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ABSTRACT 

This thesis investigates the origins of children's understanding of multiplication and division and 

how they progressively become coordinated in young children. The hypothesis of the study is that 

the origins of these operations are in children's schemas of action. This leads to the prediction that 

children can understand about multiplicative relations before they can solve computational 

multiplicative problems. This hypothesis is contrasted with Fischbein's et al. (1985) hypothesis 

that multiplication originates from repeated addition and quotitive division from repeated 

subtraction, which leads to the prediction that children must be able to quantify in order to 

understand multiplicative relations. To test these predictions a series of studies was carried out 

analysing children's performance in relational, non computational problems and in computational 

problems, involving discontinuous and continuous quantities which could not be quantified. 

The first study explored children's use of one-to-many correspondence reasoning to solve 

a variety of problems. Children aged 4 to 7 were asked: a) to order different sets on the basis of 

correspondence relations; and b) to indicate the size of the corresponding sets. Even the 5 year 

olds were able to order the size of the sets when they could use correspondence relations. The 

same children had great difficulty in indicating the size of the sets. This demonstrated that the 

ability to quantify is not a prerequisite for understanding multiplicative relations. 

The second and third studies explored children's understanding of the inverse relation 

between the number of the quotas and their size in sharing problems. The children (aged 4 to 7) 

were tested in partition and quotition problems. In partitive problems more than half of the 6 year 

olds and the majority of the 7 year olds showed an understanding of the inverse divisor-quotient 

relation. In the quotitive problems, although there was a drop in the level of performance, it was 

not found to be significant across the same age groups. Children's's ability to reflect on the 

relations involved in a sharing situation before being able to quantify the problems challenges the 

hypothesis that quantification is the origin for understanding division. 

The fourth study explored whether multiplication and division develop as independent 

or coordinated operations. Children were asked to quantify a set of multiplication and division 

problems in which it was possible to model the problem directly using their schemas of action and 

a second set where this direct modelling was not possible because a crucial piece of information 

was missing. It was expected that children who have coordinated their multiplicative schemas of 

action would be able to deploy an action usually associated with division to solve a multiplication 

problem and vice versa. More than half of the children were able to quantify the problems that 

matched their actions directly, but their performance decreased in the missing value multiplication 

problems that were solved by an action related to division. The discrepancy in the children's 

performance suggests that the two operations have different roots and initially develop 

independently of each other. 

The findings support the hypothesis that the understanding of multiplication and division 

is constructed from children's schemas of action. The two operations have distinct roots and 

develop independently before they become coordinated at a later stage. 

2 



ACKNOWLEDGMENTS 

I would like to express my most sincere and grateful thanks to my supervisor Professor 

Terezinha Nunes for her expert guidance and tolerance throughout the completion of this 

thesis. She has been a great teacher to me. Every meeting with her was challenging and 

deeply inspiring. Her critical comments and suggestions over the years have helped me 

to refine and clarify my thoughts and their written expression. She taught me not only 

how to do research but also how to be independent and confident. 

I would like to thank Dr. Chris Donlan and Dr. Norman Freeman for their critical 

comments and suggestions on this study. 

I am deeply indebted to Anna Brett. It was a gift of God to have her in our Department. 

She was invaluably supportive and caring. I cannot thank her enough for all she did for 

me. I would like her to know that she has a home in Greece and someone there who loves 

her a lot. 

I would also like to thank Bridget O'Sullivan for being kind, supportive and reliable and 

for always being willing to help me improve my written English. 

I am grateful to Dr R.Cowen, Dr J. Harry and G. Woodhouse for their expert statistical 

advice. 

Special thanks are due to all the children who took part in this study. I had the most 

enjoyable time when I was working with them. 

I would like to wholeheartedly thank all my Greek language students. They enriched my 

life in London and made me love being a teacher. I will miss them a lot ... 

I am grateful to the Kapetanakion Foundation of Heraklion, Crete for its financial 

assistance during the first two years of my studies. I am also thankful to the A.G. 

Leventis Foundation for its generous financial support for the completion of this thesis. 

Finally, I would like to thank my mother and sister for being loving, caring and sharing 

with me all the joyful and distressing moments of my academic and personal life in 

London. 

3 



To my parents 

Nikos & Eleni 

The limit of their love is infinity 

4 



TABLE OF CONTENTS 

Abstract 	 2 

Acknowledgements 	 3 

Table of Contents 	 5 

List of Tables 	 12 

List of Figures 	 15 

List of Pictures 	 17 

List of Appendices 	 17 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 
	

18 

1.2 The organization of the thesis 
	

28 

CHAPTER 2 

THE ORIGINS OF CHILDREN'S UNDERSTANDING 

OF MULTIPLICATION AND DIVISION 

Children's schemas of action as the origin of multiplication and division 	30 

2.1 The role of ratio and one-to-many correspondence in the understanding 

of multiplication 	 30 

2.1.1 The onset of multiplicative reasoning 	 30 

2.1.2 Young children's understanding of the concept of ratio and 

their ability to build equal sets by correspondence procedures 	36 

5 



2.1.3 Summary 	 47 

2.2 The sharing schema of action and its importance 

in the understanding of division 
	

48 

2.2.1 How does children's understanding of division begin? 
	

48 

2.2.2 Summary 
	

57 

2.3 Evidence of children's use of schemas of action in the quantification of 

multiplication and division problems 
	

58 

2.3.1 Quantifying multiplication problems 
	

59 

2.3.2 Quantifying division problems 
	

62 

2.3.3 Comparison studies on children's efficiency to quantify 

multiplication and division problems 
	

66 

2.3.4 Is the understanding of the schema of one-to-many 

correspondence the key for understanding all multiplicative 

relations? 
	

76 

2.3.5 Quantifying fractions 
	

83 

2.3.5.1 The role of half in the division of 

continuous quantities 
	

84 

2.3.5.2 Comparison of children's ability to share 

discontinuous and continuous quantities 
	

85 

2.3.5.3 Summary 
	

91 

Alternative views about the origin of multiplication and division 	 92 

2.4 Dickson, Brown and Gibson's hypothesis: 

Multiplication is not related to any schema of action 	 93 

6 



2.5 Fischbein, Deri, Nello and Marino's theory: 

The role of addition and subtraction in the understanding of 

multiplication and division 
	

94 

2.6 An overall summary: What is known and what can be explored further 	102 

CHAPTER 3 

EXPLORING CHILDREN'S UNDERSTANDING OF MULTIPLICATION 

3.1 The aim and the rationale of the study 	 106 

3.2 Methods 	 108 

3.2.1 Design 	 108 

3.2.1.1 Discontinuous quantities 	 109 

3.2.1.2 Continuous quantities 	 113 

3.2.2 Participants 	 117 

3.2.3 Materials 	 117 

3.2.4 Procedure 	 117 

3.3 Results 	 123 

3.3.1 Preliminary analysis 	 123 

3.3.2 Discontinuous quantities 	 129 

3.3.2.1 Relational tasks 	 129 

3.2.2.2 Quantification tasks 	 131 

3.3.3 Continuous quantities 	 133 

3.3.3.1 Relational tasks 	 133 

3.3.3.2 Quantification tasks 	 134 

7 



3.3.4 Children's justifications and strategies 
	

135 

3.3.4.1 Types of justification across age 
	

138 

3.3.4.2 Types of justification and overall success 
	

140 

3.4 Discussion and Conclusions 	 143 

CHAPTER 4 

EXPLORING CHILDREN'S UNDERSTANDING OF DIVISION 

4.1 Overview of the aims of the experiments on partitive 

and quotitive division 	 146 

Study I: Partitive division 	 149 

4.2 Methods 	 149 

4.2.1 Design 	 149 

4.2.2 Participants 	 153 

4.2.3 Materials 	 153 

4.2.4 Procedure 	 153 

4.3 Results 	 157 

4.3.1 Preliminary analysis 	 157 

4.3.2 The effect of condition and type of quantity on 

children's performance 	 162 

4.3.3 Children's strategies and justifications 	 165 

4.3.3.1 The effect of age on the types of justification given 	168 

4.3.3.2 Types of justification and overall success 	169 

8 



4.4 Discussion and Conclusions 
	 172 

Study II: Quotitive division 
	

175 

4.5 Methods 	 175 

4.5.1 Design 	 175 

4.5.2 Participants 	 179 

4.5.3 Materials 	 179 

4.5.4 Procedure 	 179 

4.6 Results 	 183 

4.6.1 Preliminary analysis 	 183 

4.6.2 The effect of condition and type of quantity 

on children's performance 	 188 

4.6.3 Children's strategies and types of justification 	 191 

4.6.3.1 The effect of age on the type of justification given 	194 

4.6.3.2 Types of justification and overall success 	 195 

4.7 Discussion and Conclusions 	 197 

4.8 Comparative Analysis of Partitive (Study I ) 

and Quotitive (Study II) Problems 
	

200 

4.8.1 Response correctness 
	

200 

4.8.2 Discussion and Conclusions 
	

201 

9 



CHAPTER 5 

THE COORDINATION OF MULTIPLICATION AND DIVISION 

5.1 The aim and the rationale of the study 
	

203 

5.2 Methods 
	 209 

5.2.1 Design 	 209 

5.2.1.1 The coordination of multiplicative relations across 

multiplication and division 	 209 

5.2.1.2 The coordination of multiplicative relations within 

multiplication and division 	 213 

5.2.2 Participants 	 216 

5.2.3 Materials 	 216 

5.2.4 Procedure 	 216 

5.3 Results 	 219 

5.3.1 Introduction 	 219 

5.3.2 The coordination of multiplicative relations across 

multiplication and division 	 219 

5.3.2.1 The Acting Condition 	 219 

5.3.2.1.1 A preliminary quantitative analysis 	 219 

5.3.2.1.2 Children's strategies 	 221 

5.3.2.1.3 Children's schemas as direct and inverse 

solutions 	 226 

5.3.2.1.4 Conclusions 	 234 

5.3.2.2 The Reflecting Condition 	 235 

5.3.2.2.1 Quantitative and qualitative analysis 	 236 

10 



5.3.2.2.2 Conclusions 	 239 

5.3.2.3 The Display Condition 	 239 

5.3.2.3.1 Quantitative and Qualitative analysis 	 240 

5.3.2.3.2 Conclusions 	 242 

CHAPTER 6 

DISCUSSION AND CONCLUSIONS 	 245 

REFERENCES 	 255 

APPENDICES 	 266 

11 



LIST OF TABLES 

Table 2.1 	Multiplication and division word problems 

Percent of children using each type of solution strategy on multiplication 
problems 

Percent of children using each type of solution strategy on measurement 
division problems 

Percent of children using each type of solution strategy on partitive 
division problems 

Interview problems 

Number of children correctly solving each problem and the number and 
kind of valid strategies 

