know about the properties of ion channels in cell membranes 

stems from experiments using voltage clamp. Broadly, the method allows ion flow 

across a cell membrane to be measured as an electric current, whilst the membrane 

voltage is held under experimental control with a feedback amplifier. Thus with a 

controlled voltage over an area of membrane, it is much easier to record information 

about channel behaviour especially as the opening and closing of most ion channels 

are affected by the membrane potential.  

 

In order to isolate a patch of membrane electrically from the external solution and to 

record current flowing into the patch, a fire polished glass or borosilicate pipette filled 

with an electrolyte solution is pressed against the surface of a cell. The result is a 

seal whose electrical resistance is greater than 1GΩ and at this point the glass 

pipette and cell membrane are less than 1nm apart (Ogden, 1994). In this cell-

attached state recording of single channels can be performed and information about 

the unitary conductance and kinetic behaviour of ion channels can be obtained. 

Much work is done using patch clamp in the cell-attached mode, but the resting 

potential of the cell is unknown and neither intra- nor extra-cellular ionic 

concentrations can be manipulated. To overcome this, other configurations are 

possible (Figure 3.2). The inside-out configuration is achieved by pulling the 

membrane patch off the cell into the bath solution. The whole-cell configuration is 

achieved by destroying the membrane patch via suction in order for the cell, whose 

interior now is exposed to the solution of the pipette, to be voltage- or current- 
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clamped. The outside-out configuration is created by pulling the pipette away from 

the cell after achieving the whole-cell mode, thus resulting in a patch of membrane 

whose intracellular face is in contact with the pipette solution.  

 

Figure 3.2 Schematic illustrating the four configurations of patch-clamp. Adapted 

from (Ogden, 1994) 

  

 3.3.1 Scanning Ion Conductance Microscopy  

 

There is a great interest in developing methods to image live cells at sub-micron 

resolution. Scanning probe microscopy (SPM) is one approach to this problem and 

both atomic force microscopy (AFM) and scanning electrochemical microscopy 

(SECM) have been used to image live cells (Dufrêne, 2008; Sun et al., 2008). 

However, deformation of the soft cell by the AFM cantilever, particularly when 

imaging eukaryotic cells, is a significant limitation for AFM. SECM involves no 

physical contact with the sample, but true topographic imaging of the convoluted 

surface of living cells with nanoscale resolution has not been reported.  
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SICM relies on an electrolyte-filled glass nanopipette sensing the proximity of a cell 

surface via changes in the pipette current for a constant command voltage. In 

conventional SICM, a nanopipette is mounted on a three-dimensional piezoelectric 

translation stage and automatic feedback control moves the pipette up or down to 

keep the pipette current constant (the set point) while the sample is scanned in x and 

y directions. The 3D resolution is determined by the inner radius of the nanopipette. 

Thus, a pipette-sample separation, typically equal to the pipette's inner radius, is 

maintained during imaging (Figure 3.3d). 

  

Figure 3.3. (a) Schematic of the SICM process. The feedback loop allows to control 

the distance between the pipette tip and cell surface (b) Schematic of the hopping 

mode used in HPICM 

 

However the main limitation with conventional SICM was crashing of the pipette into 

‘suspended’ structures such as axons during scanning, as the automatic feedback 

was not able to maintain a constant pipette – sample distance. This led to image 

distortions when scanning these structures (Novak et al., 2009). To overcome this, 

hopping probe ion conductance microscopy (HPICM) was developed, which does 

A B 
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not use continuous feedback. The speed of adaptive HPICM generates a snapshot 

of axons, dendrites and boutons in complex live networks such as hippocampal 

culture, and is not affected by the relatively slow migration of cells that occur in this 

preparation. At each imaging point, the pipette approaches the sample from a 

starting position that is above any of the surface features. The reference current is 

measured while the pipette is far from the surface. The pipette then approaches until 

the current decreases by a predefined amount, usually 0.25–1%. The position of the 

z-dimension actuator when the current achieves this reduction is recorded as the 

height of the sample at this imaging point. The z-dimension actuator then withdraws 

the pipette to a position well above the surface and the sample is moved laterally to 

the next imaging point (Figure 3.3b). This method is capable of reproducing the 

three-dimensional topography of live cells in culture at nanoscale resolution (≤ 20 

nm) (Novak et al., 2009). 

 

In order to determine the resolution limits of HPICM, fixed specimens of the 

mechanosensitive stereocilia of the auditory hair cells in cultured organ of Corti 

explants were used, and HPICM images were compared with scanning electron 

microscope images. HPICM was able to resolve links between the stereocilia to a 

diameter of 16 nm. After subtraction of the platinum coat thickness, scanning 

electron micrograph images resolved the diameter of the same stereocilia links to 12 

nm., thus confirming agreement between the two imaging techniques (Novak et al., 

2009). 
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3.3.2 Integrating HPICM with other parts of the experimental setup 

	
  

 

Figure 3.3.1 The experimental rig. (a) Inside the Faraday cage (b) the stack (c) 

zoomed out image of rig 

 

Due to the unique way HPICM operates, a number of considerations were taken into 

account in order to integrate the method with existing electrophysiological and 
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conventional microscopy methods. There were three micromanipulators (Scientifica), 

two that directed separate headstages (Axon instruments) and one that directed the 

microscope objective. Having one headstage for soma recording and one headstage 

for HPICM would permit paired patch clamp recordings. This would be housed in a 

Faraday cage to electrically isolate the apparatus. All components within the cage 

were grounded. The cage rested on an air table (TMC) to isolate vibrations for 

steady imaging (Figure 3.3.1a). The headstages would be connected to an external 

amplifier (Multiclamp 700B). The HPICM sample scanner (Ionscope) was below in 

the stack and received input from the amplifier and communicated with Piezo 

controller. The oscilloscope (Tektronix) was used to view the ‘hopping’ produced by 

the HPICM scanner (Figure 3.3.1b). 

 

The recording chamber housed 18 mm. glass coverslips that were secured using a 

rubber O-ring to prevent leakage of the extracellular buffer. A silver/silver chloride 

ground pellet was used to complete the electrical circuit. The coverslip was perfused 

with fresh extracellular buffer during experiments via the in- and outflow (Figure 

3.3.2). The bottom plate of the chamber was magnetic and fitted securely onto a 

corresponding sized trough at the base of the Faraday cage.  
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Figure 3.3.2 The recording chamber 

 

With conventional bright field microscopy, light from a halogen source or LED is 

dispersed via a condenser onto the specimen, and then passes through an objective 

lens to a camera or to the experimenter’s eye. Objects in the light path because 

natural pigmentation or stains absorb light differentially, or because they are thick 

enough to absorb a significant amount of light despite being colourless. In an 

inverted microscope the light source and condenser are above the specimen stage 

pointing down and the objectives are below the stage pointing up. As shown in 

Figure 3.3a the scanning nanopipette is held vertically so that x and y dimensions 

can be locked. This meant that the scan head was mounted on an inverted 

microscope (IX71, Olympus). However the position where the condenser would be 

expected was occupied by the piezo translational stage (PI instruments) and 

mounted nanopipette (Harvard apparatus). Therefore an alternative light source 

arrangement for the microscope was required. Initially a single LED attached to the 

piezoelectric translation stage was trialled, but this limited the wide field illumination 
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needed for locating the pipette and choosing a suitable cell. Similarly an LED source 

suspended from the top of the Faraday cage had similar results (Figure 3.3.3a). The 

best illumination was provided by using a string of LED lights in series arranged in a 

circle around the bath chamber. In order to prevent shadows of the pipette tip being 

viewed in the bright field image created by the multiple light sources, one of the 

LEDs protruded beyond the others, acting as a dominant source (Figure 3.3.3b). 

This LED arrangement was supplied by a USB cable, which would need to be 

grounded when not in use to prevent noise during electrophysiological recording.  

 

Figure 3.3.3 (a) Previous positions trialled for light source within rig (b) Distribution of 

LEDs around bath chamber; green LED dominant 

 

As the scanning nanopipette had to be held vertically, it could not be connected 

directly to the headstage as it was already part of the piezoelectric translational 

stage. To overcome this a thin insulated wire was fashioned with pins on either end 

as a connector between the headstage and nanopipette. Importantly this did not 

change the impedance of the circuit.  The SICM software only functioned in a 32-bit 
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system, thus a way to simultaneously use it with the 64-bit software (LabView, 

QCapturePro, Multiclamp) was required. We installed a 32-bit virtual machine (VM 

Ware) to run the SICM software, which communicated with the Ionscope controller 

via a USB port, which did not retard either topographic or electrophysiological data 

acquisition. 

 

To integrate epifluorescence imaging in the set-up, blue LED illumination (and 

longpass dichroic mirror with 505nm cut-off wavelength) and green LED illumination 

(and longpass dichroic mirror with 560nm cut-off wavelength) were installed 

(OptoLED). The images were obtained using a high-sensitivity EM-CCD camera 

(Evolve). 

 

Previous experience from the laboratory indicated that constant perfusion of the 

neuronal culture once in the chamber achieved longer cell viability than with static 

medium. In addition the application and washout of drugs and toxins would require a 

perfusion system (Figure 3.3.1c). The perfusion system we set up worked by gravity 

with a pump (Easyload II) at it lowest point to recycle the solution. A perfusion rate of 

1ml per minute was adopted for bathing the cells in extracellular buffer. In order to 

estimate the time required for a drug to adequately perfuse the cells, the following 

control experiment was performed. After perfusing an empty coverslip with 

extracellular solution at the usual rate of 1ml/minute to reach a steady state, the 

perfusing fluid was switched to extracellular solution containing Alexa Fluor488 dye. 

A timer was started and the coverslip was viewed under blue LED illumination until 
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the fluorescence was detected and the timer was stopped. An average time of 90 

seconds was recorded and subsequent analysis used this time window. 

 

3.3.3 Recording solutions 

 

All recordings were conducted at ambient temperature (23°C–26°C) 12–19 days 

after plating. The standard extracellular solution used in all experiments contained 

125 mM NaCl, 2.5 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 30 mM glucose, and 25 mM 

HEPES (pH 7.4).  AMPA, NMDA, GABAA, and GABAB receptors were routinely 

blocked with 10 µM 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline- 2,3-dione, 

50 µM (2R)-amino-5-phosphonovaleric acid, 100 µM picrotoxin, and 1 µM CGP 

52432. APV was from Ascent. All other compounds were from Tocris.  

 

Active synapses were labelled in Section 4 with 20 mM (bath concentration) FM1-43 

(Invitrogen) or 200 mM SynaptoRed C1 (SRC1, Biotium) by incubation in the 

extracellular solution, with 90 mM NaCl replaced by 90 mM KCl for 90 s followed by 

a 10–15 min wash in the original solution.  

 

3.3.4 Patch clamp 
 
 

 
The use of filamented borosilicate glass was based on previous experience from our 

collaborators at the Korchev lab (Imperial College London). Initially a filament puller 
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was used to pull the pipettes. However this resulted in substantial variability in 

pipette resistance and taper. Resolving individual synaptic boutons and axons on 3D 

topographical images requires reproducibly high-resistance pipettes with a small 

inner tip diameter (∼100 nm; (Novak et al., 2009; Sánchez et al., 2008). To achieve 

this, a horizontal laser−based puller was used (Sutter P-2000). Furthermore, pipettes 

deteriorated over several days of storage, thus affecting the quality of HPICM 

images, increasing the likelihood of pipette blockage, and decreasing the success of 

bouton patching. Placing the pipettes in a desiccator to prevent the tips from being 

affected from moisture did not prevent the above complications from occurring. Thus 

nanopipettes were made each morning prior to experimenting.  

 

For high resolution scanning and cell−attached recordings (Section 4) pipettes 

pulled from borosilicate glass (OD 1 mm, ID 0.5 mm, Sutter Instruments) were used. 

The pipette resistance was in the range of ≈ 80–110 MΩ, corresponding to an 

estimated inner tip diameter of ≈ 90–125 nm.  The pipette resistance of widened 

pipettes used for whole-cell recordings in small synaptic boutons (described in detail 

in Section 4.2) was within the range 35 to 45 MΩ, corresponding to an inner tip 

diameter of ≈ 350–450 nm. For paired recordings (Section 7) the soma was patched 

under light microscopy using a 3–5 MΩ conventional patch pipette and the HPICM 

nanopipettes were the same as above.   

  

Cell−attached Ca2+ recordings (Section 4.3) were performed using a pipette solution 

that contained 90 mM BaCl2, 10 mM HEPES, 10 mM TEA-Cl, 3 mM 4-

aminopyridine, adjusted to pH 7.4 with TEA-OH and zeroed cell membrane potential 
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by switching the bath solution after obtaining a gigaseal to 120 mM KCl, 3 mM 

MgCl2, 5 mM EGTA, 11 mM glucose, and 10 mM HEPES (pH 7.4). Whole-bouton 

Na+ current recordings (Section 4.3) were performed using the standard 

extracellular solution without Ca2+ in the bath and a pipette solution containing 135 

mM CsMeSO4, 2 mM MgCl2, and 10 mM EGTA (pH 7.4 with CsOH). Whole-cell K+ 

current recordings (Figures 4H–4J) were performed with a Ca2+-free extracellular 

solution containing 1 mM tetrodotoxin and a pipette solution containing 135 mM 

KMeSO4, 10 mM HEPES, 10 mM Na-Phosphocreatine, 4 mM MgCl2, 4 mM 

Na2ATP, and 0.4 mM Na2GTP. Whole-bouton Ca2+ current recordings were 

performed in the standard extracellular solution (containing 2 mM CaCl2) 

supplemented with 1 mM tetrodotoxin. The pipette solution contained 145 mM 

CsMeSO4, 2 mM MgCl2, 2 mM Na2ATP, 0.3 mM Na2GTP, 10 mM HEPES, 10 mM 

EGTA, and 5 mM Na-creatine phosphate (pH 7.4 with CsOH). Confirmation that 

recorded Ca2+ currents were mediated by VGCCs in some experiments was 

demonstrated by adding 0.1 mM CdCl2 to the extracellular solution. In outside-out 

experiments, the extracellular solution was replaced by buffer containing 135 mM 

CsGluconate, 20 mM BaCl2, and 10 mM HEPES (pH 7.4 with CsOH).  

 

For paired soma/bouton recordings (Section 6.0 −7.0) the internal solution for soma 

pipette was 130 mM K gluconate, 10 mM KOH-Hepes, 1 mM KOH-EGTA, 10 mM 

KCl, 4 mM Mg-ATP, 0.5 mM Na-GTP (pH 7.35 with KOH). The nanopipette used for 

HPICM contained the same internal solution supplemented with 200 µM Alexa Fluor 

568 (Invitrogen).  DTx−K (20nM) was added to the extracellular solution to block 
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KV1.1 channels and UK-78282 (200 nM) was added to block Kv1.3 and Kv1.4 

channels. DTx-K and UK-78282 were from Alomone Labs. 

