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Abstract- Natural gas accounts for 21.3% of the total primary energy supply. In particular, with the shale gas 6 

boom, its application has experienced an exponential growth rate. Nevertheless, natural gas has the highest 7 

hydrogen to carbon ratio among all hydrocarbons and the dilute (with respect to CO2) exhausts of its 8 

combustion pose considerable thermodynamic challenges for carbon capture. Solvent-based carbon capture 9 

can potentially mitigate the carbon emissions. Nonetheless, minimizing the penalties associated with the costs 10 

of carbon capture requires detailed understanding of the underlying physical and chemical phenomena. The 11 

present research exploits a rigorous methodology based on rate-based distributed modelling and statistical 12 

associating fluid theory (SAFT). The important characteristics of this modelling approach include abstract 13 

formulation in conjunction with high predictability. The present research aims at establishing the performance 14 

of a new solvent (an amine-promoted buffer salt, APBS) in comparison to the baseline solvent, i.e., 15 

monoethanolamine (MEA). The features of interest include: (i) developing a high fidelity mathematical model 16 

of the carbon capture process, (ii) validating the model with pilot plant data, (iii) quantification of the energetic 17 

and technical performances of the solvents using key process indicators (KPIs), and (iv) employing optimization 18 

programming for further solvent performance improvement.  19 
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1. Introduction 24 

Increasing energy demand and associated pollution have posed an important paradoxical challenge toward the 25 

security of energy supply and environmental protection. This has translated into various national and global 26 

policies and regulations. The instances of these international regulations include the so-called Europe 2020 27 

which targets 20% reductions in greenhouse gases, 20% energy supply from renewables, and 20% 28 

improvement in energy efficiency. In the UK, the Climate Change Act 2008 mandates an 80% overall cut in six 29 

greenhouse gases by 2050 compared to the 1990 baseline. While integration of renewable energy resources 30 

can moderate the problem to some extent, the Intentional Energy Agency (IEA) asserts that in a foreseeable 31 

future, fossil fuels remain the dominant source of energy supply, and application of carbon capture 32 

technologies will become increasingly urgent (IEA 2014a).  33 

Natural gas (NG) accounts for 21.3% of the global primary energy supply (IEA 2014b) and with the shale gas 34 

boom, its application has experienced an exponential growth rate. Nevertheless, natural gas has the highest 35 

hydrogen to carbon ratio among all hydrocarbons and the dilute (with respect to CO2) exhausts of its 36 

combustion pose considerable thermodynamic challenges for carbon capture. Amongst various carbon capture 37 

methods, post-combustion has the advantage of being an end-of-pipe treatment, requiring a minimal of 38 

retrofit to the existing energy infrastructure. In particular, solvent-based carbon capture has been already 39 

applied in ammonia and natural gas sweetening processes and is deemed to be the most commercially viable 40 

technology for end-of-pipe waste treatment of power plants. Furthermore, solvent-based carbon capture has 41 

proved to be an efficient method for increasing the yield of biorefineries (Sharifzadeh, et al., 2015) and 42 

emission reduction in the iron and steel industry (Ho et al., 2013).  43 

In the recent years, developing solvents with superior techno-economic performance has been the focus of 44 

academic and industrial researchers. Frimpong et al., (2013) compared the performance of a proprietary 45 

amine-carbonate blend for carbon capture from coal-derived flue gas. The comparison with MEA baseline 46 

solvent was made based on carbon capture efficiency, energy of solvent regeneration, and overall mass 47 

transfer rate. Both solvents were studied at similar experimental conditions. Moser et al., (2011a,b) evaluated 48 

the performance of a solvent developed by BASF in a highly instrumented pilot plant in Niederaussem. They 49 

used CHEMASIM, an in-house simulation software tool, for data reconciliation and model validation. Their 50 

results suggested a high correlation between the reboiler duty, the desorber pressure, solvent circulations 51 
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rate, and solvent heat of absorption. Similar observation was made by Bumb et al., (2014) who studied the 52 

performance of a novel solvent optimized for coal-fired flue gas, at TNO pilot plant, Netherlands. They studied 53 

variation of the desorber top pressure between 0.8-1 barg, while maintaining the reboiler temperature 54 

constant. They reported that reboiler heating duty and solvent circulation were both minimum at 0.8 barg. 55 

However any further reduction would result in unacceptable condensate rate from the desorber overhead.  56 

Mangalapally et al., (20111a,b, 2012) conducted pilot plant studies for four new solvents. They identified the 57 

solvent circulation rate as the most influential operating parameter for pilot plant operation. Rabensteiner et 58 

al., (2014) studied pilot scale performance of ethylenediamine (EDA) compared to MEA using literature data. 59 