The design of the study 

Table 2.2 

Table 2.3 

Table 2.4 

Table 2.5 

Table 2.6 

Table 3.1 

Table 3.2 

Table 3.3 

Table 3.4 

Table 3.5 

Table 3.6 

Table 3.7 

Table 3.8 

The number of children passing or falling score in one variable problems 
with discontinuous quantities by age 

The number of children passing or failing in the ordering task with 
discontinuous quantities by age and condition 

Children's performance in one-variable ordering and quantification tasks 
by age 

Children's performance in two-variable ordering and quantification tasks 
by age 

Number of children passing or failing in the ordering task with continuous 
quantities by age and condition 

Number of children obtaining each score (maximum=4) in the 
quantification tasks with continuous quantities by age 

The proportion of children's justifications with discontinuous quantities 
as a function of age and condition 

12 



Table 3.9 
	

The proportion of justifications in the Same Number - Different Ratio 
problems with continuous quantities by age 

Table 3.10 	The proportion of justifications across the conditions of the ordering task 
with discontinuous quantities as a function of children's performance 

Table 3.11 	The proportion of justifications in the continuous quantities experimental 
task as a function of children's performance 

Table 4.1 	The design of the study 

Table 4.2 
	

Number of children succeeding in the same and the different condition 
with discontinuous quantities by age and size of the dividend 

Table 4.3 
	

Number of children succeeding in the same and the different condition 
with continuous quantities by age and size of the dividend 

Table 4.4 
	

Children's performance across conditions with discontinuous quantities 
by age 

Table 4.5 
	

Children's performance across conditions with continuous quantities 
by age 

Table 4.6 
	

Number of children succeeding and failing in the different condition 
across discontinuous and continuous quantities 

Table 4.7 
	

The proportion of justifications with discontinuous quantities 

Table 4.8 
	

The proportion of justifications with continuous quantities by age 

Table 4.9 
	

The proportion of justifications with discontinuous quantities as a function 
of children's performance 

Table 4.10 

Table 4.11 

Table 4.12 

The proportion of justifications with continuous quantities as a function 
of children's performance 

The design of the study 

Number of children succeeding in the same and different condition with 
discontinuous quantities by age and size of the dividend 

Table 4.13 Number of children succeeding in the same and different condition with 
continuous quantities by age and size of the dividend 

13 



Table 4.14 	Children's performance across conditions with discontinuous quantities 
by age 

Table 4.15 	Children's performance across conditions with continuous quantities 
by age 

Table 4.16 Number of children succeeding and failing in the different condition 
across discontinuous and continuous quantities 

Table 4.17 	The proportion of justifications with discontinuous quantities by age 

Table 4.18 	The proportion of justifications with continuous quantities by age 

Table 4.19 	The proportion of justifications with discontinuous quantities as a function 
of children's performance 

Table 4.20 	The proportion of justifications with continuous quantities as a function 
of children's performance 

Table 4.21 	The number of correct responses in the partitive (N=96) and quotitive 
problems (N=96) across discontinuous and continuous quantities 

Table 5.1 	The direct and inverse situation problems of the acting condition 

Table 5.2 

Table 5.3 

Table 5.4 

Table 5.5 

The number of children succeeding in the direct and inverse problems by 
age 

The number of children succeeding and failing across the direct and 
inverse sharing problems 

The frequency of the successful children's strategies in the direct and 
inverse sharing problems 

The frequency of the strategies employed by the children who were 
successful in the direct sharing problems but failed in the inverse sharing 
problems 

Table 5.6 	The number of children succeeding and failing across the direct and 
inverse quotitive problems 

Table 5.7 	The frequency of the successful children's strategies in the direct and 
inverse quotitive problems 

14 



Table 5.8 	The number of children succeeding and failing across the direct and 
inverse correspondence problems 

Table 5.9 	The frequency of the successful children's strategies across the direct and 
inverse correspondence problems 

Table 5.10 	The strategies of the children succeeding in the reflecting condition 
problems 

Table 5.11 	The frequency of the solution strategies of the succeeding children in the 
direct and inverse display problems 

Table A.1 	The percentage of correct responses across relational and quantificational 
partitive and quotitive division problems 

Table A.2 

Table A.3 

The frequency of the strategy variations observed within the sharing 
schema of action in the direct and inverse problems by the successful 
children 

The frequency of the strategy variations observed within the quotitive 
schema of action in the direct and inverse problems by the successful 
children 

Table A.4 	The frequency of the strategy variations observed within the 
correspondence schema of action in the direct and inverse problems by the 
successful children 

LIST OF FIGURES 

Figure 1.1 	(a) Additive thinking (3+3+3+3) compared with (b) multiplicative 
thinking (4x3) 

Figure 3.1 	The distribution of children's scores in the relational task in the same 
number same ratio situation with discontinuous quantities 

Figure 3.2 	The distribution of children's scores in the relational tasks in the same 
number different ratio situation with discontinuous quantities 

Figure 3.3 	The distribution of children's scores in the relational task in 
the different number same ratio situation with discontinuous quantities 

15 



Figure 3.4 	The distribution of children's scores in the relational task in the 
different number different ratio situation with discontinuous quantities 

Figure 3.5 	The distribution of children's scores in the relational task in the 
commutativity situation with discontinuous quantities 

Figure 3.6 	The distribution of children's scores in the relational task in the 
same number same ratio condition with continuous quantities 

Figure 3.7 	The distribution of children's scores in the same number different ratio 
situation with continuous quantities 

Figure 3.8 	The distribution of children's scores in the quantification task with 
discontinuous quantities 

Figure 3.9 	The distribution of children' scores in the quantification task with 
continuous quantities 

Figure 4.1 	The distribution of children's scores in the same condition with 
discontinuous quantities 

Figure 4.2 	The distribution of children's scores in different condition with 
discontinuous quantities 

Figure 4.3 	The distribution of children's scores in the same condition with 
continuous quantities 

Figure 4.4 	The distribution of children's scores in different condition with 
continuous quantities 

Figure 4.5 	The distribution of children's scores in the same condition with 
discontinuous quantities 

Figure 4.6 	The distribution of children's scores in the different condition with 
discontinuous quantities 

Figure 4.7 	The distribution of children's scores in the same condition with 
continuous quantities 

Figure 4.8 	The distribution of children's scores in the different condition with 
continuous quantities 

16 



LIST OF PICTURES 

Picture 2.1 Materials used to investigate spontaneous measurement procedures. 

Picture 3.1 	Discontinuous quantities; ordering the size of the multiplicative product 

Picture 3.2 Continuous quantities; ordering the size of the multiplicative product 

Picture 4.1 	Partitive division; sharing discontinuous quantities 

Picture 4.2 	Quotitive division; sharing discontinuous quantities 

LIST OF APPENDICES 

Appendix 4.1 The number of correct responses in each trial with discontinuous 
quantities 

Appendix 4.2 The number of correct responses in each trial with continuous 
quantities 

Appendix 4.3 The number correct responses in each trial with discontinuous quantities 

Appendix 4.4 The number of correct responses in each trial with continuous 
quantities 

Appendix 5.1 Comparing children's performance across relational and quantificational 
division problems 

Appendix 5.2 How the children implemented their schemas of action 

17 



CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The aims of the thesis 

This study was designed to investigate the origin(s) of the concept of multiplication and 

division, whether the two concepts have the same or a distinct root, and how they 

progressively develop and become coordinated in young children. 

Where does the understanding of arithmetic operations stem from? 

Although there are a variety of controversies regarding children's development of 

mathematical reasoning, there is largely a consensus that children's understanding of 

arithmetic operations stems from their schemas of actions that is "generalizable and 

structured actions which can be applied to a variety of objects and which centre on the 

relations between objects and transformations rather than on the objects per se" (Nunes, 

1996a, p.242). Children construct their schemas of action on the basis of their everyday 

experience of the world where quantities are reasoned about and acted on and is not 

dependent on formal instruction (Resnick and Singer, 1993). Action schemas are quite 

different from number operations. Number operations involve the understanding of the 

conventional system of numbers, which are a compressed representation of objects (8 is 

a compressed representation of eight individual objects), and the use of mathematical 

signs such as +, x, : and =. Why then do number operations derive from children's 

schemas of actions? The reason that schemas of actions provide the first meanings for 

understanding arithmetic operations is because what is invariant in an arithmetic 

operation also has to be invariant in the schema of action that the child has for this 

operation. Therefore, the schemas of actions that children have form the knowledge basis 

for the understanding of number operations. This also suggests that children can reflect 
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on the relations between objects and their transformations before being able to deal with 

the strictly numerical aspect of the situation. Bryant (1974) has argued that children can 

reason on a situation on the basis of relations - what he terms relative codes - before they 

make similar deductions using absolute codes. Resnick and Singer (1993) have called 

these early schemas of action "protoquantitative schemas" (p. 109) because the children 

reason non-numerically on the relations between amounts of physical material. 

The hypothesis that the origin of children's understanding of operations is in their action 

schemas was initially put forward by Piaget (1965) and has been strengthened by a 

number of studies on addition and subtraction. These studies have shown that young 

children are able to solve a number of addition and subtraction problems by modelling 

the actions in the problem, that is by joining or separating objects, long before they are 

able to name which arithmetic operation is adequate to calculate the result formally 

(Carpenter and Moser, 1982; Hudson, 1983; Hughes, 1986, Riley, Greeno and Heller, 

1983). 

What do we not know about the origin of multiplication and division? 

This study hypothesizes that the origins of multiplication and division are to be sought 

in children's schemas of action. Little is known, though, about the relationship between 

actions schemas and the origin and development of the concept of multiplication and 

division which are the operations that are focused on in this thesis. 

An alternative view about the origins of multiplication and division has been proposed 

by Fischbein, Deri, Nello and Marino (1985). According to them the origins of 

multiplication and division are to be sought in additive structures. Multiplication is 

intuitively attached to a repeated addition model and quotitive division to a repeated 

subtraction model. Fischbeinet al's hypothesis implies that the understanding of 

multiplicative concepts stems from quantification. Consequently children who cannot 
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solve multiplicative problems are not expected to have any understanding of 

multiplicative relations. It is argued that a) these are problem solving procedures rather 

than the core of multiplication and division, and b) the invariants of additive and 

multiplicative situations are considerably different. 

The aim of this section is a) to discuss theoretically the invariants of multiplication and 

division which are hypothesized to be preserved in children's schemas of action where 

the origin of these concepts is to be sought and b) show that these two operations are 

qualitative different from addition and subtraction. 

