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SUMMARY

Adhesive chaperone-usher pili are long, supramolec-
ular protein fibers displayed on the surface of many
bacterial pathogens. The type 1 and P pili of uropa-
thogenic Escherichia coli (UPEC) play important
roles during urinary tract colonization, mediating
attachment to the bladder and kidney, respectively.
The biomechanical properties of the helical pilus
rods allow them to reversibly uncoil in response to
flow-induced forces, allowing UPEC to retain a foot-
hold in the unique and hostile environment of the
urinary tract. Here we provide the 4.2-Å resolution
cryo-EM structure of the type 1 pilus rod, which
together with the previous P pilus rod structure ratio-
nalizes the remarkable ‘‘spring-like’’ properties of
chaperone-usher pili. The cryo-EM structure of the
type 1 pilus rod differs in its helical parameters
from the structure determined previously by a hybrid
approach. We provide evidence that these structural
differences originate from different quaternary struc-
tures of pili assembled in vivo and in vitro.

INTRODUCTION

Chaperone-usher pili are long, thin surface appendages dis-

played by many pathogenic Gram-negative bacteria (Thanassi

et al., 1998). They serve to mediate important processes such

as bacterial attachment to host tissues and biofilm formation,

making them key virulence factors (Hospenthal et al., 2017; Tha-

nassi et al., 2012). The two archetypal chaperone-usher pili are

the type 1 and P pili of uropathogenic Escherichia coli (UPEC).

UPEC are responsible for �80% of community-acquired urinary

tract infections (UTIs), and the role played by chaperone-usher

pili in UTIs is firmly established (Flores-Mireles et al., 2015;

McLellan and Hunstad, 2016).

The architecture of type 1 and P pili consists of a long, helically

wound rod and a thin, flexible tip fibrillum located at the pilus’

distal end (Sauer et al., 2004) (Figure S1). The subunit located

at the very tip of the fibrillum is the adhesin (FimH for type 1

and PapG for P pili). The adhesin consists of an N-terminal lectin
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domain responsible for host cell receptor interaction and a C-ter-

minal pilin domain that links to the next subunit in assembly

(Choudhury et al., 1999; Dodson et al., 2001). The type I pilus

adhesin FimH targets mannosylated host receptors such as

the uroplakins of the bladder, whereas the P pilus adhesin

PapG targets galabiose-containing glycosphingolipids, which

are primarily expressed on the kidney epithelium (Hannan

et al., 2012; Mulvey et al., 1998; Roberts et al., 1994). Thus, dif-

ferential regulation of type 1 and P pilus expression may provide

the basis of the observed tropism of UPEC for the bladder and

the kidneys during a UTI (Spaulding and Hultgren, 2016).

Two additional subunits, present as single copies, FimG and

FimF (in that order; Figure S1), complete the structure of the type

1 pilus tip fibrillum. The P pilus tip fibrillum is slightly longer and is

completed by one subunit of PapF, 5–10 subunits of PapE, and

one molecule of the adaptor subunit PapK. FimA (type 1 pilus)

and PapA (P pilus) assemble into a �1,000-subunit long helically

coiled quaternary structure of �3–4 subunits per turn known as

the rod (Habenstein et al., 2015; Hospenthal et al., 2017, 2016)

(Figure S1).

For the assembly of chaperone-usher pili, all pilus subunits or

‘‘pilins’’ are first transported into the periplasm via the Sec YEG

translocon (Stathopoulos et al., 2000) (Figure S1). There, they are

folded and stabilized by a dedicated periplasmic chaperone

(Crespo et al., 2012; Vetsch et al., 2004), which shuttles each

subunit to an outer membrane-embedded nanomachine termed

the usher. On their own, pilins only show marginal thermody-

namic stability and are unstable against aggregation and degra-

dation because they consist of an incomplete immunoglobulin

(Ig)-like fold lacking the seventh b strand, which exposes a

hydrophobic groove on their surface (Barnhart et al., 2000;

Choudhury et al., 1999; Sauer et al., 1999; Vetsch et al., 2004).

This groove can be complemented by a donor strand originating

either from the periplasmic chaperone in a process termed

donor-strand complementation (DSC), or from the next subunit

in assembly in a process termed donor-strand exchange (DSE)

(Nishiyama et al., 2008; Sauer et al., 2002; Zavialov et al.,

2003). A region consisting of 10–20 N-terminal residues known

as the N-terminal extension (Nte), present on all subunits except

for the adhesin, serves as the donor strand during DSE (Sauer

et al., 2002; Waksman and Hultgren, 2009; Zavialov et al., 2003).

The usher receives chaperone-subunit complexes, catalyzes

their assembly on the periplasmic side of the outer membrane

(Nishiyama et al., 2008), and mediates the translocation of linear
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chains of assembled subunits to the extracellular space (Geibel

et al., 2013; Hospenthal et al., 2017; Phan et al., 2011; Remaut

et al., 2008). The cycle of subunit incorporation by the usher is

well characterized (reviewed in Waksman, 2017): all chap-

erone-subunit complexes are first recruited to the N-terminal

domain (NTD) of the usher and subsequently transferred to two

C-terminal domains (CTDs) that form a secondary chaperone-

subunit binding platform. DSE occurs when a subunit located

at the NTD reacts with the previously assembled subunit located

at the CTDs. Indeed, the subunit at the NTD is positioned relative

to the subunit at theCTDs in such away that its Nte is close to the

groove of the CTD-bound subunit and thus can ‘‘zip-in’’ into that

groove, thereby displacing the chaperone and forming a native

Nte-groove subunit-subunit interaction. At this point, the NTD-

bound chaperone-subunit complex transfers to the CTDs with

a rotation-and-translation motion that results in the extrusion of

the pilus, one subunit at a time.

