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Abstract  7 

Coal is the most abundant fossil fuel on the planet. However, power generation from coal results in large 8 

amounts of greenhouse gas emissions. Solvent-based carbon capture is a relatively mature technology which 9 

can potentially mitigate these emissions. Although, much research has been done on this topic, single-point 10 

performance analysis of capture plant ignoring operational characteristics of the upstream power plant may 11 

result in unrealistic performance assessments. This paper introduces a new methodology to assess the 12 

performance of CO2 capture solvents. The problem is posed as retrofitting an existing pulverised coal power 13 

plant with post-combustion carbon capture using two solvents: CDRMax, a recently developed amine-promoted 14 

buffer salt (APBS) solvent by Carbon Clean Solutions Limited (CCSL) and the monoethanolamine (MEA) baseline 15 

solvent. The features of interest include model development and validation using pilot plant data, as well as 16 

integrated design and control of the capture process. The emphasis is on design and operation of the capture 17 

plant, when integrated with the upstream coal-fired power plant, subject to variations in the electricity load. 18 

The results suggest that optimal design and operation of capture plant can significantly mitigate the energetic 19 

penalties associated with carbon capture form the flue gas, while providing effective measures for comparing 20 

solvent performances under various scenarios.   21 
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1. Introduction 26 

The International Energy Agency (IEA) asserts that fossil fuels will remain the dominant sources of energy for a 27 

foreseeable future [1]. While coal is the most abundant source of fossil fuel on the planet, its exploitation for 28 

power generations results in large amount of greenhouse gas emissions.  29 

Post-combustion solvent-based carbon capture is an end-of-pipe technology which can be integrated with the 30 

power plants and reduce CO2 emissions. This technology is already well-established for natural gas sweetening 31 

[2] (with differences in operating conditions) and compared to other capture technologies, requires minimal 32 

process modifications. Therefore, retrofitting the existing power generation stations with post-combustion 33 

solvent-based carbon capture has been the focus of academic and industrial researchers. Recently a team of 34 

European researchers studied post-combustion from advanced supercritical pulverized coal power plants [3].  35 

They reported a 12% reduction in the overall energy conversion efficiency, when 86.3% of the produced CO2 is 36 

captured. Similarly, the National Energy Technology Laboratory (NETL) in the US conducted a study [4] on carbon 37 

capture from pulverized coal Rankine cycle power plants. About 10.9% reduction in the overall energy 38 

conversion efficiency was reported when 90% of CO2 was separated from the flue gas. In addition, a significant 39 

increase in the required cooling water was observed. Desideri and Antonelli [5] proposed a simplified method 40 

for evaluation of the performance of coal-fired power plants when integrated with a CO2 capture plant. They 41 

observed that depending on the coal type, the flue gas composition and CO2 flowrate can change by up to 9% 42 

and 12%, respectively. They concluded that the overall conversion efficiency decreases with the solvent specific 43 

heat of regeneration, percentage of the carbon in the coal and the percentage of the CO2 removal from the flue 44 

gas. The costs of 90% CO2 removal was estimated to lie between 64 $/tonne CO2 and 44 $/tonne CO2 resulting 45 

in almost 100% increase in the cost of electricity (COE). Recently, Manzolini et al. [6] investigated the economic 46 

performance of a supercritical coal power plant and a natural gas combined cycle power plant. Their economic 47 

analysis methods were based on (1) historical data from similar projects, and (2) detailed costing analysis based 48 

on process flowsheeting, mass and energy balances. The significant difference between the results of two 49 

methodology (table 7 of that publication), illustrated the challenges associated with economic analyses. Goto et 50 

al. [7] studied post-combustion carbon capture from various co-fired power plants. they concluded that the 51 

efficiency losses associated with CO2 capture were around 10% and do not depend on the type (e.g., sub-critical, 52 

supercritical and ultrasupercritical) of steam cycle system. Hammond and Spargo, [8] discussed carbon capture 53 
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from coal-fired power plants in the UK, where they reported the value 35.3 $/tonne for the undiscounted cost 54 

of avoided CO2. They suggested that the introduction of a “floor price” for carbon can potentially make carbon 55 

capture technologies economic. Wang and Du [9], studied the economic viability of carbon capture and storage 56 

(CCS) from coal-fired power plants in China using the real options approach. They concluded that between 57 

various sources of uncertainties such as the carbon price, fossil fuel price, investment cost and government 58 

subsidies, the latter has the most significant effect in economic. Recently, Damartzis et al. [10] applied a module-59 

based generalized design framework for synthesizing the configuration of CO2 capture process.  The optimization 60 

decisions included the stream topologies, the heat redistribution and the cascades of desorption columns for 61 

several commercially available solvents. They reported significant potential for economic improvement (15%-62 

35%) and reductions in the reboiler duty (up to 55%). 63 

Furthermore, researchers in the field have focused on power plant efficiency and the method of process 64 

integration from a thermodynamic point of view. Efficient operation of power plants can significantly reduce the 65 

CO2 emissions. Fu et al. [11] identified combustion reactions, heat transfer between flue gas and water/steam, 66 

low temperature heat losses, and the steam cycle as the causes of irreversibilities in coal-fired power plants. By 67 

including these irreversibilities in their exergy analyses, they quantified the theoretical maximum as well as 68 

practical values for energy efficiency of the power plant. They concluded that solvent-based CO2 capture is the 69 

second most important cause of efficiency loss after combustion irreversibilities. Oexmann et al. [12] analysed 70 

post-combustion carbon capture from coal-fired power plants. They argued that the operational setting which 71 

minimizes the solvent regeneration energy may not be necessarily optimal with respect to the overall energy 72 

efficiency.   73 

The method of integrating the capture process into the power plant affects the overall energy efficiency.  Using 74 

heat integration and pinch analysis, Hanak et al. [13] suggested that 78.4% of the steam between the 75 

intermediate and low pressure steam turbines is needed for solvent regeneration. They conducted pinch analysis 76 

in order to analyse five heat integration schemes. Heat recovery from the fuel gas was identified as the most 77 

important energy-saving opportunity. Olaleye et al. [14] studied the implication of various processing units for 78 

exergy destruction. They compared process configurations including absorber with intercooler, split-flow to 79 

desorber, and a combination of both. The last scenario showed the most significant potential for reducing the 80 

exergy destruction.  81 
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The heat integration schemes investigated in the literature include the method of steam extraction and 82 

condensate recycling [15], integrating compressor inter-coolers to the low pressure section of the steam cycle 83 

