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Abstract- Biomass pyrolysis is a promising path toward renewable liquid fuels. However, the calorific value of 5 

the pyrolysis oil (PO), also known as bio-oil, is low due to the high content of organic oxygenates and water. 6 

The oxygen content of PO can be reduced by hydrodeoxygenation, in which hydrogen is used to remove 7 

oxygen. An economic disadvantage of hydrodeoxygenation pathway is its dependence on hydrogen as an 8 

expensive feedstock. An alternative technology is to upgrade PO in hot, high pressure water, known as 9 

hydrothermal processing. The present paper studies upgrading pyrolysis oil derived from Norwegian spruce by 10 

(1) hydrodeoxygenation in a liquid hydrocarbon solvent using nanodispersed sulphide catalysts and (2) 11 

hydrothermal treatment in near-supercritical water. Experimental results and simulation studies suggested 12 

that if water soluble products are reformed for hydrogen production, the hydrodeoxygenation pathway would 13 

be a net consumer of hydrogen, whilst the hydrothermal pathway could produce a significant hydrogen excess. 14 

By comparison, the fuel yield from hydrodeoxygenation was significantly higher than hydrothermally treated 15 

fuel. Therefore, in the present study, an integrated model was proposed which demonstrates that the 16 

synergistic integration of hydrothermal and hydrodeoxygenation upgrading technologies can yield an optimal 17 

configuration which maximises fuel production, whilst obviating the need to purchase hydrogen. In this 18 

optimal configuration, 32% of raw pyrolysis-oil is hydrothermally treated and the rest is sent for 19 

hydrodeoxygenation. The results of a techno-economic analysis suggests that if the proposed integrated 20 

approach is used, it is possible to produce biofuel (43% gasoline, and 57% diesel) at a very competitive 21 

minimum selling price of 428 $ m-3 (1.62 $/gallon). 22 
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1. Introduction  26 

The production of liquid fuels from biomass has the potential to diversify energy resources and 27 

mitigate the environmental impacts associated with consumption of fossil-based energy resources. 28 

Amongst various conversion pathways such as fermentation, hydrothermal liquefaction, pyrolysis, 29 

and gasification [1], pyrolysis offers the cheapest route to renewable liquid fuels. Nonetheless, many 30 

aspects of the pyrolysis pathway are still under investigation. The diverse array of research into 31 

biomass pyrolysis is multi-disciplinary and multi-dimensional and includes Pyrolysis Oil (PO) 32 

characterization [2-4], kinetic studies [5,6], computational fluid dynamics [7], design of new reactors 33 

[8], microwave assisted pyrolysis [9-10], optimizing the PO yield [11], process intensification [12], 34 

techno-economic analysis [13,14] environmental assessment [15], in addition to enterprise-wide and 35 

supply chain optimization [16-18]. 36 

Despite various economic incentives, commercialization of biomass pyrolysis poses an important 37 

challenge; the product of the pyrolysis reactions, called Pyrolysis Oil (PO), suffers from undesirable 38 

properties. It has a high level of organic oxygenates which results in a low calorific value.  PO is 39 

highly acidic, and chemically unstable, which leads to polymerization and gradual increases in its 40 

viscosity. In addition, due to the high water content (ca. 0.35 mass fraction) it is immiscible with 41 

conventional fossil fuels. The technologies for the removal of oxygen and other heteroatoms in PO 42 

are referred to as “upgrading”. Hydrodeoxygenation is the most common upgrading technology and 43 

was originally inspired by hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) from the 44 

petroleum refining industry and coal liquefaction [19-23]. However, the amount of heteroatoms (i.e., 45 

oxygen) is an order of magnitude larger in the case of PO. The high oxygen content can lead to 46 

excess coke formation [24]. As a resolution multistage hydrodeoxygenation has been proposed in 47 

which first the PO is stabilized in a low temperature reactor and then a deeper hydrodeoxygenation 48 

(HDO) is accomplished in the second-stage reactor at a higher temperature [25-27]. While 49 

hydrodeoxygenation does not alter the boiling range of hydrocarbons significantly, cracking and 50 
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hydrocracking using zeolites are efficient methods to reduce the size of product molecules by 51 

depolymerisation of heavy oligomers [28]. However, coking can be so severe that a fixed bed reactor 52 

may become plugged quickly. Pretreatment using multistage HDO can mitigate the problem [29]. 53 

Recent research concerning catalysts for a low temperature first stage PO upgrading has tended 54 

towards supported precious metals especially Ru or Pd with carbon as a support (e.g. [26], [30]). In 55 

contrast, conventional refinery hydrotreating catalysts are based on Co-Mo or Ni-Mo sulphides 56 

supported on alumina. These catalysts have found wide application in PO upgrading research [20-57 

23]. The use of a slurry reactor for a first stage catalytic hydrodeoxygenation has several attractions 58 

[31]. It offers better temperature control which assists with control of coke formation, facilitates 59 

catalyst withdrawal and replacement, and permits the use of microcatalysts. The present study of 60 

pyrolysis oil upgrading is concerned with the use of unsupported mixed sulphide nanoparticle 61 

catalysts. These are dispersed throughout the bulk of the pyrolysis oil/solvent liquid aiding the rapid 62 

hydrogenation of free radicals, coke precursors, suppression of polymerisation etc. leading to 63 

stabilisation of the oil. Nanoparticle catalysts also eliminate limitations which might arise from 64 

internal mass transfer associated with the support pore structure. Unsupported nanosulphide 65 

catalysts have been used in the hydrotreatment of heavy and residual oils [31], [32-34] and in coal 66 

liquefaction [35].  Typically, the mass fractions of the catalysts were between 5×10-4-10-2 (500-67 

10,000ppm of metal) [32-33]. In the present work, Mo and Ni nanosulphides have been used in 68 

combination as catalysts in the slurry phase for the first stage hydrodeoxygenation of the pyrolysis 69 

oil. Mo and Ni nanosulphides were preferred due to the performance of Ni-Mo supported catalysts 70 

for HDO (e.g. [36]). To our knowledge, this is the first time unsupported nanosulphide catalysts have 71 

been used in the upgrading of pyrolysis oil (a recent patent application did not include any 72 

experimental examples [37]). 73 

An alternative process for the conversion of biomass to liquid fuels uses hot compressed water 74 

(HCW) as a reaction medium. This “hydrothermal upgrading” technology dates back to pioneering 75 

research in the 1970s to 1990s by Shell [38]. In hydrothermal upgrading (also known as aqueous-76 
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phase processing) PO is mixed with a relatively large amount of water and processed at the near-77 

supercritical or supercritical phase. At 647.096 K and 217.755 MPa water becomes an 78 

incompressible supercritical fluid [39].  Hot compressed water (HCW) or high temperature water 79 