Type1 andPpilus rodsexhibit remarkable biomechanical prop-

erties enablingUPEC to resist being flushedout of the urinary tract

duringaUTI. In response tourineflow-induced forces, thehelically

coiled rod section of chaperone-usher pili can reversibly uncoil,

thereby dissipating and relieving the force experienced by the ad-

hesin-receptor complexes (Forero et al., 2006; Miller et al., 2006;

Zakrisson et al., 2012). Several studies applying techniques such

as atomic force microscopy (AFM) and optical tweezers have

carefully deciphered and unpicked the processes that occur dur-

ing the unwinding of the helical pilus rod (Andersson et al., 2008,

2006a, 2006b, 2006c, 2007; F€allman et al., 2005; Forero et al.,

2006; Jass et al., 2004; Lugmaier et al., 2007; Miller et al., 2006;

Zakrisson et al., 2012, 2013), and a mathematical model of the

force versuselongationbehavior of piliwasdeveloped (Andersson

et al., 2006a; Jasset al., 2004).Despite their similarities, type1and

P pilus rods behave differently in response to external forces.

Notably, type1 pili can respond faster to external force byentering

a dynamic regime of elongation at lower elongation rates

compared with P pili (6 nm/s versus 400 nm/s) (Andersson et al.,

2007). In addition, type 1 pili require larger forces to peel apart

the individual stack-to-stack interactions in the dynamic elonga-

tion mode (Andersson et al., 2008, 2007). It has been suggested

that these differences allow type 1 pili to withstand the faster

and more turbulent flows of the lower urinary tract (bladder),

whereas P pili are biomechanically evolved to allow colonization

of the upper urinary tract (kidney) (Andersson et al., 2008, 2007).

The previously reported structure of the P pilus rod provided

the molecular explanation of how the main stacking interface in

the rod (formed by every n and n+3 subunit) can break apart,

while the much stronger DSE forces holding adjacent subunits

together remain intact (Hospenthal et al., 2016). Here we present

the 4.2-Å resolution cryoelectron microscopy (cryo-EM) struc-

ture of the related type 1 pilus rod. The comparison of the type

1 and P pilus rod structures begins to explain some of the differ-

ences in their biomechanical properties at the molecular level.

RESULTS

Structure Determination and Architecture of Type 1
Pilus Rods
Type 1 pili were expressed and assembled on the Escherichia

coli cell surface, from which they were sheared and purified
1830 Structure 25, 1829–1838, December 5, 2017
by density gradient centrifugation as described in STAR

Methods. The purified sample (Figure 1A) was applied to grids

and vitrified for cryo-EM analysis (Figure 1B). The resulting

electron density map was resolved to an overall resolution of

4.2 Å (Figure S2A), which is consistent with the map showing

clearly separated strands and visible density for bulky side

chains (Figures 1C and 1D). An analysis of the local resolution

of the EM map shows that the interior of the pilus rod is better

resolved than the exterior (Figure S2B), and the lowest resolu-

tion is observed in outward-facing loops (including residues

66–67, 93–95, 108–109, 116–117, and 140–143), suggesting

some disorder in these regions. Nevertheless, a near-atomic

resolution model of the fully assembled type 1 pilus rod was

built by fitting a previously determined nuclear magnetic reso-

nance (NMR) solution structure of FimA (Puorger et al., 2011)

into the EM map, followed by manual building and refinement

(Figure S2C).

The pilus rod is �72 Å in diameter and contains a hollow

central lumen, which is �14 Å wide (Figure 2A). Chaperone-

usher pili do not have any known roles in secretion, despite

the presence of a central hollow channel in both type 1 and

the related P pili. Overall, the type 1 pilus is a right-handed su-

perhelical assembly comprising 3.13 subunits per turn with an

axial rise of 8.0 Å per subunit and a pitch of 25 Å (Figure 2B).

An extensive subunit-subunit interaction network maintains

the integrity of the superhelical quaternary structure, where

each subunit interacts with a total of eight other subunits,

four preceding and four succeeding subunits (n interacts

with +1, +2, +3, +4 and �1, �2, �3, �4). This is similar to

what has been observed for the P pilus structure, where

each subunit interacts with a total of ten subunits (n also inter-

acts with +5 and �5) (Hospenthal et al., 2016) (see below).

By far the largest contribution to the subunit-subunit interac-

tion network is made by the main stacking interface between

every n and n+3 subunit pair (Figures 2C and S3). The majority

of this interface is formed by residues on the loops linking

b strands C and D (bC-bD loop) and D and E (bD-bE loop)

(Figure 2C). The total buried surface area created by the inter-

action of the donor-strand complemented n and n+3 pilins is

1,616.2 Å2 (or 1,430.2 Å2 when the contribution of the donor

strand is not taken into account) (Figure S3B).

FimA before and after Assembly into Type 1 Pili
Several structures of FimA have been determined before their

assembly into pili. NMR was used to determine the structure

of FimA in isolation where the hydrophobic groove was either

self-complemented by FimA’s own Nte (FimA, PDB: 2M5G;

Walczak et al., 2014) or by a copy of the FimA Nte peptide,

which was fused to the C terminus of the construct (FimAa,

PDB: 2JTY; Puorger et al., 2011). The two structures differ in

the orientation of donor-strand insertion with respect to the

last b strand of the Ig-like pilin fold. In FimAa (PDB: 2JTY),

the donor strand is inserted in a stable antiparallel fashion,

identical to the orientation and register observed in the quater-

nary structure of the pilus; whereas in FimA (PDB: 2M5G) the

donor strand is inserted in a less stable parallel arrangement

(Figure 2D). In addition, two structures of FimA in complex

with the chaperone FimC were determined by X-ray crystallog-

raphy (Crespo et al., 2012), but only the highest-resolution
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Figure 1. Purification and Cryo-EM Analysis of Type 1 Pili

(A) SDS-PAGE analysis of type 1 pili purified from the E. coli cell surface. When the sample was boiled for 15 min in the presence of SDS and 4.5 M urea, the pili

partially dissociated and bands representing the monomers of some type 1 pilins were resolved. Mass spectrometry (LC-MS/MS) was performed to confirm the

identity of all the bands (labeled).