 

Fluorescence 

dye 

Ex/Em 

wavelength 

(nm) 

Stock 

conc. 

Final conc. Storage Supplier 

SynaptoRed 

C1 (SRC1) 

558/734 20mM 200µM −20°C Biotium, 

USA 

Alexa Fluor 

488 

490-525 20mM 200µM −20°C Thermo 

Fisher 

Scientific 

Alexa Fluor 

568 

578-603 20mM 200µM −20°C Thermo 

Fisher 

Scientific 

 

Table 3.3.6 Dyes for identifying presynaptic boutons 

	
  

 3.3.5 Data Acquisition and statistical analysis 

 

Single-channel currents (Section 4.3) were recorded under voltage-clamp, filtered at 

1 kHz and sampled at 20 kHz. Data acquisition and analysis were done using 

pCLAMP 9.2 (Molecular Devices). For whole-cell currents the membrane 
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capacitance was not actively compensated and the specific ion-channel currents free 

of capacitive transients were obtained using a P/N leak subtraction protocol 

implemented in the pCLAMP 9.2 and LabVIEW acquisition software. Action 

potentials (Section 6.0 – 7.0) were recorded in current-clamp mode and either 

elicited by directly injecting current into the bouton, or by injecting current into the 

soma and recording passively from the bouton, Recordings were filtered at 5 kHz, 

digitized at 10 kHz, and acquired and analysed off-line with custom LabVIEW 

(National Instruments) software. Cells where action potentials did not exceed 0 mV 

were discarded. The spike take-off point was estimated from the peak of the second 

time derivative of voltage, and spike half-width was measured at the half-way voltage 

between take-off and peak (discussed in greater detail in Section 5.0.5). Where 

several spikes were elicited, only the first was analyzed.  

 

Statistical analysis was performed using SigmaPlot (Systat Software) and Microsoft 

Excel.  
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 4.0 Imaging presynaptic boutons and recording 

 ion currents using HPICM 
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 4.0.1 Identifying active presynaptic boutons and obtaining a high 

 resolution topographic image with HPICM 

 

In order to identify active synapses in the complex network of hippocampal neuronal 

cultures, I labelled active synapses with the dye SynaptoRed C1. The coverslip was 

then transferred to the recording chamber of the rig and perfused with EC solution at 

a rate of 1ml/min. A suitable area rich in axons was chosen under light microscopy 

using a 60x objective.  Under blue LED illumination I could identify isolated bouton-

rich fields of interest, which fluoresced as red (Figure 4.1a). The pipette was lowered 

into the bath using the coarse manipulator. Pipette resistance was calculated with 

the 5mV seal test and the pipette tip potential was offset to zero. The pipette was 

then lowered to the level of the neurons using the fine manipulator. Once the pipette 

was 3000nm above the cell surface two images were taken, light transmitted and 

fluorescence, and these were co-registered using the SICM software. The area of 

interest was then scanned in nanoscale resolution using the HPICM method (Figure 

4.1b). The hop amplitude (i.e. prescan pipette – sample separation distance) can be 

controlled depending on the structure being scanned; I chose an amplitude of 

4000nm when scanning cell bodies and 2000nm when scanning axons and 

dendrites. Once the initial scan was completed, a higher resolution scan of the 

bouton of interest was then performed (Figure 4.1c). Height-coded topographical 

images (in which z coordinates are represented by shades of grey) were initially 

obtained (Figure 4.1c, e1, e2) and allowed direct identification of the exposed 

presynaptic boutons. These images could then be rendered to produce slope coded 

topographical images (Figure 4.1f1, f2) where the gray scale intensity of each pixel 
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was determined by calculating the local slope using the function sourceΦ

=arctan(dz/dx) on data from the height coded image, giving the visual appearance of 

illumination from the right. 

 

This approach also enabled us to estimate the morphological size of live synaptic 

varicosities resting on dendritic surfaces (Figure 4.1g, h – data from Pavel Novak). 

The volume of identified synaptic boutons (V = 0.14 ± 0.11μm3, mean ± S.D., n = 41) 

was in agreement with previous electron microscopy estimates (V = 0.12 ± 0.11μm3) 

(Schikorski and Stevens, 2001). 

 

4.1 Properties of presynaptic boutons 

 

Once SICM maps out the cell topography, the same pipette can be returned 

precisely to any point on the surface to obtain a cell-attached recording, which we 

have termed ‘smart patch-clamp’ (Novak et al., 2013). One important factor to 

consider is that although epifluorescence imaging may identify an active synapse, it 

may not be amenable to patch-clamp and so must be co-registered with SICM 

topography. This is illustrated in Figure panels 4.1 d1 and d2 as both boutons 

demonstrated fluorescence; however the bouton in 4.1 e1, f1 is exposed to the 

pipette and amenable to patch-clamp, but the bouton in 4.1 e2, f2 is obstructed by an 

overlying dendrite and not amenable to patch-clamp.  
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Figure 4.1. HPICM imaging of synaptic boutons. (a) Merged image of neuronal 

network in culture. Grey – transmitted light image. Red  – SynaptoRedC1 (SRC1) 

labelled synaptic boutons. (b) SICM image of boxed area of interest in (a). Arrow 

depicts bouton. (c) SICM image of the bouton magnified (my data) (d1,d2) FM dye 

fluorescence identifying active boutons. Height coded topography of amenable 

bouton (e1) and obstructed bouton by overlying dendrite (e2) Scale bars all 1 μm. 

(f1,f2) Slope coded topography of e1 and e2 (g) Schematic illustrating estimate for 

presynaptic bouton size and geometry. Volume was estimated by direct integration 

of the planar scans over x, y and z. Due to variability in synaptic organisation, SICM 
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may either overestimate (bottom left) or underestimate (bottom right) the true 

volume. (h) Distributions of the radius r = 0.63 ± 0.18μm (left), height h = 0.38 ± 0.14

μm (middle) and volume V = 0.135 ± 0.11μm3 (right) measured for 41 boutons (data 

from Novak, Gorelik and Korchev). 

 

4.2 Controlled widening of scanning nanopipette to allow whole-cell 

patch clamp recording 

 

A major limitation of smart patch clamp is its restriction to the exposed membrane 

directly accessible to the vertically oriented nanopipette. Ion channels in and near 

the active zone (AZ) are hidden from the patch pipette; meaning currents mediated 

by these channels cannot be recorded. In order to test the hypotheses stated in 

Section 3, detailed analysis of the AP waveform at the bouton would be required, 

and thus far only cell-attached recording (where AP morphology can only be 

inferred) of boutons was possible. In principle both above scenarios could be 

resolved by rupturing the membrane patch of the terminal and enter the whole-cell 

patch-clamp configuration. Resolving individual synaptic boutons and axons on 3D 

topographical images, however, requires high-resistance pipettes with a small inner 

tip diameter as explained above. Therefore, in practice, we could not break the 

presynaptic cell membrane and obtain whole-cell patch-clamp recordings when 

using the original scanning nanopipettes.  

 

To overcome this limitation, the Korchev group, Imperial College London, optimized 

a method to widen the ultra-fine pipette tip after the completion of the high-resolution 
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3D topography scan by breaking it against the glass coverslip (Böhle and Benndorf, 

1994; Novak et al., 2013), using programmable feedback control of the HPICM 

scanner controller. The nanopipette tip-breaking procedure consisted of three steps 

(Figure 4.2a). First, the pipette was navigated to a previously identified area of the 

coverslip free of any processes. Second, the fall rate (the rate at which the pipette 

repeatedly approaches the surface during “hopping”) was increased from the 

standby rate (typically 60 nm/ms) by approximately one order of magnitude (to ∼500 

nm/ms). At this fall rate, the noncontact mode of HPICM could no longer be 

preserved because of the inherent latency of the z axis piezo feedback control. As a 

result, the pipette repeatedly crashed into the coverslip, breaking its tip and 

increasing its diameter because of the conical shape of the pipette. During initial 

trials of the procedure only the fall rate could be manipulated, leading to the positive 

feedback of the increased fall rate overcoming the noncontact mode in most cases 

and resulting in broken pipette tips. However with our collaboration the chopping 

procedure was further refined to terminate automatically once the baseline current 

increased by a pre-determined percentage. This, together with the fall rate, enabled 

much more control in pipette tip breaking and resulted in reproducible stepwise 

decreases of the pipette resistance (red arrows in Figure 4.2b). This stepwise 

breaking of the pipette also ensured that the tip itself was smooth, thereby increasing 

the likelihood of a good seal when attempting whole-cell configuration. To prove this 

was the case electron micrographs of the pipette tip were taken before and after 

pipette breaking (Figure 4.2c,d). The breaking was automatically stopped by 

returning the fall rate to baseline (60 nm/ms) once the pipette current reached a 

desired level. This process could be repeated to fine-tune the desired pipette tip 
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diameter in steps as small as 10% by varying the stop criteria for current increase, 

duration, and “breaking” fall rate (Figure 4.2e).  

 

 

 

Figure 4.2 (a) Schematic illustrating the pipette widening procedure (b) Traces of 

pipette z position and pipette current during the breaking procedure. Every time a 

small fragment of the pipette tip is chopped off, the pipette current increases (red 

arrows). The holding pipette voltage was kept constant at 200 mV. (c and d) 

A 

B C 
 

E 

D 
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Scanning electron microscopy images of two representative nanopipettes pulled 

from the same capillary, one of which was widened using the controlled breaking 

procedure. Side views of the intact pipette (c) and widened pipette (d) at low (top) 

and high (bottom) magnification. Scale bars represent 1 µm in top of (c), 100 nm in 

bottom of (c), 1 µm in top of (d), and 200 nm in bottom of (d). (e) Relationship 

between pipette resistance and inner tip diameter for intact pipettes (black) and 

widened pipettes (red) (Data from Pavel Novak).  

 

4.2.1 Attaining whole cell configuration of a presynaptic bouton using 

SICM 

 

The method was identical to Section 4.0 up to the acquisition of a high resolution 

scan of the bouton. The pipette was filled with KGluc intracellular solution (Table 

3.3.4) and the morphological fluorescent tracer AlexaFluor 488 (50 µM). Once a high 

resolution image of the bouton was acquired, the pipette was directed to any empty 

area of coverslip. Crucially as the broken pipette was held vertically at all times, the x 

and y co-ordinates of the pipette did not alter, meaning that the pipette could be 

navigated exactly to the targeted bouton to achieve a Gigaseal. The membrane was 

clamped to a holding potential of -70mV, and once a Gigaseal was established the 

fast and slow capacitance transients were cancelled via the amplifier interface 

(Multiclamp Commander). The presynaptic membrane was ruptured by applied 

suction to obtain a whole-bouton configuration. The configuration is recognised by 

the characteristic capacitance transients seen on the passive current trace (Figure 

4.2.1a). The AlexaFluor 488 in the pipette solution allowed us to verify fluorescence 
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in the patched bouton and adjacent axon and boutons (Figure 4.2.1b,c).  This 

process also gave us an insight into the morphology of axons in neuronal culture 

(Figure 4.2.1d). 

 

Figure 4.2.1 Whole-bouton recording (a) A typical passive current response to a 

10mV square voltage command (top) in bouton-attached configuration (middle) and 

then whole-bouton configuration (bottom). (b) Overlay of SRC1−stained active 

synaptic terminals (red puncta) with transmitted-light image of neuronal culture. 

White arrow marks the bouton where whole-cell was subsequently obtained. (c) The 

same area as in (a) showing labelling with AlexaFluor488 (green channel) of the 

patched bouton and adjacent axon. (d) An en passant bouton and associated axon 

loaded with AlexaFluor488; scale bar 10 µm  
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4.3  Na+, K+, and Ca2+ whole cell current recordings in presynaptic  
  boutons 

 

  4.3.1 Introduction 

 

As previously discussed, action potentials are generated near the action initial 

segment, propagate down the axon and reach the pre-synaptic terminals where they 

evoke neurotransmitter release (Hille, 2001; Katz and Miledi, 1967). However the 

mode of this propagation and how it couples to neurotransmitter release is unclear. 

Previous experiments at the amphibian neuromuscular junction demonstrate a 

passive process of AP invasion into pre-synaptic terminals (Dreyer and Penner, 

1987; Lindgren and Moore, 1989). However, action potentials propagate with high 

reliability in axons bearing en-passant boutons (Cox et al., 2000; Engel and Jonas, 

2005).  Moreover, outside-out patches of central synapses, hippocampal mossy fibre 

boutons, have shown a high presynaptic Na+ channel density of ~ 2000 channels per 

bouton, with rapid inactivation onset and recovery kinetics. In addition, computational 

analysis suggests that Na+ channels amplify the pre-synaptic AP to increase Ca2+ 

inflow as opposed to axonal Na+ channels which determine the speed of AP 

propagation (Engel and Jonas, 2005). However MFBs are large and highly 

specialised synapses, not representative of the majority of pre-synaptic terminals.  

 

VGCCs form variable sized clusters in the active zone of the presynaptic terminal 

(Holderith et al., 2012; Nakamura et al., 2015; Sheng et al., 2012) corresponding 

with their central role in exocytosis enabling reliable coupling of Ca2+ entry and 



	
   118	
  

neurotransmitter release. Direct recordings from giant terminals indicate that evoked 

exocytosis is dependent on Ca2+ entry near release sites in the active zone (Sheng 

et al., 2012). However the sensitivity of neurotransmitter release in central synapses 

to intracellular Ca2+ buffering suggests that a proportion of Ca2+ sources are distant 

to the Ca2+ sensors triggering exocytosis (Eggermann et al., 2012; Ohana and 

Sakmann, 1998). If this were true then the relative contribution of these sources to 

Ca2+ entry in the micrometre sized boutons we are studying would be significant, 

even if they occurred in a low surface density. These ‘ectopic’ VGCCs would have a 

prominent role in AP-evoked release of vesicles and short term synaptic plasticity 

(Nadkarni et al., 2012).  

 

4.3.2 Main aims 

 

• Verify that sodium and potassium currents can be recorded from small 

presynaptic boutons 

• Identify the site of calcium channels in presynaptic boutons  

 

4.3.3 Results 

  Na+ currents 

 

Current traces were recorded by voltage-clamping at -80mV and then providing a 

50ms prepulse to -120mV followed by voltage commands ranging from -70mV to + 

70mV in 10mV 5 ms steps (n=7) as previously used by Engel and Jonas, (Engel and 

Jonas, 2005). In order to isolate the Na+ current of the solitary bouton from the rest 
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of the axon, I performed an outside-out patch clamp recording (achieved by slowly 

withdrawing the pipette from the bouton once whole-cell was completed, n=3). As 

expected that had a reduced peak amplitude (mean and SEM of -30.5 ± 0.65pA 

compared with -74.5±7.6pA) (Figure 4.3c).  