Cousins et al., (2012, 2015) studied the performance of concentrated piperazine and MEA in an Australian pilot 60 

plant. They observed that at elevated liquid/gas ratio, absorber intercoolers can mitigate the regeneration 61 

energy requirements by 10%. They also reported that rich solvent split can result in less reboiler and 62 

condenser duties.  63 

An ideal solvent should have high CO2 loading, fast reaction kinetics, low vapour pressure, negligible 64 

corrosiveness, and high thermal stability, in addition to a lower cost. Often these criteria are interdependent 65 

and require establishing a compromise. Oexmann and Kather (2010) provided an analytic analysis of thermal 66 

requirements for solvent regeneration heating duty, as a function of (i) solvent sensible heat (energy needed 67 

to increase the solvent temperature from absorber temperature to desorber temperature), (2) heat of 68 

evaporation (to produced stripping steam in the desorber), and (3) heat of desorption (needed to break the 69 

solvent-CO2 bound). They demonstrated that these solvent characteristics are often interdependent. Solvents 70 

with a high heat of absorption often feature a higher kinetic rate. Furthermore, since the desorber can be 71 

operated at a higher pressure and the reboiler can be operated as a higher temperature, the water reflux from 72 

the desorber overhead is lower; hence the heating duty of the desorber will be also lower. Furthermore, a 73 

faster kinetic enables higher CO2 loading and therefore, resulting in less solvent circulation rate and hence less 74 

sensible heat requirement. Nevertheless, the maximum allowable temperature in the desorber depends of the 75 

solvent thermal stability against degradation reactions. By comparison solvents with a lower heat of 76 

absorption may benefit from operating the desorber in vacuum operating conditions, at the costs of a higher 77 

power requirement for CO2 compression.   78 
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More recent studies have focused on solvents with additional functionalities. For example, ammonia is 79 

regarded as a cost-effective solvent for CO2 separation. However, low absorption rates limit the practical 80 

application of this solvent. Yang et al., (2014) investigated the effects of adding potassium sarcosinate as the 81 

rate promoter to the ammonia solvent. Similarly, Thee et al., (2012) showed that the addition of small 82 

quantities of MEA to potassium carbonate solvent results in radical increases in the overall reaction rate. 83 

Recently, a new class of solvent is introduced, which exploit phase change in order to limit the energetic 84 

penalties of solvent regeneration. For example as shown by Liebenthal et al., (2013), an amine blend can form 85 

two liquid phases under certain CO2 loading conditions. Then, a large energy saving is possible by sending only 86 

the CO2-rich phase to the desorber. Furthermore, Ionic liquids are a promising class of solvents for carbon 87 

capture. The tunability of the ionic liquids’ structure and properties offers several advantages such as lower 88 

energy requirement for solvent regeneration, higher thermal stability, and lower vapour pressure. However, 89 

the high production cost of ionic liquids is a barrier that needs to be addressed for their commercialization, 90 

(Chen et al., 2014).  91 

Finally, process optimization has been the focus of various studies. Lee et al., (2013) investigated the 92 

performance of several amine solvents. They demonstrated a strong trade-off between the capital investment 93 

and operating costs using Pareto front diagrams. Mores et al., (2012) studied simultaneous optimization of the 94 

dimensions of the process equipment and process operating conditions. Three scenarios were considered in 95 

which reboiler duty was being optimized with respect to different combinations of  reboiler inlet liquid flow-96 

rate,  reboiler inlet solvent composition, reboiler pressure, CO2 loading and CO2 recovery target. They observed 97 

a correlation between the optimal solvent CO2 loading and the CO2 recovery targets. In addition, they reported 98 

that as CO2 loading increases, the specific heating and cooling duties (per unit of CO2 recovered) decrease. 99 

Hopkinson et al., (2014) developed a simple method for optimization of a conceptual solvent based on 100 

properties of commercial amine solvents. Solvent heat of reaction was applied in order to estimate the 101 

sensible and stripping heat of the process. They reported the value of 71 kJ/mol CO2 for the heat of reaction 102 

and the value of 0.1034 kWh/kg CO2 for the total equivalent work in the case of 90% CO2 recovery from coal-103 

fired flue gases.  Damartzis et al., (2015) proposed a module-based generalized design framework in order to 104 

synthesize the optimal process flow diagram.  Features of interest included the stream topologies, the heat 105 

redistribution and the cascades of desorption columns for several commercially available solvents. Significant 106 
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economic improvement (15%-35%) and reductions in the reboiler duty (up to 55%) were observed. Recently, 107 

Burger et al., (2015) proposed a hierarchical methodology based on a group contribution method which 108 

considers the molecular decisions at the same level of process design decisions. They demonstrated their 109 

method for selection of the optimal solvent over a wide range of ethers, for CO2 separation from a methane-110 

rich mixture. 111 

Several common conclusions can be drawn from the aforementioned theoretical and pilot plant studies.  112 