[16] or stripper reboiler [17], preheating combustion air using waste heat from the capture plant [18], and 84 

application of pressurized hot water instead of steam for solvent regeneration [19,20]. Furthermore, the CO2 85 

concentration of the flue gas can be increased by recirculation of the exhaust gases [19, 21, 22] or using a 86 

supplementary burner placed in the duct connecting the turbine exhaust and heat recovery steam generation 87 

(HRSG) system [21-23]. Other researchers have explored the implications of the process configuration on the 88 

capital investment and energy costs. It was shown that depending on the solvent heat of desorption, either a 89 

multi-pressure or vacuum desorber could be the optimal configuration [24]. Other configurations include the 90 

absorber with intercooling, condensate heating, evacuation using water ejector, stripper overhead compression, 91 

lean amine flash, split-amine flow to absorber and desorber, and their combinations. Le Moulleca, et al. [25] 92 

classified these configurations into three categories of (1) absorption enhancement, (2) heat integration and (3) 93 

heat pump applications. They enumerated twenty process configurations from the open literature and patents. 94 

In general, up to 37% energy saving in terms of the required reboiler steam was reported [26]. Recently, Wang 95 

et al., [27] reviewed the methods for process intensification. They concluded that a rotating packed bed (RPB) 96 

absorber/stripper can result in energy-saving due to enhanced transport phenomena. Karimi, et al [28], argued 97 

that a high degree of energy integration may result in poor dynamic behaviour, because in energy integrated 98 

processes, disturbances propagate in several paths. Therefore, a trade-off between energy saving and process 99 

controllability should be established [29].  100 

Nevertheless, integrated operation of carbon capture processes may not be realizable without considering the 101 

main operational characteristics of the upstream power plants. Power plants are subject to drastic variations in 102 

the electricity demand. Examples of such variations include regular daily and hourly variations in the consumer 103 

demand or stochastic variations, for example due to extreme weather conditions or local events. It is expected 104 

that by the introduction of renewable energy resources, the fluctuations in the electricity grid will also increase 105 

on the supply side, as some of these new resources such as solar or wind have intermittent generation 106 

characteristics. Therefore, it is for the fossil-based power plants to operate flexibly and balance the supply deficit 107 

in order to meet the demand. Therefore, commercialization of new CO2 capture technologies strongly depends 108 

on their adaptability in order to remain integrated as the upstream power plant experiences variations in the 109 
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electricity demand. Recently, the flexibility of solvent-based carbon capture processes has been the focus of 110 

various research groups. Brouwer et al. [30] constructed prospective scenarios for power generation including 111 

renewable resources. They concluded that in future the power plants will encounter up to 38% higher variability 112 

in the residual load, which will result in about 1.6% reduction in their efficiency.  Shah and Mac Dowell [31] 113 

studied the multi-period operation of a coal-fired power plant. They adapted a time-varying solvent 114 

regeneration strategy in order to minimize the costs of CO2 capture. Delarue, et al. [32] had a similar observation 115 

that flexible operation of capture plant would offer a better economy. Van der Wijka et al. [33] argued that the 116 

main benefit of flexible operation of carbon capture process is significant increase in the up reserve provision. 117 

Venting is economically attractive only if CO2 price is less than 41 €/tonne (45 $/tonne). Solvent storage of up to 118 

2 hours was also found economic. Oates et al. [34] demonstrated that flexible operation of capture process 119 

allows undersizing the regenerator, offering 35% reduction in total costs. Lawal, et al. [35] studied the dynamic 120 

performance of carbon capture from a coal-fired sub-critical power plant. They concluded that the capture plant 121 

has a slower dynamic response than the power plant, which can prolong the power plant start-up or load-change 122 

due to steam extraction.  In addition, it was observed that the interactions between the control loops in the 123 

power plant and capture plant limit the overall process controllability. Bypassing the flue gas, solvent storage 124 

and stripper-bypass can potentially offer flexibility and economic savings [36, 37]. 125 

The key observation in all the aforementioned studies is that the power plant and capture plant have mutual 126 

interactions in terms of the flue gas flowrate and composition on one side and the steam required for solvent 127 

regeneration and condensate recycling on the other side. In addition, conversion efficiency of the overall system 128 

is a strong function of deviation from full-load operating point and steam extraction for solvent regeneration. 129 

Therefore, single point performance analyses may be misleading and the design and operation of capture 130 

processes must consider the uncertainties in the upstream power plant in terms of operational flexibility and 131 

variations in the electricity load. In the present paper, we explore model development and validation, scale-up, 132 

power plant integration and flexible operation of the capture processes. The research questions also include the 133 

interactions between the power plant and carbon capture plant, which have implications for the overall energy 134 

efficiency and operational flexibility. The study is tailored to the CDRMax (an amine-promoted buffer salt, APBS) 135 

solvent, recently developed by Carbon Clean Solutions Limited (CCSL) and the MEA reference solvent. However, 136 

the research methodology is general in nature and can offer effective standards for carbon capture performance 137 
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analysis and solvent comparison. The rest of the paper is organized as follows. Firstly, the overall process block 138 

diagram and the process flow diagram of the power plant and capture plant are presented and discussed. Then, 139 

the capture process model is developed and validated using pilot plant data. These enable the application of an 140 

optimization framework for the problem of retrofitting an existing coal-fired power plant using solvent-based 141 

capture process. Finally conclusions are made with respect to the implications CDRMax and MEA reference 142 

solvent in terms of technical and energetic performance measures.    143 

2. Overall process block diagram  144 

The overall process block diagram is shown in Figure 1. This figure shows that the coal-fired power plant 145 

integrates with the carbon capture plant at three points. The flue gas is sent from the power plant to the capture 146 

plant for CO2 separation. In addition, the capture plant relies on the steam from the power plant for regeneration 147 

of the solvent and it returns the condensates to the power plant for reuse and further steam generation. 148 

Compression of the separated CO2 also requires electricity from the power plant.  149 

 150 

Figure 1. The block diagram for a pulverized power plant (PCPP) integrated with CO2 capture and CO2 compression 151 

processes 152 

2.1. Process flow diagram of pulverized coal power plant (PCPP) 153 

Figure 2 shows the process flow diagram of the pulverized coal power plant (PCPP), in more detail. This process 154 

consists of a coal-fired steam generation system in which the heat released from combustion of coal is used for 155 

steam generation at supercritical conditions. Then, the generated steam is sent to the high pressure (HP) steam 156 

turbine for electricity generation. The exiting steam from the HP turbine is superheated using hot combustion 157 

gases before being sent to the medium pressure steam turbine. A part of the exiting steam from the medium 158 

pressure turbine is sent to the super-heater where its pressure and temperature are adjusted by mixing with the 159 
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returning condensates before sending to the capture plant for solvent regeneration. The rest is fed to the low 160 

pressure steam turbine for electricity generation.  Both HP and MP turbines are of the back-pressure type. 161 