Looking at the invariants: 

(a) Multiplication 

Nunes and Bryant (1996) pointed out that the most salient invariant in a multiplicative 

situation is that two sets are in a constant one-to-many correspondence relation (1 chair 

has 4 legs). This constant one-to-many correspondence relation is the invariant of the 

situation, an invariant which is uniquely found in multiplication and is not present in any 

additive situation. The one-to-many correspondence relation lays the basis for 

understanding a new mathematical concept, the concept of ratio. In order to maintain the 

relations between "chair-legs" constant, that is the ratio 1:4, each time a chair is added 

to the set of chairs, 4 legs have to be added in the set of legs. The action that is carried to 

maintain the ratio constant is replication and its inverse and involves adding to each set 

the corresponding unit for the set so that the invariant one-to-many correspondence is 

preserved. That means that each time a chair is removed from the set of chairs 4 legs are 

removed from the corresponding set of legs. The number of times a replication is carried 

out is known as scalar factor. If, for example, we want to replicate the situation 1 chair -

4 legs 7 times, 7 is the scalar factor and refers neither to the chairs nor to the legs, but to 

the number of replications relating the sets that are in correspondence in order to maintain 

the ratio constant. 
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In order to understand multiplication, the child has to master a whole new set of 

invariants that are not present in an additive situation. Nunes and Bryant (1996) argued 

that additive situations are about part-whole relations in which objects or sets of objects 

that are not related to each other are either put together or separated. In contrast, 

multiplicative situations are about a constant relationship, expressed as a ratio, between 

two corresponding sets. The multiplication learner must deal with a new type of quantity, 

the "intensive quantity" which is not part of their engagement with additive relations 

(Schwartz, 1988). In addition and subtraction the children work with extensive quantities, 

that is quantities that can be counted or measured directly (e.g. the number of sweets, the 

height of a person). In multiplication, though, the children work with intensive quantities 

which refer to the relation between two extensive quantities, rather than to their actual 

amounts. For example, "1 pound per chocolate" is an intensive quantity relating two 

extensive quantities. This intensive quantity is like a third variable connecting the money 

with the chocolates and refers neither to the money nor to the chocolates, but to the 

relation between them. Schwartz argues that multiplication and division are "referent 

transforming" operations, because they take two quantities with different referents as 

input and output a third quantity whose referent is different from either of the first two. 

In the above example chocolates are multiplied by pounds per chocolate and the outcome 

is number of pounds. Schwartz argues that the notion of multiplication as repeated 

addition is problematic because addition is referent preserving operation whereas 

multiplication is referent transforming. 

For Piaget, Grize, Szeminska and Bang (1977, as cited in Clark and Kamii, 1996) the 

difference between addition and multiplication also lies in the number of the levels of 

abstraction and the number of inclusion relations that the child has to consider 

simultaneously. This is shown clearly in Figure 1 below (from Clark and Kamii, p. 42). 

Additive thinking requires only one level of abstraction, each unit of three that the child 

adds is made of ones and there are three ones; inclusion relations are only on one level: 
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The child includes one in two, two in three, until twelve. That means that the groups are 

constructed successively. In contrast, multiplication requires two kinds of relations that 

are not present in addition: the one-to-many correspondence between the three units of 

ones and the one unit of three and the composition of inclusion relations on more than 

one level, as it is shown in Figure 1. The construction of three units of ones into one unit 

of three requires a higher level of abstraction than thinking only of single units as in 

addition. Inclusion relations are also more complicated: There are inclusion relations 

horilontally at the level of single units - 1 is included in 2, 2 is included in 3 - and at the 

level of units of three - 1 three in 2 threes, 2 threes in 3 threes and 3 threes in 4 threes -

as well as vertically because 3 ones are included in each unit of 1 three, and 4 units of 

three are included in the total sum. All these relations are made simultaneously. In 

multiplication, the children should think, as stated by Steffe (1994), about composite 

units, that is units of units. 

FIGURE 1.1 

(a) Additive thinking (3+3+3+3) compared with (b) multiplicative thinking (4x3). 

(a) Additive 

 

     

     

(b) Multiplicative 

Note. From Clarke and Kamii, (1996), p.42. 
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Because the invariants of multiplication are different from the invariants of addition, 

claims that multiplication can be seen as a repeated addition situation (Fischbein, Deri, 

Nello and Marino, 1985), must be questioned. The invariants that are present in a 

multiplicative situation suggest that the basic meaning for children's understanding of 

multiplication has to be sought in an action schema quite different from the schemas 

present in addition, the schema of one-to-many correspondence. 

(b) Division 

Division, as pointed out by Nunes and Bryant (1996), requires the understanding of 

another new set of invariants which are present neither in the schemas of addition nor of 

multiplication. Addition problems are about part-whole relations. The whole is the sum 

of the parts, which do not have to be of equal size. In division, though, the size of the 

shared quotas always has to be the same. In a sharing situation the child has to consider 

the relations between three quantities: the size of the whole (known as the dividend), the 

number of recipients (known as the divisor) and the size of the shared parts (known as 

the quotient). For example, if there are 12 biscuits (dividend) and 3 children to share 

them (divisor), each child will receive 4 biscuits (quotient). According to Correa (1995) 

and Nunes and Bryant (1996) there is a new set of relations that the child has to consider 

in a sharing situation: There is a direct relationship between the dividend and the divisor, 

which means that the more biscuits there are, the more each child would receive in the 

above situation; and an inverse relations between the divisor and the size of the quota, 

which means that the more children sharing the fewer each would get when the number 

of biscuits is kept the same. 

Because the invariants of a sharing situation are different from the invariants of 

subtraction Fischbein et al's claim that quotitive division originates from repeated 

subtraction can be question. Although quotitive problems can be quantified by repeated 

subtraction, this is a quantification procedure and not the essence of the operation. The 
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hypothesis of the study that division originates from children's schemas of action is based 

on the fact that the invariants of division as an operation are preserved in children's 

schemas of action. 

There are two schemas of action that can be implemented in sharing both of which 

observe the same invariant, the inverse divisor-quotient relationship. In partitive division 

problems, when a quantity is shared among a number of recipients, the schema takes the 

form of sharing in a one-for-you, one-for-me fashion. It is true that young children adopt 

the sharing procedure to distribute objects amongst themselves quite early and can 

recognise the equality of the shared sets (Davis and Pitkethly, 1990; Desforges and 

Desforges, 1980; Frydman and Bryant, 1988; Miller, 1984). Frydman (1990) has also 

shown that they are even able to adjust the routine of sharing when the shared units are 

not of equal size in order to form equal shares. For example, they would give two single 

sweets to a doll receiving only single sweets and one double sweet to a doll receiving 

only double units. In quotitive division problems, when quotas are shared among the 

recipients, then the schema takes the form of forming equal quotas until the quantity to 

be shared is exhausted. For example, in order to determine how many friends can be 

invited to a party if each child is to be given 3 sweets and there is a total of 12 sweets to 

be shared, children often form quotas of 3s until the sweets are exhausted. 

It has been proposed (Fischbein, Deri, Nello and Marino, 1985; Dickson, Brown and 

Gibson, 1984; Kouba, 1989) that division and sharing are conceptually close because in 

both cases the child has to share a quantity into equal sized quotas. It is, therefore, 

reasonable to assume that when children have an action schema to attain equal 

distribution they already understand division. 

However, Correa, Nunes and Bryant (1998) suggested, that there are good reasons not to 

treat division the same as sharing, although sharing is the action schema from which it 
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originates. In a sharing situation children's consideration is to give equal amounts to each 

recipient following one-to-one correspondence procedures (one-for-me, one-for-you). 

In contrast, in division the equality of the shared quotas is a relationship that is assumed 

and has to be respected and the child has to understand that there is a direct relationship 

between the dividend and the quotient and the inverse relationship between the divisor 

and the quotient. Correa (1995) presented convincing evidence that sharing is a necessary 

but not sufficient condition for the understanding of the relations between the dividend, 

the divisor and the quotient. Not all the children who could do sharing were able to reflect 

on the effect that the size of the divisor had on the size of the quotient. 

Because the invariants of a sharing situation are qualitatively different from the invariants 

of additive situation, as well as the schemas of action involved in each, it is unlikely that 

the understanding of division will stem from the additive structures. 

The existing evidence suggests that the action schema of sharing is the origin of 

children's understanding of division, but division itself is a more complex concept 

(Correa, Nunes and Bryant, 1998). 

Do multiplication and division have the same or distinct roots? 

The literature has not yet been able create a clear picture of whether multiplication and 

division have the same or distinct roots. For example, Piaget (1965) suggested that 

division is the inverse of multiplication and that the two operations are discovered 

simultaneously. In contrast, Fischbein, Deri, Nello and Marino (1985) proposed that the 

two operations have distinct origins: multiplication originates from addition, while 

partitive division originates from sharing and quotitive division from subtraction. 

This study aims to investigate whether the two operations have the same or different 

roots. Our hypothesis is that multiplication and division have distinct roots and that 
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children discover their inverse relation at a later stage. 

This hypothesis is based on two propositions: Firstly, it is possible that the development 

of multiplication and division would be similar to the development of addition and 

subtraction. Subtraction might be the inverse of addition but the research findings suggest 

that initially children have different schemas of actions for the two operations. There is 

evidence (Carpenter and Moser, 1982; Carraher and Bryant, 1987; Hudson, 1983; Marton 

and Neuman, 1990; Riley, Greeno and Heller, 1983) that children are equally successful 

in solving addition and subtraction problems by modelling the actions described in the 

situation, even before being able to tell which arithmetic operation is needed to solve the 

problem, but they only understand the inverse relations of the two operations later on. 

Secondly, the invariants of the two operations are different. Nunes and Bryant (1996) 

pointed out that in a one-to-many correspondence situation the ratio between children and 

biscuits, for example, is fixed from the beginning and the child is asked how many 

biscuits there are in total. In contrast, in a sharing situation the child has to share a total 

and establish the ratio between children and biscuits. Confrey (1994) also distinguishes 

between sharing and one-to-many correspondence situations. She suggested that in one-

to-many correspondence situations there is a constant ratio between the corresponding 

sets which is not affected by the number of successive replications; 1 chair has 4 legs, 2 

chairs have 8, 3 chairs have 12 etc., which means that the number of legs will develop in 

an arithmetic progression. Division situations are, though, different. The sequence in the 

number of pieces of cake, for example, after successive splits would develop in a 

geometric progression, 2, 4, 8, 16 etc. The actions that are carried out in multiplication 

and division situations are different, therefore, it is unlikely that the child would discover 

their inverse relation early on. 
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What statements can be made regarding the origin of multiplication and division and 

how are they going to be tested? 

The theoretical discussion on the relations between children's schemas of action and the 

origin of the arithmetical operations of multiplication and division leads to certain 

statement, which are tested in this thesis: (a) the origin of children's understanding of 

multiplication is to be sought in the schema of one-to-many correspondence, (b) the 

origin of children's understanding of division is to be sought in children's understanding 

of the relations involved in a sharing situation; that is the relations between three values: 

the dividend, the divisor and the quotient, and (c) the two concepts are likely to have 

different roots and develop independently before becoming coordinated. 