 In establishing the performance of new solvents, there is always a need for a well-understood and 113 

predictable reference solvent such as monoethanolamine (MEA) which facilitates pilot plant testing 114 

runs and provides benchmark performance measures. 115 

 Due to interdependencies of process operating specifications and combinatorial characteristics of the 116 

involved parameters, the pilot plant studies were often conducted in conjunction with simulation and 117 

optimization software tools.  118 

 The pilot plant operating conditions are solvent-specific and the performance of each solvent should 119 

be studied at its corresponding optimal specifications. 120 

 There is a need for key performance indicators which are not solvent-specific and are reproducible for 121 

different solvents.  122 

The present research aims at benchmarking the performance of a new solvent called GCCmax. The GCCmax 123 

solvent is a novel solvent recently developed by Carbon Clean Solutions Limited (CCSL) for carbon capture from 124 

natural gas combustion exhausts and belongs to the class of amine-promoted buffer salt (APBS) solvents. The 125 

conducted research is comprehensive and include, pilot plant studies, model development and validation, and 126 

optimization in order to provide guidelines for further solvent optimization. The novel contribution of the 127 

present research includes: 128 

1. Developing high fidelity multi-scale models for post-combustion carbon capture and validating the 129 

model for the case of the GCCmax and MEA solvents using pilot plant data. 130 

2. Quantification of the performance of the solvents using a novel set of key performance indicators 131 

(KPIs), that enables objective and reproducible comparisons. 132 

3. Identification of further opportunities for process optimization in terms of equipment design, 133 

operating conditions, and solvent composition. 134 
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The rest of the manuscript is organized as follows. Firstly, the research methodology is discussed. The features 135 

of interest include the applied modelling approach and underlying assumptions. Then, the results of model 136 

validation are presented and compared for the baseline MEA solvent and the new GCCmax solvent. The 137 

comparison is made based on several novel key process indicators which quantify the difficulty of separating 138 

CO2 from the flue gas. These “technical” KPIs are used as substitutes for economic indicators because using the 139 

latter to compare alternative solvents would suffer from assumptions around the cost of capital, the capital 140 

estimation method and the cost of utilities, limiting the reproducibility of the results. The last part of the paper 141 

explores the opportunities for further improvement of the new solvent performance through optimization 142 

with respect to process equipment, operating conditions, and the solvent composition.  143 

2. Methodology  144 

The research methodology is based on a multi-scale process modelling and optimization. Firstly, a rigorous 145 

process model was developed based on accurate understanding of the involved physical and chemical 146 

phenomena and rate-based modelling of gas-liquid contactors. Then, the developed model is validated using 147 

pilot plant data. Finally, the validated model is optimized for various design and retrofit scenarios.  148 

2.1. Process model development  149 

The accurate modelling of the solvent-based CO2 capture processes for the purposes of solvent benchmarking 150 

and comparison requires thorough understanding of the underlying physical and chemical phenomena 151 

involved in absorption and desorption of CO2 into and from the working solvent. The methods for modelling 152 

gas-liquid contactors can be broadly classified into equilibrium and rate-based models. Early-stage attempts 153 

for modelling gas-liquid separation processes were based on the assumption that at each separation stage, the 154 

exiting phases are in equilibrium conditions. Such assumptions were also incorporated into graphical methods 155 

(McCabe et al., 2004). However, it was widely observed that for most industrial applications assuming 156 

equilibrium composition of the exiting phases results in unrealistic predictions. The first attempt to overcome 157 

this limitation was to consider an efficiency measure for each separation stage, (McCabe et al., 2004), which 158 

can be applied to calculate the actual number of stages from the theoretical number of stages. Application of 159 

empirical efficiency correlations has been promising for binary and close-boiling separation systems. However, 160 

it was widely observed that for multicomponent systems, the efficiency of separation stages can vary from 5% 161 

for absorption systems with high viscosity, high molecular weight solvents to 120% in single-liquid-pass large-162 
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diameter distillation trays (or packed segments) because of the crossflow effect (Seader et al., 2013). Due to 163 

difficulties associated with uncertainties in the stage efficiency method, intensive research was devoted to 164 

developing non-equilibrium models based on transport rates (Waggoner and Loud, 1977; Krishna and Standart 165 

1979; Taylor and Krishna, 1993; Krishnamurthy and Taylor, 1985; Taylor et al., 1994). The rate-based models 166 

are founded on the two-film theory, as shown in Fig. 1. Here, thermodynamic equilibrium is assumed only at 167 

the interface of vapour and liquid phases. Unlike equilibrium-based models, the exiting vapour phase is 168 

superheated and the exiting liquid phase is subcooled and they have different temperatures. The exchanged 169 

mass and energy between phases depend on the driving forces, transport coefficients, and the interfacial area. 170 