However, the LP turbine is a condensing turbine. The justification of using a condensing turbine is that the 162 

produced power is proportional to the pressure ratio between suction and discharge. Therefore, it is possible to 163 

enhance the produced work by creating vacuum conditions at the turbine discharge using a surface condenser. 164 

The condensates from the surface condenser and the condensates returning from the carbon capture plant are 165 

mixed, pressurized and recycled to the steam drums for further steam generation. 166 

The flue gas is pre-treated before being sent to the capture process. The pre-treatment steps include a selective 167 

catalytic reduction (SCR) unit, followed by an electrostatic precipitator unit, followed by a flue gas 168 

desulphurization unit. In the SRC unit, the content of oxide and nitrogen dioxide of the flue gas are reduced to a 169 

certain level (10%). The involved reactions are: 170 

4𝑁𝑂 +  4𝑁𝐻3  +  𝑂2  →  4𝑁2  +  6𝐻2𝑂  171 

𝑁𝑂 +  𝑁𝑂2  +  2𝑁𝐻3  →  2𝑁2  +  3𝐻2𝑂  172 

The electrostatic precipitator unit removes the particles in order to ensure a certain level of ash concentration, 173 

e.g., 90% removal.  174 

The desulphurization unit removes the sulphur oxide according to the following reaction with limestone.  175 

𝐶𝑎𝐶𝑂3  + 𝑂2  +  2𝐻2𝑂 +  𝑆𝑂2  →  𝐶𝑎𝑆𝑂4 + 2𝐻2𝑂 +  𝐶𝑂2 176 

2.2. Process flow diagram of CO2 capture and compression sections  177 

Figure 3 shows the process flow diagram of the CO2 capture and compression sections. In the first column, the 178 

flue gas from the power plant comes into direct contact with cooling water in order to reduce its temperature 179 

and remove any entrained particles. In the next column, absorber, the CO2 is chemisorbed from the flue gas 180 

using the solvent. The CO2 rich solvent leaves the absorber from bottom. The cleaned flue gas exits from the 181 

absorber top and is sent to the water wash column. The aim of the water wash column is minimizing the solvent 182 

loss by absorbing the solvent spilled from the absorber top. The CO2-rich solvent from the bottom of the 183 

absorber is sent to the top of the desorber for CO2 stripping and solvent regeneration. The CO2-lean solvent from 184 

the desorber reboiler is recycled to the absorber for reuse and CO2 separation. The absorption reactions are 185 

exothermic and favour low temperatures. By comparison, the desorption reactions are endothermic and favour 186 

high temperatures. Therefore, there is an opportunity for heat integration between the hot CO2-lean stream 187 
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and the cold CO2-rich stream. The separated CO2 from the desorber condenser is sent to the compression 188 

section. The compression section consists of seven compression stages. In each compression stage, due to 189 

pressure enhancement, the temperature of the CO2 gas is increased, and needs to be cooled in the subsequent 190 

inter-stage cooler. As a result of sequential pressure enhancement and cooling, most of the water content of 191 

the CO2 stream is condensed in the early stages. The remaining water is removed using an adsorption process 192 

in the dehydrators. The compressed CO2 is sent from the last stage for storage and sequestration.  193 

3. Research methodology  194 

In the following, firstly the problem statement for retrofitting a pulverized coal power plant with carbon capture 195 

and compression is presented. Then, model development and validation for the CO2 capture process are 196 

discussed. The capture process model is scaled up and integrated to the power plant model. Then, an 197 

optimization framework is proposed to address the power plant retrofit problem. The main feature of interest 198 

is uncertainties in the power plant electricity demand that require flexible operation of the capture process in 199 

order to realize seamless process integration and retrofit. Finally, the implementation software tools are 200 

elaborated upon.  201 

3.1. Problem statement  202 

The present research addresses the problem of optimally retrofitting an existing pulverized coal power plant 203 

(PCPP) using solvent-based carbon capture, followed by CO2 compression. The specifications of an existing PCPP 204 

including the nominal operating conditions and the performance curves of process equipment under various 205 

partial load scenarios are given. It is intended to retrofit the power plant, so that 90% of the CO2 from coal 206 

combustion is captured and compressed to 111 bar. In addition, it is desired to ensure that the capture plant 207 

and its compression network remain operable at a wide range (i.e., 50%-100%) of electric power demands.   208 
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Figure 2. The process flow diagram of the pulverized coal power plant (PCPP) 210 
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Figure 3. The process flow diagram of the CO2 capture and CO2 compression processes 212 
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3.2. Capture plant model development and validation 213 

The accurate modelling of the solvent-based CO2 capture processes for the purpose of solvent benchmarking 214 

and comparison requires a thorough understanding of the underlying physical and chemical phenomena. The 215 

present research benefits from rate-based modelling of gas-liquid contactors (i.e., absorber and desorber) and 216 

representation of reaction equilibria using the statistical associating fluid theory (SAFT), as discussed in the 217 

following.  218 

3.2.1. Rate-based modelling of gas-liquid contactors  219 

The rate-based model of the gas-liquid contactor is based on the two-film theory, as shown in Figure 4. Here, 220 

thermodynamic equilibrium is assumed only at the interface of vapour and liquid phases. Unlike equilibrium-221 

based models, the exiting vapour phase is superheated and the exiting liquid phase is subcooled and they have 222 

different temperatures. The exchanged mass and energy between phases depend on the driving forces, 223 

transport coefficients, and the interfacial areas. Often, both convective and diffusive transport phenomena are 224 

involved and component-coupling effects need to be considered [38]. Various empirical correlations for 225 

calculating the mass transfer coefficient are proposed by researchers for random [39-41] and structured 226 

packings [41-43]. Finally, the bulk liquid and gas phases may have different flow configurations such as plug or 227 

mixed flows.  228 

 229 

Figure 4. Two-film model used for modelling rate-based absorption and desorption of CO2 into and from solvent, [51]. 230 
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3.2.2. Reaction kinetics and thermodynamics  231 

A full space rate-based representation of CO2-solvent gas-liquid contactors requires detailed modelling of 232 

underlying chemical reactions and phase equilibrium conditions. For the case of CO2 capture using 233 

alkanolamines, this would require modelling a series of speciation reactions as follows [44]:  234 

2H2O ⇋ H3O+ + OH−                                                                                                                                                 (1) 235 