The hypothesis of the study that the origins of multiplication and division are in 

children's schemas of action is contrasted with the alternative hypothesis proposed by 

Fischbein et al (1985) that their understanding originates from addition and subtraction. 

Fischbein's hypothesis implies that the understanding of multiplicative concepts stems 

from quantification. Therefore, children who cannot quantify multiplicative problems are 

not expected to have any understanding of multiplicative concepts. Quantification 

proceeds the ability to reflect on multiplicative relations. 

The proposed hypothesis that the origins of multiplication and division are to be sought 

in children's schemas of action implies that children will be able to reflect on 

multiplicative relations before being able to deal strictly with the numerical aspects of the 

situation because schemas of action are about the transformation of objects and not about 

computation. 

To test the predictions that result from these two hypotheses a series of studies were 

carried out analysing children's performance in relational, non-computational 
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multiplicative problems and in computational problems, involving not only discontinuous 

but also continuous quantities that the children could not quantify. 

The first study explores children's understanding of a significant invariant in 

multiplication, the concept of ratio, the second and the third, examines children's 

understanding of sharing relations in partitive and quotitive division situations and the 

third examines whether multiplication and division develop as independent or as 

coordinated operations. 

1.2. The organization of the thesis 

The following chapter (Chapter 2), the Literature Review, is a presentation of the 

different theories which have been developed to answer the question of the origin of 

multiplication and division. Two streams of theories are presented, analysed and 

evaluated. The theories that sought the origin of multiplication and division in children's 

schemas of actions, and alternative theories that sought their origin in other arithmetic 

operations, such as addition and subtraction. 

Chapter three is about the study of children's understanding of the invariants of 

multiplication. It starts with the aim and the rationale of the study and continues with the 

methods and the results obtained. The findings are discussed in relation to previous 

research and to the hypotheses of this study. 

Chapter four presents two experiments on children's understanding of sharing relations, 

one in the context of partitive and the other in the context of quotitive division problems. 

Both experiments investigate children's understanding of a significant invariant in 

division, the inverse relation between the divisor and the quotient. 
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Chapter five presents the final study on whether multiplication and division develop as 

coordinated operations from the beginning or whether they develop in parallel before 

becoming coordinated. The study explores the coordination of multiplicative relations 

within and across the operation of multiplication and division. 

Chapter six is on the conclusions of the study. The findings are discussed in relation to 

the research questions, the educational implications of the study are presented, its 

limitations are illuminated and suggestions are made for further research. 
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CHAPTER 2 

THE ORIGINS OF CHILDREN'S UNDERSTANDING OF 

MULTIPLICATION AND DIVISION. 

The aim of this chapter is to present and evaluate the theories that have been developed 

to search for the origin of multiplication and division. Two streams of theories have been 

developed: the origins of multiplication and division have been sought either in children's 

schemas of actions or in another operation like addition and subtraction. 

Both perspectives and the relative research evidence are described in the following 

sections. The theories that looked for the origin of multiplication and division in 

children's schemas of actions will be presented first, followed by the alternative views. 

It has to be pointed out that the understanding of multiplication and division is not an 

instant acquisition, but must be seen as a long process that gradually develops. This thesis 

focuses on the first steps that children take towards this understanding. 

Children's actions schemas as the origin of multiplication and division 

2.1. The role of ratio and one-to-many correspondence in the understanding of 

multiplication 

2.1.1. The onset of multiplicative reasoning 

The concept of ratio has been proposed to be the key to the development of multiplicative 
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reasoning. Freudenthal (1983) proposed that the first meaning of ratio is understood as 

"relatively". He said that children can make judgements about which shoe fits which doll. 

They understand for example that a pair of shoe is relatively too large to belong to doll 

A, or relatively too small to belong to doll B. Similar to Freudenthal's idea of relativeness 

is Resnick and Singer's (1993) idea about children's fittingness schema, that "two things 

go together because their sizes and amounts are appropriate for one another" (p.107). In 

the Goldilocks story the children have no difficulty in recognizing which bed, chair and 

porridge bowl belong to Daddy Bear, to Mummy Bear and to Baby Bear. It can be said 

that they form some kind of equations that reads like "the bear size, relates to the bed 

size". These concepts of relativeness and fitness are important for the emergence of the 

concept of ratio, because the children are establishing a relation between two variables. 

More systematic work on children's understanding of the relations between two variables 

was done by Piaget (1965). He did a series of studies on children's understanding of one-

to-many correspondence where he believed the origin of multiplication lies. According 

to him the simultaneous use of one-to-one correspondence across several sets involves 

numerical multiplication. The discovery of multiplication is the result of the coordination 

of the relations of equivalence across sets, which is initially achieved by understanding 

the principle of one-to-one correspondence. He stated that: 

"...since arithmetical multiplication is an equi-distribution, equivalence through 

one-to-one correspondence between two or n sets A is a multiplicative 

equivalence indicating that one of the sets A is multiplied by two or by n. From 

the psychological point of view this simply means that a one-to-one 

correspondence is an implicit multiplication, so that when the child has 

established the correspondence between several sets, he will sooner or later 

become aware of this multiplication and use it as an explicit operation." (Piaget, 

1965, pp.203-204). 
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The composition of relations of equivalence presupposes that children can construct a 

lasting correspondence between two groups whatever the distribution of the elements that 

were in previous correspondence. The composition of relations of equivalence involves 

additional difficulties because it involves correspondence between two or three sets that 

were not put previously in correspondence. The child should recognize that if A=B and 

B=C then A=C (transitive inference). 

The technique used by Piaget to investigate the composition of relations of equivalence 

was simple. He first tested children's understanding of relations of equivalence in a 

situation where transitive inference was required. Children were required to put 8 blue 

flowers (A) into 8 vases (B). Then the blue flowers were removed from the vases and 

arranged into a single bunch. In order to test whether the child regarded the equivalence 

between the vases and the blue flowers as lasting he asked the children whether the 

number of flowers was still equal to the vases when the flowers were bunched together 

or spaced out. It was expected that the children who did not regard the correspondence 

between the two sets as lasting, would not be able to compose relations of equivalence. 

Then the children were asked to put another set of 8 pink flowers (c) into the vases. The 

pink flowers were then removed and bunched together. The child had to decide whether 

there was the same number of blue and pink flowers (A=C) even when one of the sets 

was spaced out or bunched together. 

Piaget identified three stages in the development of the composition of relations of 

equivalence. At the first stage there is failure in both the construction of correspondence 

and the composition of equivalence. During the second stage, the children can make a 

one-to-one correspondence between two sets, but their equivalence is not lasting. 

Regarding the composition of equivalence, they succeed only if the sets remained 

opposite each other and have the same perceptual characteristics. At this stage the child 

relies only on perceptual intuition and compares directly the blue and the pink flowers 
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without doing so by means of the number of vases. This is because the composition 

ability is intuitive and not yet operational. Finally, at the third stage the children 

recognize the equality of the blue and pink flowers and do so on the basis of the 

correspondence of each set to the number of vases. The composition of relations of 

equivalence has now become operational. 

Piaget went on to study how the "composition of equivalence can be generalized in the 

form of one-to-one correspondence between n sets ... and numerical multiplication" 

(Piaget, 1965, p. 213). In Piagetian terms multiplication is conceptualized as equal 

grouping, that is as a sequence of n equivalent sets. The children who understand one-to-

one correspondence and transitivity should also be able to understand one-to-many 

correspondence. The task he presented to the children was the succession of the above 

and was based on the reasoning that if A=2B and A=C, then C=2B. In the previous task 

the children were asked first to put the 8 blue flowers into the 8 vases, remove them, and 

then put in the 8 pink flowers, remove them and reason whether the two bunches of blue 

and pink flowers were equal. When the children verified the equality of the two sets of 

flowers the children were asked to think how many flowers would go into each vase if 

they wanted to share all the blue and pink flowers equally into them. If the children could 

not say that two flowers were to go into each vase they were allowed to find out by 

putting the flowers into the vases. Then, the two bunches of the two flowers were put 

aside but the vases remained in sight. The children were then asked to pick up from a box 

as many plastic tubes (c) as they needed to place all the blue and pink flowers in, under 

the condition that only one flower could be fitted into each tube (C=A). Piaget wanted 

to see if the children would pick two tubes for each vase, given that two flowers went into 

each vase before. 

The children's performance was classified into three stages. The children in the first stage 

were those who in the previous task could not recognize that there was the same number 
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of blue and pink flowers. The children who could not compose relations of equivalence 

by transitive inference were equally unable to make the two sets of flowers correspond 

simultaneously with the vases or pick up as many tubes as there were flowers. Their 

behaviour showed that they were incapable of composing multiplicative relations. They 

made an arbitrary estimate of the increase of flowers without perceiving the necessity of 

duplication. They did not understand that if the blue and pink flowers corresponded 

simultaneously to the vases, then two flowers and not only one would correspond to each 

vase. 

The children in the second stage did not anticipate that there would be two flowers in 

each vase, but managed to grasp this correspondence when they discovered that there 

were remaining flowers, after attempting to put one flower in each vase. In the second 

part of the task where they had to pick up the correct number of tubes, they firstly put one 

tube beside each vase and then realised that they needed two tubes to each vase. 

According to Piaget these children could not be regarded as having an understanding of 

multiplicative composition, because they had not yet mastered the composition of 

relations of equivalence and mostly because the multiple correspondence is not 

generalizable. When these children were presented immediately afterwards with a similar 

problem that involved one-to-three or four correspondence they were not able to 

anticipate the relations between the sets but proceeded by trial and error. 

In the third stage, all the children who were able to compose relations of equivalence 

were also able to understand the relations of multiple correspondence involved in the 

problem. These children did not judge intuitively but had an anticipatory schema of 

action that they could also generalize from "two-to-one" correspondence to three, four 

and five. According to Piaget, two conclusions can be drawn from this fact: 
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"Firstly, the transition from the intuitive to the operational method of procedure 

entails the possibility of generalization,... Secondly, the operation of 

correspondence is revealed in its true light, as being a multiplicative 

composition. In the various correspondences, one to one, two to one, three to 

one, etc. the value of each new set is no longer regarded only as an addition, but 

as a multiplication, "1 x n", "2 x n", "3 x n", etc." (Piaget, 1965, p. 219). 

In the same schema of one-to-many correspondence Piaget (1965) sought the origin of 

division. What is being suggested in his book the "Child's Concept of Number" is that 

the concept of division originates in the concept of multiplication and that the two 

operations are discovered simultaneously. He suggested that the two operations are 

intrinsically related, because one is the inverse of the other. Therefore, if children 

understand multiplication they should also be able to understand its inverse which is 

division. As shown in the vase and flowers task the children who understand that the blue 

and pink flowers correspond simultaneously to the vases in a one-to-two correspondence, 

could also pick up the right number of tubes in which to place each flower in. This shows 

that the children discover both operations at the same time. Piaget did not study division 

itself, therefore, we cannot draw any conclusions about its development. 