Often, both convective and diffusive transport phenomena are involved and component-coupling effects 171 

should be considered (Seader et al., 2013). Various empirical correlations for calculating the mass transfer 172 

coefficient are proposed by researchers for random packing (Onda et al., 1968; Bravo and Fair, 1982) and 173 

structured packing (Bravo et al., 1985, 1992). Finally, the bulk liquid and gas phases may have different flow 174 

configurations such as plug or mixed flows.  175 

 176 

Fig. 1. Two-film model used for modelling rate-based absorption and desorption of CO2 into and from solvent, 177 

(Zhang et al., 2009). 178 

Vapour Liquid 

Vapour-Liquid 
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2.2. Reaction kinetics and thermodynamics  179 

A full space rate-based representation of CO2-solvent gas-liquid contactors requires detailed modelling of 180 

underlying chemical reactions, column hydraulics, as well as mass and heat transfer phenomena. For the case 181 

of CO2 capture using alkanolamines, this would require modelling a series of speciation reactions as follows 182 

(Mac Dowell et al., 2010):  183 

2H2O ⇋ H3O+ + OH−                                                                                                                                                 (1) 184 

CO2  +  H2O ⇋ HCO3
− + H+                                                                                                                                     (2) 185 

CO2  +  OH−  ⇋ HCO3
−                                                                                                                                               (3) 186 

CO2  +  RNH2  ⇋ RNH2
+CO2

−                                                                                                                                  (4) 187 

RNH2
+CO2

− +  RNH2 ⇋ RNHCO2
− + RNH3

+                                                                                                      (5) 188 

RNHCO2
− +  H2O ⇋ RNH2 + HCO3

−                                                                                                                     (6) 189 

where for the case of MEA, R=HO-CH2-CH2- . In the scheme above, reaction (1) represents water hydrolysis, 190 

reactions (2) and (3) are concerned with carbonic acid and bicarbonate formation, respectively. Reaction (4) 191 

represents the Zwitterion formation and reaction (5) is base catalysis. The two latter reactions are highly 192 

coupled as carbamate and protonated amines are tightly bonded. Therefore, reaction (4) and (5) can be shown 193 

abstractly as:  194 

CO2  +  2RNH2  ⇋ [RNHCO2
− + RNH3

+]                                                                                                            (7) 195 

Reaction (7) is a reversible acid-base neutralization reaction. In this reaction, absorption of CO2 in 196 

alkanolamine solvent is exothermic; hence, it is possible to liberate CO2 by heating the CO2-rich solvent 197 

mixture and driving the reaction to left. Therefore, in theory, it is possible to regenerate the alkanolamine and 198 

recycle it for reuse in the absorber. In practice, a small amount solvent make-up is supplied to compensate the 199 

losses associated with the solvent escape and degradation reactions.  200 

Various thermodynamic models were proposed by researchers in order to describe the thermophysical 201 

properties of the mixture of CO2 absorbed into alkanolamines. These methods can be broadly categorized to 202 

non-rigorous and rigorous methods. In non-rigorous methods, equilibrium constants are considered for the 203 

aforementioned reactions and are reconciled against experimental data. The major drawback of non-rigorous 204 

methods is the lack of precision for closing energy balances and predicting speciation of components 17.  In 205 

addition, the rigorous methods can be classified to (1) activity-based models (derived from Gibbs free energy), 206 
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and (2) equation of state models (derived from Helmholtz free energy). A frequently used activity-based model 207 

is Electrolyte Non-random two-liquid model (E-NRTL) in which the activity coefficient expressions of the 208 

original NRTL model are modified, and certain constraints regarding local like-ion repulsion and 209 

electroneutrality are imposed (Chen and Song, 2004). An alternative activity based model is the Extended 210 

UNIQUAC model where the original UNIQUAC model was modified to account for ionic interactions (Faramarzi 211 

et al., 2009). A limitation of the aforementioned activity-based models is that they only describe the liquid 212 

phase and a separate equation of state (e.g., Soave–Redlich–Kwong equation of state by Faramarzi et al., 213 

2009) should be applied for modelling the vapour phase. Alternatively, researchers attempted to use 214 

equations of states which can consider the presence of ionic components (Huttenhuis et al., 2008). More 215 

recently, application of equations of state which are able to accommodate chemical equilibria such as 216 

association between molecules, has been the focus of various research groups (Fürst and Renon, 1993; Button 217 

and Gubbins, 1999). Here, the treatment is based on statistical associating fluid theory (SAFT), in which the 218 

free Helmholtz energy is correlated to the intermolecular association between the molecule segments 219 

(Chapman et al., 1989; Mac Dowell et al., 2010): 220 

𝐴𝑚𝑖𝑥

𝑁𝑘𝑇
=

𝐴𝐼𝐷𝐸𝐴𝐿

𝑁𝑘𝑇
+

𝐴𝑀𝑂𝑁𝑂

𝑁𝑘𝑇
+

𝐴𝐶𝐻𝐴𝐼𝑁

𝑁𝑘𝑇
+

𝐴𝐴𝑆𝑆𝑂𝐶

𝑁𝑘𝑇
                                                                                               (8) 221 