  

Figure 4.3. Whole-bouton sodium traces (a) Example of pre-synaptic whole-

bouton Na+ recording with inset of pulse protocol (b) associated IV curve (c) 

Example of outside-out Na+ recording (n=3) 

 

 K+ currents 

 

Current traces were recorded by voltage-clamping at -80mV and then providing a 

voltage commands ranging from -70mV to + 70mV in 10mV 400 ms steps (n=5) 

(Figure 4.3.1 a,b).  

 

20 10 

2D Graph 8

Time (ms)

0 10 20 30 40

C
u

rr
e

n
t 
(p

A
)

-100

-80

-60

-40

-20

0

20

40

Col 8 vs -60 
Col 8 vs -50 
Col 8 vs -40 
Col 8 vs -30 
Col 8 vs -20 
Col 8 vs -10 
Col 8 vs 0 
Col 8 vs 10 
Col 8 vs 20 
Col 8 vs 30 
Col 8 vs 40 
Col 8 vs 50 
Col 8 vs 60 
Col 8 vs 60 
Col 8 vs 70 

−80 

−60 

−40 

−20 

0 

5 ms 

Time (ms)
0 10 20 30 40

C
ur

re
nt

 (p
A

)

-40

-30

-20

-10

0

10

20

−40 

−30 

−20 

−10 

0 

A B C 

−40 

−20 

0 
60 40 20 −20 −40 −60 

Voltage (mV) 

C
ur

re
nt

 (
pA

) 

V
ol

ta
ge

 (
m

V
) 

V
ol

ta
ge

 (
m

V
) 

I M
 [p

A
]  

aa
a 

   
   

   
   

I M
 [p

A
]  

aa
a 

   
   

   
   



	
   120	
  

  
 
   
Figure 4.3.1 (a) Example of pre-synaptic whole-bouton potassium trace with (b) 

associated IV curve (n=5) (Data from Pavel Novak) 

 

 Ca2+ recordings 

 

To assess properties of VGCCs in small presynaptic boutons, we first attempted 

HPICM-targeted cell-attached recordings from the exposed bouton surface. Our 

collaborators (Korchev, Gorelik and Novak) performed 44 bouton cell-attached 

patches with unmodified scanning nanopipettes and 21 patches with a broken 

(~300nm) pipette at different parts of the exposed bouton (n=65). In these recording 

no evidence of VGCC activity was found (Figure 4.3.2 a).  

 

 

In order to access the whole presynaptic membrane including the active zone a 

whole-cell configuration was required. Once a whole-cell configuration was attained, 

the perfusion was switched to also include the potassium channel blocker 

tetraethylammonium chloride (20mM). Currents consistent with VGCC activity were 

A B 
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obtained in whole cell mode (Figure 4.3.2 b). To verify that these were mediated by 

VGCCs, the broad spectrum blocker cadmium was then applied after one minute of 

recording. This uniformly abolished the current (n=5) (Figure 4.3.2 c). To further 

dissect the presynaptic calcium current, ω-Agatoxin, a specific blocker of the P/Q 

calcium channel subtype, was added in a single experiment (Figure 4.3.2 e). This 

decreased the calcium current peak amplitude by 48%.  

 

A possible explanation for the discrepancy between whole cell recordings, which 

revealed a robust calcium current, and cell-attached recordings that failed to reveal 

single channel activity, is that the VGCCs are confined to the active zone, which is 

inaccessible to the pipette used for cell-attached recordings. Consistent with this 

hypothesis, in a separate experiment, whole-bouton Ca2+ currents were abolished 

when proceeding from whole-cell to outside-out configuration (Figure 4.3.2 f).  
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Fig 4.3.2 Recording VGCC activity in presynaptic boutons (a) Cell-attached 

recordings showing no VGCC activity on the exposed surface of the presynaptic 

bouton (b) Example of pre-synaptic whole-bouton Ca2+ current (c) Example of a 

whole-bouton Ca2+ recording before (black) and after (red) cadmium application 

(n=6) (d) associated IV curve for Ca2+ current. (e) Whole-bouton Ca2+ before (black) 

and after (red) the application of ω -agatoxin (f) Absence of VGCC recording in 

outside-out patch (Novak et al., 2013). 
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4.3.4 Conclusions  

 

Using HPICM in addition with the novel pipette ‘breaking’ technique all four 

configurations of patch-clamp: cell-attached, inside-out, whole-cell and outside-out 

are possible, giving unprecedented information into the presynaptic physiology of 

small synapses. In this experiment, whole-bouton sodium currents and potassium 

currents were recorded and demonstrated the typical kinetics seen in larger central 

synapses (Engel and Jonas, 2005; Geiger and Jonas, 2000).  

 

No VGCC activity was detected with the pipette cell-attached to the exposed surface 

of the presynaptic bouton. To obtain confidence estimates for channel density 

Monte-Carlo simulations were performed. With the assumption that channels are 

randomly found on the exposed cell surface, a probability of finding no channels can 

be derived based on the membrane area sampled (in this case the nanopipette tip 

area). By running the simulations numerous times for randomly selected channel 

densities it was estimated that the density of VGCCs on the exposed surface of 

axonal boutons was less than six channels per bouton (99% confidence interval) 

(Novak et al., 2013). However VGCC activity was found when the whole-bouton 

configuration was obtained.  Although only seen in one experiment, the reduction of 

whole-bouton calcium current peak amplitude by 48% in the presence of ω -agatoxin 

is anecdotal evidence that about half the contribution to presynaptic calcium current 

in small boutons is supplied by P/Q channels, which is in agreement with previous 

work in larger cortical synapses (Ermolyuk et al., 2012; Holderith et al., 2012; 

Tottene et al., 2002). This activity was further abolished when the outside-out 
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configuration was achieved. The reason for this abolition was most likely because 

the active zone remained firmly attached to the post-synaptic density and therefore 

inaccessible to the outside-out configuration. This data strongly suggests that the 

vast majority of VGCC in central synapses are located near the active zone and are 

excluded from the surface membrane of the bouton.  

 

A technical limitation of using high resistance pipettes is the quality of the voltage 

clamp. We estimated an upper limit for the access resistance (RA = 156.1 ± 38.2 MΩ, 

mean ± SD, n = 10) by fitting the capacitive current transients generated by step 

command voltages using a sum of two exponential functions (Novak et al., 2013).. 

Thus the high series resistance (RS) will have two detrimental effects. Firstly, it will 

introduce a voltage error or “IR” drop causing the cell membrane voltage (VM) to 

deviate from the desired clamping voltage. Secondly, it will lower the temporal 

resolution of the voltage clamp. Temporal resolution is approximated by the time 

constant, a product of RS and cell capacitance (Section 1.2.2), and so a high RS will 

reduce the temporal resolution. The average time constants calculated from the 

capacitive current transients were t1 = 0.074±0.024 ms and t2 =1.3±0.5 ms (mean ± 

SD, n = 10), which corresponded to capacitances C1 = 0.621 ± 0.226 pF, C2 = 0.962 

± 0.655 pF. These values are significantly higher than would be expected from a 

single bouton, and so are likely to reflect the compound capacitances of the axonal 

arbor and possibly the cell soma.  

 

 Another limitation is that because the length constant of axons is of the order of 
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hundreds of microns, the currents obtained could have arisen from distant sources. 

An indication for this is the slow kinetics demonstrated in the whole-bouton Na+ 

current (Figure 4.3). One would expect that the current would reverse i.e. pass 0 pA, 

at around +60 mV, which does not occur with our recordings. This has implications 

when localising calcium channels, as again the Ca2+ current could have arisen from 

several boutons. One way to overcome this would be to anatomically isolate the 

bouton by severing it from the rest of the axon once identified, for example with a 

laser. This bouton could then be patched onto to provide single bouton 

electrophysiological information. 
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5.0 Recording of presynaptic action potentials 
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5.0.1 AP recording in rat hippocampal cultures - Introduction 

 

As discussed earlier the kinetics and more specifically the waveform of the action 

potential (AP) received at the pre-synaptic terminal, determines how calcium 

channels open and how calcium influx triggers exocytosis of neurotransmitter 

vesicles. It has been suggested that the AP waveform can be modulated depending 

on the geometry of axons and the activation state of voltage-gated ion channels 

(Debanne, 2004). Furthermore, broadened APs more efficiently activate calcium 

channels at presynaptic terminals and facilitate synaptic transmission to postsynaptic 

neurons (Awatramani et al., 2005a; Geiger and Jonas, 2000; Sasaki et al., 2011). To 

directly investigate the mechanisms underlying presynaptic AP waveform, we used 

HPICM to identify small intact boutons in rat and then mouse hippocampal neuronal 

cultures for patch clamp. 

 

5.0.2 Main aims 

 

To record an action potential waveform from a pre-synaptic bouton 

 

5.0.3 Method 

 

Once whole-cell configuration was achieved, the bouton was then current-clamped 

at 0 pA., with appropriate ‘bridge balancing’ and capacitance neutralisation 
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performed. A current pulse of 50pA was delivered over 10ms to elicit an action 

potential. Briefer current pulses (1ms, 2ms) did not elicit an action potential even up 

to currents of 800pA. Longer pulses (up to 100ms) also produced only a single 

action potential. 

 

 5.0.4 Results 

 

In order to compare action potential waveform between cell soma and presynaptic 

bouton, action potentials were elicited from both in separate cells. Table 5.0.4 

describes the results.  

 

Table 5.0.4 AP waveform comparison between spikes elicited at bouton and soma in 

rat hippocampal cultures 

Amplitude*
soma*(mV)*

AP*half4
width*
soma*(ms)*

Amplitude*
bouton*
(mV)*

AP*half4
width*
bouton*
(ms)*

67.4% 1.04% 62% 0.91%

SEM% 6.2% 0.21% 4.9% 0.19%

n% 6% 5%
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5.0.5 Conclusions  

 

To our knowledge this is the first demonstration that action potentials can be elicited 

by current injection into a submicrometer sized presynaptic bouton. This argues that, 

despite the disruption to the cell membrane caused by the SICM patch pipette, there 

were still ample Na+ channels present to generate action potentials. The technique 

could now be translated to the EA1 disease models.   

 

In terms of technical considerations, a ‘Bridge Balance’ needed to be performed to 

accurately measure membrane potential deflections in response to current injection. 

This is because the current injected down the micropipette encounters both a series 

resistance between the micropipette and the cell, and a resistance between the 

intracellular solution and the bath. The bridge balance is used to compensate for the 

series resistance, providing a more accurate measure of the actual trans-membrane 

potential when a current is injected. Another consideration is microelectrode 

capacitance. The capacitance at the input of the headstage amplifier is due to the 

capacitance of the amplifier itself (Cin1) and that of the microelectrode and its 

connecting lead (Cin2). This capacitance in addition to microelectrode resistance acts 

as a low-pass filter for signals recorded at the tip of the electrode. Ideally 

microelectrodes with the lowest possible resistance would be used to minimise the 

contribution to microelectrode capacitance. However as previously discussed the 

pipette resistance post ‘breaking procedure’ (see Section 4.2) is around 30MΩ, an 

order of magnitude greater than usual patch pipettes. Thus any AP waveforms 



	
   130	
  

recorded using this method may be distorted by the low-pass filter created, and 

affect measurement of AP width and amplitude. In addition if current pulses were 

used to elicit AP, the Cin2 would act as a capacitance sink, where the injected current 

would act to charge the microelectrode tip in preference to the bouton membrane. As 

using a relatively high resistance pipette is necessary for scanning, a method for 

electrically reducing the effective magnitude of microelectrode capacitance has been 

incorporated by the Multiclamp system. Termed ‘capacitance neutralisation’, the 

technique passes a current exactly equal to the current that passes through Cin2 to 

the ground. Control experiments were required beforehand. For a series of boutons, 

the whole-cell configuration was obtained and then the level of neutralisation was 

steadily increased from 0pF until oscillation occurred and the clamp was lost.  It was 

found that 7pF was reliably the highest level of neutralisation that could be obtained 

before oscillation occurred, so this level was chosen for all subsequent experiments. 

Despite this incomplete capacitance neutralisation remained a possibility, and 

therefore filtering of AP signals recorded. 

 

A number of different pulse protocols were attempted to elicit APs. Initially 300pA 

pulses of 1ms duration were used as described by Geiger in driving APs in mossy 

fibre boutons in hippocampal slices (Geiger and Jonas, 2000) but these did not elicit 

APs in submicrometer sized boutons. By elongating the pulse to 10ms, action 

potentials were faithfully evoked in these boutons, with 50pA being the minimum 

current needed.  Only single APs were elicited using this protocol. Increasing the 

pulse current to 80pA, 100pA, or 150pA did not alter the AP amplitude or half width.  
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The spike take-off point was estimated from the peak of the 2nd time-derivative of 

voltage. Amplitude was calculated from the take-off point to the peak and spike half-

width was measured at the halfway voltage between take-off and peak. It appeared 

that APs elicited at the soma had a larger amplitude and larger half-width than those 

elicited at the bouton. From these experiments I could devise criteria on AP 

waveform that I would accept in further experiments. Firstly that the resting 

membrane potential should not be less than -60mV when in current clamp and held 

at 0pA. Secondly the AP must pass 0mV. Thirdly, that the half-width of the AP could 

be used to characterise spike shape. If the half-width exceeded 2ms the recording 

was discarded, as this usually represented an unhealthy bouton. 

 

5.1 AP recording directly from pre-synaptic boutons in EA1 models 

 

In order to test the role of KV1.1 in presynaptic action potential morphology in 

hippocampal pyramidal cells, both a pharmacological blocker of KV1.1 called 

Dendrotoxin-K (Section 1.6) and genetic deletion models including a knock-out 

mouse (Kcna1a-/-) (Smart et al., 1998) and a knock-in mouse harbouring an EA1 

mutation (Kcna1aV408A/+) (Herson et al., 2003) were used. Although it has been 

shown in mossy fibre boutons that KV1 channels contribute to activity-dependent 

spike broadening, more recent work on KV3 and BKCa channels have argued the 

importance of KV1.1 for this particular role.  Thus using HPICM to directly record 

presynaptic action potentials, we can investigate whether KV1.1 contributes to AP 

shape. AP broadening has recently been demonstrated in cerebellar basket cell 

terminals from Kcna1aV408A/+ mice (Begum et al., 2016), but it is not known whether 
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this holds for forebrain terminals. Although one would expect the Kcna1 null mice to 

have a loss of function effect, it is known from heterologous expression studies that 

KV1.1 co-assembles with other members of the KV1 family and with beta subunits, 

making it difficult to predict the consequences of a given mutation (Imbrici et al., 

2006; Maylie et al., 2002). The Kcna1aV408A/+ model bypasses this limitation of 

heterologous expression. 