Piaget's work has shown that the origin of one-to-many correspondence can be traced in 

the understanding of one-to-many correspondence schema. His findings on multiplication 

suggest that children at around the age of 5 to 6 can deal quite well with one-to-many 

correspondence situations. The way the children reasoned on the flower task suggests that 

they treated the situation as a multiplicative one and considered the relations between the 

two variables that were in correspondence. This type of reasoning is distinct from 

additive reasoning. The flower task suggests that multiplication is about the constant one-

to-many correspondence relation between two variables. Additive situations are about 

part-whole relations, where sets of objects are either joined or separated from each other. 

Children's solution strategies in the flower task suggest that multiplication is not another, 
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more complicated form of addition, but a new operation with a new sets of invariants and 

number meanings. 

Piaget's primary work can be regarded as the very beginning of the concept of 

multiplication. There is a need to replicate Piaget's research on young children's 

understanding of one-to-many correspondence situations in a more systematic way. There 

is also more to be understood about this form of correspondence as the children grow 

older. One significant step towards the understanding of multiplication is the use of the 

concept of ratio as a way to express quantitative comparison and build equal sets. Can the 

children build equal sets by correspondence procedures or order different one-to-many 

correspondence ratios? In the following session some evidence is presented on the first 

question. 

2.1.2 Young children's understanding of the concept of ratio and their ability 

to build equal sets by correspondence procedures 

Piaget, Kaufmann and Bourquin (1977)1  in their book "Recherches sur 1' Abstraction 

Reflechissante" investigated children's understanding of the concept of ratio as a way to 

express quantitative comparison. They examined the development of multiplicative 

relations starting from children's initial comprehension of the concept of equivalence by 

means of one-to-one correspondence passing through the operations of one-to-many 

correspondence and the constitution of ratio as a general way of expressing quantitative 

comparison. 

1 

Please note that all the information on Piaget, Kaufmann and Bourquin's (1977) work 
are extracted from Correa's (1995) and Frydman's (1990) thesis, because the original 
book has not yet been translated into English. 
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In their study the children were presented with a series of tasks all using the same type 

of material: two sets of blocks of different colour and size. The size of the blocks ranged 

from one to five units. The first three tasks referred to children's ability to infer numerical 

equivalence between two sets through one-to-one correspondence. 

In task 1, they were presented with two sets of blocks of the same size but of different 

colour (blue and red). They were asked to put the two sets in one-to-one correspondence 

and were questioned about the numerical equivalence of the two sets. The children had 

to justify their answers. 

When the equivalence was recognised the children proceeded to task 2 where they were 

asked to build two walls one with the blue blocks and one with the red blocks. The 

children had to find out whether the two walls would be of the same length. 

In task 3 one more question was added to the above. The children had to think about 

whether the equality between the two sets would be conserved if the actions of 

correspondence were continued indefinitely. 

In task 4 the children had to quantify the difference between one-to-many correspondence 

ratios. They had to estimate the relative length of two walls built with the same number 

of blocks but of different size. Each blue block consisted of five single units (b=5) and 

each red of one (1=1). The children could initially compare the blocks. Then the 

experimenter put the two blocks aside as a model and built a wall with some other blue 

blocks. After that he asked the children where the red wall would finish if it was built 

with the same number of blocks. 

The children reacted in three different ways in the solution of the above tasks. The first 

category of children, at the age of 5 to 6, could easily solve the first three tasks. They 
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recognized the equality of the sets put in one-to-one correspondence and could generalize 

conservation in the case where the action of correspondence was to be carried out 

indefinitely. However, in task 4, the children could not quantify the difference in the 

height of the two walls. According to Piaget et al. (1977) the children were just starting 

to process the differentiation between number and length. 

The second category of children (age 7 - 8) succeeded in the task either by applying a 

visual correspondence between each blue block and the difference (b-r) or by touching 

each blue block and simultaneously counting the number of red blocks that corresponded 

to it. This stage is characterized by the beginning of quantification. However, according 

to Piaget et al. (1977) the procedure remained additive because children could not deduce 

the general relation and its multiplicative formulation. The children tried to find the 

difference between the blue and the red walls by the repetitive addition of the difference 

between the blue and the red blocks. 

Finally, the third category of children (age 9-10) was led to the correct solution by means 

of the a multiplicative procedure illustrated in the following protocol: 

The child was presented with 10 blocks of each colour " In each blue block 

there are five red ones; then five and five equals ten" He immediately pointed 

at the second blue block as the limit for the red wall" (Piaget, Kaufmann and 

Bourquin, 1977, p.21). 

With this last task Piaget showed how the children use the concept of ratio as a way to 

make comparisons between different corresponding sets and quantifying their differences. 

He found that the quantification of the difference between the two walls was not possible 

before the age of 9. The study, though, does not give any information about whether the 

children anticipated any difference in the height of the wall or could even order the height 

of the two wall on the basis of the size of blocks. There is evidence (Lawrenson and 
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Bryant 1972; Bryant, 1974) that children are able to reflect on a situation on the basis of 

relations before they are able to compute the corresponding sums. Quantification is 

difficult not only because it presupposes the understanding of relations, but also because 

it requires the organization of the counting ability. Multiplication is a concept that 

develops over a period of time and it is possible that the children are able to order 

different one-to-many correspondence ratios before they are able to quantify their sums. 

Piaget et al's (1977) study on children's ability to quantify the difference between two 

one-to-many correspondence sets leads to a second issue. The children might not be able 

to quantify the difference between two sets that are in correspondence, but they might be 

able to build equal sets by correspondence procedures. To do so the same ratio should be 

applied for equality to be obtained. 

Piaget et al. (1977) were the first to investigate children's use of ratio as a way to achieve 

equality. Children's ability to build equal sets was examined in situations where the 

construction of common multiples was required. 

The children were presented with one collection of blue and another collection of yellow 

counters of equal size. They had to create two equal amounts of counters. They were 

instructed to take the blue counters two at a time and the yellow ones three at a time. That 

meant that to form two equal sets of 12 counters, the children had to pick up 6 times 2 

blue counters and 4 times 3 yellow counters. 

In a situation like the above the procedure to achieve equality is clearly multiplicative and 

illustrates a fundamental difference between addition and multiplication. Piaget et al 

(1977) proposed that addition is counting the number of objects whereas multiplication 

is also counting the number of operations (n) whereby objects are gathered in classes of 

x. A significant component of multiplication is that the equivalence of two numerical 
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products presupposes an inverse relation between the multiplier (n) and the multiplicand 

(x) of each product. They proposed that children lack an understanding of these relations 

before the operational stage. 

The children's performance in the common multiples task was classified into three stages. 

In stage I (age 6-7) the children dealt out the units of each collection on a one-to-one 

basis as if they were equivalent. Each time they picked up a set of counters from one 

collection they picked up another set from the other collection. After a while they all 

realized that it was impossible to reach equivalence and in some cases, if they reached 

equivalence by trial and error, they were not aware of the number of times they took each 

of the two units. According to Piaget et al (1977) in the first stage children do not 

understand that the equivalence of two numerical products presupposes an inverse 

relation between the multiplier and the multiplicand. For them the construction of two 

equivalent collections means adding quantities on a one-to-one correspondence basis. 

In stage II (age 7-8) the children understood that the inequality of the quantities had to be 

compensated by the number of actions. Once they had obtained two equal amounts of 

each unit they could not say how many actions they had performed in each collection 

although they could express it in terms of packs rather than in terms of times. 

In stage III children knew from the beginning how many units they had to pick up from 

each collection in order to achieve numerical equivalence. 

Piaget et al's (1977) study illustrates that multiplicative situations are quite different from 

the additive ones and that they involve a whole new sets of invariants and relations that 

are not present in addition and subtraction. It is clear that multiplication is about the 

constant relation between two variables and that to achieve equality not only do you have 

to consider the number of objects joined together but also how many times the objects 
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are gathered. Because of these fundamental differences between addition and 

multiplication it is unlikely that the first meaning of multiplication will stem from 

addition. 

Regarding children's ability to use ratio as a way to achieve equality it can be agreed that 

the situation of common multiples chosen by Piaget et al (1977) was very hard for the 

children. Their failure to indicate the number of actions they performed on each set to 

obtain equality might be due to the fact that they focused their attention on the 

distribution of counters. The second component of multiplication, that the equivalence 

of two numerical products presupposes an inverse relation between the multiplier and the 

multiplicand of each product, actually refers to the principle of commutativity in 

multiplication which is regarded as a late acquisition (Nunes and Bryant, 1996). The fact 

that children had considerable difficulty in the construction of common multiples does 

not mean that they cannot use the concept of ratio as a way to express numerical 

equivalence. It is possible that they could reflect on the concept of ratio in 

correspondence situations before they could understand the commutativity rule. 

Frydman and Bryant (1988) investigated the progressive development of the concept of 

ratio in situations simpler than those requiring the construction of common multiples 

examined by Piaget, Kaufmann and Bourquin (1977). They designed a number of sharing 

situations of ascending difficulty to investigate whether pre-operational children were 

able to understand the relationship between different one-to-many ratios and build 

equivalent sets by correspondence procedures. 

In their study 4 and 5 year old children were asked to distribute blocks (pretend-sweets) 

between two dolls. The distribution took place under two different conditions. In 

condition I, the children had to share units of equal quantity in the form of either single 

or double and triple blocks on the basis of one-to-one correspondence (one single for A 
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and one single for B, or one double for A and one double for B, etc). The results revealed 

that even the youngest children had no difficulty in forming equal sets of sweets when 

they were distributing blocks of the same size between the dolls. 

In condition II, the children had to build again equal sets of sweets for the two dolls, but 

this time they had to deal different sized units to the two recipients. The children were 

told that one doll wanted her sweets to be in single units, while the other wanted them 

either in double or in triple units (the double and the triple units consisted of single units 

joined together) and despite this difference both dolls wanted to end up with the same 

total amount. In this case an object-based one-to-one correspondence sharing was 

inappropriate. The results showed that this condition was very hard for the 4 year olds, 

while three quarters of the 5 year olds provided a correct response. The majority of the 

children who failed shared the sweets on an object-based one-to-one correspondence by 

giving each doll one quantity at a time, paying no attention to the difference between 

singles, doubles and triples. As a result one doll ended up with double or triple number 

of sweets in term of units. The fact that the 4 year olds persisted in responding in a simple 

one-to-one correspondence without taking into account the ratio difference between the 

shared quantities, suggests that for them the number of actions or the number of discrete 

perceptual units rather than the amounts dealt to each recipient, was the important 

variable. However, there was another possibility. The children got it wrong, not because 

they did not understand the one-to-many relationship, but because they did not understand 

that the double sweets were equal to two singles sweets. 