In above, 𝑁 refers to the number of molecules, 𝑘 is the Boltzmann constant and 𝑇 is the mixture temperature. 222 

On the right-hand-side, the first term represents the ideal Helmholtz free energy and the three other terms 223 

refer to the residual contribution due to monomers interactions, formation of chains, and intermolecular 224 

interaction between associating sites. Then, given the Helmholtz free energy of the mixture, 𝐴𝑚𝑖𝑥, it is possible 225 

to calculate other mixture properties (e.g., 𝜇𝑖 = (𝛿𝐴 𝛿𝑁𝑖)⁄
𝑇,𝑉,𝑁𝑖≠𝑗

). The association contribution is based on 226 

thermodynamic perturbation theory (TPT) (Wertheim, 1984), where by using intermolecular potential models 227 

(e.g., square well with variable range) and by adjusting their parameters (well depth and range), it is possible 228 

to fully characterize the strength of the associating sites.  229 
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 230 

Fig. 2. Schematic representation of Carbamate formation 231 

The idea is shown in Fig. 2 for the case of reaction (4) and (5), (Mac Dowell et al., 2010). In the new approach, 232 

the rate of reactions, the concentration of intermediate zwitterion, and its thermophysical properties are not 233 

formulated anymore. Instead, CO2 and MEA are represented as associating molecule chains with two and six 234 

associating sites, respectively. Then, the concentration of CO2 in association with two MEA molecules 235 

represents the actual CO2 loading of the solvent at different temperatures and pressures. The combination of 236 

rate-based modelling and representation of chemical reactions using statistical associating fluid theory (SAFT) 237 

provides a consistent modelling approach. The justification is that for solvents such as MEA and GCCmax, the 238 

rate of reaction is significantly faster than the heat and mass transfer phenomena. Therefore, the knowledge 239 

of the rate of reactions at the gas-liquid interface is unnecessary and the chemical equilibrium sufficiently 240 

describes the actual physical system behaviour. It is notable that in the case of solvents for which the reaction 241 

kinetics are not fast enough, this modelling approach may introduce approximations.  242 

This modelling approach offers several advantages; firstly unlike activity-based models, the same equation of 243 

state is used to describe both liquid and vapour phases. Secondly, the chemical equilibria are treated at the 244 

same level as phase equilibria. Furthermore, this approach results in significant model reduction because the 245 

speciation of intermediate ions is not included in the mathematical formulation and the uncertainties 246 

associated with their thermophysical parameters are disentangled from problem formulation. Most of all, the 247 

aforementioned approach establishes a connection between the chemical and physical behaviour of the 248 

mixture and the molecular structure of the involved materials. This is of particular importance to new solvents 249 
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as the required information can be acquired from the available data for the molecular segments of associating 250 

sites from literature experimental data. 251 

In the present research, rate-based gas-liquid contactors were developed based on a combination of two-film 252 

theory and statistical associating fluid theory for potentials of variable range (SAFT-VR). The applied software 253 

tools were advanced modelling library gas-liquid contactors (AML-GLC) and gSAFT toolboxes developed by 254 

Process System Enterprise Ltd (PSE). The parametric values of thermodynamic models for the GCCmax solvent 255 

are obscured in order to respect the confidentiality agreements with Carbon Clean Solutions Limited (CCSL) 256 

and Process System Enterprise (PSE). The underlying mathematical modelling of the gas-liquid contactors were 257 

similar to (MacDowell et al., 2013). The SAFT thermodynamic model and its application for modelling CO2 258 

capture solvent are described by MacDowell et al., (2010).  259 

3. Pilot plant operation and model validation 260 

In order to ensure effective benchmarking and model validation, two sets of pilot plant runs were conducted 261 

using the monoethanolamine (MEA) and GCCmax solvents. MEA served as the baseline reference solvent. The 262 

pilot plant studies were conducted in the US National Carbon Capture Center (NCCC) located in Alabama, USA. 263 

The capture process is shown in Fig. 3, which is based on a more detailed process flow diagram in (Gayheart et 264 

al., 2013). The column specifications for the capture process in the National Carbon Capture Center (NCCC) are 265 

reported in Table 1. The process description is as follows. Firstly, the pressure of the pre-scrubbed and cooled 266 

flue gas is increased via a blower and then is sent to the absorber column. In the absorber column, flue gas is 267 

brought in contact with the lean solvent, and the CO2 is chemisorbed into the solvent. The absorption process 268 

is exothermic and the released heat increases the solvent temperature. The solvent enriched with the 269 

absorbed CO2 is sent to the desorber column where the carbon dioxide is released through heating. Before, 270 

recycling the hot lean solvent to the absorber column for reuse, there is an opportunity for heat integration to 271 

the rich solvent. Additional cooling will be provided using cooling water. The solvent and water losses are 272 

compensated with adequate make-ups.  273 

Table 1. Column Specifications (Gayheart et al., 2013).  274 

Column  Packing Height of each bed (m) Diameter (m) Number of beds 

Absorber  Mellapakplus M252Y- Steel 6.1 0.66 3 
Desorber  Mellapakplus M252Y- Steel 6.1 0.61 2 