(HTW) are often used to describe both sub and supercritical water. Changes in the physical and 80 

chemical properties of HCW become very apparent at around 300ᴼC, at which the density and 81 

polarity of HCW is similar to acetone, a polar organic solvent. This makes HCW a good solvent for the 82 

solvation of non-polar organic compounds in PO, and provides a single phase medium for upgrading. 83 

It is widely observed that at these conditions water exhibits distinct processing advantages such as 84 

enhanced and tunable properties (e.g. solubility, solvent polarity, transport properties), and ease of 85 

solvent removal [40].  Other advantages of this technology include avoiding phase change and 86 

parasitic energy losses due to high-pressure processing, versatile chemistry to existing chemical and 87 

fuel infrastructure, enhanced reaction rates [41], and minimal hydrogen consumption [42]. 88 

Hydrothermal processing can also be used to generate hydrogen and CO2 as the co-product [43]. 89 

The combination of both hydrothermal and hydrodeoxygenation upgrading in an integrated process 90 

is an attractive approach 91 

The present paper proposes a novel integrated process for pyrolysis oil upgrading based on 92 

synergies of hydrothermal and hydrodeoxygenation processes. In the proposed new process the 93 

separated water soluble pyrolysis oil is used for hydrogen generation. A second stage 94 

hydrodeoxygenation unit then follows where the water insoluble fraction is upgraded to biofuels. 95 

While reforming the water soluble phase of bio-oil has been an active research area [44, 45], the 96 

contribution of the present research is to propose an integrated configuration in which the 97 

hydrothermal treatment can be considered both in parallel as well as in series to the 98 

hydrodeoxygenation reactors to allow more flexibility. This configuration is also in contrast to 99 

previous studies where an external source of hydrogen or a fraction of crude bio-oil was used for 100 

hydrogen production. In the following, firstly, the experimental results for hydrodeoxygenation with 101 

nanosulphide catalysts and hydrothermal processing without catalyst are presented. The 102 
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hydrodeoxygenation was done at conditions appropriate for a first stage slurry phase treatment 103 

leading to aqueous phase separation with only a small extent of deoxygenation. Further 104 

downstream deeper hydrodeoxygenation was included in the process scheme with details from ref 105 

[46].  Based on the experimental results, preliminary studies were conducted in order to estimate 106 

key process indicators (KPIs) for each technology in terms of mass and energy balances and 107 

hydrogen requirements. Based on these preliminary studies, a new integrated upgrading process 108 

was developed which exploits the advantages of both technologies in order to enhance process 109 

profitability. A whole-process approach was applied in order to quantify the advantages of process 110 

integration. The features of interest included process description, detailed economic analysis and 111 

sensitivity analyses. It is shown that the novel integrated process where the water soluble phase is 112 

applied for hydrogen production provides the most economic option for PO upgrading.  113 

2. Material and methods 114 

The following sections will discuss the experimental program regarding pyrolysis oil 115 

hydrodeoxygenation and hydrothermal treatment. Another feature of interest is preliminary 116 

evaluation of key process indicators, which enables proposition of an integrated process based on 117 

the synergies of the studied upgrading technologies.  This section also explains the modelling and 118 

costing methods applied for techno economic analysis of the proposed process.   119 

2.1. Experimental studies  120 

The pyrolysis-oil studied was derived from Norwegian spruce, Abis Picea, supplied by Future Blends 121 

Ltd. It contained aliphatic functionalities and phenolic residues, the latter being typically derived 122 

from lignin, which is an important structural component in all woody biomass [47], Elemental 123 

analysis and water content of the pyrolysis oil is given in Table 1. Analaysis by quantitative 31P-NMR 124 

[48] showed that hydroxyl groups comprised 58% of the organo-oxygen, of which aliphatic OH was 125 

69% of the organo-OH. 126 

Table 1 should be inserted here 127 
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The pyrolysis oil was subject to upgrading by hydrothermal treatment and hydrodeoxygenation. The 128 

experimental details and a complete set of results are tabulated in the ESM.   129 

2.1.1. Hydrothermal upgrading (HTU) 130 

Hydrothermal upgrading was conducted in sealed stainless steel tubular batch reactors (8 cm3) at 131 

380ᴼC using a water to pyrolysis oil ratio of 3. The hydrothermal upgrading was carried out in the 132 

absence of catalysts. A reduced density of 1.0 was chosen for the upgrading because it is well above 133 

ρr = 0.3 which was reported to be the minimum value at which a model oil would be soluble in HCW 134 

[49]. (Reduced density was estimated by the equation: ρr = ρw/ρw,c ; (ρw = mass of water/reactor 135 

volume), where ρw,c = 375 kg m-3 is the value of pure supercritical water [10].  The reaction 136 

temperature of 380oC was used because this was the temperature at which the CH3O- bond in 137 

guaiacol was reported to hydrolyse to give catechol and methanol [50].  The dielectric constant at 138 

the autogenic pressures generated by HCW at 380oC, would be sufficient to stabilise any reaction 139 

intermediates formed in ionic reactions [39], [49]. Additionally, the ionic product of HCW increases 140 

threefold from 10-13.99 to 10-11.30 in the direction of 25 to 300°C [39], [49]; this means that near 141 

supercritical HCW can enhance the cleavage of C-O bonds by acid and base catalysed reactions [51].   142 

The products from hydrothermal upgrading the pyrolysis oil were phase-separated. The water 143 

soluble pyrolysis oil (WSPO) was easily separated. The water insoluble PO was dissolved in acetone 144 

for characterization. Elemental analysis of the water insoluble PO is given in Table 2. The reduction 145 

of the oxygen content compared to the original pyrolysis oil means that less hydrogen is needed for 146 

the second-stage hydrodeoxygenation. 147 

Table 2 should be inserted here 148 

Gas yields were very low, especially at short residence times (Table S2 in ESM). Hydrogen can react 149 

with oxygen to give water, and insoluble hydrocarbons.  However the absence of catalyst and a 150 

relatively mild reaction temperature of 380ᴼC did not give sufficient hydrogen production, to 151 

remove the oxygenates in HCW [51-53].  152 
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Total organic carbon (TOC) analysis of the separated water from the upgraded pyrolysis oil, showed 153 

that when the reactor is cooled immediately after reaching 380oC, about 40% of the carbon in the 154 

original PO will be associated with components which are water soluble (Table S3 in ESM). The 155 

nature of water soluble organic oxygenates were determined by GC-MS (Table S6 in ESM). The high 156 

solubility of these components was due to hydrophilic alcoholic OH, carbonyl C=O and acidic COOH 157 

functionalities. This percentage of these functionalities was observed to decrease with residence 158 

time as they were converted to water insoluble pyrolysis oil (WIPO), char, and light gases (Table S2 in 159 