CO2  +  H2O ⇋ HCO3
− + H+                                                                                                                                     (2) 236 

CO2  +  OH−  ⇋ HCO3
−                                                                                                                                               (3) 237 

CO2  +  RNH2  ⇋ RNH2
+CO2

−                                                                                                                                  (4) 238 

RNH2
+CO2

− +  RNH2 ⇋ RNHCO2
− + RNH3

+                                                                                                      (5) 239 

RNHCO2
− +  H2O ⇋ RNH2 + HCO3

−                                                                                                                     (6) 240 

where for the case of MEA, R=HO-CH2-CH2- . In the scheme above, reaction (1) represents water hydrolysis, 241 

reactions (2) and (3) are concerned with carbonic acid and bicarbonate formation, respectively. Reaction (4) 242 

represents the Zwitterion formation and reaction (5) is base catalysis. The two latter reactions are highly coupled 243 

as carbamate and protonated amines are tightly bonded. Therefore, reaction (4) and (5) can be shown abstractly 244 

as:  245 

CO2  +  2RNH2  ⇋ [RNHCO2
− + RNH3

+]                                                                                                            (7) 246 

Reaction (7) is a reversible acid-base neutralization reaction. In this reaction, absorption of CO2 in alkanolamine 247 

solvent is exothermic; hence, it is possible to liberate CO2 by heating the CO2-rich solvent mixture and driving 248 

the reaction to left. Therefore, in theory, it is possible to regenerate the alkanolamine and recycle it for reuse in 249 

the absorber. In practice, a small amount of solvent make-up is supplied to compensate the losses associated 250 

with the solvent escape and degradation reactions.  251 

Various thermodynamic models were proposed by researchers in order to describe the thermophysical 252 

properties of the mixture of CO2 absorbed into alkanolamines. These methods can be broadly classified to (1) 253 

activity-based models (derived from the Gibbs free energy), and (2) equation of state models (derived from the 254 

Helmholtz free energy). A frequently used activity-based model is Electrolyte Non-Random Two-Liquid (E-NRTL) 255 

model in which the activity coefficient expressions of the original NRTL model are modified, and certain 256 

constraints regarding local like-ion repulsion and electroneutrality are imposed [45]. An alternative activity-257 

based model is the Extended UNIQUAC model where the original UNIQUAC model was modified to account for 258 

ionic interactions [46]. A limitation of the aforementioned models is that they only describe the liquid phase and 259 
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a separate equation of state (e.g., Soave–Redlich–Kwong equation of state in the reference [46]) should be 260 

applied for modelling the vapour phase. Alternatively, researchers attempted to use equations of state which 261 

can consider the presence of ionic components [47]. More recently, application of equations of state which are 262 

able to accommodate chemical equilibria such as association between molecules, has been the focus of various 263 

research groups [48- 50]. Here, the treatment is based on statistical associating fluid theory (SAFT), in which the 264 

Helmholtz free energy is correlated to the intermolecular association between the molecule segments [30]: 265 

𝐴𝑚𝑖𝑥

𝑁𝑘𝑇
=

𝐴𝐼𝐷𝐸𝐴𝐿

𝑁𝑘𝑇
+

𝐴𝑀𝑂𝑁𝑂

𝑁𝑘𝑇
+

𝐴𝐶𝐻𝐴𝐼𝑁

𝑁𝑘𝑇
+

𝐴𝐴𝑆𝑆𝑂𝐶

𝑁𝑘𝑇
                                                                                               (8) 266 

In above, 𝑁 refers to the number of molecules, 𝑘 is the Boltzmann constant and 𝑇 is the mixture temperature. 267 

On the right hand side, the first term represents the ideal Helmholtz free energy and the three other terms refer 268 

to the residual contributions due to monomer interactions, formation of chains, and intermolecular interaction 269 

between associating sites. Then, given the Helmholtz free energy of the mixture, 𝐴𝑚𝑖𝑥, it is possible to calculate 270 

other mixture properties (e.g., 𝜇𝑖 = (𝛿𝐴 𝛿𝑁𝑖)⁄
𝑇,𝑉,𝑁𝑖≠𝑗

). The association contribution is based on thermodynamic 271 

perturbation theory (TPT) [50], where by using intermolecular potential models (e.g., square well with variable 272 

range) and by adjusting their parameters (well depth and range), it is possible to fully characterize the strength 273 

of the associating sites. The idea is shown in Figure 5 for the case of reaction (4) and (5) [44]. In this approach, 274 

the reaction equilibria, the concentration of intermediate Zwitterion, and its thermophysical properties are not 275 

formulated anymore. Instead, CO2 and MEA are represented as associating molecule chains with two and six 276 

associating sites, respectively. Then, the concentration of CO2 in association with two MEA molecules represents 277 

the actual CO2 loading of the solvent at different temperatures and pressures. The combination of rate-based 278 

modelling and representation of chemical reactions using statistical associating fluid theory (SAFT) provides a 279 

consistent modelling approach. The justification is that for solvents such as MEA and CDRMax, the rate of 280 

reaction is significantly faster than the heat and mass transfer phenomena. Therefore, the knowledge of the rate 281 

of reactions at the gas-liquid interface is unnecessary and chemical equilibrium at the liquid-gas interface 282 

sufficiently describes the actual physical system behaviour.  283 
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 284 

Figure 5. Schematic representation of Carbamate formation, [51] 285 

This modelling approach offers several advantages, [51]; firstly unlike activity-based models, the same equation 286 

of state is used to describe both liquid and vapour phases. Secondly, the chemical equilibria are treated at the 287 

same level as phase equilibria. Furthermore, this approach results in significant model reduction because the 288 

speciation of intermediate ions is not included in the mathematical formulation and the uncertainties associated 289 

with their thermophysical parameters are disentangled from problem formulation. Most of all, the 290 

aforementioned approach establishes a connection between the chemical and physical behaviour of the mixture 291 

and the molecular structure of the involved materials. This is of particular importance to modelling new solvents 292 

as the required information can be acquired from the available data for the molecular segments of associating 293 

sites. 294 

In the present research, rate-based gas-liquid contactor models were developed based on a combination of two-295 

film theory and statistical associating fluid theory for potentials of variable range (SAFT-VR). The applied 296 

software tools were advanced modelling library gas-liquid contactors (AML-GLC) and gSAFT toolboxes developed 297 

by Process System Enterprise Ltd (PSE). The parametric values of thermodynamic models for the CDRMax are 298 

obscured in order to respect the confidentiality agreements with Carbon Clean Solutions Limited (CCSL) and 299 