 275 
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 276 
Fig. 3. A representative flow diagram of the US Natural Carbon Capture Center (NCCC) CO2 capture pilot 277 

plant, Alabama, US (Gayheart et al., 2013). 278 

Table 2 shows the results of model validation. Since the NCCC pilot plant was not previously operated under 279 

natural gas exhaust conditions, the model validation was conducted based on historical data for a scenario of 280 

coal-fired exhausts. The last column in Table 2 reports the prediction of the model, when the process is 281 

operated under natural gas exhaust conditions. Table 2 shows a very good agreement between pilot plant data 282 

and simulation results, in terms of captured CO2, and the solvent composition. Minor discrepancies in the 283 

consumed steam are deemed to be associated with heat losses and temperature indicator errors. Table 3 284 

reports the results of the GCCmax solvent model validation under natural-gas-fired conditions. Two sets of 285 

pilot plant data were used, which essentially are different with respect to the lean solvent temperature 286 

entering the absorber top. The justification was due to the fact that in different parts of the world, cooling 287 

water may be supplied at different temperatures.  Again the model predictions are in very good agreement 288 

with the pilot plant data with respect to the captured CO2 and the solvent concentrations, giving confidence in 289 

the model’s predictive capabilities. Minor discrepancies in the required steam and temperatures were 290 

attributed to lack of insulation or temperature measurement errors. 291 
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Table 2. Model validation for MEA baseline solvent.  294 

  
Alabama-coal    Alabama-coal    Alabama NG 

    Pilot Plant Simulation  Simulation 

Flue gas to the absorber         

Nitrogen + Oxygen Mass  Fraction 0.786 0.786 0.909 

Carbon Dioxide Mass  Fraction 0.165 0.165 0.067 

Water Mass  Fraction 0.049 0.049 0.024 

Total flowrate kg/s 0.628 0.628 0.628 

Flue Gas Temperature - Absorber Inlet  K 316.56 316.56 316.56 

Lean Solvent - Absorber Inlet          

Amine Mass  Fraction 0.297 0.298 0.296 

CO2 Mass  Fraction 0.063 0.059 0.059 

Water Mass  Fraction 0.640 0.643 0.645 

Total kg/s 2.52 2.51 1.3 

Lean solvent   temperature K 316.15 316.15 316.15 

Intercoolers outlet temperature K 316.15 316.15  - 

Reboiler Steam          

Steam pressure bar 2.92 2.92 2.92 

Steam temperature K  405.6 405.6 405.6 

Steam flowrate kg/s 0.18 0.15 0.07 

Lean-Rich Heat Exchanger          

Lean in K 388.87 388.9 389 

Lean out K 331.4 338.9 330.8 

Rich in K 327.91 330.4 321.7 

Reboiler temperature K 385.6 388.0 389.0 

Absorber bottom pressure bar  1.1 1.17 1.16 

Absorber top pressure  bar  1.04 1.04 1.04 

Desorber bottom (reboiler) pressure  bar  1.71 1.71 1.16 

Desorber top pressure  bar  1.69 1.70 1.70 

General specifications     

CO2 capture efficiency  % 91.84 91.85 90 

Inter-stage Cooling  Yes Yes No 

  295 
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Table 3. Model validation for GCCmax solvent.  296 
  Data Set 1 Data Set 1 Data Set 2 Data Set 2 

Absorber inlet gas stream   Pilot Plant Simulation  Pilot Plant Simulation  

Nitrogen + Oxygen Mass Fraction 0.895 0.895 0.896 0.896 

Carbon dioxide Mass Fraction 0.065 0.065 0.065 0.065 

Water Mass Fraction 0.040 0.040 0.039 0.039 

Temperature K 313.1 313.1 312.8 312.8 

Total flowrate kg/s 0.995 0.995 0.9951 0.9951 

Absorber           

Absorber top pressure  bara 1.160 1.160 1.160 1.160 

Absorber bottom pressure  bara unavailable 1.224 unavailable 1.221 

Absorber outlet CO2 concentration Mass Fraction 0.0053 0.0056 0.004 0.005 

Lean solvent - absorber inlet temperature  K 304.1 304.1 325.4 325.4 

Rich solvent - absorber outlet temperature  K 318.1 316.5 318.7 316.1 

Lean solvent  flowrate kg/s 0.857 0.857 0.756 0.756 

Desorber (regenerator)            