(B) Representative electron micrograph of type 1 pili. Scale bar represents 100 nm.

(C) The refined type 1 pilus rod model is shown in ribbon representation in the experimentally derived electron density map (transparent gray surface). FimA

subunits are colored blue, with the central FimA subunit highlighted in orange. For illustrative purposes, a model containing 12 molecules of FimA was created in

PyMOL and a longer EM volume was created by imposing the helical parameters in real space.

(D) Regions of electron density around bulky side chains. Electron density is shown as a blue mesh and the model is shown in stick representation with carbons

colored orange, oxygens red, and nitrogens blue. Residues are clearly labeled.

Please refer to Figure S1 for the general architecture of UPEC chaperone-usher pili and Figure S2 for details on resolution estimation, local resolution, and model

validation.
structure (2.5 Å) (PDB: 4DWH) will be compared (Figure 2E). All

three previous FimA structures were aligned to the structure of

FimA assembled into a pilus using the pairwise alignment func-

tion of the DALI server (Holm and Laakso, 2016) (Figures 2D

and 2E). The two solution structures of FimA align with a

root-mean-square deviation (RMSD) (Ca) of 1.3 Å (FimA,

PDB: 2M5G) and 1.4 Å (FimAa, PDB: 2JTY) for residues

20–158 (excluding the donor strand), compared with an

RMSD of 2.0 Å for FimA in the crystal structure of the FimA-

FimC complex (PDB: 4DWH), suggesting that the solution

structures of uncomplexed FimA are more representative of

the structure of FimA in the context of the fully assembled pilus

and that FimC imposes a slight conformational change on FimA

(Figures 2D and 2E). The main difference lies in a region of

a-helix (residues 62–68) present in the FimA-FimC complex,

which is absent and forms a loop in the structure of FimA inside
the pilus (Figure 2E). In addition, there is a short 310 helix

(residues 25–28) present in FimA inside the pilus, which is

absent in the FimA-FimC complex. The two NMR structures

are very similar to FimA inside the pilus across residues

20–158, with perhaps the only difference being an additional

short helix spanning residues 79–83 in FimAa (PDB: 2JTY),

which is a loop in both the self-complemented FimA

(PDB: 2M5G) and FimA inside the pilus (Figure 2D).

Comparison of the Type 1 and P Pilus Rods
Comparing and contrasting the near-atomic resolution models

of the type 1 and P pili provides a complete picture of the general

architecture of the archetypal chaperone-usher pili from UPEC.

The pilins are arranged into similar right-handed superhelical

quaternary assemblies, which differ in their helical rise and the

number of subunits required to complete one turn (Figures 3A
Structure 25, 1829–1838, December 5, 2017 1831
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Figure 2. Overall Architecture of Type 1 Pili and Comparison of the FimA Pilin Structure

(A) Top view of the type 1 pilus rod model in surface representation. The last Nte of the light-green molecule has been removed for clarity. The dimensions of the

overall and lumen diameters are indicated.

(B) Side view of the type 1 pilus rod model. There are three faces of the pilus rod structure, colored dark and light blue (front), dark and light green, and red and

orange. A ‘‘stacking’’ interface is created between every n and n+3 subunit (boxed and labeled). The rise (R) and pitch (P) are indicated. For illustrative purposes, a

model containing 12 molecules of FimA was created in PyMOL.

(C) Zoomed-in view of the stacking interface boxed in (B). The two FimA subunits are colored in light and dark blue and are shown in ribbon representation. Donor

strands are colored orange and red, and key secondary structure elements are labeled. Residue-specific interaction details for this interface are shown in

Figure S3.

(D) Superpositions of the FimA pilin from the fully assembled pilus structure (dark blue; Nte in red) and FimA structures determined by NMR spectroscopy (light

gray). Left panel: comparison with FimA where the hydrophobic groove is complemented by a copy of the Nte fused to the C terminus (yellow) (PDB: 2JTY;

Puorger et al., 2011). Right panel: comparison with FimAa where the hydrophobic groove is self-complemented by FimA’s own Nte (green) (PDB: 2M5G;Walczak

et al., 2014).

(E) Superposition of the FimA pilin from the fully assembled pilus structure (dark blue; Nte in red) and a crystal structure of FimA (light gray; Nte not shown)

(PDB: 4DWH; Crespo et al., 2012). Two views rotated 120� with respect to each other are shown for each superposition. All proteins are shown in ribbon rep-

resentation and the RMSD values for the alignment of Ca atoms for residues 2–158 are indicated.

Please refer to Figure S1 for the general architecture of UPEC chaperone-usher pili.
and 3B). The P and type 1 pilus structures have a similar pitch but

contain 3.28 and 3.13 subunits per turn, respectively, making the

P pilus slightly more tightly wound. This is also reflected in the

slightly smaller helical rise per subunit of the P pilus structure

(7.7 Å) compared with the type 1 pilus (8.0 Å) (Figures 3A and

3B). Both structures have an ascending path of Ntes that have

their N-terminal ends facing the pilus exterior and their C-termi-
1832 Structure 25, 1829–1838, December 5, 2017
nal ends lining the pilus lumen. The Nte of PapA is longer by one

residue and its N-terminal portion (A1–P5), the so-called staple,

creates a sharp �90� angle with the remainder of the Nte (Hos-

penthal et al., 2016) (Figure 3C). By contrast, the N-terminal

portion of the FimA Nte lies flat against the remainder of the

FimA pilin fold. This difference is clear when the electron density

of both the FimA and PapA Nte is compared, which allows the
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Figure 3. Comparison of the Type 1 and P Pilus Rod Structures

(A and B) Top and side views of (A) the type 1 pilus rod (colored dark blue, light blue, and gray) and (B) the P pilus rod (colored dark green, light green, and gray).