ESM). The results suggest that short residence time hydrothermal upgrading is an efficient method 160 

to extract oxygenated components from the carbon rich water insoluble phase.  161 

2.1.2. Hydrodeoxygenation (HDO) 162 

The hydrodeoxygenation of pyrolysis oil carried out in a Parr 100 cm3 stainless steel autoclave with 163 

purpose-made glass liner at 250oC and a hydrogen pressure (cold) of 5 MPa. Dodecane was used as 164 

solvent in a constant oil/solvent weight ratio = 0.5. Sulphur with a mass fraction of 10-4 (100 ppm) 165 

was added to the reaction mixture using dibutyl disulphide as a precursor. Under the reaction 166 

conditions dibutyl disulphide is expected to be rapidly converted to H2S. 167 

Mo and Ni nanosulphide catalysts were produced in situ in the autoclave at 300oC using metal 168 

precursor compounds dissolved in the hydrocarbon solvent containing the required amount of 169 

dibutyl disulphide. Mo naphthenate and Ni naphthenate were used as the precursors to give mass 170 

fractions of 2×10-3 (2000ppm) Mo and 4.9×10-3 (490ppm) Ni in the final hydrodeoxygenation 171 

reaction mixture corresponding to a Ni/Mo mole ratio of 0.4. Under these conditions the resulting 172 

MoS2 catalyst particles were determined by previous TEM studies to be typically 8nm in size with 173 

limited stacking of 3 to 4 layers. The released H2S was purged from the autoclave by N2 prior to 174 

addition of the pyrolysis oil and remainder of the solvent. 175 

The hydro-deoxygenated pyrolysis oil separated easily into a water soluble phase and a water 176 

insoluble (oil/solvent) phase. The amount of residue or coke formation was small. Gas yields were 177 
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also small. The results of upgrading are summarised in Table 3. The compounds present in the water 178 

soluble phase and the water insoluble phase were analysed by GC-MS (Table S8 ESM). 179 

Table 3 should be inserted here 180 

The high concentration of carbon in the recovered water soluble phase suggests that a significant 181 

fraction of organo-OH compounds dissolve in the water rather than undergo HDO. The organo-182 

compounds present in the water soluble phase were analysed by GC-MS. The most significant 183 

compounds were acids, mainly acetic with some C4 and C5 acids (Table S7, ESM). This suggests that 184 

at the reaction conditions there is some degree of parallel hydrothermal treatment possibly 185 

catalysed by the nanosulphide catalysts or derivatives thereof. ICP analysis of the recovered water 186 

soluble phase (ESM) did not detect any significant amount of Ni or Mo. It is assumed therefore that 187 

the catalysts remain associated with the residue 188 

2.2. Process design and economic evaluation  189 

The major part of the research involved process modelling and economic analysis. Firstly, the key 190 

indicators of hydrothermal upgrading and hydrodeoxygenation processes were identified using 191 

simplified process modelling. These preliminary studies enabled proposition of an integrated process 192 

with enhanced economic performance, and was modelled and studied in detail. Finally, the paper 193 

concludes with the results and discussions. 194 

2.2.1. Preliminary process modelling and evaluation 195 

The aforementioned experimental results were firstly applied for preliminary process modelling. The 196 

simplified process flow diagrams are shown in Figs. 1a and 1b, and discussed below.  197 

Fig. 1 should be inserted here. 198 

In the hydrodeoxygenation process, the solvent were mixed with the nano-catalysts precursors and 199 

sulphiding agent (Mo-Naph, Ni-Napt, DDS) in the solvent preparation vessel. Only an n-hydrocarbon, 200 

n-dodecane, was considered as solvent. H-donor solvents such as tetralin, did not result in significant 201 

improvement in the product yields and offer little advantage for the dispersed nanocatalysts, and is 202 
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significantly more expensive than n-hydrocarbons. The catalyst-carrying solvent is then mixed with 203 

the PO at the mass ratio of 2.14:1. Hydrogen was directly injected to the slurry reactor. By 204 

comparison, in the hydrothermal upgrading, the PO is mixed with the water at the mass ratio of 205 

1:2.98 and fed to the reactor at temperature of 380oC. The autogenic pressure was not measured 206 

directly but was estimated to be 22 MPa. The choice of solvent ratios was based on earlier studies in 207 

hydrothermal processing [48]. No catalyst was used in the hydrothermal upgrading studies.  208 

In both upgrading processes, the effluents of the first-stage upgrading process are phase-separated. 209 

The water insoluble pyrolysis oil (WIPO) is sent to the second-stage hydrodeoxygenation, while the 210 

water soluble pyrolysis oil (WSPO) is sent to the reformers for hydrogen production. These simplified 211 

models enable calculating several important key process indicators, shown in Table 4. These 212 

indicators suggest that the hydrodeoxygenation process features the highest fuel yield of 65.2%. 213 

However, this process suffers from a hydrogen deficit and produces only 40% of its hydrogen 214 

requirements. By comparison, the process with first-stage hydrothermal upgrading does not 215 

produce significant fuel but features a large hydrogen surplus. These observations suggest that by 216 

integrating the two hydrothermal and hydrodeoxygenation technologies, it is possible to design a 217 

process which is self-sufficient and does not require any external source of hydrogen. The new 218 

process is shown in Fig. 2. The crude PO is split between the two first-stage reactors. 31.85% of the 219 

initial crude PO is sent to the hydrothermal upgrading reactor and the rest was processed in the 220 

hydro-treatment reactors. The split ratio (i.e., 0.3185) was optimized so the hydrogen production 221 

meets the hydrodeoxygenation requirements and the overall process is self-sustained. The effluents 222 

of both reactors are cooled and phase separated. The water insoluble pyrolysis oil in addition to the 223 

solvent are sent to the second-stage hydrodeoxygenation reactor. The water soluble pyrolysis oil is 224 

sent for hydrogen production to Section 500 of the process.  225 

Table 4 should be inserted here 226 

Fig. 2 should be inserted here. 227 

 228 
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2.2.2. Detailed process modelling  229 

Fig. 3 shows the overall process block diagram.  The biomass is first fed into the Pyrolysis Section 230 