Desorber  Bottom Temperature K 388.6 388.6 395.4 395 

Desorber  Top Pressure bara 1.701 1.708 2.031 2.03 

CO2 stream  kg/s 0.0578 0.0611 0.060 0.0605 

Reboiler Steam            

Steam pressure bar 3.606 3.605 4.075 4.075 

Steam temperature K 402.8 402.8 408.5 408.5 

Steam condensate Temperature K 401.9 401.9 407.8 407.5 

Steam flowrate kg/s 0.091 0.078 0.086 0.0823 

Lean-Rich Heat Exchanger Temperatures           

Lean solvent in K 387.4 388.6 394.2 395.0 

Lean solvent out K 325.0 322.6 324.7 327.4 

Rich solvent in K 318.9 316.5 319.9 316.1 

Rich solvent out K 380.4 379.9 384.0 379.9 

Lean solvent concentration           

GCCmax Solvent   Mass Fraction 0.410 0.410 0.439 0.439 

Water Mass Fraction 0.536 0.541 0.504 0.515 

CO2 Mass Fraction 0.054 0.049 0.057 0.046 

General specifications           

CO2 Capture Efficiency % 89.1 91.7 92.50 92.13 

Inter-stage Cooling   No No No No 

 297 
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The validated pilot plant model was used to extract several technical key process indicators (KPIs) which are 299 

important measures that quantify the difficulties associated with CO2 separation from the flue gas in terms of 300 

the required heating and cooling duties, required packing, and solvent circulation. These measures are scaled 301 

with respect to the amount of pure CO2 captured, to become independent of the pilot plant throughput and 302 

enable comparisons. Table 4 provides the comparisons between the solvents. This table reveals that compared 303 

to the MEA reference solvent, the GCCmax solvent requires 25.4-29.4% less steam for solvent regeneration in 304 

the reboiler, per ton of CO2. In addition, compared to the MEA reference solvent, the GCCmax solvent requires 305 

73-84.4% less cooling water in the condenser and intercooler. The volume of packing in the absorber and 306 

desorber columns also shows improvements in the case of the GCCmax solvent. Finally, the GCCmax solvent 307 

circulation is 58.8-64.7% less than MEA solvent circulation which implies significant reductions in the electricity 308 

power needed for solvent pumping. 309 

Table 4. Key process indicators (KPIs) for the GCCmax solvent and baseline MEA solvent  310 

Key Process Indicators (KPIs) Unit MEA GCCmax (Data1)  GCCmax (Data2)  

Heating duty  (MJ/ton CO2)  3986 2813 2975 

Cooling duty  (MJ/ton CO2) 5644 1524 884 

Volume of packing (m3/ton CO2 hr-1 ) 46.619 45.64 45.91 

Solvent circulation flow rate  (ton solvent/ton CO2) 34 14 12 

 311 

4. Solvent performance optimization 312 

The last part of the present research was concerned with model-based optimization of the carbon capture 313 

process. Having validated the process model using pilot plant data, we wished to explore the improvement 314 

opportunities and the significance of various investment and operational decisions. Three scenarios were 315 

studied: 316 

In Scenario (1), the dimensions of process equipment and operating conditions were optimized 317 

simultaneously. This scenario represents the case where the plant is built for the first time.  318 

In Scenario (2), the dimensions of process equipment are fixed and only the operating conditions are 319 

optimized. This study is concerned with the scenario where an existing process is adapted to a new 320 

solvent.  321 
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In Scenario (3), similar to the second scenario, the dimensions of process equipment are fixed. However, 322 

operating conditions and the GCCmax solvent blend composition are optimized simultaneously. This 323 

scenario highlights the implication of the solvent optimization for energy saving.  324 

In the first scenario, the objective function was the Total Annualized Costs because: 325 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 =  
𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝑃𝑙𝑎𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑖𝑓𝑒
 + 𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠          (9) 326 

However, since in the second and third scenarios the equipment dimensions are fixed, the first right-hand-side 327 

term of the above equation is constant and only Total Annual Energy Costs are optimized. In equation (9), the 328 

value of 5 years were considered for the plant life cycle, in order to incorporate interest rate and the time 329 

value of money. The costs of process equipment were calculated according to the costing correlations 330 

provided in (Couper et al., 2012). Lang factor of 6 was considered for estimating the total capital investment 331 

(Peters et al., 2004). The considered utility costs were 37.02 $/MWh for electricity (Electricity Wholesale 332 

Market 2015), 0.048 $/tonne for cooling water (Ulrich and Vasudevan, 2006), and 14.5 $/tonne for steam. Two 333 

additional constraints were considered: 334 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 = 90%                                                                                                                                 (10) 335 

𝑅𝑒𝑏𝑜𝑖𝑙𝑒𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 <  120 𝑜𝐶                                                                                                                (11)          336 