The top view is shown in both surface and cartoon representation, whereas the side view is shown in surface representation. The last Nte of the top subunit in the

surface representation of the top view, which does not undergo DSE with another subunit here, is outlined in black to distinguish it from the Nte of the same color

emanating from the subunit below (n�3). Indicated are the dimensions of the outer and lumen diameters (top view), and the helical parameters of rise (R) and the

number of subunits per turn (side view). A black arrow indicates the degree of twist in the pilus by tracing up the front face of the pilus structure. The N-terminal end

of the Nte is visible between subunits (dashed red box) and is shorter and oriented differently in the type 1 pilus compared with the previously described ‘‘staple’’

region (residues 1–5) in the P pilus (Hospenthal et al., 2016). The model of the type 1 pilus begins at residue A2. For illustrative purposes, a model containing

12 molecules of FimA was created in PyMOL.

(C) A comparison between the Nte peptides complementing the pilin’s hydrophobic groove in the type 1 pilus (left) and P pilus (right). The pilin subunits are shown

in surface representation (FimA, light blue; PapA, light green) and the Nte peptide is shown in stick representation (FimA, dark blue; PapA, dark green). The Ntes of

the pilin subunits shown in surface representation have been removed for clarity. The bottom panels show the quality of the electron density surrounding the Nte

peptides, illustrating the differences at the N terminus. The PapANtemakes a sharp turn and forms the ‘‘staple’’ region (red dashed ellipse), whereas the FimANte

lies flat against the FimA subunit. Residues are labeled and an arrow indicates the overall orientation of the pilins.

Please refer to Figure S1 for the general architecture of UPEC chaperone-usher pili.
main chain to be traced unambiguously in both structures

(Figure 3C).

Comparison of Cryo-EM and ssNMR/STEMStructures of
the Type 1 Pilus Rod
A different model of the type 1 pilus rod structure has been

reported recently using a hybrid approach of solid-state NMR

spectroscopy (ssNMR) and scanning transmission electron mi-

croscopy (STEM) (Habenstein et al., 2015) (Figure 4). This model

has a helical arrangement of 3.46 FimA subunits per turn with a

rise of 7.2 Å (Figure 4B), which agrees with a previous low-reso-

lution EM study (Hahn et al., 2002). Such a discrepancy leads to

significant offsets observed in the stacking interface between the

n and n+3 subunits (Figure 4C).

The type 1 pilus preparations used for our present cryo-EM

structure and the previous ssNMR/STEM structure were
obtained according to different protocols. While native pili,

assembled by the usher FimD in vivo, were used for our cryo-EM

structure, the pili used for the ssNMR/STEM structure had been

produced in an in vitro assembly reaction in which FimA-FimC

complexes reacted spontaneously into pilus rods and free

FimC (Habenstein et al., 2015). To test whether differences in

the cryo-EM and ssNMR/STEM structures could be a conse-

quence of differences in the quaternary structures between pili

assembled in vivo and in vitro, we produced type 1 pili in vitro

through spontaneous assembly of FimA monomers (see STAR

Methods for the detailed protocol). As kinetic stability against

unfolding is a very sensitive parameter for quantifying the ratios

between spectroscopically indistinguishable protein conforma-

tions differing in stability (Schmid, 1983), we hypothesized that

pili assembled in vivo and in vitro should differ in their kinetic sta-

bility against dissociation and unfolding by denaturants, even if
Structure 25, 1829–1838, December 5, 2017 1833
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Figure 4. Comparison of the Type 1 Pilus Rod Structure Determined by Cryo-EM and a Hybrid ssNMR/STEM Approach

(A) Top view (upper panel) and side view (lower panel) of the cryo-EM-derivedmodel of the type 1 pilus rod shown in surface representation. The pilus subunits are

colored as in Figure 3A. A black arrow indicates the degree of twist in the pilus by tracing up the front face of the pilus structure. The helical parameter of rise (R)

and the number of subunits per turn are indicated. For illustrative purposes, a model containing 12 molecules of FimA was created in PyMOL.

(B) The hybrid model derived from ssNMR and STEM data (colored red, orange, and gray) shown in surface representation and labeled as in (A). The number of

subunits per turn was calculated by dividing the pitch (24.9 Å) by the rise (7.2 Å) (Habenstein et al., 2015). The last Nte of the top subunit in the surface repre-

sentation of the top view, which does not undergo DSEwith another subunit, is outlined in black to distinguish it from the Nte of the same color emanating from the

subunit below (n�3).

(C) Left panel: superposition of the two subunits participating in the pilus’ main stacking interface (n and n+3) of the cryo-EM-derived model (blue, Nte in red) and

the ssNMR/STEM-derived model (gray, Nte in yellow). The n subunit was aligned and the RMSD value for the alignment of Ca atoms for residues 2–158 is

indicated below. Right panel: 90� rotation of the n+3 subunit showing the offset of key b strands and loops in the stacking interface as a result of the differences in

twist and rise. The distances between equivalent Ca atoms (F54 and G108) are indicated.

Please refer to Figure S1 for the general architecture of UPEC chaperone-usher pili.
they only had slightly different quaternary structures. Figure 5

shows the guanidinium chloride (GdmCl)-dependent dissocia-

tion/unfolding kinetics at pH 2.1 for both pilus preparations,

recorded via the decrease in the far-UV circular dichroism (CD)

signal at 230 nm. The results demonstrated that native pili

formed in vivo were indeed significantly more stable against

dissociation and unfolding than pili assembled in vitro and also

differed in the denaturant sensitivity of the rate constant of disso-

ciation/unfolding (Figure 5). Specifically, the extrapolated unfold-

ing rate constants of pili assembled in vivo proved to be 3–4

orders of magnitude smaller compared with the unfolding rates
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of pili assembled in vitro recorded in the range of 5.8–6.4 M

GdmCl (Figure 5). In addition, both pilus preparations proved

to be homogeneous, as all unfolding traces could be fitted with

a single exponential function (see STAR Methods; Figures 5

and S4). We conclude that type 1 pili can adopt different quater-

nary structures and that themechanism and the conditions of the

assembly reaction likely define the specific quaternary structure

of the pilus rod. In addition, formation of a specific pilus

conformer appears to be irreversible. The differences between

the cryo-EM and the ssNMR/STEM structures of type 1 pili might

thus indeed result from different quaternary structures.