 

 5.1.1 Main aims 

 

1. To determine whether the AP half width differs between Kcna1a-/- mice and their 

wild type littermates 

2. To determine wither the AP half width differs between Kcna1aV408A/+ mice and their 

wild type littermates 

3. To ask whether blocking KV1.1 channels with DTx-K prolongs action potential half 

width in wild type, Kcna1a-/- or Kcna1aV408A/+ boutons 

  

 5.1.2 Method 

 

Experiments on hippocampal cultures from Kcna1a-/- and their wild type littermates 

were performed on the same day in order to avoid confounding effects of differences 

in developmental stage. This was also the case for Kcna1aV408A/+ and their wild type 
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littermates. Active synapses were identified and a high resolution HPICM image was 

acquired using the scanning nanopipette (Section 4.0). The desired bouton was 

subsequently patched in whole cell mode and action potentials elicited via the 

scanning nanopiette (Section 4.2.1). The perfusing fluid was then switched from 

extracellular solution to extracellular solution plus 20nM DTx- K. Bovine serum 

albumin (BSA) was used to line the tubing as previous experience with DTx-K was 

that it avidly adhered to tubing meaning little reached the neuronal culture.  

 

 5.1.3 Results 

 

The half width of both the knockout and the EA1 knockin was larger than their wild 

type littermates (Figure 5.1.4). In the Kcna1a-/- mice the mean action potential half 

width (t/2) was 1.42 ± 0.12ms (mean ± s.e.m; n = 9) and in wild type littermates the 

mean t/2 was 0.89 ± 0.06ms (n = 13), a difference of 0.53ms or 59% (p=0.002 with 

unpaired t test). In the Kcna1aV408A/+ mice the mean t/2 was 1.04 ± 0.1ms (n = 12) 

and in wild type littermates the mean t/2 was 0.83 ± 0.07ms (n = 16), a difference of 

0.21ms or 25% (p=0.02, unpaired t test). The AP amplitude was not significantly 

different between genotypes.  

 

In all wild-type littermates, application of DTx-K increased the mean t/2 from 1.06 ± 

0.09ms to 1.19 ± 0.08ms, an increase of 18% (Figure 5.1.3a) (p<0.001 with paired t 

test; n = 23), In the Kcna1a-/- mice application of DTx-K caused a non-significant 2% 

increase in the mean t/2 from 1.39 ± 0.14ms to 1.42 ± 0.14ms (Figure 5.1.3b) (p = 
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0.09; n = 7). In the Kcna1aV408A/+ mice application of DTx-K again led to a non-

significant 2% increase in the t/2 from 1.1 ± 0.07ms to 1.12 ± 0.07ms  (Figure 5.1.3c 

(p = 0.09; n = 8). 

 
Fig. S4. Effect of DTx-K on spikes elicited at the bouton, without simultaneous somatic recordings. (A) Recordings from wild-type neurons. (Bottom Left)
Sample traces before and after 20 nM DTx-K application. Right, presynaptic spike widths in 24 neurons before and after DTx-K perfusion, showing 18 ± 3%
broadening (n = 23, P < 0.001, paired t test). (Top Left) Schematic showing current injection into the recoded bouton. (B) Recordings from Kcna1−/− neurons.
(Left) Sample traces from one neuron before and after DTx-K application. (Right) DTx-K failed to broaden bouton spike width in Kcna1−/− neurons (2 ± 1%, n =
7; P = 0.09, paired t test). (C) Recordings from Kcna1V408A/+ neurons. (Left) Sample traces before and after DTx-K. (Right) DTx-K had no effect on bouton spike
width in Kcna1V408A/+ neurons (2 ± 1%, n = 8; P = 0.09). (Scale bar in A applies to B and C: 40 mV/2 ms.)

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 3 of 7

A 

C 

B 
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Figure 5.1.3. Effect of DTx-K on spikes elicited at the bouton. (A) Recordings 

from wild type neurons. Left, sample traces before and after 20nM DTx-K 

application. Right, presynaptic spike widths before and after DTx-K perfusion, 

showing 18 ± 3 % broadening (n = 23). Insert top left, schematics illustrating 

experimental paradigm with direct current injection into the recoded bouton. (B) 

Recordings from Kcna1-/- neurons. Left, sample traces from one neuron before and 

after DTx-K application. Right, DTx-K failed to broaden bouton spike width in 

Kcna1−/− neurons (n = 7). (C) Recordings from Kcna1V408A/+ neurons. Left, sample 

traces before and after DTx-K. Right, DTx-K had no effect on bouton spike width in 

Kcna1V408A/+ neurons (n = 8). Scale bar in (A) applies to (B) and (C): 40 mV / 2 

ms.  
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Figure 5.1.4 Action potentials recorded directly from presynaptic boutons of 

Kcna1aV408A/+ and Kcna1−/− neurons were broader than in wild type neurons from the 

same mouse strains (unpaired t-test). 

 

 5.1.4 Conclusions  

 

The AP half width in both EA1 knockout and knock-in were larger than in the wild 

type. This argues that KV1.1 contributes to the repolarisation phase of the AP. This is 

an interesting finding, as KV1.1 is not as strongly expressed in the forebrain as in the 

cerebellum (Begum et al., 2016; Smart et al., 1998). Although KV1.1 is removed in 

the knockout, it is substituted by other KV subunits such as Kv1.2 or KV1.4. The 

results for the knock-in are interesting given that the mutation has not been shown to 

exert a dominant negative effect in heterologous studies and when expressed in 

Xenopus oocytes the V408A mutation has relatively subtle effect on current density, 

voltage threshold, activation kinetics and heterotetramerization (Adelman et al., 

1995; Zerr et al., 1998). It is difficult to explain why the difference in Kcna1a-/- versus 

wild type is greater than Kcna1aV408A/+ versus wild type, although small sample size 

(n = 9) may have contributed to this.  

 

Dendrotoxin-K (Alamone labs) is a selective KV1.1 blocker derived from Dendroaspis 

polylepis snake venom. The finding of DTx-K increasing wild type presynaptic t/2 by 

18% is in agreement with other work on KV1 in cerebellar basket cells, another 

region where KV1.1 channels are richly represented (Begum et al., 2016). This 

increase is comparable to the 22% difference in t/2 seen between wild type and 
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Kcna1V408A/+. The effect of DTx-K was abolished with either deletion of Kcna1 or the 

heterozygous EA1 mutation.  

 

Recording directly from the bouton has provided novel information about AP 

waveform and the role of KV1.1 in small presynaptic terminals. However, a potential 

limitation of the technique is that it relied heavily on bridge balancing, and if the 

estimate of series resistance was incorrect, this could have distorted the recorded 

AP waveform. During analysis, defining the take-off point was also difficult because 

the initial depolarizing phase resulting from current injection was not always clearly 

demarcated from the regenerative depolarization at the spike onset.  

 

In order to overcome these limitations the technique needed adapting to allow 

simultaneous recording from cell soma and bouton. Eliciting spikes at the soma 

whilst recording passively from boutons, would obviate any potential problems of 

improperly bridge balancing the bouton pipette. Furthermore, without an immediate 

voltage transient arising from local current injection may facilitate analysis of the 

spike shape. In addition other fundamental questions about AP transmission could 

be answered, such as  

 Is there a difference in AP amplitude between cell soma and bouton? 

What factors affect how APs propagate along the axon when elicited at the soma? 

Can we interpret the location of the spike initiation site from the data? 
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 6.0 Simultaneous somatic and presynaptic 

 bouton recordings in Kv1.1 mutant neurons 
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 6.0.1 Method 

 

In order to further investigate the presynaptic action potential waveform the above 

method had to be developed further. A conventional patch pipette for somatic 

recording (Ps) was identified using the larger 10x objective and lowered until it was 

near the culture surface. A putative pyramidal cell was chosen dependent on its 

morphology: large cell body (5 – 10 µm) with at least two dendritic arbours 

emanating from it. Then the objective was switched to 60x to obtain a whole cell 

patch clamp recording from the soma under light microscopy. An average access 

resistance of 35 MΩ (n = 53) was calculated (Figure 6.0.1a) 

 

Once whole cell configuration of the cell soma was achieved I would wait for 5 

minutes to allow the cell to be slowly dialysed with the tracer. After this period, I 

viewed the cell under blue LED illumination to find an associated axon that had been 

filled, which I could follow and locate a proximal bouton (Figure 6.0.1b). The 

transmitted light image and fluorescent image were then merged using Image J 

(Figure 6.0.1c), and imported into the SICM software. The chosen bouton was then 

scanned with the nanopipette (Pb) at high resolution using HPICM. The bouton was 

patched and whole cell configuration was attained (Section 4.2.1).  

 

APs were elicited with a 200pA depolarizing somatic current pulse lasting 200ms. 

and simultaneously recorded at the bouton (Figure 6.0.3c). Only the first spike was 



	
   140	
  

used for subsequent analysis. This experiment was performed in wild type neurons 

at first. 

 

 6.0.2 Results 

 

As expected, finding the AP threshold was more straightforward in post-hoc analysis 

using the dual patch method. This is illustrated by the irregular dV/dt versus voltage 

plots for spikes directly elicited and recorded at the bouton (Figure 6.0.1d) compared 

with those elicited at the soma (Figure 6.0.1f) and recorded simultaneously at the 

bouton (Figure 6.0.1e). The dual patch technique also provided a direct comparison 

between somatic and bouton spikes, information which has not been recorded 

before in small presynaptic terminals. The amplitude for soma and bouton spikes in 

wild type neurons were similar (Figure 6.0.1g). Interestingly the resting membrane 

potential (when I = 0) had a trend of being depolarised at the bouton compared to 

the soma, but this did not reach significance; n = 22 (Figure 6.0.1h). The access 

resistance as expected was larger at the bouton (~350MΩ) compared with soma 

(~35MΩ) but was comparable to previous bouton-only recordings.  
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Figure 6.0.1 (A) Transmitted light image of patched cell soma (right) and bouton 

pipette (left); scale bar 10 µm. (B) Epifluorescence image under blue LED 

illumination showing filled axon and selected bouton (arrow) (C) Enlarged co-

registered transmitted light (green) and epifluorescence image (red) identifying 

bouton; scale bar 5 µm. (D) dV/dt versus voltage plot for bouton only recording (E) 
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dV/dt versus voltage plot for bouton in dual patch (F) dV/dt versus voltage plot for 

soma in dual patch (G) Spike amplitude comparing wild type soma and bouton (H) 

Resting membrane potential of soma versus bouton (I) Adjusted composite 

transmitted light and fluorescence image showing flaring (dashed line) 

 

 6.0.3 Conclusions 

 

Simultaneous patch clamp recordings of the cell soma and connected presynaptic 

bouton was successful in 24% of experiments once a somatic recording was 

achieved. This was due to a combination of unsuccessful attempts of whole bouton 

configuration, patching of bouton that was unrelated to the patched cell soma and 

patching of unhealthy boutons. A typical experiment would last between 30 minutes. 

Once whole-cell configuration of the soma was attained I initially allowed 15 minutes 

for dialysis of the cell. This would have enabled me to follow an axon to its terminal 

and simultaneously patch a terminal bouton and its soma. However experiments 

where this timeframe was used resulted in very low success for dual recordings. I 

subsequently reduced the time spent dialysing the cell to 5 minutes, meaning 

boutons identified were generally closer to the cell (within 100 µm). In CA3 pyramidal 

neurons, the AP initiation zone or axon initial segment (AIS) is located at 35–40 µm 

from the soma (Debanne et al., 2011). Thus boutons elected for simultaneous 

recording were usually situated close to the AIS. Methods for estimating of bouton – 

soma distance are discussed in Section 6.2. Another limitation was in the acquisition 

of the fluorescence images of the patched soma and associated axons under blue 

LED illumination. As fluorescent tracer was present in the somatic pipette, flaring of 
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the image in that region was unavoidable (Figure 6.1i). However this effect was 

somewhat minimised during co-registration with transmitted light image by post-hoc 

adjusting the brightness using Image J software.  

 

In attempting to optimise the method by reducing the experiment time, I omitted the 

stage where the soma was filled with tracer. I randomly chose an area of attached 

dendrite with processes emanating from it. An HPICM scanning image of this region 

(boxed region Figure 6.0.3a) was then attained searching for nearby boutons 

(usually 12 x 12 µm). Once a suitable bouton it was scanned under higher resolution 

again with HPICM (usually 6 x 6 µm)(Figure 6.0.3b). The bouton was patched and 

whole-cell configuration attained. Surprisingly the success rate of finding an 

associated bouton and soma was comparable to the initial method described. That 

the bouton and soma belonged to the same cell was confirmed by APs elicited at the 

soma being simultaneously recorded at the bouton. Also Pb was prefilled with 

Alexa568 as before, and so the patched bouton and associated axon morphology 

could be confirmed post hoc under green LED illumination (Figure 6.0.3d).  
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Figure 6.0.3 Dual recordings from the soma and small presynaptic bouton of 

the same neuron. (A) Transmitted light image of a neuron with somatic patch 

pipette, with a neighbouring 6 µm x 6 µm region selected for HPICM indicated with 

the square. Scale bar: 20 µm. (B) Left, Schematics indicating HPICM in voltage 

clamp mode (top) and whole-cell recording from presynaptic bouton (bottom). Right, 

height-coded image corresponding to highlighted area in (a), showing bouton (arrow) 

supplied by an axon adjacent to a dendrite. Scale bar: 1 µm. (C) Simultaneous 

somatic and presynaptic recordings of action potential train elicited by somatic 

current injection from the same cell as in (A). (D) Epifluorescence image overlaid on 

the transmitted light image, showing neighbouring boutons supplied by the same 

axon filled with Alexa Fluor 568 in the bouton pipette. The axon runs approximately 

horizontally through the image but typically could not be traced back to the soma. 
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6.1 Spike latency 

 

Simultaneous recording from soma and presynaptic bouton gives us an insight into 

the spacial and temporal resolution of axonal transmission in hippocampal neurons. 

To estimate the distance between presynaptic bouton and soma in the dual patch 

experiments, we initially tried to analyse post hoc fluorescence images. As part of 

the experiment, the scanning nanopipette contained the fluorescent tracer 

AlexaFluor568. As whole bouton configuration was attained, the tracer labelled 

neighbouring boutons either side of the targeted structure, providing morphological 

confirmation of the axon identity, and showing that the axon was not transected. 