(100), where it is converted to PO. The PO is then sent to the Upgrading Section (200). As discussed 231 

earlier, the upgrading section exploits two parallel first-stage reactors and will benefit from the 232 

desirable aspects of hydrothermal upgrading as well as hydrodeoxygenation technologies. The water 233 

insoluble PO is later upgraded in the second-stage hydrodeoxygenation reactor for complete 234 

hydrodeoxygenation.  The upgraded PO is send to Separation Section (300) where it is resolved to 235 

gasoline and diesel products. In addition, the solvent is separated and recycled to the upgrading 236 

section. Furthermore, Section 300 is integrated to a hydrocracking reactor (Section 400), where 237 

heavy-ends are cracked into lighter higher-value products. The water soluble pyrolysis oil (WSPO) 238 

from Upgrading Section (200) is fed to the Hydrogen Production Section (500), which supplies the 239 

hydrogen required by hydro-treatment and hydrocracking reactors.  All the sub-processes (100-500) 240 

were modelled in detail. The process descriptions and applied modelling techniques are reported in 241 

the Electronic Supplementary Material (ESM). The results of detailed process models were applied 242 

for calculating the operating costs and purchased equipment costs, needed for the economic 243 

analysis, as discussed later.  244 

Fig. 3 should be inserted here. 245 

2.3. Economic evaluation  246 

The process throughput was considered to be 2000 ton per day of biomass on a dry basis, similar to 247 

a previous study by DOE [46]. In order to evaluate the economic performance of the new process, 248 

minimum fuel selling price (MFSP) was calculated, and compared to the benchmarks from literature 249 

[46]. In order to calculate the MFSP, the net present value of the project was calculated. The 250 

operating costs were evaluated based on the mass and energy balances from process simulator. In 251 

addition, the purchased and installed equipment costs of conventional unit operations were 252 
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evaluated using Aspen Economic Analyzer™. However for the case of nonconventional equipment 253 

such as reformers, the costs were calculated with respect to data from the literature [46]: 254 

New cost = Base cost ∗ ( 
  New size  
  Base size  

 )fscale                              (1) 255 

Given the total purchased equipment costs (TPEC), the total indirect costs (TIC) can be estimated by 256 

summing the value of the engineering costs (32% of TPEC), construction costs (34% of TPEC), legal 257 

and contractors fees (23% of TPEC) and project contingency (37% of TPEC). The fixed capital 258 

investment (FCI) is the sum of Total Direct Installed Costs (TDC) and TIC. The total capital costs 259 

include FCI and land cost (6% of TPEC) and the working capital (5% FCI) [46]. The variable operating 260 

costs including raw materials, utilities, and waste disposal charges are summarized in Table 5. The 261 

fixed operating costs including labour, overheads (95% of labour cost), maintenance (4% of TCI), and 262 

insurance (4% of TCI) are scaled up based on Philipp, et al.’s study [55].  In the absence of economic 263 

data, it was assumed that the new catalyst costs 7% of the final fuel product. This is a conservative 264 

assumption because firstly, the hydrothermal reactor does not require any catalyst. Secondly, the 265 

hydrodeoxygenation catalyst is a dispersed nanoparticle type which does not require a catalyst 266 

support. Furthermore, due to the enhanced transport and heat transfer properties significantly less 267 

catalyst is needed. 268 

Table 5 should be inserted here 269 

The NPVs were calculated using a discounted cash flow method (10% discount rate) for a period of 270 

20 years, which is the assumed plant lifetime. The plant was assumed to be 100% equity with 2.5 271 

years as a construction period and 6 months as the start-up time. All costs in this study were indexed 272 

to the reference year of 2012. The MPSPs refers the product price at which the net present value of 273 

the project is zero at a set discounted rate of 10%. The fuel price is defined as the weighted average 274 

of gasoline (42.8%) and diesel (57.2%) prices.  The price of petroleum-derived fuel [58] was used to 275 

adjust all other fuel prices from literature to the reference year of 2012.  276 
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3. Results and discussions  277 

The following sections present and discuss the results of the technoeconomic analysis of the 278 

proposed process. The features of interest are minimum fuel selling price and its 279 

comparison with competitive scenarios and sensitivity analysis of the results with respect to 280 

underlying modelling and economic assumptions.    281 

3.1. Minimum Fuel selling Prices (MFSP) 282 

Fig. 4 shows the results of the economic analysis. The minimum fuel selling price (MFSP) is compared 283 

with three benchmark prices from the literature. They are fuel price when hydrogen is produced 284 

from reforming natural gas [46], fuel price when the bio-process in integrated to a conventional 285 

refinery [46], and the price of petroleum-derived fuel [58]. While comparison with petroleum-286 

derived fuels is illustrative for potential commercialization of the proposed technology, such 287 

comparison is subject to uncertainties in the volatile energy market. Fig 4 shows that the MFSP of 288 

428 $ m-3 (equivalent to 1.62 $/Gallon) in the proposed process outperforms all these benchmarks. 289 

The reason is that in the proposed process, by optimizing ratio between the two upgrading 290 

technologies (i.e., HDO & HTU), the yield of final fuel is maximized, the hydrogen consumption is 291 

minimized and only low quality materials are used for hydrogen production. 292 

In order to evaluate the robustness the calculated MFSP with respect to the important model 293 

parameters, a set of sensitivity analyses were conducted. Figs. 5 and 6 report the result of these 294 

analyses. Fig 5 shows the sensitivity of the MFSP with respect to working capital, 1st stage HTU yield, 295 

catalysts price, income tax, 1st stage HDO, the fraction of pyrolysis oil needed to be processed in HTU 296 

(which represents the overall hydrogen requirement), and biomass price. In the present research, an 297 

equilibrium yield of hydrogen was assumed. However, coke formation is reported to reduce the 298 

hydrogen yield and catalyst life depending on the steam-to-carbon ratio, catalyst, and temperature 299 

[59, 60]. The sensitivity of the minimum fuel selling price to this assumption is analysed based on the 300 

fraction of pyrolysis oil sent to hydrothermal upgrading reactor (R-202). The implication is that if the 301 
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actual yield of hydrogen production is less than the calculated values, more pyrolysis oil must be 302 

sent to the hydrothermal upgrading (HTU) reactor. Clearly, there remains a need for further research 303 

to find stable, efficient catalysts for the steam reforming unit. 304 

Fig. 6 shows the effect of process scale (represented by processed biomass-tpd) on the MFSP. This 305 

figure suggests that for small-scale plants (< 500 tpd), the produced biofuel may not be economically 306 

competitive anymore. 307 

Fig.  4 should be inserted here. 308 

Fig. 5 should be inserted here. 309 

Fig. 6 should be inserted here. 310 

3.2. Total direct installed cost and operating costs  311 

Figs. 7 and 8 report the direct installed costs and utility costs, in addition to the contribution of each 312 

sub-process to these costs. Fig. 7 reports that the total amount of direct installed costs is 240.3 313 

MM$, from which 45% was associated with hydrogen production section (500). This is because 314 

WSBO is relatively dilute resulting in larger process equipment. The second largest contribution is 315 

made by biomass pyrolysis section (100). This observation is consistent with other benchmarks e.g., 316 

[46].   317 

Fig. 8 reports the contribution of each sub-process to the utility costs. The largest contributors to 318 

electricity costs are the Upgrading (200) and Hydrogen Production (500) Sections. The Hydrogen 319 