Figure 5. Kinetic Stability Against Dissociation/Unfolding by GdmCl

at pH 2.1 and 25�C of Type 1 Pili Assembled In Vivo and In Vitro

The kinetics of dissociation/unfolding of type 1 pili assembled in vivo (black

symbols) or in vitro (red symbols) at pH 2.1 and different GdmCl concentrations

were followed via the decrease in the far-UV CD signal of FimA upon unfolding.

All kinetic traces were fully consistent with a single first-order reaction,

showing that the pilus preparations were homogeneous and did not consist of

mixtures of pili with different stability against unfolding/dissociation. The log-

arithms of the rate constants of dissociation/unfolding (kobs) were plotted

against GdmCl concentration. The results show that pili assembled in vivo are

clearly more stable than those assembled in vitro. The differences in the slopes

of the GdmCl dependence of kobs indicate a higher solvent accessibility of the

transition state of dissociation/unfolding for the pili assembled in vivo. Please

refer to Figure S1 for the general architecture of UPEC chaperone-usher pili

and Figure S4 for further details about type 1 pilus rod unfolding/dissociation.
DISCUSSION

This near-atomic resolution model of the type 1 pilus rod allows

us to fully appreciate the similarities and differences of the two

archetypal chaperone-usher pili of UPEC. FimA and PapA are

related proteins with 31.7% sequence identity (mature proteins),

sharing the same C-terminally truncated Ig-like pilin fold, and are

assembled by related members of the chaperone-usher

pathway. Not surprisingly, the quaternary structure formed by

FimA or PapA, the pilus rod, also shares several similarities.

Both the type 1 and P pilus rods form right-handed superhelical

arrangements of similar overall dimensions (Figures 3A and 3B).

The P pilus rod is formed of 3.28 subunits per turn with an axial

rise of 7.7 Å, whereas the type 1 pilus rod is formed of 3.13 sub-

units per turn with a rise of 8.0 Å. These differencesmean that the

P pilus adopts a more ‘‘twisted’’ or tightly wound conformation

(Figure 3B). Furthermore, the type 1 and P pilus rod structures

differ in their Nte regions. The five N-terminal residues (A1–P5)

of PapA form the ‘‘staple’’ region, which forms a �90� angle

with respect to the remainder of the Nte (Figure 3C). This dif-

ference in the conformation (and length) of theNte allows the sta-

ple residues of PapA to reach and make contact with the n+5

subunit, thereby creating an interaction network where each
subunit contacts 10 others (two more than in the type 1 pilus)

(Hospenthal et al., 2016).

However, as demonstrated for the P pilus, the most important

interface is the main stacking interface formed between every

n and n+3 subunit (Figures 2C and S3A). This interface is respon-

sible for maintaining the quaternary structural integrity of the

pilus and also governs the biomechanical properties of revers-

ible uncoiling in response to shear forces such as those experi-

enced in the urinary tract. Chaperone-usher pili have been the

subjects of several studies utilizing force spectroscopy tech-

niques such as optical tweezers or AFM (Andersson et al.,

2008, 2007, 2006c, 2006b, 2006a; F€allman et al., 2005; Forero

et al., 2006; Jass et al., 2004; Lugmaier et al., 2007; Miller

et al., 2006; Zakrisson et al., 2013, 2012). A mathematical model

of the force versus elongation behavior of P pili was developed,

identifying three elongation regions (Jass et al., 2004). Region I is

characterized by a linear force versus elongation response and is

thought to reflect the elastic stretching of the quaternary rod

structure (although not yet breaking it). Region II results in elon-

gation under constant force and represents the sequential open-

ing of the stack-to-stack interactions resulting in rod unwinding.

Finally, Region III shows an ‘‘s-shaped’’ force versus elongation

response and represents the overstretching of the now linearized

rod, still held together by intermolecular DSE interactions. Both

regions I and II depend on the interface created by the n and

n+3 subunits. The unwinding of the rod in region II occurs either

under steady-state or dynamic conditions depending on the

elongation speed applied (Andersson et al., 2008, 2007). Mea-

surements performed under steady-state conditions revealed

that type 1 and P pili unwind at comparable unfolding forces

(28 ± 2 and 30 ± 2 pN, respectively) (Andersson et al., 2007).

However, measurements performed under dynamic conditions

(dynamic force spectroscopy) can address values of physical

entities that steady-state measurements cannot address, such

as the bond-opening rate and bond lengths (‘‘bond’’ here refers

to the stack-to-stack interactions in the quaternary rod structure)

(Andersson et al., 2008, 2007). Such measurements have

suggested that a higher force is required to unwind type 1 pili

compared with P pili at these fast elongation rates. In turn, this

implies that the stacking interface is stronger in type 1 pili (Ander-

sson et al., 2008, 2007). These findings are indeed supported by

our cryo-EM structure of the type 1 pilus rod, which has a larger

buried surface area (1,616.2 Å2) in the n and n+3 (stacking) inter-

face than the P pilus (1,453.0 Å2) (Hospenthal et al., 2016) (Fig-

ure S3B). This larger buried surface area may explain the lower

thermal bond-opening rate observed for type 1 pilus rods.