However due to the tortuosity of the axon, it was difficult to trace the axon all the way 

back to the soma (Figure 6.1a).  Another way to estimate bouton – soma distance, is 

to look at axonal action potential latency relative to the soma. This can be 

determined by documenting latency (ta − ts) between the axonal spike (latency ta) 

recorded at the bouton, and the somatic spike (latency ts) (Scott et al., 2014). In 

layer 5 pyramidal cells, the shortest axonal AP latencies were recorded 30 – 60 µm. 

from the axon hillock, occurring about −100 µs. before the somatic AP (Kole et al., 

2007a; Palmer and Stuart, 2006; Shu et al., 2006). This would be considered to be 

within the axon initial segment (see Chapter 1.2). From this region onwards, spike 

latency observed a positive linear relationship with distance down the axonal arbor 

(Figure 6.1b). We translated this approximation curve to the latencies we observed in 

hippocampal neurons. 
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6.1.1 Main aims 

 

1. Estimate mean bouton-soma distance using the proxy of spike latency  

 

6.1.2 Results and conclusion 

 

The spike latency was non-significantly longer in the bouton than in the somatic 

recording when all genotypes were pooled together (average ± SD soma-bouton 

difference: 0.02 ± 0.10 ms., n = 53). This is consistent with action potential initiation 

at the axon initial segment and a mean axon length of 200 – 300 µm. There was no 

systematic relationship between normalised spike half width and latency in wild type 

or Kcna1aV408A/+ neurons (as in Section 7.1) (Figure 6.1c). As with all previous 

experiments we only considered the first spike elicited.  
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Figure 6.1 Analysis of spike latency. (A) Epifluorescence image (red) overlaid on 

the transmitted light image, showing neighbouring boutons supplied by the same 

axon filled with Alexa Fluor 568 in the bouton pipette. The axon typically could not be 

traced back to the soma due to it tortuous route; scale bar 10 microns. (B) Plot of AP 

latency relative to that of the somatic AP (black) for APs recorded in the AIS (gray 

circles, n = 45) and axon blebs (open circles, n = 22) versus recording distance from 

the axon hillock. Adapted from (Kole et al., 2007) (C) Normalised spike half width 

inactivation of Kv1 channels in the AIS and proximal
axon during steady-state somatodendritic depolarization
or slow rhythmic oscillations generates a distance-depen-
dent broadening of the axonal AP waveform, leading to
facilitation of transmitter release at proximally located
synaptic terminals.

RESULTS

Axonal Action Potential Properties
We first examined the spatial and temporal properties of
axonal APs in large layer 5 pyramidal neurons. These neu-
rons give rise to an axon initial segment of relatively large
diameter (1–2 mm), with an unmyelinated region extending
!50 mm from the axon hillock (Sloper and Powell, 1979).
While the myelinated axon beyond the AIS does not allow
direct patch-clamp recording, in many instances axonal
end-bulbs, recently called ‘‘blebs’’ (Shu et al., 2006b), ap-

pear due to the slice cutting procedure, and unmyelinated
blebs are accessible to whole-cell recording. To allow
comparison of somatic and axonal AP waveforms, we
made dual whole-cell current-clamp recordings from the
soma and AIS (1–65 mm from the hillock; n = 35) or the
soma and axon blebs (25–720 mm from the hillock; n = 41,
Figure 1A). Action potential properties during recordings
from axon blebs were similar to those obtained during
recordings directly from the AIS at comparable distances
from the axon hillock (see Figure S1 in the Supplemental
Data available with this article online).

APs were induced by brief somatic current injections
from the resting potential (soma, "75.9 ± 0.4 mV; axon,
"76.3 ± 0.4 mV; p > 0.05, n = 63). Figure 1 shows the spa-
tial dependence of AP properties in the axon compared to
the soma. The shortest axonal AP onset latencies oc-
curred at a recording site 38 mm from the axon hillock,
on average !120 ms before AP onset at the soma (Figures

Figure 1. Site-Dependent Characteristics of Action Potential Properties in the Soma, Axon Initial Segment, and Axon Proper
(A) (Left) Photograph of a biocytin-filled layer 5 neuron indicating the soma, the unmyelinated AIS, a myelinated axonal region, and an axon bleb site

accessible for whole-cell recording. (Right, top) Example traces show APs evoked by somatic current injection and recorded at the AIS 38 mm from the

axon hillock (red) and at the soma (black). (Bottom) Example traces for an axon bleb recording 620 mm from the hillock. The t = 0 marks time of onset of

the somatic AP.

(B) Plot of AP latency relative to that of the somatic AP (black) for APs recorded in the AIS (gray circles, n = 45) and axon blebs (open circles, n = 22)

versus recording distance from the axon hillock. Minimum onset latency occurs !38 mm from the axon hillock, which is slightly before the end of the

AIS (45–70 mm). Linear fit to the axon bleb data yielded a conduction velocity of 2.9 m s"1.

(C) Traces show APs recorded from the soma (black) and at the indicated axonal distances from the axon hillock (red). Recordings were obtained from

different axons and for illustration baselined at AP threshold, scaled to the same amplitude and overlaid.

(D) Plot of axonal AP width at half-amplitude (half-width) versus recording distance from the axon hillock. The average somatic half-width is indicated

in black. Data fitted with a sigmoid function yielding a half-maximum distance of 31.8 mm.

(E) Plot of axonal AP afterhyperpolarization amplitude (measured from AP threshold) versus recording distance from the axon hillock. The average

somatic AHP is shown in black. Data fitted with a sigmoid function with a half-maximum distance of 21.3 mm.

Data are mean ± SEM.
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plotted against latency for wild type (grey) and Kcna1aV408A/+ (cyan) (wild type n = 19; 

Kcna1aV408A/+ n = 9)  
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 6.2 Simultaneous soma and bouton recordings in Kcna1a-/-, 

 Kcna1aV408A/+ and wild type littermates 

 

KV1.1 appears to have an effect on AP morphology in forebrain presynaptic boutons 

as evidenced by the prolonged AP half-width in the knock-out and knock-in models 

of EA1. The broadened spike in the Kcna1V408A/+ neurons is in agreement with similar 

experiments performed in cerebellar basket cells (Begum et al., 2016), another brain 

region rich in KV1.1. But is this a solely presynaptic phenomenon? With the ability to 

now perform consistent simultaneous patches of soma and bouton from the same 

cell, we could now focus on AP morphology in pharmacological and genetic models 

of KV1.1 deletion.  

 

6.2.1 Main aims 

 

1. What is the role of KV1.1 at the bouton and at the soma? 

 

 6.2.2 Method 

 

Experiments on hippocampal cultures from Kcna1a-/- mice and their wild type 

littermates were performed on the same day in order to make direct comparison. 

This was also the case for Kcna1aV408A/+ mice and their wild type littermates. The 
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dual patch experiment (Section 6.0) was performed on each type of neuron and 

spikes elicited at the soma using the same 200pA current pulse. Thirty sweeps were 

recorded and then the EC solution was switched to one containing 20nM DTx-K with 

a further 30 sweeps recorded.  

 

 6.2.3 Results 

 

In the Kcna1a-/- mice the mean bouton t/2 was 1.43 ± 0.09ms (n = 10) and in their 

wild type littermates the mean bouton t/2 was 1.17 ± 0.05ms (n = 13), a difference of 

0.26ms (p = 0.01 with unpaired t test). Thus the difference in spike t/2 was ≈ 22%. 

When pooling all wild type littermates the difference was 0.31 ms (25%)(n = 27). In 

contrast the Kcna1a-/- mean soma t/2 was 1.36 ± 0.12ms and in their wild type 

littermates the mean soma t/2 was 1.26 ± 0.08ms, a non-significant difference of 0.1 

ms (p = 0.5). In pooled wild type littermates the difference was 0.13 ms (10%). 

(Figure 6.2.4a).  

 

In the Kcna1aV408A/+ mice the mean bouton t/2 was 1.39 ± 0.06ms (n = 12) and in 

their wild type littermates the mean bouton t/2 was 1.1 ± 0.05ms (n = 14), a 

difference of 0.29ms (p = 0.001 with unpaired t test). Thus the difference in spike t/2 

was ≈ 24%. In pooled wild type littermates the difference was 0.27 ms (25%)(p < 

0.001,	
   n = 27). Again in contrast, the mean Kcna1aV408A/+ soma t/2 was 1.33 ± 

0.09ms and in their wild type littermates the mean soma t/2 was 1.17 ± 0.08ms, a 
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non-significant difference of 0.16ms (p = 0.18). In pooled wild type littermates the 

difference was 0.1 ms (8%) (Figure 6.2.4a).  

 

In the pooled wild type littermates, application of DTX-K increased the mean bouton 

t/2 from 1.12 ± 0.04ms to 1.27 ± 0.04ms, an increase of 13% (Figure 6.2.3a, b) 

(p=0.004 with paired t test). However the mean soma t/2 only changed from 1.24 ± 

0.05ms to 1.25 ± 0.06ms, a non-significant increase of 1% (p=0.6) (Figure 6.2.3g). In 

the Kcna1a-/- mice, DTX-K increased the mean bouton t/2 from 1.44 ± 0.12ms to 1.49 

± 0.12ms, a small but significant increase of 4% (Figure 6.2.3c, d) (p=0.004). Mean 

soma t/2 remained unchanged at 1.37 ± 0.15ms (Figure 6.2.3g). In the Kcna1aV408A/+ 

mice application of DTX-K had no significant effect on bouton t/2 (baseline: 1.39 ± 

0.05ms; DTx-K: 1.41 ± 0.05ms; p=0.3)  (Figure 6.2.3e, f) (p=0.3). Again mean soma 

t/2 remained unchanged at 1.33 ± 0.09ms (Figure 6.2.3g). 

 

These results suggest that the contribution of KV1.1 to spike width is not apparent 

from somatic recordings, but is robustly revealed by bouton recordings, consistent 

with an axonal localisation of the channel subunit. 
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Supporting Information
Vivekananda et al. 10.1073/pnas.1608763114

Fig. S1. DTx-K had no effect on somatic spike half-width in wild-type neurons. Mean change ± SEM: 1 ± 2%, n = 24 (P = 0.6, paired t test).

Fig. S2. Genetic deletion of Kcna1 broadened presynaptic spikes and occluded the effect of DTx-K. (A) Action potentials recorded from boutons, but not
somata, of Kcna1−/− neurons (n = 9) were broader than in wild-type neurons (replotted from Fig. 2C; **P < 0.01, t test). (B) Sample traces from one Kcna1−/−

neuron showing simultaneously recorded somatic and presynaptic spikes before and after DTx-K application. (Scale bar: 40 mV/1 ms.) (C) Summary data
showing partial occlusion of presynaptic spike broadening by DTx-K in Kcna1−/− neurons (mean change: 4 ± 2%, n = 7, P = 0.05, paired t test). (D) Summary data
showing absence of somatic spike broadening by DTx-K (mean change: 1 ± 1%; P = 0.77, paired t test).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 1 of 7
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Figure 6.2.3 KV1.1 channels determine spike width. (A) Example recordings from 

one neuron before and after 20 nM DTx-K application. This had no effect on somatic 

spikes but led to broadening of presynaptic action potentials. (B) Presynaptic spike 

widths elicited by somatic current injection before and after DTx-K perfusion, 

showing a significant broadening (n = 22 neurons, p<0.001, paired t-test). (C) 

Sample traces from one Kcna1−/− neuron showing simultaneously recorded somatic 

and presynaptic spikes before and after DTx-K application. (D) Summary data 

showing partial occlusion of presynaptic spike broadening by DTx-K in Kcna1−/− 

neurons (n = 7, p = 0.05, paired t-test). (E) Example traces showing failure of DTx-K 

to broaden either somatic or presynaptic spikes in a Kcna1V408A/+ neuron. (F) 

G 

Supporting Information
Vivekananda et al. 10.1073/pnas.1608763114

Fig. S1. DTx-K had no effect on somatic spike half-width in wild-type neurons. Mean change ± SEM: 1 ± 2%, n = 24 (P = 0.6, paired t test).

Fig. S2. Genetic deletion of Kcna1 broadened presynaptic spikes and occluded the effect of DTx-K. (A) Action potentials recorded from boutons, but not
somata, of Kcna1−/− neurons (n = 9) were broader than in wild-type neurons (replotted from Fig. 2C; **P < 0.01, t test). (B) Sample traces from one Kcna1−/−

neuron showing simultaneously recorded somatic and presynaptic spikes before and after DTx-K application. (Scale bar: 40 mV/1 ms.) (C) Summary data
showing partial occlusion of presynaptic spike broadening by DTx-K in Kcna1−/− neurons (mean change: 4 ± 2%, n = 7, P = 0.05, paired t test). (D) Summary data
showing absence of somatic spike broadening by DTx-K (mean change: 1 ± 1%; P = 0.77, paired t test).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 1 of 7

Supporting Information
Vivekananda et al. 10.1073/pnas.1608763114

Fig. S1. DTx-K had no effect on somatic spike half-width in wild-type neurons. Mean change ± SEM: 1 ± 2%, n = 24 (P = 0.6, paired t test).

Fig. S2. Genetic deletion of Kcna1 broadened presynaptic spikes and occluded the effect of DTx-K. (A) Action potentials recorded from boutons, but not
somata, of Kcna1−/− neurons (n = 9) were broader than in wild-type neurons (replotted from Fig. 2C; **P < 0.01, t test). (B) Sample traces from one Kcna1−/−

neuron showing simultaneously recorded somatic and presynaptic spikes before and after DTx-K application. (Scale bar: 40 mV/1 ms.) (C) Summary data
showing partial occlusion of presynaptic spike broadening by DTx-K in Kcna1−/− neurons (mean change: 4 ± 2%, n = 7, P = 0.05, paired t test). (D) Summary data
showing absence of somatic spike broadening by DTx-K (mean change: 1 ± 1%; P = 0.77, paired t test).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 1 of 7

Fig. S3. DTx-K had no effect on somatic spike half-width in Kcna1V408A/+ neurons. Mean change: 0 ± 2% (n = 12; P = 0.75, paired t test).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 2 of 7
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Summary data showing occlusion of presynaptic spike broadening by DTx-K and 

Kcna1V408A/+ (n =12; p = 0.33). Scale bar in (A) and (D): 40 mV / 1ms. DTx-K had no 

effect on somatic spike half-width in wild type neurons (G) (n = 22; p = 0.6, paired t-

test), Kcna1−/− neurons (H) (n = 7; p = 0.77), and Kcna1V408A/+ neurons (I) (n = 12; p 

= 0.75). 