Production Section requires electricity for compression of the combustion air and operating the air-320 

cooler; Upgrading Section consumes electricity for pumping the reactor feeds and operating the air-321 

cooler. Steam is consumed in Separation Section (300) to provide heating duties in the distillation 322 

columns, but it is also produced in Hydrogen Production Section (500) through heat recovery from 323 

hot gases. The heating duties of reactors in Upgrading Section were supplied by the fire-heaters. The 324 

costs of cooling water were moderate and were distributed between Pyrolysis, Upgrading and 325 

Separation Sections.   326 
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Fig. 7 should be inserted here. 327 

Fig. 8 should be inserted here. 328 

4. Conclusions  329 

The present research studied hydrothermal upgrading and hydro-treatment of biomass pyrolysis oil. 330 

The experimental results showed very different characteristics for these two technologies. While 331 

pyrolysis oil hydrodeoxygenation gives high fuel yield, it suffers from hydrogen deficit, i.e., the 332 

amount of produced hydrogen from reforming the water soluble pyrolysis oil (WSPO) is insufficient 333 

for hydrodeoxygenation of the rest of pyrolysis oil (PO). By comparison, the fuel yield of PO 334 

hydrothermal upgrading is not significant but it has the potential for producing large amounts of 335 

hydrogen. These observations suggested that an integrated configuration utilizing the two 336 

technologies can produce the maximum fuel and would be self-sufficient with respect to the 337 

hydrogen requirement. It was shown that the proposed integrated process for PO upgrading offers 338 

several advantages: the fuel production is maximized using PO hydrodeoxygenation and hydrogen 339 

production is maximized using hydrothermal upgrading. In addition, the latter process does not 340 

require hydrogen which results in reduced hydrogen requirements. The present research also 341 

studied the economic implication of the new process. It was shown that the optimized configuration 342 

is able to reduce the costs significantly and produce the fuel at a minimum price of 428 $ m-3. The 343 

upgrading section was found to be the largest contributor to the operating costs. In addition, due to 344 

diluted water-soluble pyrolysis oil, hydrogen production required the largest capital investment. 345 

Finally, the results of sensitivity analyses suggested that the process economy is robust to changes in 346 

the modelling parameters, and the target minimum fuel selling price is achievable.  347 

Notes  348 

a Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial 349 

College London, South Kensington, London SW7 2AZ, UK. 350 
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 516 

 517 

Fig. 1 - Simplified process modelling for calculating Key Process Indicators (KPIs): (a) liquid-phase 518 

hydrodeoxygenation, (b) near critical hydrothermal treatment. 519 
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Fig. 2 - Integrated catalytic upgrading of pyrolysis oil (PO): adjusting Valves 201-204 allows 522 

optimization of the product yields. 523 
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Fig. 3 - Process block diagrams for new process including the proposed integrated upgrading 525 

section 526 

 527 

Fig. 4 - The minimum fuel selling price (MFSP), in comparison to the benchmarks from literature- 528 

2012). 529 
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 531 

Fig. 5 - The sensitivity of the minimum fuel selling price (MFSP) with respect to key process 532 

variables  533 
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Fig. 6. The sensitivity of the minimum fuel selling price (MFSP) with respect to process scale 538 
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 541 

Fig. 7 - The required capital investment for different processing sections. 542 
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 544 

Fig. 8 - The contribution of the sub-processes to the costs of utilities. 545 
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Table 1. Composition of pyrolysis oil (mass fraction) 

C  H  O   Water  

0.4010 0.0825 0.5165 0.3335 

 548 

  549 
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Table 2. Elemental analysis of water insoluble bio oil from hydrothermal processing at 380oC 

Timea (min) C (mass fraction) H (mass fraction) O (mass fraction) 

0 0.63 0.07 0.30 

1 0.66 0.07 0.27 

10 0.70 0.07 0.23 
a time at 380ᴼC; heat up time = 5 min 550 
  551 
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Table 3. Hydrodeoxygenation of pyrolysis oil at 250oC using NiMo nanosulphide catalyst 

Carbon in water 
phase (mass fraction) 

Oxygen in solvent 
phase (mass fraction) 

Oxygen in residue 
(mass fraction) 

Estimated Organo Oxygen 
removal (mass fraction) 

0.113 0.166 0.277 0.20 
  552 
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Table 4. Key process indicators (KPIs) 

Key process indicators (KPIs) HTU HDO  

Fuel: Pyrolysis oil (mass ratio) 0.3228 0.6520 

H2 required: Pyrolysis oil  (mass ratio) 0.0117 0.0422 

H2 produced : Pyrolysis oil  (mass ratio) 0.0659 0.0169 

Net H2 requirement : Pyrolysis oil (mass ratio) 0.0542 -0.0254 

Solvent : Pyrolysis oil (mass ratio) 2.98 (water) 2.14 (dodecane) 

 553 

  554 
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Table 5.  Summary of variable operating cost 

Materials/Chemicals/Utilities Cost Unit Reference 

Biomass 0.0552  $ kg-1 [46] 

Natural gas 0.137373309  $ m-3 [55] 

Catalyst  7% of Fuel price  [46] 

Electricity 37.02  $ MWh-1 [56]  

Disposal of ash 0.0198  $ kg-1 [46] 
Steam a 1.9 -4.5 $ GJ-1  [57] 
Cooling water 0.212  $ GJ-1 [57] 

Note: a varied for steam with different pressure; b varied for different types of refrigerant. 555 
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Electronic Supplementary Material 
The presented materials include the details of the experimental procedures and summary of the results. 
In addition, this document report additional information regarding process modelling including the flow 
diagrams and descriptions of Sections 100-500 (in Fig. 3 of the manuscript), and the assumptions used for 
modelling each section.  
 