Interestingly, two different recoiling forces have been

observed for type 1 pili, suggesting that type 1 pili can rear-

range into two distinct quaternary structures after having

been extended and linearized (Andersson et al., 2008, 2007).

This raises the intriguing question of whether the two different

structures of type 1 pili, the cryo-EM structure (this study)

and the hybrid ssNMR/STEM model (Habenstein et al., 2015),

and/or the two different conformers detected by GdmCl-

dependent unfolding kinetics (Figure 5), may represent the

two different states observed in these force spectroscopy

experiments.

Chaperone-usher pili of Gram-negative pathogens are

biopolymers with remarkable biomechanical properties. The
Structure 25, 1829–1838, December 5, 2017 1835



availability of near-atomic resolution models of both the type

1 and P pilus rods provides an unprecedented opportunity to

understandwhich factors govern their differences when it comes

to reversible rod uncoiling. Although these structures appear

superficially similar, subtle differences in key interfaces and in

their helical parameters could influence how these structures

behave in response to shear forces during host infection. The

work described here, together with that of the P pilus (Hospen-

thal et al., 2016), now provides the basis on which accurate mo-

lecular dynamics simulations can be implemented that will probe

the energetic, structural, and molecular basis of pilus uncoiling

and recoiling.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

HB101 and BL21 (DE3) E. coli cells were cultured in Luria-Bertani (LB) medium at 37�C, while the W3110DfimA E. coli strain was

grown in 2YT medium at 37�C supplemented with anhydrotetracycline (12.5 ng/ml). The media was further supplemented with

antibiotics after the transformation of a plasmid for subsequent protein expression (see below). All bacterial cultures were grown

in a shaking incubator.

METHOD DETAILS

Molecular Biology
The pSH2 plasmid harbouring the fim operon from the UPEC strain J96 has been described previously (Orndorff and Falkow, 1984).

An arabinose-inducible plasmid, pSH5, was created by subcloning the FimA to FimH gene cluster from pSH2 onto the pBADM-11

vector backbone. pSH5 (AmpR) was transformed into HB101 E. coli cells (Promega) for cell-surface pilus production.

The W3110DfimA strain (unmarked deletion) was created by deleting bp 4-528 of the fimA gene from the chromosome of the

E. coli K12 wild type strain W3110 (B. J. Bachmann, 1990) as described (Link et al., 1997).

Plasmid pCG1-AC for periplasmic co-expression of FimA and FimC under tet promoter control was constructed by ligation of three

DNA fragments: Fragment 1 encoding FimA and FimC was obtained by PCR (template: genomic DNA of E. coliW3110) and overlap

extension (Horton et al., 1989) using primers p1, p2, p3 and p4. Fragment 2 was obtained by PCR using pET-11a (Studier et al., 1990)

as template and primers p5 and p6 Fragment 3, harboring the tetA promoter and the tetR gene, was obtained by digesting plasmid

pDsF-TrpA (Giese et al., 2012) with NdeI and SphI. The final construct pCG1-AC contains the tetA promoter, the tetR, bla, fimA and

fimC genes and a pBR322 origin of replication. The correct DNA sequence of pCG1-AC was confirmed by dideoxy DNA sequencing.

Pilus Expression and Purification for Cryo-EM
6 L cultures of HB101 E. coli cells, transformed with pSH5, were grown to optical density at 600 nm (OD600) of 0.6-0.8 in LB medium

supplemented with ampicillin (100 mg/mL) at 37�C in a shaking incubator. The expression of type 1 chaperone-usher pili was induced

with 0.05% (w/v) arabinose and the culture was incubated further for 1 h at 37�Cbefore harvesting the cells by centrifugation. Pili were

sheared off the cell surface by gently stirring the cells for 2 h resuspended in 400 mL of buffered solution containing 30 mM sodium

citrate dehydrate [pH 7.2], 300mMNaCl, 1 mg/mL DNase and cOmplete�mini EDTA-free protease inhibitor cocktail tablets (Roche,

1 tablet/200 mL). Subsequently, depiliated cells were removed by two rounds of centrifugation at 10’800 x g for 30 min (SLA-300

rotor; Sorvall) and pili were precipitated by incubating and gently stirring the supernatant in the presence of 5% (w/v) PEG 6000,

0.5 M NaCl for 30 min. The precipitate was pelleted by centrifugation at 18’000 x g for 30 min (SLA-3000; Sorvall). This pellet was

resuspended in 60 mL of Milli-Q water and gently stirred for 20 min at room temperature before centrifugation at 5000 x g for

20 min (SS-34 rotor; Sorvall). The supernatant containing pili was precipitated once more in the presence of 5% (w/v) PEG 6000,

0.5 M NaCl as previously, before a final centrifugation step at 27’000 x g for 30 min (SS-34 rotor; Sorvall). Pili were resuspended

in 500 mL of buffer A (20 mM Tris-HCl [pH 7.5], 150 mM NaCl) before being layered onto a pre-formed CsCl step gradient

(1.1-1.4 g/cm3) and centrifuged at 200’000 x g for 17 h (SW 60 Ti rotor; Beckman Coulter). The pili containing band was carefully

removed and dialysed against buffer A. Once fully dialysed, the pili containing solution was applied to a 15%-60% (w/v) sucrose den-

sity gradient and centrifuged at 114’000 x g for 12 h (SW 40 Ti rotor; Beckman Coulter). Fractions from the sucrose density gradient

were analysed by SDS-PAGE using 4%-12%NuPage gradient gels (Life Technologies) and pili containing fractions were pooled. The

final sample was dialysed against buffer A and the identity of type 1 chaperone-usher pili was confirmed by the identification of FimA,

FimF, FimG and FimH by mass spectrometry. All purification and centrifugation steps were carried out at 4�C unless stated

otherwise.