Process System Enterprise Ltd (PSE). The aim of the present research is first to develop and validate an 300 

appropriate model using pilot plant data, then to evaluate the performance of the CDRMax solvent in 301 

comparison with the MEA benchmark solvent, at a large scale and when integrated optimally with a pulverized 302 

coal power plant.  303 
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3.2.3. Pilot plant studies and model validation 304 

In order to ensure effective benchmarking and model validation, three pilot plant runs were conducted using 305 

the CDRMax solvent at the TNO pilot plant, in the Netherlands [52]. The benchmark for the MEA reference 306 

solvent was selected from historical data from the US National Carbon Capture Center (NCCC) pilot plant located 307 

in the Alabama, USA. The column specifications for the TNO pilot plant and the US NCCC pilot plant are reported 308 

in Table 1. Table 2 shows the results of model validation for the CDRMax solvent. The different datasets have 309 

different solvent compositions. The model predictions are in very good agreement with the pilot plant data with 310 

respect to the captured CO2 and the solvent concentrations, giving confidence in the model’s predictive 311 

capabilities. Minor discrepancies in the required steam and temperatures were attributed to lack of insulation 312 

or temperature measurement errors. Similarly, Table 3 shows very good agreement between the plot plant data 313 

and the simulation predictions for the case of the MEA solvent.  314 

Table 1. Column Specifications, [52, 53].  315 

Column  Packing Height of each bed (m) Diameter (m) 
Number of 
beds 

TNO pilot plant     
Absorber  IMTP 50 - Random 2.1 0.65 4 

Desorber  IMTP 50 - Random 4.1 0.45 2 

US NCCC pilot 
plant 

    

Absorber  Mellapakplus M252Y- Structured 6.1 0.66 3 

Desorber  Mellapakplus M252Y- Structured 6.1 0.61 2 

  316 
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Table 2. Model validation for the CDRMax solvent.  317 

 unit 
Data Set 
#1 

Simulation 
Data Set 
#2 

Simulation 
Data Set 
#3 

Simulation 

Flue gas to the absorber       

Flowrate kg/s 0.425 0.4246 0.36176 0.36176 0.3622 0.3622 

Temperature K 315.22 315.22 315.85 315.85 313.55 313.55 

Pressure  Pa  104325 104325 104325 104325 104325 104325 

O2 + N2 mol fraction 0.81 0.81 0.81 0.81 0.81 0.81 

CO2 mol fraction 0.107 0.107 0.107 0.107 0.107 0.107 

H2O mol fraction 0.083 0.083 0.0835 0.0835 0.081 0.081 

Reboiler        

Pressure Pa 191325 191454 181325 180751 171325 171494 

Temperature K 392.15 392.7 391.05 390.557 387.35 387.058 

Duty J/s 184005 184004 199054 198959 180003 180002 

Condenser        

Pressure Pa 189325 190325 179325 180325 169325 169368 

Temperature K  296.15 296.16  296.15 296.15  296.15 296.15 

Lean solvent to the absorber       

Flowrate kg/s 0.861 0.864 0.833 0.838 1.0556 0.98 

Temperature K 301.15 301.15 300.15 300.15 313.15 313.15 

CO2 mass fraction 0.043 0.043 0.029 0.029 0.045 0.045 

H2O mass fraction 0.523 0.523 0.615 0.615 0.595 0.595 

CDRMax mass fraction 0.435 0.435 0.356 0.356 0.361 0.361 

Cleaned flue gas       

CO2 mol fraction 0.011 0.023 0.0074 0.010 0.017 0.024 

O2 mol fraction 0.089 0.099 0.073 0.078 0.0675 0.095 

N2 mol fraction 0.768 0.749 0.7839 0.723 0.8145 0.738 

H2O mol fraction 0.132 0.128 0.1357 0.189 0.101 0.142 

CO2 recovered kg/s 0.0592 0.0599 0.0528 0.0533 0.05 0.0506 

Capture rate % 86.5 86.5 90.4 90.4 85.7 85.7 

 318 
 319 
 320 

 321 

  322 
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Table 3. Model validation for MEA baseline solvent.  323 
    Pilot Plant Simulation #1  Simulation #2 

Flue gas to the absorber         

Flowrate  kg/s 0.6279 0.6280 0.6280 

Temperature  K 316.56 316.56 316.56 

Pressure Pa    

N2 +O2 Mass  Fraction 0.7862 0.7860 0.7860 

CO2 Mass  Fraction 0.1650 0.1650 0.1650 

H2O Mass  Fraction 0.0488 0.0488 0.0488 

Lean Solvent - Absorber Inlet         

Amine Mass  Fraction 0.2965 0.2980 0.299 

CO2 Mass  Fraction 0.0628 0.0592 0.056 

Water Mass  Fraction 0.6407 0.6430 0.646 

Total kg/s 2.5200 2.5100 3.424 

Lean solvent   temperature K 316.15 316.15 316.15 

Intercoolers outlet temperature K 316.15 316.15  

Reboiler Steam         

Steam pressure bar 2.92 2.92 2.92 

Steam temperature K  405.60 405.60 405.6 

Steam flowrate kg/s 0.18 0.15 0.206 

Lean-Rich Heat Exchanger         

Lean in K 388.87 388.9 389.4 

Lean out K 331.4 338.9 348.1 

Rich in K 327.91 330.4 338.8 

Reboiler temperature K 385.6 388.0 389.4 

Absorber bottom pressure bar  1.1 1.17 1.17 

Absorber top pressure  bar  1.04 1.04 1.01 

desorber bottom (reboiler) pressure  bar  1.71 1.71 1.71 

Desorber top pressure  bar  1.69 1.70 1.70 

General specifications     

CO2 capture target  % 91.84 91.85 91.83 

Inter-stage Cooling  Yes Yes No 

 324 
  325 
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The validated pilot plant model was used for scaling up and then extracting several technical key process 326 

indicators (KPIs) which are important measures that quantify the difficulties associated with CO2 separation from 327 

the flue gas in terms of the required heating and cooling duties, required packing, and solvent circulation. These 328 

measures are scaled with respect to the amount of pure CO2 captured, to become independent of the pilot plant 329 

throughput and economic assumptions (e.g. discount cash flow). The KPIs are quantified and shown in tables 6 330 

and 7 and discussed in the Result Section. 331 

Process Scale-up 332 

The validated model was applied for analysis at the large scale corresponding to the retrofitted power plant. The 333 

assumptions behind process scale up are summarized in the following.  The bulk liquid and gas phases are 334 

assumed to be well-mixed at each stage (Figure 4). Phase equilibrium was assumed only at the vapour–liquid 335 

interface. It was assumed that the reaction kinetics are significantly faster than the heat and mass transfer rates 336 

and therefore, equilibrium chemical reactions sufficiently represent the species composition at the gas-liquid 337 

interface. The effects of solvent degradation and heat losses were not considered. In practice, for large-scale 338 