The first constraint ensures that 90% CO2 is captured from the flue gas. The second constraint limits the 337 

maximum reboiler temperature in order to avoid solvent degradation. Table 5 presents the results of 338 

optimization. A comparison between Scenario (1) in which process equipment was being optimized and the 339 

other two scenarios, suggests that the size of the pilot-plant absorber and desorber columns was larger than 340 

the required values. This is an intuitive observation, because pilot plants are often to an extent overdesigned 341 

in order to allow a variety of solvent testing. In the first scenario, the heating and cooling duties are slightly 342 

higher than the other two scenarios, as they were optimized in conjunction with capital investment. In the 343 

other two scenarios, the process equipment items were fixed and the optimizer took the opportunity to 344 

exploit process equipment for energy saving. It is notable that there is a significant energy saving when the 345 

solvent composition and operating conditions were optimized simultaneously, which illustrates the 346 

importance of solvent control and optimization during process operation.  347 
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Table 5. Optimization results  349 

  Scenario (1) Scenario (2) Scenario (3) 

Optimization objective 
function   

Total annualized 
costs 

Annualized energy 
costs 

Annualized energy 
costs 

Optimization variables  Equipment size and 
operating 
conditions 

Operating conditions 
only 

Operating conditions 
and solvent 
composition 

Flue gas to absorber  
 

 
  

H2O mass fraction 0.0388 0.0388 0.0388 

CO2 mass fraction 0.0651 0.0651 0.0651 

N2 mass fraction 0.7320 0.7320 0.7320 

O2 mass fraction 0.1640 0.1640 0.1640 

Pressure  Pa 1.22E+05 1.22E+05 1.22E+05 

Temperature K 312.8 312.8 312.8 

Flowrate  kg/s 0.995 0.995 0.995 

Absorber diameter  m 0.5 0.66 0.66 

Absorber height  m 9 18.3 18.3 

Lean Solvent to absorber 
 

 
  

Flowrate  kg/s 0.787 0.874 0.739 

Temperature K 324.2 319.9 320.2 

Composition  
 

 
  

H2O mass fraction 0.5390 0.5390 0.5470 

CO2 mass fraction 0.0517 0.0517 0.0444 

GCCmax mass fraction 0.4093  0.4093 0.4086* 

Reboiler temperature  K 398 398 398 

Reboiler steam pressure Pa 4.07E+05 4.07E+05 4.07E+05 

Reboiler steam temperature K 408.5 408.5 408.5 

Reboiler Steam flowrate kg/s 8.325E-2 7.22E-02 6.282E-2 

Lean-Rich heat exchanger  
 

 
  

Lean in  K 398 398.0 398.0 

Lean out K 325.3 321.0 321.2 

Rich in K 317.6 316.3 317.2 

Rich out K 386.7 390.0 390.0 

Condenser temperature  K 301.3 301.3 301.5 

Desorber condenser duty W 58909.5 49195.7 43096.1 

Lean solvent cooler duty  W 2152.89 2374.1 1936.87 

The total cooling duty W 61062.39 51569.8 45032.97 

The heating (Reboiler) duty  W 176845 152554 132781 

CO2 Capture  
 

90% 90% 90% 

* The mass fractions of the ingredients of the GCCmax solvent were optimized, with a variation of over 50% in 350 
some mass fractions.   351 
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5. Conclusions  352 

This paper presented integrated modelling and pilot plant studies in order to benchmark alternative carbon 353 

capture solvents, along with key performance indicators (KPIs) to support comparison. The proposed 354 

methodology was used to study the technical and energetic performances of GCCmax, a new amine-promoted 355 

buffer salt (APBS) solvent, developed by Carbon Clean Solutions Limited (CCSL). In order to obtain meaningful 356 

results, a high fidelity model was developed based on rate-based modelling of absorption and desorption 357 

columns, in addition to modelling thermodynamic and reaction phenomena based on statistical associating 358 

fluid theory (SAFT). The developed model was validated using pilot plant data, with very good agreements 359 

between predicted and reconciled data. Detailed comparisons were made based on several key process 360 

indicators which quantify the difficulties associated with CO2 capture and include: the required heating duty, 361 

cooling duties, volume of column packing and the solvent circulation rate. The comparisons between key 362 

process indicators (KPIs) established the superior performance of the new GCCmax solvent in comparison with 363 

the MEA baseline solvent. The last part of this paper explored the opportunities for further improvement of 364 

the solvent performance via optimization. The studied scenarios were comprehensive and included (1) 365 

designing a new process, (2) retrofitting an existing process using a new solvent and (3) optimizing the solvent 366 

composition and the operating conditions of an existing process. While the presented methods are applied for 367 

the new GCCmax solvent and the MEA reference solvent, the research methodology is general in nature and 368 

can provide an effective standard for solvent comparisons.  369 

The present research illustrated the application modelling and pilot plant studies for optimization of the 370 

solvent performance. In the future studies, we will apply the developed model for scale up and power plant 371 

integration based on the methodology of integrated process design and control (Sharifzadeh 2013a) using 372 

inversely controlled process models (Sharifzadeh 2013b; Sharifzadeh and Thornhill 2012, 2013 ).  373 
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