Production and Purification of FimA Monomers
Mature FimA without its natural signal sequence (159 residues) was produced at 37�C in the cytoplasm of E. coli BL21 (DE3) in the

form of cytoplasmic inclusion bodies using the T7 expression plasmid described previously (Puorger et al., 2011). FimA production

was induced at an OD600 of �0.7 with IPTG (1 mM final concentration) and cells were grown further for 5 h. Cells were harvested by

centrifugation, suspended 100 mM Tris-HCl [pH 8.0], 1 mM PMSF, 2 mMMgCl2, 10 mg/mL DNaseI, supplemented with cOmplete�
mini EDTA-free protease inhibitor cocktail (Roche, 1 tablet/100 mL) and lysed (Microfluidics cell cracker). The lysate was mixed with

0.8 volumes of 60 mM EDTA-NaOH [pH 7.0], 1.5 M NaCl, 6% (v/v) Triton X-100, incubated for 30 min at 4�C and centrifuged

(48’000 x g, 4�C). The inclusion body pellet was washed extensively with 100 mM Tris-HCl [pH 8.0], 20 mM EDTA and solubilized

with 6 M GdmCl, 50 mM Tris-HCl [pH 8.0], 1 mM EDTA, 50 mM DTT. After incubation for 2 h at room temperature, insoluble material

was removed by centrifugation (100’000 x g, 30 min). DTT and EDTA in the supernatant containing unfolded, reduced FimA were

removed on a Sephadex G 25 desalting column in the presence of 6MGdmCl. The intramolecular disulfide bond in FimAwas formed
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via Cu2+-catalyzed air oxidation in 6 M GdmCl, 50 mM Tris-HCl [pH 8.0], 0.1 mM CuCl2 at low FimA concentration (5 mM) to prevent

formation of intermolecular disulfides (room temperature, 18 h). The absence of free thiols at the end of the reaction was verified with

Ellman’s assay (Ellman, 1959). The solution was then concentrated by cross-flow filtration (10 kDa Hydrosart�membrane cassettes,

Sartorius) and disulfide-intact FimA was refolded by dilution with 20 mM H3PO4-NaOH [pH 7.0], 150 mMNaCl, 1 mM EDTA and dial-

ysis against 20mMH3PO4-NaOH [pH 7.0], 150mMNaCl (final FimA concentration during refolding: 50 mM). The refolded FimAmono-

merwas then purified by size exclusion chromatography on Superdex 75 in 20mMMOPS-NaOH [pH 7.0], 150mMNaCl and stored in

5 mM MOPS-NaOH [pH 7.0] The final yield of the FimA monomer was 30 mg per liter of bacterial culture. The concentration of the

FimA monomer was determined via its specific absorbance at 280 nm ( 3280 = 2680 M-1 cm-1). Electrospray mass spectrometry

showed that the N-terminal methionine introduced for cytoplasmic expression of FimA had been cleaved off quantitatively

(measured: 15826.0 Da; calculated: 15827.4 Da).

In Vitro Assembly of Type 1 Pilus Rods
The FimA monomer was dialyzed against 20 mM NH4HCO3, lyophilized and dissolved in 20 mM acetic acid-NaOH [pH 5.0], 150 mM

NaCl. After removal of insoluble material by centrifugation (25’000 x g, 5 min), the in vitro assembly of FimAmonomers to pilus rods at

a total FimA monomer concentration of 50 mM in 20 mM acetic acid-NaOH [pH 5.0], 150 mM NaCl occurred during incubation for

7 days. The assembled pilus rods were then pelleted by centrifugation (186’000 x g, 10 min, 4�C), washed with 20 mM acetic

acid-NaOH [pH 5.0], 150 mM NaCl and finally suspended in the same buffer to a final FimA (monomer) concentration of 400 mM.

In Vivo Pilus Assembly for Stability Studies
E. coli W3110DfimA transformed with the FimC/FimA coexpression plasmid pCG1-AC (tet promoter control) was grown at 37�C in

2YT medium supplemented with ampicillin (100 mg/L) and anhydrotetracycline (12.5 ng/ml). Cells were grown for 18 h, harvested by

centrifugation and suspended in 20 mM Tris-HCl [pH 8.0] (5 mL per gram of cells) using a DIAX 600 disperser (Heidolph) set to

8’000 rpm. The suspension was incubated at 90�C for 20 min and centrifuged (10 min, 20’000 x g, 20�C). Pili were precipitated by

addition of MgCl2 (final concentration: 0.1 M) and incubation for 1 h on ice, harvested by centrifugation (15 min, 48’000 x g,

20�C), and washed twice with 20 mM Tris-HCl [pH 8.0], 0.1 M MgCl2, 1 % (w/v) SDS (removal of supernatant after centrifugation

for 15 min at 48’000 x g, 20�C, respectively). After a third washing step (same conditions without SDS) the pili were suspended in

20 mM Tris-HCl [pH 8.0] and dialyzed against 20 mMH3PO4-NaOH [pH 7.0], 50 mMNaCl (membrane with 300 kDamolecular weight

cutoff, Spectrum Laboratories). Insoluble material was removed by centrifugation (15 min, 48’000 x g, 20�C). The pilus concentration

in the supernatant was determined via the specific absorbance of FimA at 280 nm and corrected for light scattering as described

(Colón, 1999). The final yields of purified pili were 15–20 mg per liter of bacterial culture, and the pili were stored at 4�C. For recording
of dissociation/unfolding kinetics, the pili were pelleted by centrifugation (186’000 x g, 10 min, 4�C), washed with 20 mM acetic

acid-NaOH [pH 5.0], 150 mM NaCl and finally suspended in the same buffer to a final FimA (monomer) concentration of 400 mM.