 

Amplitude of spikes were measured from the take-off point to the peak (measured in 

mV). In the Kcna1a-/- mice the mean bouton AP amplitude was 53 ± 4mV; in the 

Kcna1aV408A/+ it was 52 ± 1mV; and in the pooled wild type littermates it was 56 ± 

3mV (p=0.58 and p=0.35 respectively with unpaired t test). The Kcna1a-/- mean 

soma amplitude was 63 ± 5mV; in the Kcna1aV408A/+ it was 60 ± 3mV and in the 

pooled wild type littermates it was 51 ± 2mV, (p=0.03 and p=0.06 respectively) 

(Figure 6.2.4b).  
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Figure 6.2.4.  (A) Spike half widths of bouton and soma from pooled wild type 

(grey), Kcna1V408A/+ (cyan) and Kcna1−/− (purple) neurons. Spikes recorded from 

boutons, but not somata, of Kcna1−/− and Kcna1V408A/+ neurons were broader than in 

wild type neurons (Kcna1−/−; **, p < 0.01; Kcna1V408A/+, ***, p < 0.001 unpaired t-test). 

Spikes were also significantly narrower in boutons than somata in wild type (p < 

0.05, paired t-test), but not Kcna1V408A/+ neurons. (B) Same data but for spike 

amplitude. Action potentials recorded from somata, but not boutons of Kcna1−/− 

neurons had a larger amplitude than in wild type neurons. Action potentials recorded 

from boutons or somata of Kcna1V408A/+ neurons were not significantly different in 

amplitude than in wild type neurons. 
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6.2.4 Conclusions   

 

I have used the double patch method (recording AP propagation to the presynaptic 

bouton via depolarisation of the soma) to show that the AP t/2 is increased in both 

the KV1.1 knockout mouse and in a knock-in model of Episodic Ataxia type 1. This 

was in agreement with AP recorded directly from the presynaptic boutons (Section 

6.0), but perhaps more convincing evidence as there was a clearer identification of 

take-off point in analysis and correct bridge balance was not required. Although a 

role of KV1.1 in determining action potential width has been proposed in previous 

studies, until now it has never been shown directly in submicrometer sized synapses, 

the most abundant type of synapse in the brain. Nor has it been studied with genetic 

(as opposed to pharmacological) manipulation of KV1.1 channels. The double patch 

method also confirmed that the difference in t/2 is a solely presynaptic or axonal 

phenomenon, as t/2 not significantly increased in Kcna1a-/- and Kcna1aV408A/+ 

somatic recordings. DTX-K affected wild type presynaptic spikes but had no effect on 

somatic spikes, supporting axonal targeting of the channel. In addition, either 

deletion of Kcna1 or the heterozygous EA1 mutation occluded the effect of a specific 

Kv1.1 blocker.  

 

There was a trend for the AP amplitude to be smaller at the soma than at boutons in 

the wild type neurons, and an opposite trend in the Kcna1a-/- and Kcna1aV408A/+ 

neurons. However none of these differences reached 5% significance. The somatic 
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AP amplitude was however significantly different between wild type and Kcna1a-/-. I 

would not wish to draw strong conclusions from this finding because it only emerged 

from post-hoc analysis of experiments designed to test a different hypothesis 

(namely, that presynaptic spike width differed). Moreover, the statistical test may not 

survive correction for multiple comparisons because only relatively few Kcna1a-/- 

cells were sampled (n = 9). 

 

KV1 channels are known to be densely clustered at subdomains of the axon, such as 

the distal region of the AIS (Inda et al., 2006; Lorincz and Nusser, 2008b; Van Wart 

et al., 2007). No change in latency was observed with subthreshold depolarisation in 

the wild type neurons. However we did not examine the temporal aspect of 

subthreshold excitation as all prepulses were 200ms; it has been shown it is rate of 

depolarisation rather than amount that reduces latency, thought to be a sodium 

channel effect (Scott et al., 2014). Latency also did not change with subthreshold 

depolarisation in Kcna1aV408A/+ neurons, suggesting that AP waveform rather than 

AP latency is affected in the distal AIS when KV1 function is abolished. 

 

Due to technical limitation, the bouton chosen for double patch recording was 

electrically close, usually within 100 µm., to the soma. Therefore it is conceivable 

that the AP passively recorded at the bouton may have been a reflection of the AP at 

the action initial segment or even the soma. Indeed the mean AP half width at the 

bouton in wild type was 1.12 ms. with simultaneous recording, but 0.89 ms. when 

recorded directly at the bouton. The slower AP waveform at the bouton 
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demonstrated during double patch recording may suggest different underlying 

conductances.  
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 7.0 ‘Analogue’ and ‘Digital’ signalling	
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 7.0.1 Introduction  

 

Recordings from large mossy fibre boutons avoid the pitfalls of recording from axon 

blebs. However, although depolarization by presynaptic GABAA receptors broadened 

spikes and action-potential evoked Ca2+ transients in one study (Ruiz et al., 2010), 

an increase in spike-evoked Ca2+-dependent fluorescence transients was not 

detected in other studies which examined sub-threshold depolarization propagating 

from the soma (Alle and Geiger, 2006; Scott et al., 2008). Presynaptic recordings 

from calyceal synapses in the brainstem, furthermore, detected an increase in Ca2+ 

transients without change in spike shape upon depolarization, whether elicited by 

activation of presynaptic glycine receptors (Turecek and Trussell, 2001) or by direct 

current injection (Awatramani et al., 2005b). The principles governing analogue-

digital modulation at large calyceal synapses may not, however, apply to far more 

abundant small presynaptic boutons of the forebrain, arguing the need for alternative 

recording methods to resolve the role of spike broadening. Presynaptic voltage-

sensitive fluorescence measurements or loose patch clamp of fluorescent-dye 

loaded axons may not detect sub-millisecond differences in action potential shape.  

 

 7.0.2 Main aims 

 

1. To devise a current protocol to investigate the role of analogue-digital signalling in 

hippocampal neuronal culture 

2. To identify whether DTx - K affected analogue-digital signalling 
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3. To identify whether genetic knockout of KV1.1 or the knock-in model of EA1 

affected analogue-digital signalling. 

 

 7.0.3 Method 

 

We used simultaneous somatic and bouton recording as described in Chapter 6.1. 

However instead of delivering one depolarising pulse of 200pA for 200ms, we now 

delivered four subthreshold prepulses at -100pA, -50pA, 0pA and 50pA lasting 

200ms, immediately followed by a supra-threshold somatic depolarizing current of 

200pA lasting 200ms. One sweep consisted of a cycle through each of the 

prepulses. 10 sweeps were recorded and then averaged for each prepulse. For the 

DTx-K experiments 10 sweeps were recorded prior to application of 20nM DTx-K to 

the EC solution and a further 10 sweeps were recorded. The first spike evoked by 

each of the +200pA pulses was used for subsequent analysis. Any recordings where 

the first spike occurred during a prepulse instead of the +200pA pulse were 

discarded. The experiments were performed in Kcna1a-/- neurons, Kcna1V408A/+ 

neurons and the pooled wild type littermates of both EA1 models. 

 

  

 

 7.0.4 Results 
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In neurons from wild type mice the presynaptic action potential width showed a 

positive dependence on the pre-pulse (Figure 7.0.3A). This relationship persisted 

when spike width was plotted against the voltage of the bouton membrane prior to 

the somatic depolarizing pulse used to evoke spiking (Figure 7.0.3A4). In order to 

quantify this dependence, we calculated the Spearman rank correlation coefficient ρ 

between the pre-pulse current (or bouton voltage) and the spike width in each 

experiment. The null hypothesis that ρ should be randomly distributed around 0 was 

rejected at p <0.005 (n = 20; Wilcoxon signed-rank test, Figure 7.0.3D). In parallel, in 

order to compare across neurons, we normalized the half-width measured with −100, 

−50, 0 or +50 pA prepulses by the average width measured with –100 and –50 pA 

prepulses. This showed a consistent upward-concave relationship. Spike broadening 

was not accompanied by a detectable change in spike height. 
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Figure 7.0.3 Analogue modulation of presynaptic spike width in WT neurons. 

(A) Traces from one wild type cell showing bidirectional changes in presynaptic spike 

Fig. S5. Analog spike width modulation in WT and Kcna1V408A/+ neurons. (A, Top) Spike width dependence on somatic prepulse current shown for individual
WT neurons. (Bottom) Corresponding distribution of Spearman rank correlation coefficients (ρ) demonstrating prevalence of cells that show a positive re-
lationship between the spike half-width and the prepulse (n = 20, P < 0.005, Wilcoxon signed rank test). (B, Top) Spike width dependence on somatic prepulse
current shown for individual Kcna1V408A/+ neurons. (Bottom) Corresponding distribution of Spearman rank correlation coefficients (ρ) showing no systematic
relationship between half-width and prepulse (n = 10, P < 0.8, Wilcoxon signed rank test, P < 0.02, Mann–Whitney u test comparing to WT).

Fig. S6. Subthreshold modulation of spike width is unaffected by the Kv1.3 and Kv1.4 blocker UK-78282. Data are plotted as for Fig. 3B (n = 5).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 4 of 7

Fig. S5. Analog spike width modulation in WT and Kcna1V408A/+ neurons. (A, Top) Spike width dependence on somatic prepulse current shown for individual
WT neurons. (Bottom) Corresponding distribution of Spearman rank correlation coefficients (ρ) demonstrating prevalence of cells that show a positive re-
lationship between the spike half-width and the prepulse (n = 20, P < 0.005, Wilcoxon signed rank test). (B, Top) Spike width dependence on somatic prepulse
current shown for individual Kcna1V408A/+ neurons. (Bottom) Corresponding distribution of Spearman rank correlation coefficients (ρ) showing no systematic
relationship between half-width and prepulse (n = 10, P < 0.8, Wilcoxon signed rank test, P < 0.02, Mann–Whitney u test comparing to WT).

Fig. S6. Subthreshold modulation of spike width is unaffected by the Kv1.3 and Kv1.4 blocker UK-78282. Data are plotted as for Fig. 3B (n = 5).
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width by subthreshold somatic current injections prior to evoking action potentials. 

(A1) Superimposed spikes elicited after prepulses ranging between –100 pA and +50 

pA. Each trace is shown in bold until after the first spike. (A2) Zoomed presynaptic 

spikes obtained following –100 pA and +50 pA pre-pulses (asterisks in (A1)). (A3) 

Spike half-width plotted against somatic current injection showing positive 

dependence (half-width was ranked –50 pA < –100 pA < 0 pA < +50 pA, yielding 

Spearman rank correlation coefficient ρ = 0.8). (A4) Half-width plotted against 

membrane potential measured at bouton prior to +200 pA somatic current injection to 

elicit spike. (B) Spike width dependence on somatic pre-pulse current shown for 

individual WT neurons. (C) Corresponding distribution of Spearman rank correlation 

coefficients (ρ) demonstrating prevalence of cells that show a positive relationship 

between the spike half-width and the pre-pulse  

 

DTx-K had no significant effect on prepulse-dependent spike broadening (n = 18; 

dependence on pre-pulse current remained significant at p<0.001, Wilcoxon signed 

rank test; Figure 7.0.4).  

 

Moreover, when the same protocol was repeated in neurons from Kcna1-/- mice, a 

positive relationship between spike width and prepulse amplitude persisted albeit to 

a lesser degree (n = 9; Figure 7.0.5). As with previous experiments that did not use 

the prepulse protocol (Section 6.2) the spike width in Kcna1-/- neurons was larger 

than wild type.  
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Figure 7.0.4 Subthreshold modulation of spike width when DTx-K was applied 

(A) Spike width dependence on somatic pre-pulse current shown for individual WT 

neurons after DTx-K application. (B) Summary data obtained from wild type neurons 

before (n = 20, filled symbols) and after DTx-K (n = 18, open symbols), showing 

persistence of analogue modulation of spike width. (C) Corresponding distribution of 

Spearman rank correlation coefficients (ρ) demonstrating prevalence of cells that 

show a positive relationship between the spike half-width and the pre-pulse  
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Figure 7.0.5 Subthreshold modulation of spike width in a Kcna1−/− neuron. (A) 

Sample traces showing spikes evoked by somatic +200 pA current injection following 

subthreshold somatic prepulses. Each trace is shown in bold until after the first 

spike. The spikes evoked following –100 pA and +50 pA prepulses (asterisks) are 

expanded at right. Scale bar: 40 mV / 1 ms. (A3) Spike half-width plotted against 

somatic current injection showing positive dependence. (A4) Half-width plotted 

against the membrane potential measured at the bouton prior to the +200 pA 

somatic current injection used to elicit spike. (B) Genetic deletion of Kv1.1 also failed 

to abolish pre-pulse evoked spike broadening (n = 9; wild type data are replotted 

from Figure 7.1.4B and shown in gray). Spike half-width was normalized by the 

mean values for –100 and –50 pA injection. (C) Spike width dependence on somatic 

pre-pulse current shown for individual WT neurons. (D) Corresponding distribution of 

Spearman rank correlation coefficients (ρ) demonstrating prevalence of cells that 

show a positive relationship between the spike half-width and the pre-pulse  

 

In striking contrast to pharmacological or genetic deletion of KV1.1, prepulses had no 

effect on spike width in Kcna1V408A/+ neurons (Figure 7.0.6A, B; n = 10; Wilcoxon 

signed-rank test for ρ versus somatic subthreshold current or bouton voltage: p = 

0.8; Figure 7.0.6D). The distributions of Spearman rank correlation coefficients in 

Kcna1V408A/+ and wild type neurons were significantly different (p < 0.03, Mann-

Whitney U test). Moreover, the normalized spike widths at 0 or 50 pA were 

significantly different (p = 0.05 and 0.02, respectively, unpaired t-tests, Figure 

7.0.3B1). The same conclusion held when Kcna1V408A/+ neurons were compared only 

to wild type littermates (n = 10) recorded on the same days (normalized half-width for 

0 and +50 pA prepulses: p = 0.02 and 0.01, respectively, Figure 7.0.6B2). Spike 
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amplitude was not significantly altered with each prepulse (mean 53 ± 0.6mV; p = 0.6 

0ne way ANOVA). 
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Fig. S7. Modulation of spike width in a Kcna1−/− neuron. (A) Sample traces showing spikes evoked by somatic +200-pA current injection following sub-
threshold somatic prepulses. Each trace is shown in bold until after the first spike. The spikes evoked following –100-pA and +50-pA prepulses (asterisks) are
expanded at Right. (Scale bar: 40 mV/1 ms.) (B) Spike half-width plotted against somatic current injection showing positive dependence. (C) Half-width plotted
against the membrane potential measured at the bouton before the +200-pA somatic current injection used to elicit spike.

Fig. S8. Subthreshold modulation of spike width for Kcna1V408A/+ and wild-type littermates. Data are plotted as in Fig. 3C (error bars for Kcna1V408A/+ are
smaller than the symbols). **P < 0.01 (WT n = 11, Kcna1V408A/+ n = 10, t test).