Experimental procedures and summary of results  
A set of five stainless steel batch reactors (volume: 8.0 cm3 and 12.7 mm bore) were used for 
all experiments according to a previously reported method [S1]. These were constructed of stainless steel 
tubing and sealed at each end using a gas sampling valve and compression fittings (Swagelok®).  The empty 
batch reactors were weighed initially and charged with deionised water (3g) and pyrolysis oil (1g). The batch 
reactors were then purged with argon to remove air, sealed and weighed a second time. They were then 
heated in an air recirculating oven to a reaction temperature of 380ᴼC. The residence times were: t0 = 0 
(taken as time when reaction temperature was reached) t1 = 1; t2 = 2; t5 = 5; t10 = 10 minutes. It required 5 
minutes (i.e., t0) to reach the reaction temperature of 380ᴼC. After heating to the required residence time, 
the batch reactors were immediately quenched in ice and left to stand for several hours to maximise any 
phase separation of water, gas and char. After each reaction, the loaded reactors were externally dried and 
then reweighed a third time to confirm no potential mass loss occurred due to leakage.  Water soluble pyrolysis 
oil was separated, weighed and stored for analysis.  The remaining oil was then washed out of the reactors 
with acetone and all the acetone washings stored. The acetone insoluble char was collected and weighed. Any 
char which could not be collected was determined by calculating the difference between the weights of the 
emptied initial and post reaction batch reactors. A GC-TCD was used to analyse for CO, CO2, H2 and CH4.  
Table 1 (in the manuscript) shows the elemental analysis of the pyrolysis oil. Table S1 reports the mass yield of 
each phase for hydrothermal experiment at different residence times. Table S2 reports the total organic 
carbon and carbon yield of water soluble pyrolysis oil for different residence times. The elemental analyses of 
water insoluble pyrolysis oil for the hydrothermal experiments are reported in Table 2 (in the manuscript) and 
the compositions of gas products from hydrothermal experiment are reported in Table S3. Table S4 reports the 
composition of the water soluble product using GCMS.  
The GC-MS analysis of all samples was carried out at the Mass Spectrometry Facility at King's College 
London using an Agilent 6890/5973 Mass Selective Detector GC-MS equipped with a 30 m x 0.25 mm x 250 
µm HP-5MS column. The program parameters were 50°(1 min)-10°/min-320° (10 min). 4-methyl valeric 
acid and tridecane were used as internal standards for the aqueous and non-aqueous fractions 
respectively.   
CHN analysis was done at the University of Sheffield Microanalysis service using a Perkin Elmer 2400 CHNS/O 
Series II Elemental Analyser.  The CHM analysis of each sample was the average of three determinations. The 
oxygen content was determined by mass balance. The results are accurate to ±0.3% of the total mass of 
sample. TOC analysis was done by Intertek Sunbury Technology Centre (UK). Water content of the pyrolysis oil 
was done by Karl Fischer coulometric titration using a Mettler Toledo C20X instrument. 
The experimental procedure for hydrodeoxygenation is reported in the manuscript. Table S4 reports the mass 
balance for the hydrodeoxygenation experiment. Table S6 reports the composition of water soluble pyrolysis 
oil (WSPO) in the hydrodeoxygenation experiment. Table S7 reports the composition of water insoluble 
pyrolysis oil (WIPO) in the hydrodeoxygenation experiment. 
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Table S1. The mass balance for hydrothermal experiments  
 
 
 
 
 
 

 
Table S2. Total organic carbon and carbon yield of water soluble pyrolysis oil for different residence 
time for the hydrothermal experiments 

 
 
 

 
 
 
 

 
 

Table S4. The composition (mass fractions) of water soluble pyrolysis oil (WSPO) analysed by GCMS for the 
hydrothermal experiments.  

Compound Oil E 
 Time (min) t0=5 t1=6 t10=15 

  mass fraction mass fraction mass fraction 

2-Butanone, 1-hydroxy- 0.0021 0.0030 0.0001 

Acetic acid 0.0222 0.0356 0.0040 
Furfural 0.0062 0.0100 0.0000 
Formic acid 0.0000 0.0000 0.0000 
Ketone, 2-furyl methyl 0.0000 0.0000 0.0000 

Propanoic Acid 0.0032 0.0054 0.0008 

Butanoic Acid 0.0010 0.0015 0.0002 

Butanoic acid, 4-hydroxy- 0.0008 0.0011 0.0001 

2(5H)-Furanone, 3-methyl- 0.0016 0.0020 0.0001 

2-Cyclopenten-1-one,   2-hydroxy-3-methyl- 0.0050 0.0070 0.0006 
Guaiacol 0.0074 0.0093 0.0001 

trans-2-Pentenoic acid 0.0008 0.0013 0.0000 

4-Methyl-5H-furan-2-one 0.0011 0.0018 0.0001 

p-Cresol, 2-methoxy- 0.0055 0.0070 0.0006 
Phenol 0.0019 0.0026 0.0002 

2-Hydroxy-gamma-butyrolactone 0.0002 0.0000 0.0000 

Levulinic acid 0.0023 0.0051 0.0008 

HMF 0.0114 0.0151 0.0000 
Vanillin 0.0046 0.0048 0.0002 
Acetophenone, 4'-hydroxy-3'-methoxy- 0.0023 0.0000 0.0000 

Guaiacylacetone 0.0017 0.0025 0.0000 

Pyrocatechol 0.0033 0.0043 0.0004 

4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol 0.0009 0.0006 0.0000 

Benzeneacetic acid, 4-hydroxy-3-methoxy- 0.0032 0.0038 0.0004 

1,4-Benzenediol 0.0014 0.0018 0.0002 

Water  0.9099 0.8745 0.9910 
Total 1 1 1 

 
 

  

 Time [min] Initial pyrolysis oil WSBO WIBO Char Gas  

t0=0 1.01 3.7027 0.31427 0.001 0 

t1=1 1.00 3.6727 0.3354 0.0009 0.002005522 

t10=10 1.08 3.6823 0.32143 0.0193 0.000923392 

 Time [min] TOC C in WSBO/C in PO [%] 

t0=0 4.8 40.4 

t1=1 3.8 32.9 

t2=2 3.3 28.8 

t5=5 3.0 26.3 

t10=10 2.8 22.2 
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Table S6. The composition (mass fractions) of water soluble pyrolysis oil (WSPO) analysed by GCMS for 
the hydrodeoxygenation experiments.   