CO2 capture processes, achieving the aforementioned performances will require effective gas and liquid 339 

distributors. In addition, the process should be carefully insulated and the composition of the solvent should be 340 

tightly controlled using make-up.  341 

3.3. Solution algorithm: Simulation-optimization framework  342 

The aforementioned problem statement falls into the category of Integrated Process Design and Control (IPDC). 343 

It is notable that the IPDC methodology is not limited to grass-root design problems and can be applied for 344 

retrofitting existing processes in-part or as a whole. The motivation of the integrated process design and control, 345 

as opposed to sequential process design and control design, is due to the fact that when the details of process 346 

design are fixed, there is little room left to improve operational performance. Therefore, it is highly 347 

recommended that operational characteristics should be considered at the early design stages (i.e., process 348 

retrofit in the context of this research).  349 

However as discussed extensively by Sharifzadeh [29],  the full-space formulation of integrated process and 350 

control design for large scale industrial problems such as the abovementioned retrofit problem results in 351 

numerically intractable optimization problems. Therefore, an objective of the present research was to identify 352 

critical process variables and ensure process operability at the plant-wide level, while managing the problem 353 
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complexity. To this end, an simulation-optimization framework, presented in a previous contribution [], was 354 

tailored for the above-mentioned retrofit problem, as discussed in the following sections.  355 

The proposed optimization framework is shown in Figure 1. Here, the overall process is decomposed into three 356 

parts. These three parts are linked together through flow of materials and energy. As shown in Figure 1, the CO2 357 

capture process receives the flue gas from the power plant and depends on the steam supply for regeneration 358 

of the solvent. The flowrate of flue gas depends on the electric power demand and changes as the power plant 359 

experiences variations. The variables involved in the optimal design of the CO2 capture process can be classified 360 

as (i) process design variables and (ii) process control variables. The differentiation is necessary as process design 361 

variables (such as the dimensions of process equipment) have a physical realization. After the process is 362 

designed, they are fixed and cannot be changed without costly process modification.  By contrast the control 363 

variables (such as the flowrate of reboiler steam or the circulation rate of solvent) are variable during the process 364 

operation in order to adapt the capture process to the variations in the upstream power plant. 365 

In the optimization framework, without loss of generality, the following solution algorithm was applied: 366 

Step (1) The power plant model is run for a series of steady-state electricity load reduction (100%, 75%, and 367 

50%) scenarios, and a series of default values for the extracted steam and condensate recycle rates. The 368 

results of the simulation will determine the flowrate and composition of the flue gas in each scenario. 369 

Step (2) Given the flowrate and composition of the flue gas at various load reduction scenarios, the design and 370 

control variables of the capture plant are optimized (as discussed in the following).  371 

Step (3) The results of the optimization determine the optimal values of the extracted steam and recycled 372 

condensates. These values are compared to the previous values of the extracted steam and recycled 373 

condensates and if the differences are less than the tolerance, the solution is found. Otherwise, the value 374 

of the extracted steam and recycled condensates are updated in the power plant model and the algorithm 375 

is repeated from Step (1). 376 

Note that the amount of separated CO2 does not depend on the extracted steam values and therefore, modelling 377 

the compression section does not require iterative calculations.  378 



This article should be cited as: Mahdi Sharifzadeh, Prateek Bumb, Nilay Shah. Carbon capture from 
pulverized coal power plant (PCPP): Solvent performance comparison at an industrial scale. Applied 
Energy, 163 (2016) 423–435. 

20 | P a g e  

 

The abstract formulation of the proposed optimization program (grey envelope in Figure 1) is as follows: 379 

𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞 = 𝐄(𝐓𝐀𝐂𝐬) = ∑ 𝛍𝒔 × 𝐓𝐀𝐂𝐬

𝐍𝒔

𝒔=𝟏

                                                   𝐏𝐫𝐨𝐛𝐥𝐞𝐦 − 𝟏 380 

Subject to  381 

Constraints associated with first principles: equipment performances, thermodynamics models 382 

Technical Constraints: Solvent degradation 383 

Control Constraints: 90% CO2 Capture, maximum turbine discharge temperature 384 

Disturbances: Composition and flowrate of flue gas for various power load reduction scenarios  385 

Design decision variables: The dimensions of absorber, desorber, and heat exchangers 386 

Control (recourse) decision variables: Circulation flowrate, Reboiler steam flowrate  387 

In the above formulation, 𝐄 is the expected value, 𝒔 is the index of the load reduction scenarios, 𝛍𝒔 is the 388 

likelihood of each scenario and 𝐍𝒔 is the total number of scenarios. 𝐓𝐀𝐂 refers to the total annualized cost (TAC) 389 

of the capture plant, and was calculated as:  390 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑜𝑠𝑡𝑠 =  
𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝑃𝑙𝑎𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐿𝑖𝑓𝑒
 + 𝑇𝑜𝑡𝑎𝑙 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠          (1) 391 

where the value of 5 years was considered for the capture plant effective life, in order to combine the plant life 392 

and the time value of money. The costs of process equipment were calculated according to the costing 393 

correlations provided in [55]. A Lang factor of 6 was considered for estimating the total capital investment [56]. 394 

The utility costs considered were 37.02 $/MWh for electricity [57], 0.048 $/tonne for cooling water [58], and 395 

14.5 $/tonne for steam. The latter was estimated based on the electricity price and reduction in the power plant 396 

capacity due to steam extraction. The considered load reduction scenarios were 100%, 75% and 50%. The 397 

considered scenarios were assumed to be equally likely.   398 

From the optimization programming point of view, the above formulation conforms to a two-stage recourse-399 

based optimization under uncertainty [59]. From the Control Engineering point of view the above formulation 400 

conforms to a steady-state inversely controlled process model (ICPM) [60-62]. The concept is shown in Figure 6. 401 

The model of the capture plant was inverted with respect to the constraint of 90% separation of CO2, and the 402 

required values for the reboiler steam and solvent circulation were optimized for each scenario.  The model of 403 

the pulverised coal power plant (PCPP) was applied to accurately estimate the value of the disturbances in terms 404 

of the flowrate and composition of flue gas, as the electricity load changes. Nevertheless, steam extraction for 405 
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solvent regeneration also affects the require fuel and produced flue gas and mutual interactions exist between 406 

the power plant and carbon capture plant.   407 

 408 

Figure 6. Integrated process design and control using a steady-state inversely controlled process model, [29] 409 