In order to rule out this possibility, Frydman and Bryant (1988) designed another 

experiment, where they tried to make the children more aware of the fact that the double 

and the triple units were equivalent to two and three singles respectively. This was 

accomplished by using colour cues. The double and the triple units were constructed with 

blocks of different colours. This manipulation allowed children to account for numerosity 
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through colour-based one-to-one correspondence and to see whether this type of one-to-

one correspondence would help the young children to understand how to cope with units 

of different values in an equal sharing situation. During the pretest, the training situation 

and the post-test the children were presented with the same tasks as in the previous 

experiment. The difference was that the pre-test and the post-test involved only blocks 

of the same colour while the training session involved two different colours. The double-

sweets were presented in two colours, containing one blue and one yellow block joined 

together, while the singles came in yellow and blue. There was also a control group that 

was presented with the same tasks but without any colour cues. The results of the pretest 

confirmed the trends observed in the previous experiment. The experimental group did 

a great deal better in the intervening colour task, while the control group stayed at the 

same level as in the pretest. There was no performance difference between doubles and 

triples units. The most striking thing was that the difference between the two groups was 

maintained in the post-test. All the children in the experimental group, who had failed in 

the pre-test, not only performed well in the intervening colour task, but continued to do 

so in the post-test where colour cues were no longer available. However, the children in 

the control group maintained their low performance in the post-test. 

The fact that all the children who improved in the training situation also performed well 

in the post test showed that they started taking the ratio difference into account. In a short 

time the children were alerted to the nature of the double and triple units, which shows 

that young children have no particular difficulty with this aspect of one-to-many 

correspondence. 

However, there was not yet evidence that children were aware of the number of 

operations involved in this adjustment. Frydman (1990) proposed that Piaget, Kaufmann 

and Bourquin's (1977) claim that pre-operational children lack an understanding of the 

number of operations involved in multiplication was in a way premature because it was 
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based only in children's difficulty with the construction of common multiples, that is with 

problems involving an m-to-n correspondence rule, and did not look at children's 

performance in problems in which the construction of two equal quantities could be 

achieved by using a one-to-n correspondence. Moreover, in Piaget et al's experiment the 

children had to build two equal amounts of counters by taking 2 yellow and 3 blue blocks 

at a time. Perhaps the children were not aware of the number of actions performed 

because their attention was concentrated on the number of blocks they were taking each 

time. Because the counters were presented in single units and the children had to pay a 

lot of attention to counting two or three counters each time their attention to the task 

might have been distracted. 

Frydman (1990) suggested that there might be several developmental stages in the 

construction of equal sets by means of ratio in the context of a sharing situation. He 

designed another set of experiments were he looked at children's ability to build equal 

sets while sharing unequal quantities, when one of the quantities was the multiple of the 

other and when the children had to construct a common multiple of the two quantities. 

He also wanted to see whether the children who did well in those tasks were also aware 

of the number of operations performed. It was expected that the problems requiring the 

construction of common multiples would be more difficult for the younger children 

compared with the problems where one quantity was the multiple of the other. 

In order to test his assumption he asked 5 and 6 year old children to share blocks 

(pretending to be chocolate bars) that had been broken into different size units and make 

sure that the recipients would end up with the same total despite receiving different sized 

pieces. Before performing the task the children were given the opportunity to see how 

many units were stuck together in the units of each set. In the first two tasks (the one-to-n 

tasks) the children had to share out unequal sets with ratios such as 1:2 versus 1:4 and 1:2 

versus 1:6 where the units of one set were multiples of the units of the other. In this case 
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children could form equal sets by repetition of the gestures of the distribution. For 

example, in the 1:2 versus 1:4 ratio the correct answer could be reached by giving two 

pieces with 2 units to one recipient while giving one piece of 4 units to the other. In the 

m-to-n tasks the children had to share out more complex ratios such as 1:2 versus 1:3 and 

1:3 versus 1:4. In the latter task no simple repetition of the gesture of repetition was 

possible. The children could solve the task only by finding a common multiple. For 

example, in the 1:2 versus 1:3 ratios the children could build an equal share only by 

giving three doubles to one recipient while giving two triples to the other. During the 

experiment the participants were allowed to assemble the doubles and the triples but were 

not allowed to break up the pieces into units. Initially the participants were given some 

easier sharing tasks where they had to build equal sets when both sets were in singles and 

when one set was in singles and the other was either in doubles or in triples. The aim was 

to familiarize the subjects with the sharing problems and ensure that they could solve 

them. 

The results of the study showed that nearly all the children in both age groups did well 

on the one-to-n tasks. However, most children failed one or both of the m-to-n tasks. 

Only four 5 year olds (out of 18) and six 6 year olds gave a correct response in both 

problems. An analysis of variance revealed that there was a significant effect of 

condition, indicating that the one-to-n tasks elicited more correct solutions. Age was not 

found to have a significant effect. The children's failure suggested that the tasks requiring 

the construction of common multiples were much more difficult. The children who failed 

could not match the larger units by assembling smaller ones together. They either stopped 

in the face of this difficulty or ignored the difference between the quantities and 

distributed them on a "one for A" and a "one for B basis". Additive reasoning was not 

sufficient for the solution of the ratios where common multiples had to be found, as there 

was no simple conversion of one unit into the other. Equal totals could only be built by 

anticipation. For example, in the case of 1:2 versus 1:3 it seems unlikely that children 
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could work this out by adding up the three doubles given to one recipient, which makes 

six, and by adding up the two triples that also results to six. Such a calculation required 

a double counting of pieces and units. The common multiples tasks could easily be solved 

if the children had understood the idea of commutativity in multiplication where 2x3 

equals the same as 3x2. However, commutativity in multiplication appears to be hard for 

young children. The children who solved the task either used a correspondence based 

strategy, that means that they assembled for example two 3s together and three 2s 

together, or used a counting strategy. Children's performance in constructing equal sets 

by correspondence procedures highlights the need to distinguish between additive and 

multiplicative reasoning. To achieve equality in addition the focus is on the size of the 

sets joined, while in multiplication equality is achieved by counting the size of the sets 

and also the number of the sets. 

The children who performed well on the tasks were tested on their awareness of the 

temporal correspondence rule which they used to solve the problem. The participants 

were asked to count the number of pieces of chocolate taken at each "go" to give the 

same to both recipients. Almost all the children answered the "how many times" question 

correctly when the ratio was 1:2 versus 1:3 , while only one five year old (out of 4) and 

3 six year olds (out of 7) managed to give the correct response when the ratio was 1:3 

versus 1:4. 

The results of Frydman's (1990) study give support to the Piaget, Kaufmann and 

Bourquin's (1977) assumption that the construction of common multiples is difficult for 

the young children. Contrary to Piaget et al's (1977) claim, the majority of the 5 year olds 

could differentiate the total number of blocks distributed from the number of actions 

performed to obtain it. Piaget had underestimated children's understanding of the concept 

of ratio. Frydman showed that there are different developmental stages in the construction 

of equal sets by means of ratio. This suggests that young children are not totally unaware 
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of multiplicative relations and that they can deal with them at a young age. 

2.1.3 Summary 

The research findings suggest that: (a) Multiplicative thinking is distinct from additive 

thinking because the invariants of the two situations are different. Addition is about part-

whole relations. Objects or sets of objects that do not have any relation to each other are 

either joined or separated. Multiplication is about two variables that are in a constant one-

to-many correspondence relation expressed as a ratio. Addition is about counting the 

objects that are put together, while multiplication is also about counting the number of 

times that the objects are put together; (b) Multiplication is a complex concept that 

progressively develops over a long period of time. Five year old children are able to solve 

a variety of problems that involve one-to-many correspondence relations. They can make 

transitive inferences based on one-to-many correspondence and infer that if A=2B and 

C=A then C=2B. By the age of 6 most of the children are able to build equal sets by 

correspondence procedures, even when they are sharing unequal quantities that have a 

simple ratio relation to each other. 

The aim of this study is to explore further some aspects of children's understanding of 

one-to-many correspondence that lays the basis for the understanding of multiplication. 

There is evidence that young children can build equal sets by correspondence procedures 

(Frydman, 1990) and that they can quantify the difference between one-to-many 

correspondence ratios by the age of 9 to 10 (Piaget et al., 1977), but there is no evidence 

that the children can order different one-to-many correspondence ratios before 

quantifying the corresponding sums. Ordering different one-to-many correspondence 

ratios is important because the product in a multiplicative situation depends both on the 

number of elements in the basic set and on the ratio, given the same basic set. 

Investigating further children's understanding of ratio as a way to make multiplicative 

comparisons helps the formation of a more accurate picture of children's understanding 
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of one-to-many correspondence situations as the origin of the concept of multiplication. 

2.2 The sharing schema of action and its importance in the understanding 

of division 

2.2.1 How does children's understanding of division begin? 

It has often been proposed that the understanding of division originates from children's 

schemas of action in sharing situations (Correa, Nunes and Bryant, 1998; Dickson, 

Brown and Gibson, 1984;). Although division is more than sharing, it can be claimed that 

the origin of division can be found in the context of sharing, because in both sharing and 

division the child has to form equal quotas, equal to the number of recipients. 

There is much evidence suggesting that 4 and 5 year old children are efficient in sharing 

when they share equal sized units (Davis and Hunting, 1990; Davis and Pitkethly, 1990; 

Davis and Pepper, 1992; Frydman, 1990), able to adjust their sharing procedures when 

they share different size units (Frydman and Bryant, 1988; Frydman, 1990) and 

successful when they have to deal with remainders (Desforges and Desforges, 1980). 

But what do children learn anything about division from the action schema of sharing? 

Is division the same as sharing? Correa, Nunes and Bryant (1998) pointed out that 

division as an operation is different from sharing. In a sharing situation the child focuses 

on giving equal amounts to each recipient in a one-for-me, one-for-you fashion. In 

division, though, the equality of the shared quotas is assumed and is not a relation that 

has to be respected. The invariants are more complex as the child has to grasp the set of 

relations between three elements: the size of the whole, the number of parts/recipients 

and the size of the parts (quotas) which have to be the same for all the recipients. That 

means that the children have to understand that there is a direct relationship between the 
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dividend and the quotient, when the divisor is kept constant, and an inverse relationship 

between the divisor and the quotient when the dividend is kept constant. In other words, 

the bigger the shared quantity is, the bigger the quotas are, and the more recipients there 

are the less each would get. 

The question that follows is whether children who are good at sharing also understand 

the set of relations between the divisor, the dividend and the quotient. Does efficiency in 

sharing guarantee such an understanding? This question was explored by Correa (1995). 