Compound CAS Number Mol Formula Mass fraction 
Acetaldehyde 75-07-0 C2H4O 0.00023 
Acetone 67-64-1 C3H6O 0.00108 
Acetic acid, methyl ester 79-20-9 C3H6O2 0.00014 
2-Butanone 78-93-3 C4H8O 0.00089 
Ethanol 64-17-5 C2H6O 0.02876 
2,3-Butanedione 431-03-8  C4H6O2 0.00007 
Pentanoic acid, methyl- 624-24-8 C6H12O2 0.00017 
Cyclopentanone 120-92-3 C5H8O 0.00089 
Acetoin 513-86-0 C4H8O2 0.00741 
2-Propanone, 1-hydroxy- 116-09-6 C3H6O2 0.00456 
Propanoic acid, 2-hydroxy- 97-64-3 C3H6O3 0.00438 
1-Hydroxy-2-butanone 5077-67-8 C4H8O2 0.00266 
Hydroxy Acetic acid  79-14-1 C2H4O3 0.00111 
Acetic acid 64-19-7 C2H4O2 0.03624 
Furfural 98-01-1  C5H4O2 0.00004 
2-Furanmethanol, tetra... 97-99-4 C5H10O2 0.00235 
Formic acid 64-18-6 CH2O2 0.00001 
2-Acetylfuran 1192-62-7 C6H6O2 0.00196 
2,5-Hexanedione 110-13-4  C6H10O2 0.00579 
Propanoic acid 79-09-4 C3H6O2 0.00480 
Propanoic acid, 2-methyl- 79-31-2 C4H8O2 0.00047 
Pentanoic acid, 4-oxo-ethyl ester   539-88-8 C7H12O3 0.00144 
3,6-Heptanedione 1703-51-1 C7H12O2 0.00128 
1,2-Propanediol, 2-acetate 627-69-0 C5H10O3 0.00059 
1,2-Ethanediol 107-21-1 C2H6O2 0.00186 
Butanoic acid 107-92-6 C4H8O2 0.00744 
1,2-Ethanediol, monoacetate 542-59-6 C4H8O3 0.01539 
Butyrolactone 96-48-0 C4H6O2 0.00382 
2-Furanone, 2,5-dihydro-3,5-dimethyl 35298-48-7 C6H8O2 0.00011 
Propanoic acid, 2-hydroxy- 503-66-2  C3H6O3 0.00124 
2-Butenoic acid, (E)- 107-93-7 C4H6O2 0.00003 
Crotonic acid 107-93-7 C4H6O2 0.00014 
2-Cyclopenten-1-one, 2 methyl? 1120-73-6 C6H8O 0.00005 
2-Pentenoic acid 13991-37-2 C5H8O2 0.00014 
Phenol, 2-methoxy- 90-05-1 C7H8O2 0.00948 
4-Methyl-5H-furan-2-one 6124-79-4 C5H6O2 0.00081 
Succinic anhydride 108-30-5 C4H4O3 0.00104 
Creosol 93-51-6 C8H10O2 0.00518 
Phenol, 2-methyl- 95-48-7 C7H8O 0.00102 
Phenol 108-95-2 C6H6O 0.00361 
Phenol, 4-ethyl-2-methoxy- 2785-89-9  9H12O2 0.00178 
Carvenone 499-74-1 C10H16O 0.00053 
Valeric anhydride 2082-59-9  C10H18O3 0.00006 
2-HYDROXY-GAMMA-BUTYROLACTONE 19444-84-9 C4H6O3 0.00097 
2(3H)-Furanone, 3-acetyldihydro 517-23-7 C6H8O3 0.00050 
Ethyl hydrogen succinate 1070-34-4 C6H10O4 0.00035 
4-Acetylbutyric acid 3128-06-1 C6H10O3 0.00010 
(R)-5-Hydroxymethyldihydrofuran-2-one 52813-63-5  (C5H8O3) 0.00752 
1,3-Cyclopentanedione 3859-41-4  C5H6O2 0.00052 
Vanillin 121-33-5  C8H8O3 0.00016 
Isoeugenol 97-54-1 C10H12O2 0.00002 
Apocynin 498-02-2 C9H10O3 0.00430 
2-Cyclopenten-1-one,3-methyl? 2758-18-1 C6H8O 0.00048 
Acetophenone, 4'-hydroxy- 99-93-4 C8H8O2 0.00014 
Hydroquinone 123-31-9 C6H6O2 0.00048 
Water  H2O 0.77938 
Unidentified     0.04403 
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Table S3. Composition of gas products from hydrothermal experiments 
 
 
 
 
 
 
 
 

 
Table S5. The mass balance for the hydrodeoxygenation experiments  

Initial 
pyrolysis oil Dodecane (solvent) WIBO + Solvent WSBO Char  Gas  

7.06412 0.0000 16.43312 2.35790 Negligible  n.d.* 
7.02025 7.0653 16.98718 1.78247 Negligible n.d. 
6.99809 14.0136 16.71169 2.02594 Negligible n.d. 

* Not determined  

 

Table S7. The composition (mass fractions) of water insoluble pyrolysis oil (WSPO) analysed by GCMS 
for the hydrodeoxygenation experiments.   

Compound CAS Number Mol Formula Mass fraction  

Dodecane (Solvent)  112-40-3 C12H26 0.9168 

Dimethyl ether 115-10-6 C2H6O 0.000055 

Ethanol 64-17-5 C2H6O 0.000358 

Furan 110-00-9 C4H4O 0.000128 

Methyl acetate 79-20-9 C3H6O2 0.000264 

Propionic acid, ethyl ester 105-37-3  C5H10O2 0.000086 

Diethyl acetal 105-57-7 C6H14O2 0.000054 

1-Hydroxy-2-butanone 5077-67-8 C4H8O2 0.001068 

 Cyclopentanone 120-92-3  C5H8O 0.000846 

Furan, 2-ethyl-5-methyl- 1703-52-2 C7H10O 0.000119 

Cyclopentanone, 2-methyl- 1120-72-5   C6H10O 0.000059 

2-Methyl-2-cyclopentenone 1120-73-6  C6H8O 0.000495 

Phenol 108-95-2 C6H6O 0.001285 

 p-Cresol, 2-methoxy- 93-51-6 C8H10O2 0.000016 

2-Methyl-1-phenyl-1-pentanol 73177-67-0 C12H18O 0.000516 

p-Ethylguaiacol 2785-89-9 C9H12O2 0.009510 

Guaiacylpropane 2785-87-7   C10H14O2 0.064159 

Vanillin 121-33-5  C8H8O3 0.000770 

(E)-Isoeugenol 97-54-1 C10H12O2 0.000158 

Acetoguaiacon 498-02-2 C9H10O3 0.000000 

Guaiacylacetone 2503-46-0 C10H12O3 0.000127 

2-Naphthol, 3-methoxy- 18515-11-2  C11H10O2 0.000448 

Dibenzo[b,d]cycloheptanone, 1,2,9-trimethoxy- -  C18H18O4 0.002712 

Total    1.0000 

 
  

time(min) vol CH4 H2                                                       CO CO2 

 (ml/g-oil) (vol/vol %) (vol/vol %) (vol/vol %) (vol/vol %) 

0 0 0 0 0 0 
1 1.3 5.4 23.9 69.0 1.6 
2 3.5 5.9 20.5 73.0 0.5 
5 2.6 7.9 19.5 71.0 1.7 
10 11.9 5.9 28.1 62.5 3.5 
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Process modelling   
The overall process diagram in shown Fig. S1. (identical to Fig. 3). The following sections will present the 
process description of sub-processes (100-500) and their processing steps. The applied modelling techniques 
and underlying assumptions are discussed in the following.  