Dissociation and Unfolding Kinetics
Preparations of pilus rods (400 mMFimA (monomer) in 20 mM acetic acid-NaOH [pH 5.0], 150mMNaCl) were diluted 1:40 (final FimA

concentration: 10 mM;manual mixing) with 20mMH3PO4-NaOH [pH 2.1] containing different GdmCl concentrations, and the kinetics

of dissociation/unfolding were recorded at 25�C via the decrease in the far-UV circular dichroism (CD) signal at 230 nm using JASCO

J-715 Spectropolarimeter. Final GdmCl concentrations were verified via their refractive index (Nozaki, 1972). All dissociation/

unfolding kinetics were consistent with a single first-order reaction and were fitted according to equation

S= SN + ðS0 � SNÞ$e�kt

where S, S0 and SN are themeasured, initial and final CD signals, k is the rate constant of dissociation and unfolding, and t is reaction

time. The logarithms of the determined rate constants were then plotted against GdmCl concentration and fitted linearly in the case of

the in vitro assembled pili. The nonlinear dependence of ln k on GdmCl concentration observed for pili assembled in vivo was tenta-

tively fitted to the model of a high-energy on-pathway intermediate of folding/unfolding (A. Bachmann and Kiefhaber, 2001).

Cryo-EM Sample Preparation and Data Collection
A 3 mL sample of type 1 chaperone-usher pili was applied to a glow-discharged Quantifoil 1.2/1.3 400 mesh grid (Agar Scientific) and

incubated for 30 s before being blotted and plunged into liquid ethane using a Vitrobot plunge-freezing device (FEI). The data were

collected on a Tecnai G2 Polara microscope (FEI) operated at 300 kV equipped with a K2 Summit direct electron detector (Gatan)

operated in counting mode, placed at the end of a Quantum energy filter operated with a slit width of 20 eV, with a 1.13 Å pixel

size and a defocus range of -0.5 to -3.5 mm. A total dose of 100 electrons/Å2 was applied and fractionated equally among 59 frames

to allow for dose weighting.

Cryo-EM Image Processing and Reconstruction
Whole-image drift correction to align the 59 movie frames of each micrograph was carried out using MOTIONCOR2 (Zheng

et al., 2017) and the contrast transfer function (CTF) parameters of the corrected micrographs were estimated using GCTF (Zhang,

2016). The implementation for the reconstruction of helical assemblies in the program RELION-2.0 (He and Scheres, 2017;
Structure 25, 1829–1838.e1–e4, December 5, 2017 e3



Scheres, 2012) was used for image processing and reconstruction. Filaments were manually picked from 177 selected micrographs

and a total of 115’545 segments were extracted with a box size of 240 pixels. After 2D and 3D classification steps, a total of 115’510

segments were used for 3D refinement. A solid cylinder with a diameter of 100 Å, low-pass filtered to 30 Å, was used as the starting

model for 3D reconstruction. Several narrow search ranges for the helical parameters of twist and rise were tested during 3D clas-

sification encompassing a total range of 100-116� for twist and 6.8-8.2 Å for rise, which included the previously reported twist and rise

values of Hahn et al. (2002) andHabenstein et al. (2015). However, this process identified 3D classes displaying high-resolution struc-

tural features only when the ranges encompassed a twist of 115� and a rise of 8.0 Å, indicating that these were the correct helical

parameters. Therefore, the final helical parameters were refined using a search range of 114� to 116� for the twist and 7.9 Å to

8.1 Å for the rise. No segments were discarded after 3D classification, as all three classes refined with highly similar helical param-

eters. Please refer to Table S1 for details of the helical parameters after 3D classification and refinement. During the post-processing

step in RELION-2.0, a soft mask with a raised cosine edge 7 pixels wide was employed yielding a final map with a global resolution of

4.2 Å as assessed by the gold standard FSC procedure implemented in RELION-2.0 (FSC=0.143) (Rosenthal and Henderson, 2003),

consistent with strand separation and clear density for bulky side chains.

Model Building, Refinement, Structure Analysis
The FimA pilin (PDB ID: 2JTY (Puorger et al., 2011)) structure encompassing residues 20-159was docked into themap using Chimera

(Pettersen et al., 2004). The donor-strand was initially modelled with residues 172-182 (representing Nte residues 7-17) from the self-

complemented donor strand of the same FimA pilin structure (PDB ID: 2JTY). The Nte residues were renumbered and missing res-

idues (2-6 and 18-19) were manually built using Coot (Emsley et al., 2010). The final model encompasses residues 2-158 of FimA,

missing one residue from both the N and C terminus due to poorly defined electron density. A model containing six molecules of

FimA was refined using several cycles of PHENIX (Real Space Refine) (Adams et al., 2010). Manual adjustment in Coot and structure

idealisation in REFMAC5 (Vagin et al., 2004) was performed to improve the geometry of the model between cycles of real space

refinement. Knowledge of the FimA structure from previous NMR and crystallography studies were used to guide building and refine-

ment (Crespo et al., 2012; Puorger et al., 2011; Walczak et al., 2014). However, in order to obtain an unbiased view of secondary

structure element boundaries, the DSSP server (Joosten et al., 2010; Kabsch and Sander, 1983) was used in combination with careful

manual examination of the model in Coot to delineate the final secondary structure element boundaries enforced during real space

refinement. Final validation of the model was performed using MOLPROBITY (Chen et al., 2010) and the wwPDB validation Service.

A Fourier Shell Correlation (FSC) curve was calculated to assess the agreement between the map and the model and to avoid

potential overfitting. The pairwise alignment function of the DALI server was used to calculate RMSD values for the alignment of

two structures across a range of Ca atoms (Holm and Laakso, 2016). The CoCoMaps Tool was used to analyse the interfaces

between FimA or PapA pilins in the quaternary structure of their respective pili (Vangone et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analyses employed in this publication pertain to the analysis on electron microscopy data and the

determination of structures by electron microscopy, which are integral parts of existing algorithms and software used.

DATA AND SOFTWARE AVAILABILITY

The accession number for the EM map reported in this paper is EMD-3809. The accession number for the model coordinates

deposited in the PDB is 5OH0.
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