3.4. Model development and implementation software tools  410 

The pulverized coal power plant (PCPP) and compression process were modelled in gCCS [63], a software tool 411 

developed by Process Systems Enterprise Limited (PSE). The specification of the PCPP model was based on 412 

literature [3]. The important characteristics of the developed model were calculation of the efficiency of the 413 

pulverized coal boiler and turbines using performance curves and calculation of material flowrates based on 414 

pressure differences. The capture plant model was developed using the Advanced Model Library for Gas–Liquid 415 

Contactors (AML: GLC) [64] and gSAFT [65]. 416 

As described extensively earlier, the main characteristics of the capture process model were rate-base modelling 417 

of mass and heat transfer phenomena and representation of chemisorption reactions using SAFT equation of 418 

state. The pulverised coal power plant (PCPP) was modelled using the gCCS model libraries. The pulverised 419 

pulverized coal boiler was modelled based on “Fixed reheat temperature”. In this mode, the steam temperature 420 

(873.2 K) at the boiler exit is kept constant and the required coal flowrate and combustion air are calculated, 421 

accounting for the unburnt carbon in the ash. The justification is that the excessive heating would damage 422 

downstream equipment and the temperature of the HP steam leaving the boiler should be controlled. The coal 423 

composition and calorific value can be found in Table 2.2.1 of reference [3]. 424 
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4. Results  425 

This section presents and discusses the results of solvent performance analysis at the industrial scale. The 426 

features of interest include the overall energetic performance of the power plant with and without carbon 427 

capture under various electricity scenarios. In addition the performances of the capture process when the power 428 

plant experiences load changes are studied for the CDRMax solvent and MEA reference solvent.  429 

4.1. Overall energy conversion efficiency and implications of carbon capture and compression 430 

Table 4 shows the summary of the results for the scenario in which the pulverized coal power plant is integrated 431 

with the capture and compression plants and the CDRMax solvent is used. Similar results are reported in Table 432 

5 when the MEA reference solvent is used. In both scenarios, the flowrate of coal is gradually reduced from the 433 

nominal value of 65.9 kg/s by almost 50% and the design and operation of the capture plant are optimized 434 

according to the simulation-optimization framework shown in Figures 1 and 6.  These Tables exhibit common 435 

observations regarding the implications of electricity load reduction for the integrated power generation and 436 

CO2 capture. In all scenarios, CO2 capture and compression impose energetic penalties in terms of the required 437 

steam for solvent regeneration and electric power needed for CO2 compression. These penalties exhibit 438 

themselves as reductions in the net produced electricity or decrease in the overall energy efficiency. 439 

Furthermore, as the electricity load is decreased the energy conversion efficiency also decreases, which should 440 

be attributed to the reduced efficiency of process equipment such as the steam generation system, turbines and 441 

compressors. The last line of Table 5 shows a comparison with the results of the CAESAR project [3]. While this 442 

table confirms that our model was in very good agreement with the CAESAR results for the PCPP without CCS, 443 

more than 2% improvement in the energy efficiency for the scenario with carbon capture and compression 444 

provides an evidence for the significant potential for integrated process design and control.  445 

The implications of load reduction for operation of the capture plant features are more convoluted. To enable 446 

the discussion more details are provided in Tables 6 and 7 which report the design and operational specifications 447 

for the load reduction scenarios, in the case of CDRMax and MEA solvents, respectively. As discussed in the 448 

process description, the boiler control strategy is to ensure the temperature of the steam leaving the pulverised 449 

coal boiler remains constant. As the electricity load is reduced, the pressure gradient across the power plant and 450 

the flowrates of the steam will decrease, accordingly. Therefore, in order to maintain the constant temperature 451 

of the returning steam, the ratio of the combustion air is marginally increased resulting in a decrease of the 452 
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concentration of CO2 in the flue gas (Tables 4 and 5) from 20.5% to 18.5%. On the contrary, more contact area 453 

(Shown by packing volume KPI in Tables 6 and 7) becomes available between the gas and liquid phases. Then, it 454 

is for the optimization algorithm to adjust the solvent circulation rate and reboiler steam for each electricity load 455 

scenario and establish a trade-off between the capital investment and energy costs. Overall a minor decrease in 456 

the heating and cooling energy indicators and solvent circulation indicators are observed for the load reduction 457 

scenarios. Another important feature of interest is the design and operation of the absorber column. The 458 

absorber experiences the largest variations during load reduction due to drastic variations in the flue gas 459 

flowrates. While the desired extent of CO2 capture constrains the required gas-liquid contact area, a tall/thin 460 

column would result in very high pressure drops at full load operation and a short/fat column would result in 461 

short contact times of the gas and liquid phases during part load operation. Therefore, it was for the optimization 462 

algorithm to find a compromise design which satisfies the CO2 capture constraint and ensures process operability 463 

in all load reduction scenarios. Tables 6 and 7 suggest that the optimized columns were neither fat nor thin but 464 

almost square. Finally, a comparison between the KPIs in Tables 6 and 7 suggests that CDRMax features superior 465 

performance as it required up to 25% less steam,  61% % less cooling water, about 58% less column packing and 466 

up to 31% less pumping energy (shown by solvent circulation rate),  per unit mass of captured CO2. The 467 

justification for the superior performance of the CDRMax is due to the fact that it is an amine-promoted buffer 468 

salt (APBS) solvent. It offers dual advantages for efficient CO2 capture, which should be attributed to the fast 469 

kinetics of amines and the low regeneration energy of the buffer salt. The fast kinetics offer lower equipment 470 

sizes and the lower regeneration energy offers lower operating costs. The CDRMax solvent also offers high CO2 471 

loading capacity and thus reduces the circulation rate significantly as compared to MEA benchmarks. 472 

  473 
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Table 4. The results of flexible operation of the pulverized coal power plant for various electricity load, with 474 
and without CO2 capture and compression plants: CDRmax solvent.  475 

  Nominal a 100% load 75% load 50% load 

Coal flowrate  kg/s 65.9 65.9 50.3 35.2 

Flue gas flowrate kg/s 787.7 787.7 631.3 465.0 

N2 Mass fraction  0.6956 0.6956 0.6981 0.7005 

O2 Mass fraction 0.0393 0.0393 0.0484 0.0572 

H2O Mass fraction 0.0598 0.0598 0.0583 0.0568 

CO2 Mass fraction 0.2052 0.2052 0.1952 0.1854 

Generated power in PCPP  MW 776.4 680.5 510.7 341.9 

Extracted steam  kg/s - 169.5 121.2 81.1 

Power consumed in compressors  MW - 44.62 33.58 23.45 

Net produced electricity   MW 776.4 635.8 477.1 318.4 

CO2 captured kg/s 0 145.5 110.9 77.6 

Energy content of feed (HHV)  MW 1714.24 1714.24 1306.6 914.13 

Overall conversion efficiency % 45.29 37.09 36.51 34.83 

Notes: aNominal refers to the standalone scenario where the power plant is operated at its nominal operating point without 476 
CO2 capture and compression plants.  477 
 478 