She devised a set of experiments to test whether children who are able to share and infer 

the equivalence of the cardinal values of the shared sets can also understand that there is 

an inverse relationship between the divisor and the size of the quotas in non-

computational division problems. 

The participants of her first experiment in partitive division were children aged 5 to 7 

who during the pretest were found to be able to share and infer the numerical equivalence 

of the shared sets. These children had never received any formal instruction on division. 

They were presented with a number of situations where the same number of sweets was 

to be shared by a number of rabbits attending two different parties. Each rabbit was 

carrying a small basket on his back into which the experimenter placed the shared sweets. 

The distribution of the sweets was carried out behind a screen, so that the children could 

not see how many sweets she was giving to each rabbit. The children had to anticipate 

the relative size of the shared sweets received by the rabbits attending each of the two 

parties. The question posed to the child was: "are the rabbits at one party going to receive 

the same number of sweets as the rabbits at the other party?". Under those 

methodological precautions there was no ambiguity about what the questions was about. 

Because the children could not see the result of the sharing their response was entirely 

based of their anticipation schemas. 
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There were two experimental conditions set in the above problem. In the first condition 

there was the same number of rabbits at both parties (same condition); in the other 

condition, which was expected to be harder, the number of rabbits differed between the 

parties (different condition). In all the cases the number of sweets to be shared remained 

the same. The children had to show whether the rabbits at both parties got the same 

number of sweets or different, and if not, at which party the rabbits received more sweets. 

This type of sharing situation where the number of recipients is known and the children 

are asked about the size of the shared quotas is known as a partitive division problem. 

The results of the study confirmed Correa's prediction. It was found that children of all 

age groups performed nearly at ceiling level when the number of the rabbits was the same 

at both parties and justified their responses by drawing attention to the equivalence 

between the divisor and the quotient. However, the level of correct responses dropped 

significantly in the different condition tasks. It was found that the percentage of children 

performing above chance level at the age of 5 was 30%, at the age of 6, 55 % and at the 

age of 7, 85%. The results indicated that the youngest children had the greater difficulty, 

but more than half of the 6 year olds and the majority of the 7 year olds could give the 

correct answer. The analysis of the children's errors showed that most of the 5 and 6 year 

olds thought that no matter how many rabbits are sharing they would get the same 

number of sweets because the number of sweets to be shared at the two parties was the 

same. The majority of the 7 year olds though, who gave a false response in the different 

condition tasks made a different type of error. These children applied a direct relationship 

between the number of sweets and the number of recipients. They thought that the more 

the rabbits there were, the more each would receive. The 7 year olds' errors might 

indicate their attempt to take into consideration the number of recipients in the sharing 

situation, which was ignored by the younger children who only focused their attention on 

the number of sweets to be shared. However, instead of applying the correct inverse 

relationship between the number of rabbits and the size of the shared sets of sweets the 
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older children applied a direct relation, or as Correa (1995) describes it the "more-is-

more" rule: the more rabbits that have to share, the more each will get. 

Correa (1995) also investigated the understanding of the inverse relation between the 

divisor and the quotient in the context of a different situation known as quotitive division. 

In quotitive division problems the divisor indicates the size of a quotient that is measured 

against an original unit (dividend) to determine how many times the quotient is contained 

in the original unit. The sample of the study consisted of children aged 5 to 7 who had no 

previous instruction on division. They were told that the experimenter wanted to invite 

pink and blue rabbits to a picnic, but she did not know how many rabbits to invite. Then, 

for each collection of rabbits a picture of some pretend sweets (2, 3 or 4) on a plate was 

presented, which corresponded to the amount of sweets that she wanted to give 

respectively to each rabbit in the two groups. The total amount of sweets to be shared was 

the same in both groups (either 12 or 24). The children were asked to make their 

judgements about the relative number of pink and blue rabbits to be invited to the picnic 

in two conditions that were designated as the same and different condition. In the same 

condition the number of sweets to be given to each rabbit in the two groups was the same 

(2 sweets to each blue and 2 sweets to each pink rabbit), while in the different condition 

it was different (2 sweets to the pink and 3 to the blue rabbits). 

The results of this study verified once again that the different condition questions were 

harder for the children. The children made very few mistakes when the same number of 

sweets was given to each group of rabbits. In contrast, the percentage of children who 

gave correct responses was 15% at the age of 5, 40% at the age of 6 and 45% at the age 

of 7. Once more, the majority of wrong responses at the ages of 6 and 7 was due to the 

application of the direct relation between the size of the quota and the number of 

recipients. The children thought that the more the sweets there were to be shared, the 

more rabbits should be invited. The 5 year olds either applied the "more-is-more" rule or 
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suggested that the same number of rabbits would be invited to the two parties based on 

the equality of the number of sweets available at the two parties. 

A comparative analysis of the children's performance in the above non-computational 

partitive and quotitive division tasks revealed that 5 year olds had more difficulty in 

solving the quotitive than the partitive tasks. Their performance difference was apparent 

even at the age of 7. 

Although all the children who took part in the study were able to reason on the 

quantitative equivalence of the shared quotas, still, not all of them were able to reflect on 

the relations between the dividend, the divisor and the quotient. This finding reinforces 

the conceptual distinction between sharing and division. 

Correa's study focused on children's ability to reason on the inverse relation between the 

divisor and the quotient when the quantity to be shared was discontinuous. The is also 

some evidence on children's understanding of sharing relations when the quantity to be 

shared is continuous. 

Desli (1997), carried out a study to investigate whether 6, 7 and 8 year olds could 

compare the relative size of the shared quotas in partitive problems when the quantity to 

be shared was a bar of chocolate. The children had to judge whether two groups of 

children would receive the same or a different amount of chocolate. The amount of 

chocolate to be shared was the same but the number of children varied across the groups. 

The results revealed that 75% of the 6 year olds, 85% of the 7 year olds and 95% of the 

8 year olds gave a correct response. The analysis of children's justifications showed that 

at the age of 6 many children focused only on the equality of the amount to be shared and 

stressed that the children in both groups - no matter the size difference between them - 
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would receive the same amount of chocolate. At the age of 7 though the majority of 

unsuccessful children applied the "more-is-more" rule indicating that the children at the 

party with the more children would get more chocolate. 

The similarity between the results of Correa's (1995) study with discontinuous quantities 

and Desli's (1997) study with continuous quantities is apparent. The percentage of 

children applying the inverse relation between the divisor and the quotient was similar, 

which suggests that reflecting on the relations that are involved in the sharing of 

continuous and discontinuous quantities is of the same level of difficulty. However, a 

direct comparison of the two studies is not possible because they were carried out under 

different experimental conditions and in different countries: Correa's study was 

conducted in Oxford and Desli's study in Thessaloniki, Greece. 

In the same line of reasoning Sophian, Garyantes and Chang (1997) carried out a series 

of studies to investigate children's understanding of the effect of partitioning a quantity 

into different numbers of recipients when the quantity to be shared was continuous. 

Children 5 to 7 were introduced to the "Pizza Monster", a stuffed toy fed exclusively with 

bite-sized pizzas (orange lentils). The Monster always had to share the pizzas with his 

friends. The children had to decide which of two sharing alternatives would give the 

Pizza Monster a greater amount of pizza. The children were asked to make their 

judgements in two situations. In one situation the amount of pizzas to be shared was the 

same in both alternatives, but the number of recipients was different (contrasting 

recipients problems). For example, in one instance the Monster was sharing with 2 while 

in the other with 3 friends. In the second situation the number of friends sharing with the 

Monster was the same in both alternatives, but the amount of pizzas to be shared was 

different (contrasting totals problems). The last situation was expected to be easier and 

all the children were expected to understand that the larger the quantity to be shared was 

the larger the size of the quotas would be. For this reason it was used as a reference point. 
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The results of the study verified their prediction. In the contrasting totals problems 

children's performance was almost errorless. However, their performance in the 

contrasting recipients problems was significantly lower. The majority of the children 

incorrectly expected the size of the shared quotas to be positively related to the number 

of recipients. Even the 7 year olds did not perform better than the 5 year old ones. Only 

6 out of 20 7 year olds gave more correct than erroneous answers. The children also 

appeared to be inconsistent in giving their answers. They did not have a systematic wrong 

notion but were uncertain in choosing one of the two alternatives. 

Sophian et al's (1997) study, contrary to Correa's (1995) study, suggests that young 

children have considerable difficulty in understanding the inverse divisor-quotient 

relation. It is possible that the discrepancy in the level of success in these two studies is 

due to differences in the design of the study and to the difference in the types of quantities 

used. Correa's study involved discontinuous quantities while Sophian et al presented their 

tasks with continuous quantities. In order to investigate the effect that the type of 

quantities used had on children's reasoning the children should be assigned randomly to 

a continuous versus a discontinuous quantities sharing task or ask the same children to 

reflect on sharing relations both in discontinuous and continuous quantities. 

In order to explore further children's difficulty to understand the inverse divisor-quotient 

relation Sophian et al (1997) contrasted 5 year olds reasoning about inverse relations in 

a fractional versus a subtractive context. The fractional situation was identical to the 

contrasting recipients and contrasting totals problems presented above. In the subtractive 

situation the Pizza Monster had to take aside some cups of pizzas from the quantity to be 

shared for the baby monster (because the baby monster always ate its pizzas from a cup) 

and then eat what was left. The children were asked to choose between two alternatives 

from which a different number of cups were subtracted. The results of the study 

suggested that the children had no difficulty to recognize the effect that the amount taken 
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out had on the size of the quantity left in the subtractive situations. However, the children 

failed to recognize the effect that the number of recipients had on the size of quotas in the 

fractional situations. Their findings reflected the limited understanding that the children 

have on sharing relations. Commenting further on their findings it can be said that 

subtractive reasoning does not facilitate children's reasoning on sharing relations. 

Understanding the effect that the size of the subtracted quantity has on the size of the 

quantity left does not aid the understanding of the relations in a sharing situation. That 

means that sharing situations are different from additive situations and is unlikely that the 

children would learn anything about division from their experience to add and subtract. 

Sophian et al (1997) raised the question whether the inclusion of both contrasting totals 

and contrasting recipients problems confused the children in their answers. For this 

reason in a subsequent study the children were presented only with contrasting recipients 

problems. They also examined the effect that the size of the numerical contrasts had on 

children's performance. It was possible that the children would be encouraged to think 

of the effect that the number of monsters sharing would have on the size of the shares 

when they were asked to choose between an alternative where 2 versus 5 monsters were 

sharing. The findings suggested that including only contrasting recipients problems 

improved the performance of the 7 but not of the 5 year olds. Children's performance was 

not affected though by the specific numerical contrasts used in the problems. 