Section 100: Biomass pyrolysis 
Fig. S2, adapted from Jones, et al., [S1] shows the process flow diagram for the pyrolysis section. In this section, 
the grinded biomass is firstly dried and then fed to a short residence time (< 1 second) circulating fluidized bed 
reactor (R-101) where it is converted to a widespread range of components which can be roughly classified 
into non-condensable gases, condensable gases and char.  Sand acts as the fluidization and heating medium, 
and together with char are separated at Cyclone-101. The char is burned in the combustor (E-101) in order to 
heat the circulating sand which in turn will supply the required energy for the endothermic pyrolysis reactions. 
The reaction effluents are quickly quenched in order to suppress undesirable reactions, which otherwise would 
degrade the products in favour of char and light gases. A fraction of light gases are also burned in the 
combustor and the rest are recycled to the reactor. The condensable products of pyrolysis reactions form a 
brownish mixture which contains significant amount of oxygenates and is chemically unstable. Furthermore, it 
is has lower energy content and is immiscible with the petroleum fuel. Therefore, it is sent to Section 200 for 
upgrading.  

Section 200: integrated pyrolysis oil upgrading  
As shown in Figure S3, and extensively discussed in the manuscript, a new reaction network was developed for 
upgrading the pyrolysis oil. In the new process, firstly the pyrolysis oil is split between two first-stage 
upgrading reactors. The split fraction is an optimization variable in order to minimize the hydrogen 
requirements. The fraction of pyrolysis oil sent for hydrothermal upgrading is firstly mixed with water and then 
sent to the hydrothermal reactor (R-202) at near-supercritical conditions (350oC and 200bar). The rest of the 
pyrolysis oil is firstly mixed with the dodecane solvent and then fed into a trickle flow reactor (R-201) where it 
reacts with hydrogen. The effluents of both first-stage upgrading reactors are cooled and phase separated. The 
water insoluble pyrolysis oil (WIPO) is sent to the send-stage hydrodeoxygenation reactor (R-203) where 
hydrodeoxygenation reactions remove any remaining oxygen from the fuel. The water soluble pyrolysis oil 
(WSPO) is sent to the reformer for hydrogen production in Section 500.  

Section 300 and 400: Separation and hydrocracking 
The flow diagram for Sections 300 and 500 is shown in Fig. S4. The upgraded effluent are further refined in 
Section 300 through a sequence of distillation columns. The dissolved light gases are separated in Column T-
301 and sent to Section 600 for hydrogen production. Then, the naphtha fraction is separated in Column T-
302. The boiling point of the dodecane solvent overlaps with the boiling range of the biodiesel product. 
Therefore, two distillation columns were considered. A fraction of diesel, which is lighter than the dodecane 
solvent, is separated from the top of Column T-303 and the heavier fraction is separated from the bottom of 
Column T-304. The overhead of Column T-304 mostly consists of the dodecane solvent and is recycled to the 
first-stage hydrodeoxygenation reactor. Separation section is also integrated to a hydrocracker reactor (R-401), 
where heavy-ends are converted to higher-value lighter products.  

Section 500: Hydrogen production 
The process flow diagram is shown in Fig. S5, Jones, et al., [S2]. The water soluble pyrolysis oil (WSPO) from 
Upgrading Section was used in the reformer (R-501) where it is converted to the syngas, a mixture of carbon 
oxides, hydrogen, and water. The overall hydrogen yield is further improved in a low temperature reactor, 
before being sent to the pressure swing adsorption (PSA) for separation. The tail gas (CO, CO2 and 
unseparated hydrogen) is recycled to the reformer and burned in the combustion zone. The excess heat is 
used for producing steam.  
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Process modelling and implementation considerations 
The process throughput was 2000 ton per day hybrid poplar, similar to Jones, et al.’s study [S1]. The process 
modelling was conducted using Aspen plusTM simulator. The required information for modelling Pyrolysis 
Section and Hydrogen Production Section were adapted from [S2].  The required information for modelling  
reactors in Upgrading Section were modelled based on the yield results from the experimental program as 
reported in Tables S1-S7. In modelling Separation Section (300), the specifications of the distillations columns 
were adjusted so the gasoline and diesel products have the same quality as [S2]. The hydrocracking yield in 
Section 500 was also adopted from this study. The operating conditions are summarized in Table S8. The 
distillation columns were modelled using RADFRAC unit operation in Aspen Plus. The pressure swing 
adsorption was modelled using “SEP” unit operation in Aspen PlusTM, assuming 90% separation efficiency. The 
costs of conventional unit operations (e.g., distillations, compressors) were evaluated using Aspen Economic 
AnalyzerTM. The costs of nonconventional unit operations (e.g., reformer, pyrolyzer) were calculated by scaling 
with respect to economic data [S2]. 
 
Table S8. The modelling approach and operating conditions for major reactors.   

Reactor  Description  T (C) P (MPa) Modelling 
approach  

Ref. 

R101 (Fig S2)  Pyrolysis reactor 500 0.108219 Yield  [S2] 

R201 (Fig S3)  First stage Hydrodeoxygenation 
reactor  

250 5 Yield Experimental 
results 

R202 (Fig S3)  First stage Hydrothermal upgrading 
reactor 

380 22 Yield Experimental 
results 

R203 (Fig S3)  Second stage Hydrodeoxygenation 
reactor 

251 17.2 Yield [S2] 

R401 (Fig S4) Hydrocracker 675 8.9 Yield [S2] 

R701 (Fig S5)  Reformer reactor 850 2.6 Chemical 
Equilibrium  

[S2] 

R-702 (Fig S5) High temperature gas shift reactor 353 2.5 Conversion 
(80% CO) 

[S2] 

 
 
Reference 
[S1] C.J.Richard, B.Patel, D.Chadwick, K.Hellgardt, (2013). Biomass and Bioenergy, 56, 446-455. 
[S2] S.B. Jones, J.E. Holladay, C. Valkenburg, D.J. Stevens, C.W. Walton, C. Kinchin, D.C. Elliott, S. Czernik. 

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A 
Design Case. US Department of Energy 2009; Technical Report. 
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Fig. S1. The overall process block diagram - this figure is identical to Fig 3 in the manuscript.  
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Fig. S2. Biomass Pyrolysis Section (100) - adapted from Jones, et al., [S1] 
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Fig. S3. Pyrolysis oil Upgrading Section (200) - this figure is identical to Fig 2 in the manuscript.  
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Fig. S4. Separation Section (300) and Hydrocracking Section (400) 
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Fig. S5. Hydrogen production Section (500) - adapted from Jones, et al., [S1] 

E-501

BFW

Offgases from 
Section 400

Water soluble 
bio-oil 

Steam

Air

BFW

Hydrogen to R-201, 
R-203, R-401

T-501a-c

PSA

Steam 
reformer

R-502

High Temperature 
Shift Reactor

V-501

E-502

Compressors

C-501

BFW

Steam

E-503

Steam

R-501
Steam reformer

BFW

Steam

Natural gas


	Manuscript
	ESM