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 5 of 7
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Figure 7.0.6 A heterozygous Episodic Ataxia mutation abolishes analogue 

modulation of presynaptic spike width. (A) Sample traces showing spikes evoked 

by somatic +200 pA current injection following subthreshold somatic prepulses. Each 

trace is shown in bold until after the first spike. The spikes evoked following –100 pA 

and +50 pA prepulses (asterisks) are expanded at right. Scale bar: 40 mV / 1 ms. 

(A3) Spike half-width plotted against somatic current injection showing absence of 

spike broadening. (A4) Half-width plotted against the membrane potential measured 

at the bouton prior to the +200 pA somatic current injection used to elicit spike. (B1) 

Summary data from Kcna1V408A/+ neurons (n = 10; open symbols) superimposed on 

wild type data (gray). Error bars are in some cases smaller than the symbols. **, p < 

0.01 (t-test) (B2)  Same data as for B1 but Kcna1V408A/+ neurons compared to wild 

type littermates (C) Spike width dependence on somatic pre-pulse current shown for 

individual Kcna1V408A/+ neurons. (D) Corresponding distribution of Spearman rank 

correlation coefficients (ρ) showing now systematic relationship between half-width 

and pre-pulse (n = 10, p < 0.8, Wilcoxon signed rank test, p < 0.02, Mann-Whitney U 

test comparing to WT). 

 

Previous studies of analogue-digital modulation have used longer pre-pulses (Kole et 

al., 2007a). To replicate these conditions, I performed the same prepulse experiment 

but with prepulses lasting 2s instead of 200ms before delivering the suprathreshold 

current. This was more technically challenging as longer prepulse stimulation 

affected cell health. Six wild type and 6 Kcna1V408A/+ neurons were recorded, and the 

results were consistent with those obtained with shorter prepulses (Figure 7.0.7). 

Spike width showed a positive dependence on prepulse amplitude in wild type 

neurons but not in Kcna1V408A/+ neurons. 
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Figure 7.0.7 Subthreshold modulation of spike width using longer pre-pulses. 

Data plotted as in Figure 7.1.6. Pre-pulses lasted 2 seconds. **, p < 0.01 (t-test).  
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In addition, subthreshold depolarisation appeared to have no effect on latency in both 

wild type and Kcna1aV408A/+ neurons (Figure 7.0.8 a,b). 

 

Figure 7.0.8 (A) For wild type neurons spike latency in ms. plotted against prepulse 

delivered in pA. (B) Same data replotted for Kcna1aV408A/+ 

 

As a separate experiment to assess the involvement of other KV1 subunits in 

subthreshold modulation, UK-78282 (Sigma), a compound reported to block Kv1.3 

and Kv1.4 channels (Hanson et al., 1999), was used in an identical experiment to 

DTx-K (Figure 7.0.9). Modulation of spike width by subthreshold pre-pulses was 

unaffected with UK-78282 (200 nM), arguing against the direct involvement of Kv1.3 

and Kv1.4 channels in analogue modulation. 
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Figure 7.0.9 Subthreshold modulation of spike width is unaffected by UK-

78282. Data plotted as for Fig. 7.1.4B (n = 5). 

 

 7.0.5 Conclusions  

 

By injecting somatic currents ranging between –100 and +50 pA immediately before 

a supra-threshold somatic depolarizing current, the interplay of analogue-digital 

signalling could be investigated in the paired somatic-bouton recordings. Prepulses 

were 200 ms in duration, approximating the time course of subthreshold excitatory 

postsynaptic potentials (Alle and Geiger, 2006). Long presynaptic depolarization (5-

10s) has been shown to mediate analogue-digital facilitation via KV1.1 at rat CA3-

CA3 synapses (Bialowas et al., 2015) and we tested this by using longer 2s 

prepulses. This long depolarization may be relevant to up- and down-states rather 

than EPSPs. In neurons from wild type mice the presynaptic action potential width 

showed a positive dependence on the pre-pulse, consistent with voltage-dependent 
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inactivation of K+ currents. This suggests that action potential width modulation by 

subthreshold somatic depolarisations occurs in intact axons. 

 

However there is an unexpected dissociation between the effects of manipulating 

KV1.1 on the basal presynaptic spike width and on the modulation of spike width by 

membrane potential changes propagating passively from the soma. Pharmacological 

blockade or homozygous deletion of KV1.1 broadened the action potential recorded 

in boutons but did not prevent the effect of subthreshold prepulses. This argues that, 

despite its relatively negative activation and inactivation kinetics, KV1.1 is not 

absolutely necessary for spike width modulation by prepulses lasting 200 ms. A 

heterozygous missense mutation of the KV1.1-encoding gene Kcna1, in contrast, 

completely abolished the effect of prepulses on spike width, even though the basal 

spike width was no greater than when KV1.1 was deleted.  

 

A possible explanation may be that homozygous deletion of KV1.1 leads to the 

formation of Kv1 channel stoichiometries that are able to substitute for KV1.1-

containing heteromultimers. Such channels most likely have kinetics that are slower 

or require a larger depolarization to activate, explaining the prolongation of the spike 

width, and yet undergo a similar slow inactivation upon sustained depolarization, 

explaining the persistence of analogue modulation of spike width. In contrast, the 

V408A mutation exerts a dominant negative effect, resulting in functional loss of a 

wide range of KV1 channels. This was further investigated using immunoblots for a 

number of KV1 channel subunits in cortical synaptosomes made from both wild type- 

and Kcna1V408A/+ (Section 7.1.5). More recently it has been demonstrated that KV3 
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channels, which govern AP repolarisation and exhibit faster adaptive properties than 

KV1, may have a role in increasing spike width and analogue enhancement of AP – 

evoked release (Rowan and Christie, 2017). We did not focus on the representation 

of KV3 in our V408A mutation model and a down regulation of this channel subtype 

with its effect on analogue-digital facilitation cannot be excluded.  

 

One potential confound is the varying charging time constant seen at the different 

subthreshold prepulses (e.g. Figure 7.0.6 A1). As discussed in Section 1.2.2 time 

constant is a function of the membrane resistance and membrane capacitance. The 

lower a time constant, the more rapidly a membrane will respond to a current 

stimulus. Therefore a variable time constant may have its effect especially on fast 

activation and inactivation kinetics observed in Na+ channels at central synapses 

(Engel and Jonas, 2005) and thus AP waveform.  

 

It should be noted that all the above experiments were performed in hippocampal 

cultures, and what would be of interest for future study is whether analogue-digital 

modulation is affected in cerebellar inhibitory networks as Kv1.1 is found abundantly 

in basket cells. 
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7.1 KV1 subunit expression in the genetic EA1 models 

 

 7.1.1 Main aims 

 

1. To investigate the KV1 subunit composition of Kcna1V408A/+ in cortical 

synaptosomes, as we hypothesize that the mutation may lead to a functional loss of 

more than KV1.1 leading to the abolition of analogue modulation 

 

 7.1.2 Methods 

 

The following experiments were performed by our collaborators Oscar Bello and 

Shyam S Krishnakumar within our department. 

 

Pure synaptosome preparation 

 

Pure synaptosomes were prepared using protocols adapted from refs. (Bai and 

Witzmann, 2007; Hebb and Whittaker, 1958). Brain cortices from four wild type or 

four Kcna1V408A/+ mice (6 – 8 weeks old) were homogenized in 10 volumes of ice-

cold HEPES-buffered sucrose (320 mM sucrose, 4 mM HEPES, pH 7.4, protease 

inhibitor cocktail – Sigma S8830) using a motor driven glass-Teflon homogenizer at 

~900 rpm with 15 gentle strokes. The homogenate was centrifuged at 1,000 g for 10 
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min at 4°C in a Ti 70.1 rotor (Beckman). The pellet (P1) was discarded and the 

supernatant (S1) was centrifuged at 10,000 g for 15 min in the same rotor. The 

resulting pellet (P2) was re-suspended in 10 volumes of HEPES-buffered sucrose 

and then re-spun at 10,000 g for a further 15 min to yield a washed crude 

synaptosomal fraction. The supernatant was removed and the synaptosome-

enriched pellet (P2’) was re-suspended in 4 ml of homogenization buffer. The P2’ 

fraction was then layered onto 3 ml of 1.2 M sucrose (supplemented with 4 mM 

HEPES pH7.4, protease inhibitors), and centrifuged at 230,000 g for 15 min in an 

SW55 Ti swinging bucket rotor (Beckman). The synaptosomes were recovered at 

the interface of HEPES-buffered sucrose and 1.2 M sucrose, and diluted to 8 ml with 

ice-cold HEPES-buffered sucrose. The samples were then layered onto 4 ml of 0.8 

M sucrose (supplemented with 4 mM HEPES pH7.4, protease inhibitors) and 

centrifuged at 230,000 g for 15 min in a Ti 70.1 rotor (Beckman). The resulting pellet 

containing pure synaptomes was re-suspended in lysis buffer (1% NP40, 50 mM 

Tris-HCl (pH 8), 150 mM NaCl, and 2 mM EDTA, protease inhibitor) and the protein 

concentration was then determined with a Bio-Rad protein assay solution with bovine 

serum albumin (BSA) as a standard. 

 

Western blot analyses  

 

Equal amounts of proteins (30 µg/lane) from pure synaptosomal fraction of wild type 

or Kcna1V408A/+ KI mice were separated by SDS-PAGE using Bis-Tris gradient gels 

(4–12% NuPAGE, Invitrogen) according to the manufacturer's recommendations and 

electrophoretically transferred onto Immobilon-P transfer membranes (Millipore). 
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Membranes were immunoblotted with the respective antibodies: rabbit anti-Kv1.1 

(APC-161, Alamone Lab, 1:800), anti-Kv1.2 (APC-010, 1:1500), anti-Kv1.3 (APC-

101, 1:1000), anti-Kv1.4 (APC-167, 1:500), anti-Kv1.6 (APC-003, 1:2000), and anti-

SNAP25 (Abcam ab5666, 1:2000) at 4°C overnight. Blots were then exposed to 

horseradish peroxidase-conjugated goat anti-rabbit IgG (17210, Bio-Rad 

Laboratories, 1:5000) for 1 hour at room temperature. Blots were developed using 

ECL-Prime (GE Healthcare), visualized via a ChemiDoc™ Touch Imaging System, 

and analysed using Image Lab 5.2 software (Bio-Rab Laboratories). For the 

quantifications, the signal intensity of each of the Kv1 bands was normalized to the 

signal intensity of the corresponding SNAP25 bands, and then the Kcna1V408A/+ 

synaptosomes were expressed as a percentage of wild type 

 

 7.1.3 Results and conclusion 

 

We concentrated on the Kv1.1, Kv1.2, Kv1.3, Kv1.4 and Kv1.6 subunits, as they are 

known to be expressed in the CNS (Section 1.4.2). None of the specific 

immunoreactive signals, normalized to the corresponding SNAP25 band intensity, 

differed significantly between wild type and Kcna1V408A/+ mice, although there were 

non-significant trends for lower Kv1.3 and higher Kv1.6. 
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Figure 7.1 Western blot analysis of Kv1 subunits expression in cortical 

synaptosomes from control WT and V408A Het KI mice. A) Representative 

immunoblot of the Kv1 subunits distribution in synaptosome preparations from wild 

type mice (WT/WT) and V408A Het KI mice (WT/V408A) respectively. Top panels, 

immunostaining with subunit specific anti-Kv1 antibodies (Abs); bottom panels, 

loading control, immunostaining with anti-SNAP25 Ab. Molecular weight protein 

markers (kDa) are shown on the right of each blot. B) Quantification of results. 

Specific immunoreactive signals for Kv1 subunits in each S(in kDa)WT/V408A lane 

(integral band intensity) were normalized to the corresponding SNAP25 band 

intensity and then expressed as a percentage of the corresponding control WT/WT 

preparation. Data represent mean (±SEM) from n = 3 independent synaptosomal 

preparations (4 cortex/sample WT/WT or WT/V408A, 3 immunoblots for each 

samples). 

Fig. S10. Kv1 subunit expression in cortical synaptosomes from wild-type and Kcna1V408A/+ mice. (A) Representative immunoblots of Kv1 subunits in syn-
aptosome preparations from WT and Kcna1V408A/+ mice (Kcna1V408A/+). (Top) Immunostaining with subunit-specific anti-Kv1 antibodies (Abs); (Bottom) loading
control, immunostaining with anti-SNAP25 Ab. Molecular weight protein markers (in kilodaltons) are shown on the Left of each blot. (B) Quantification.
Specific immunoreactive signals for Kv1 subunits in Kcna1V408A/+ synaptosomes in each lane (integral band intensity) were normalized to the corresponding
SNAP25 band intensity and then expressed as a percentage of the corresponding WT preparation. Data are mean (± SEM) from three independent synap-
tosomal preparations from 4 WT and 4 Kcna1V408A/+ mice.

Vivekananda et al. www.pnas.org/cgi/content/short/1608763114 7 of 7
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In conclusion quantitative immunoblotting failed to reveal a substantial change in the 

relative proportion of different members of the Kv1 family in cortical synaptosomes. A 

potential limitation in relating this negative result to the analogue-digital modulation is 

that the synaptosomes were obtained at a different developmental stage, and 

included neocortical as well as hippocampal tissue. 
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8.0 Final conclusions and considerations 
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The aims outlined at the start of this thesis were as follows: 

1. Optimise the Hopping Probe Ion Conductance method to gain direct 

electrophysiological recording from small hippocampal synapses 

2. Use HPICM to predict the location of voltage gated calcium channels in 

small synapses 

3. Compare presynaptic action potential morphology in models of Episodic 

Ataxia type 1 and wild type 

4. Understand the role of KV1 channels in axonal analogue-digital signalling 

 

This work describes how hopping probe ion conductance microscopy was integrated 

with established electrophysiological techniques to provide live topographic images 

of small CNS synapses (diameter ~1µm), the predominant synapse in the 

mammalian brain, at sub-micrometre resolution. In addition, by developing a semi-

automated approach that allowed precise targeted recordings from small synaptic 

terminals in cultured hippocampal neurons, we demonstrated for the first time direct 

electrophysiological data from small synapses in all four configurations of the patch-

clamp method (cell-attached, inside-out, whole-cell, and outside-out).  

 

We used this method to demonstrate that no voltage gated calcium channel (VGCC) 

activity was detected with cell-attached recording on the exposed surface of the 

presynaptic bouton, whereas VGCC activity was found when whole-bouton 

configuration was obtained. This strongly suggested that the vast majority of VGCC 
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in central synapses are located in or very near the active zone and are excluded 

from the rest of the membrane of the bouton. 