Table 5. The results of flexible operation of the pulverized coal power plant for various electricity load, with 479 
and without CO2 capture and compression plants: MEA baseline solvent. 480 

  Nominal a 100% load 75% load 50% load 

Coal flowrate  kg/s 65.9 65.9 50.3 35.2 

Flue gas flowrate kg/s 787.7 787.7 631.3 465.0 

N2 Mass fraction  0.6956 0.6956 0.6981 0.7005 

O2 Mass fraction 0.0393 0.0393 0.0484 0.0572 

H2O Mass fraction 0.0598 0.0598 0.0583 0.0568 

CO2 Mass fraction 0.2052 0.2052 0.1952 0.1854 

Generated power in PCPP  MW 776.4 659.3 494.5 329.0 

Extracted steam  kg/s - 217.90 159.51 103.16 

Power consumed in compressors  MW - 44.62 33.58 23.45 

Net produced electricity   MW 776.4 624.6 468.5 311.0 

CO2 captured kg/s 0 145.5 110.9 77.6 

Energy content of feed (HHV)  MW 1714.2 1714.2 1306.6 914.1 

Overall conversion efficiency % 45.29 35.79% 35.21% 33.36% 

Benchmark Overall conversion  
efficiency from literature[3] 

% 45.5 33.4 - - 

Notes: a Nominal refers to the standalone scenario where the power plant is operated at its nominal operating point without 481 
CO2 capture and compression plants.  482 
 483 
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Table 6. The results of CDRmax solvent for various load reduction scenarios  486 

  100% load 75% load 50% load 

Absorber   20.78 20.78 20.78 

Diameter m 21.74 21.74 21.74 

Length  m    

Lean-Rich Heat Exchanger     

Area m2 52572.4 52572.4 52572.4 

Lean inlet temperature K 383.2 383.1 383.3 

Lean outlet temperature K 331.1 330.5 329.6 

Rich inlet temperature K 328.4 328.6 328.8 

Rich outlet temperature K 380.1 380.7 381.8 

Desorber     

Diameter m 15.61 15.61 15.61 

Length  m 9.95 9.95 9.95 

Lean Solvent to absorber     

Flowrate kg/s 4098.65 3396.99 2367.65 

Temperature K  313.15 313.15 313.15 

Water mass fraction 0.5357 0.5357 0.5357 

CO2 mass fraction 0.0403 0.0403 0.0403 

CDRMax mass fraction 0.4069 0.4069 0.4069 

Reboiler      

Steam Flowrate kg/s 153.22 122.43 83.41 

Steam inlet pressure  Pa 305000 305000 305000 

Steam inlet temperature K  400.6 400.6 400.6 

Condenser temperature K  313.15 313.15 313.15 

CO2 captured  % 90 90 90 

Total Annualized Costs (TAC) MM$/year 81.8 - - 

Key process indicators (KPIs)     

Heating duty  MJ/tonne CO2 2418.3 2355.4 2287.0 

Cooling duty  MJ/tonne CO2 2590.3 2567.3 2465.2 

Packing Volume m3/(tonne CO2 × hr) 18.9 23.1 32.9 

Circulation rate  tonne solvent/tonne CO2 30.2 30.6 30.4 
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Table 7. The results of MEA baseline solvent for various load reduction scenarios  489 

  100% load 75% load 50% load 

Absorber      

Diameter m 25.20 25.20 25.20 

Length  m 29.70 29.70 29.70 

Lean-Rich Heat Exchanger     

Area m2 82190.8 82190.8 82190.8 

Lean inlet temperature K 390.0 390.0 390.0 

Lean outlet temperature K 352.3 349.2 345.2 

Rich inlet temperature K 335.4 335.2 334.8 

Rich outlet temperature K 373.0 375.7 379.1 

Desorber     

Diameter m 25.90 25.90 25.90 

Length  m 12.10 12.10 12.10 

Lean Solvent to absorber     

Flowrate  kg/s 6407.6 5024.8 3542.58 

Temperature K  313.15 313.15 313.15 

Water mass fraction 0.641 0.641 0.641 

MEA mass fraction 0.297 0.297 0.297 

CO2 mass fraction 0.062 0.062 0.062 

Reboiler      

Steam Flowrate  kg/s 217.90 159.51 103.16 

Steam inlet pressure   Pa 305000 305000 305000 

Steam inlet temperature  K  400.6 400.6 400.6 

Lean Solvent Cooler  temperature 313.15 313.15 313.15 

CO2 capture target % 90% 90% 90% 

Total Annualized Costs (TAC) MM$/year 102.5 - - 

Key process indicators (KPIs)     

Heating duty  MJ/tonne CO2 3216.2 3050.4 2835.4 

Cooling duty  MJ/tonne CO2 6615.4 6245.1 5715.6 

Packing Volume m3/(tonne CO2 × hr) 45.1 58.5 84.0 

Circulation rate  tonne solvent/tonne CO2 43.6 44.3 44.9 

 490 

 491 

 492 

 493 
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5. Conclusions 497 

The present research studied the scale up and integration of a solvent-based carbon capture process into a 498 

pulverised coal power plant (PCPP) for a novel solvent, CDRMax, and the MEA reference solvent. The aim was 499 

to establish and quantify the superior performance of the new solvent at an industrial scale and explore the 500 

benefits of integrated design and control. Furthermore, the present research provided in-depth insights into 501 

retrofit and flexible operation of pulverized coal power plants. The overall total annual costs in terms of capital 502 

investment and energy costs were minimized while the process operability was ensured under all load reduction 503 

scenarios. Objective and reproducible comparison between various economic analyses is often challenging due 504 

to different scope of system analysis, modelling details and the economic estimation methods. Therefore, in the 505 

absence of economic data from industrial-scale demonstration plants, the present research applied key process 506 

indicators (KPIs) for comparison of solvents. In all scenarios the CDRMax performed better than the MEA 507 

reference solvent. While the comparative study was tailored to the aforementioned solvents, the research 508 

methodology is generic and provides effective standards and benchmarking criteria for new solvent 509 

development. 510 
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