 

The use of HPICM in directly recording presynaptic action potentials of micrometer 

sized hippocampal boutons in neuronal culture has been a valuable addition to the 

current methodology in assessing axonal function. Other techniques have included 

paired recordings from axon terminals of Purkinje cells (1 – 3 µm) and associated 

postsynaptic cell in cerebellar culture (Kawaguchi and Sakaba, 2015). This was 

achieved by using enhanced green fluorescent protein (EGFP) to visualise Purkinje 

cell axons. Optical recordings of membrane voltage using electro-chromic dyes have 

been used to resolve axonal action potential initiation in cerebellar Purkinje cells 

(Foust et al., 2010) and layer 5 pyramidal neurons (Popovic et al., 2011). However 

their use had been limited by factors such as injection technique used to label cells 

and internalisation of the membrane dye during experiments. Recently genetically 

encoded optical membrane potential indicators have shown faster response kinetics 

permitting their use in synaptic boutons (Hoppa et al., 2014). Fluorescent coated 

patch-clamp pipettes viewed under spinning disc confocal visualisation have 

provided cell attached recordings of action potentials from axon branches in 

hippocampal CA3 pyramidal neurons, and demonstrated AP waveform modulation in 

response to local glutamate release (Sasaki et al., 2011, 2012). The enlarged axonal 

bleb formed at the cut end of an axon during cell slicing for patch-clamp can also be 

a target for patching (Hu et al., 2009; Shu et al., 2007b). Finally two−photon targeted 

patching, using two photon imaging to guide whole-cell recordings in genetically 

manipulated neurons, has enabled both in vitro and in vivo assessment of axonal 

function (Komai et al., 2006; Margrie et al., 2003). 
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It is likely that the AP within an axon may be more heterogeneous than the binary 

pulse previously thought, influenced by the types and sublocalisation of ion channels 

at any particular region. In hippocampal mossy fibre cells and fast-spiking 

hippocampal interneurons, Na+ channel density increases with distance from the 

soma to ensure fast and reliable AP propagation in an extensively branching arbor 

(Engel and Jonas, 2005; Hu and Jonas, 2014). Potassium channels and in particular 

KV1 has been shown to be key in determining axon spike morphology at the axon 

initial segment of layer 5 pyramidal cells and cerebellar stellate cells (Kole et al., 

2007a; Rowan et al., 2014). Indeed KV1 mediated control of AP repolarisation occurs 

throughout the axonal arbor in layer 5 pyramidal cells, and in neocortical fast-spiking 

interneurons this role thought to be performed by KV3 (Goldberg et al., 2005). 

However at the bouton in stellate cells, the calyx of Held and hippocampal mossy 

fibre boutons it is KV3 that mediates AP repolarisation, thus providing tight control 

over neurotransmitter release (Alle et al., 2011; Ishikawa et al., 2003; Rowan et al., 

2014, 2016). A potential mechanism for regulation of neurotransmitter release in 

small CNS nerve terminals is modulation of AP amplitude which controls Ca2+ entry, 

thus providing adaptive plasticity in synaptic function (Hoppa et al., 2014). This 

phenomenon was not seen in our experiments (Figure 6.2.4). In addition, 

computational analysis of mossy fibre boutons has suggested Na+ channels 

preferentially amplify the presynaptic action potential and enhance Ca2+ inflow 

(Engel and Jonas, 2005).  
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Although a role of KV1.1 in determining action potential width has been proposed in 

previous studies, it had never been previously directly shown in submicrometer sized 

synapses. Nor has it been studied with genetic (as opposed to pharmacological) 

manipulation of KV1.1 channels. My work has demonstrated that the presynaptic 

action potential half-width (t/2) is increased in both the Kv1.1 knockout mouse and in 

a knock-in model of Episodic Ataxia type 1; both by eliciting APs directly at the 

bouton via the HPICM pipette and by using the adapted dual patch method where 

APs were elicited in the soma and actively propagated to the presynaptic bouton. 

The double patch method also confirmed that the difference in t/2 is a solely 

presynaptic or axonal phenomenon, as t/2 was not significantly increased in either 

Kcna1a-/- or Kcna1aV408A/+ somatic recordings compared with wild type.  

 

We demonstrate that manipulating KV1.1 by progressively depolarising the 

presynaptic element via subthreshold prepulses causes a concomitant increase in 

bouton t/2 in wild type neurons, and that a similar effect is obtained with 

pharmacological blockade of Kv1.1 using DTX-K and after homozygous deletion of 

KV1.1. This argues that, despite its relatively negative activation and inactivation 

kinetics, Kv1.1 is not absolutely necessary for spike width modulation by prepulses 

lasting 200 ms. However a heterozygous missense mutation of the KV1.1-encoding 

gene Kcna1, in contrast, completely abolished the effect of prepulses on spike width. 

A possible explanation for this result is that the dominant negative effect of the 

V408A mutation may result in a change in the stoichiometry of KV1 channels. Such 

channels would be impaired both in their ability to repolarize boutons following action 

potentials (explaining the increase in t/2), and become insensitive to subthreshold 

depolarizing pre-pulses lasting 200ms or 2s. Analogue-digital facilitation has also 
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been demonstrated in cerebellar stellate interneurons and thought to be mediated by 

KV3 (Rowan and Christie, 2017). Interestingly this feature diminishes in the maturing 

cerebellum, and whether thus is true for the hippocampus is course for further work. 

 

We saw no obvious change in expression of different Kv1 subunits in forebrain 

synaptosomes. Nevertheless, given the very large number of possible permutations 

of subunits in heterotetramers, failure to detect a change in subunit abundance does 

not rule out subtle rearrangements in channel composition. Among other possible 

explanations for the dissociation between pharmacological and genetic ablation of 

Kv1.1 on one hand, and the Kcna1V408A/+ model on the other hand, is a change in the 

subcellular location of channels. This could be explored with NEURON modelling 

(see Appendix). 

 

There are a number of future considerations both in terms of developing the HPICM 

method and furthering our work concerning KV1 channels. HPICM to date has only 

been trialled in dissociated neuronal cultures. Although a very useful model to 

examine specific channel function within a simple neuronal circuit (with application of 

drugs etc.), working in more complex models such as cell slices and even in vivo 

would add further information as circuits that have retained their natural synaptic 

connections. The semi-automated smart patch function of HPICM relies on the 

nanopipette being held vertically at all times, meaning the X and Y co-ordinates of 

the pipette do not alter, and the pipette can be navigated exactly to the targeted 

bouton. Thus a flat surface like neuronal culture lends itself to this form of 
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microscopy; for angled surfaces such as slices and moving surfaces such as in vivo 

recordings, the method would need to be advanced.  

 

When considering the work of axonal signalling in EA1 one important point to make 

is that all experiments were performed in hippocampal cultures, where 90% of 

synapses are excitatory. We know that the symptoms described in EA1, namely 

paroxysms of cerebellar incoordination and myokymia are most likely attributable to 

abnormal GABA release from cerebellar basket cells (Herson et al., 2003) and to 

motor axon hyperexcitability respectively (Brunetti et al., 2012), both sites where 

Kv1.1 is especially abundantly expressed . What would be of interest for future study 

is whether analogue-digital modulation is similarly affected in cerebellar inhibitory 

networks, or whether it is a solely excitatory phenomenon. Finally future experiments 

could examine how intra-bouton calcium in stimulated synapses is affected by 

knocking out KV1.1 and knock-in of the V408A mutation in hippocampal cells. It is 

expected that both these EA1 models would show greater calcium increase upon 

stimulation in keeping with increased neurotransmitter release, but it would be 

interesting to see whether the amount of calcium increase is quantitatively related to 

the increased presynaptic action potential width already shown in this work. The 

differential presynaptic transmission of information in excitatory and inhibitory circuits 

may in part explain the pathogenesis of EA1, and temptingly may point to a target for 

future therapies. 
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Appendix I Exploratory: Modelling presynaptic action potentials of the EA1 

mutation using  NEURON 

 

As a preliminary attempt to model the finding reported in Section 6.3, i.e. that 

presynaptic action potential width is greater in the EA1 mutations than wild-type, I 

created a computer model based on one created by Alle and Geiger for mossy fibre 

boutons (Alle and Geiger, 2006). The membrane excitability was described by 

Hodgkin – Huxley kinetics. The modelled neuron had a cell body and five boutons, 

each 150 µm away from each other. The other parameters are in Table 7.2. As found 

in our experiments the resting membrane potential of the bouton was more 

depolarised than the soma. Ideally the model would have been based on accurate 

potassium channel data for opening and closing states in wild type and mutant 

derived from experiment. However to provide a preliminary model I solely altered the 

potassium conductance between wild type and mutation. Action potentials were 

elicited with a 200 ms pulse delivered at the soma (as in our experiments) and 

recording was performed over 2 s.  

  

Chosen parameters for neuronal circuit ‘Wild type’ ‘EA1 mutation’ 

Axon: Axial resistance (Ω-cm) 100 100 

           Membrane capacitance (µF/cm2)                          1 1 

          Resting voltage (mV) −70 −70 



	
   209	
  

          Diameter (µm) 0.4 0.4 

          Length (µm) 150 150 

Bouton: Axial resistance (Ω-cm) 100 100 

              Membrane capacitance (µF/cm2) 1 1 

              Resting voltage (mV) −75 −75 

              Diameter (µm) 1 1 

              Length (µm) 1 1 

Sodium: Threshold voltage (mV) −57 −57 

               Reversal potential (mV)  +55 +55 

               Conductance (S/cm2) 0.004 0.004 

Calcium: Threshold voltage (mV) −57 −57 

                Reversal potential (mV) +75 +75 

                Conductance (S/cm2) 0.003 0.003 

Potassium: Threshold voltage (mV) −57 −57 

                    Reversal potential (mV) −100 −100 

                    Conductance (S/cm2) 0.008 0.004 

   

 

Table APP1 Chosen parameters for ‘wild type’ and ‘mutant’ computer model 
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As Figure 7.2 shows with change in potassium conductance, action potential width is 

greater in the ‘mutant’ model (7.2D) than in the ‘wild type’ model (7.2B). This is 

unaltered up to 600 µm away from the soma. In addition, the action potentials in the 

‘mutant’ model occur earlier in the stimulating pulse than in the ‘wild type’ model, 

suggesting a more excitable state. 

 

Figure APP1. NEURON model of five bouton circuit in ‘wild type’ and ‘mutant’. 

(A) ‘Wild type’ conductances for sodium (black), calcium (red) and potassium (blue) 
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(B) Wild type action potential morphology at each of the five boutons (C) Same as 

(A) for ‘mutant’  (D) Same as (B) for ‘mutant’. 

 

Appendix II Exploratory: Intra-bouton calcium response to somatic excitation 

 

This section describes some preliminary work performed to integrate quantitative 

fluorescence imaging to the SICM/electrophysiology setup. We hypothesized that the 

broader action potentials seen in submicrometer presynaptic boutons in the Kcna1−/−  

and EA1 model would be associated with increased calcium influx and 

neurotransmitter release as has been demonstrated in mossy fibre boutons (Geiger 

and Jonas, 2000). Although neurotransmitter release and calcium influx in small 

central synapses has been investigated separately within the lab (Ermolyuk et al., 

2012), relating that to direct electrophysiological recording would be powerful. In 

addition the components already used for fluorescence imaging in confirming axonal 

morphology (Section 6.1) such as LED illumination and EM-CCD for acquisition, 

could also be used for detecting responses from specific calcium promoters. We 

transfected hippocampal neurons with a synaptophysin-GCaMP3 plasmid. Initially 

only wild type neurons were used in order to optimize the transfection protocol. 

 

 Aims 

 

1. Establish a robust transfection protocol for rat hippocampal cultures 
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2. Establish a method for quantifying intra-bouton calcium changes with 

repetitive stimulation of the cell. 

 

 Method and Results 

 

P0-P1 rat hippocampal neurons were cultured on rat astrocyte feeder layer-coated 

glass coverslips in 12 well plates for one day and transfected using Optimem 

containing 1000 ng of plasmidic DNA synaptophysin-GCaMP3 (SyGCaMP3) in 

combination with a reporter DNA, B-actin promoter monomeric red fluorescent 

protein (mRFP), and  1.5ul Lipofectamine 3000 and 2.0 ul P3000 (Invitrogen) per 

well. After 3 hours, transfection medium was replaced with culture medium and 

neurons were cultured for 14 days (Section 4.1) before experimenting. 

 

Experiments were performed as before between day 14 and 18. Manipulation of the 

somatic pipette was the same as outlined in Section 6.2. To identify an RFP 

transfected cell, the coverslip was viewed at 10x objective under green LED (via a 

red longpass dichroic mirror with 560nm cut-off wavelength) illumination. On average 

10% of cells were transfected per coverslip. The cell chosen for patch clamp was 

then viewed under higher magnification (60x). The cell body and associated axons 

could then be viewed as the RFP was stimulated (Figure 7.3a). The axons were then 

viewed under blue LED illumination (via a green longpass dichroic mirror with 505nm 

cut-off wavelength) to stimulate the GFP and obtain a basal calcium response 

(Figure 7.3b). The cell body was then patched by a large pipette (resistance 3 – 
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5MΩ) and action potentials elicited with a 200pA pulse lasting 1 second (Section 

6.2). During this period epifluorescence images were acquired under blue LED light 

to observe increase in intensity of boutons (Figure 7.3c). The relative change in 

fluorescence could then be used to examine intra-bouton Ca2+ concentration.  

  

Figure APP2. Rat hippocampal calcium experiments (A) Cell and associated 

axons viewed under green LED illumination; scale bar 10 microns. (B) Same cell 

viewed under blue LED illumination prior to cell stimulation. (C) After stimulation 

many more boutons fluoresce indicating calcium response to cell stimulation 

 

 Conclusions  

 

The transfection process did yield a low percentage of transfected cells; however our 

experience was that any larger amount of DNA used for transfection produced sick 

cells, which were not usable for electrophysiology. Once the protocol was 

established in rat hippocampal cultures, this could then be translated to mouse 

cultures with wild type and Kcna1aV408A/+ neurons. A future experiment would be to 

stimulate wild type and Kcna1aV408A/+ cells by eliciting action potentials, and 

A" B" C"
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separately observe changes in intra-bouton calcium. Then a high resolution 

topographic image of a bouton that demonstrates calcium increase could be 

acquired. The same bouton would then be patched and action potentials elicited as 

described in Section 6.2. We would then be able to compare presynaptic action 

potential and intra-bouton calcium change between wild type and Kcna1aV408A/+ 

neurons, and confirm whether calcium change is greater in Kcna1aV408A/+ excitatory 

synapses to reflect increased neurotransmitter release as previous studies have 

indicated would be the case (Begum et al., 2016; Heeroma et al., 2009).  

 

  

 