Another issue explored be Sophian et al (1997) was whether the children would be helped 

in making judgements on the inverse divisor-quotient relationship, if they were given the 

opportunity to observe the effect that the number of recipients had on the size of the 

quotas. For this reason 5 year olds were randomly assigned to an experimental or to a 

control group. Both groups went through a pre-test, a training session and a post-test 

where the children had to make judgements on various contrasting recipients problems. 

In the training session the children of the experimental group first made their judgement 
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about the alternative that would give the Pizza Monster a larger share. Then the 

experimenter divided the pizzas among the recipients and the child had the opportunity 

to check his/her answer and find out the effect of the number of splits had on the size of 

the shares. In the control group, though, only the alternative that the children selected was 

partitioned. Therefore, they did not compare the results of dividing the quantity into 

different shares. The findings of the study showed that although the children of the 

experimental group performed poor in the pre-test after the small training they received 

their performance improved significantly in the post-test. The children of the control 

groups did not show any significant improvement from the pre-test to the post-test. 

Sophian et al. (1997) proposed that the understanding of partitioning relations can be an 

important sources of early fractional knowledge. Their findings suggest that young 

children have difficulty to understand fractional relations, but their misconceptions about 

the effect of the number of quotas on their size are not strong and can easily be corrected 

in a brief training session. 

In another study Correa (1995) also examined whether the children would be helped to 

think of the inverse divisor-quotient relation if they themselves were asked to share one 

of the quantities not only in the context of partitive problems as Sophian et al (1997) did, 

but also in the context of quotitive problems. The assumption was that by asking children 

to share one of the quantities they would be encouraged to think about the relation 

between the divisor and the quotient. 

Correa explored her assumption in the context of an experiment similar to her previous 

ones. There was a control condition in which the children were asked to judge the relative 

numerosity of the shared sets in the same and different condition in partitive and quotitive 

problems as described before and an experimental condition in which they had to make 

their judgements after sharing one of the quantities. For example, in partitive division the 
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children were initially asked to divide 12 sweets between 2 pink teddies. Then the 

experimenter said that she also intended to share 12 sweets among 4 teddies. The child 

had to judge the relative numerosity of the amount of sweets received by each group of 

teddies. 

The results of the study showed that there was a significant superiority in the performance 

of 5 year olds in the experimental partitive tasks compared with that of the same age 

group in the control condition. However, no significant difference was found between the 

control and the experimental group in quotitive tasks in this age group. On the other 

hand, a major difference was found in the performance of 6 and 7 year olds. Both the 

number of correct responses and the justifications they gave demonstrated that they took 

advantage of using sharing procedures to estimate the relative size of the quotient. 

Overall, the children achieved better scores in the experimental than in the control 

condition. 

Both Correa's and Sophian et al's studies suggest that children's understanding of sharing 

relations can be improved if the children are exposed to sharing situations where they can 

observe the effect of partitioning a quantity into a different number of shares. 

2.2.2 Summary 

The research findings suggest that children at the age of 6 have a good understanding of 

the relations that are involved in a sharing situation between the dividend, the divisor and 

the quotient when the quantity shared is discontinuous. Most of them can apply the 

inverse relationship between the divisor and the quotient when asked to judge the relative 

size of the shared quotas in partitive division situations. Children found it more difficult 

to reflect on the sharing relations in the context of quotitive division problems. The 

understanding of the relations between the dividend, the divisor and the quotient is a 
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significant step beyond the simple activity of sharing to the understanding of division. 

This understanding originates from children's experience of sharing, but sharing itself is 

not sufficient. As shown by Correa (1995) proficiency in sharing does not lead 

immediately to the comprehension of the relations between the quantities involved in 

division. This finding reinforces the conceptual distinction between sharing and division. 

In Correa's study (1995) the children were asked to reflect on sharing relations in 

partitive and quotitive problems with discontinuous quantities only. Sophian et al. (1997) 

asked the children to order sharing relations in the context of partitive problems only with 

continuous quantities. The aim of this study is to extend both studies and compare 

children's understanding of sharing relations in partitive and quotitive division problems 

both with discontinuous and continuous quantities. Reflecting on sharing relations with 

continuous quantities places the problem in the domain of fractions, which are 

characterized as rather difficult for the children. The research evidence suggests that it 

is not easy for the children to order different fractions and they usually assume that the 

larger the denominator, the larger the fraction (Gelman, 1991; Mack, 1990; Post, 1981). 

If the children have a genuine understanding of sharing relations then the difference in 

the types of quantities used was not expected to have an impact in their reasoning. By 

introducing continuous quantities we could ensure that the children would reason on the 

situation on the basis of relations only because the quantification of a problem involving 

continuous quantities would have been beyond their grasp. 

2.3 Evidence of children's use of schemas of action in the quantification of 

multiplication and division problems 

The studies presented up to here focused mostly on the schemas of action that children 

employ to reflect on the relations involved in one-to-many and sharing situations. There 
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is a lot more research on young children's ability to quantify multiplication and division 

problems with discontinuous quantities. There is also evidence on children's ability to 

quantify fractions. This section of the literature review focuses on the studies that 

investigated children's ability to quantify multiplication and division problems involving 

discontinuous and continuous quantities, before receiving school instruction, when 

provided with materials to model the situation. 

There is a growing body of research which investigates the effect that the types of 

numbers (whole or decimal number), the context (rate problems, change of size etc), the 

nature of the quantities involved (intensive or extensive) as well as the misconceptions 

regarding the operation of multiplication and division have in recognizing and solving 

multiplication problems. Because these studies are dealing with older children they are 

not going to be reported in the present literature review. 

2.3.1 Quantifying multiplication problems 

Steffe (1994) proposed that for a situation to be established as multiplicative, it is 

necessary to at least coordinate two composite units, i.e. units that are themselves 

composed of other units, in such a way that one unit is distributed over the elements of 

the other composite unit. Steffe's definition of multiplication as a coordination of two 

composite units does not differ from the description of multiplication as a one-to-many 

correspondence situation because both definitions highlight the fact that multiplication 

is about the relation between two variables. He conducted a case study to investigate 

whether an 8 year old boy was able to carry out the double counting required in 

replicating one-to-many correspondence situations. Zachary was shown objects that were 

laid in one-to-many correspondence. For example, the child was presented with six rows, 

each row having three blocks, but only one row was visible and the other five were 

hidden. Zachary had to quantify how many blocks there were altogether. That means that 

he had to represent the hidden objects and count them. Zachary using his index finger 
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traced a segment on the table and then touch the table three times, where his points of 

contact formed a row. He made six such rows and gave the correct answer, eighteen. In 

order to quantify Zachary represented the hidden rows and created units of threes that 

were as real for him as the row of three in his visual field. Steffe's study provides 

evidence that young children are able to carry out the double counting required for the 

quantification of one-to-many correspondence situations. Because Steffe's study was a 

case study conclusions cannot be draw for the population because we do not know to 

what extent young children are able to quantify one-to-many correspondence problems. 

Anghileri (1989) in a case study describes the effort of a young child to calculate with her 

fingers the number of coins in a 6x3 array that she had seen but which were afterwards 

hidden. 

"... She now started again with three fmgers on her left hand, "One, two, three". 

She clasped these together saying, "One lot". Now she extended the remaining 

two fmgers of her left hand and one from her right hand saying, "One, two, 

three ... Two lots". She proceeded in this manner working across both hands, 

counting in ones all the fingers she extended, "One, two, three ... Six lots". Now 

she went back to the beginning and successfully counted in ones all her fmgers 

she had extended for grouping, "One, two, three, four, five, six, ..., sixteen, 

seventeen, eighteen". [She must have memorised all the fmgers she had 

raised.]. In her final attempt, J.F. had kept a tally of the sets she had constructed 

and then used a unitary counting process in which all eighteen items were 

represented." (Anghileri, 1989, p.373). 

As shown in the above description the child tried to distribute the elements of one unit 

over the elements of the other. She respected the ratio relation between the two variables 

(number of units per row) and tried to coordinate three pieces of information: (a) the 

number of elements in each set, (b) the number of such sets and (c) the quantification 

procedure to find the total. 
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Both Steffe's (1994) and Anghileri's (1989) studies reveal that children can think 

simultaneously of the relation between two variables and are able to carry out the double 

counting that is required to quantify the situation. 

The ability to quantify multiplication problems through action schemas has not only been 

reported with young children but has also been documented in work with adult foremen 

and fishermen with little or no school training (Nunes, Schliemann and Carraher, 1993). 

When foremen, for example, reason about converting the size of a wall from a scale 

drawing to the life size construction, they really speak about what value on paper 

corresponds to what value on the construction. Although they solved many multiplication 

problems using repeated addition they did not confuse repeated addition and 

multiplication, and continuously referred to the correspondence between the variables 

during their calculations. For example, an illiterate foreman, was presented with a 

situation where 9 cm in the blueprint corresponded to 3 metres in the live construction 

and was asked to find how many metres 15 cm would correspond to. This is the solving 

procedure he followed: 

"Foreman: Nine centimetres, three metres. Right. This is easy. 

Interviewer: Why? 

F: Because it is just, you just take three centimetres for each metre. 

I: How did you come up with this so quickly? 

F: Isn't nine equal to three times three? Then, if the wall is three metres, three times three, nine. The other 

one here (on paper) is fifteen, the wall will be five metres. Because three times five, fifteen, this is an easy 

one." (Nunes, Schliemann and Carraher, 1993, p. 94-95) 

The foreman found the relation, take 3 cm for each metre, and transferred it to the second 

pair by multiplication. The strength of the connection made by the foremen to the one-to-

many correspondence schema is demonstrated by their persistence in using complex 

scalar reasoning when a functional solution would have been rather simple for the same 
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problem. 

In another study with street vendors Nunes, Schliemann and Carraher (1993) asked a 12 

year old boy who had only studied up to grade three in school what the price of 10 

coconuts would be if the price of each coconut was 35 cruzeiros (Brazilian currency). 

This was his answer: 

"Customer: How much is one coconut? 

Boy: Thirty-Five 

C: I would like ten. How much is that? 

B: Three will be one hundred and five; with three more. That will be two hundred and ten. (Pause) I need 

four more. That is ... (Pause) three hundred and fifteen ... I think it is three hundred and fifty" (Nunes, 

Schliemann and Carraher, 1993, p.19) 

As suggested by Nunes (1996a) this type of reasoning is best described as "replications" 

of the original one-to-many correspondence relation, and replication is a procedure that 

preserves the ratio which is the most salient invariant in multiplicative situations. In 

contrast, simple addition schemas do not involve two variables in the same fashion. 

2.3.2 Quantifying division problems 

There is a large body of research showing that young children have their own schemas 

of actions that enable them to quantify division problems when provided with the 

material to model the situation. Correa (1995) designed a series of experiments to study 

whether 5 and 6 year olds would be able to quantify partitive and quotitive division 

problems before receiving any school instruction. The children were presented with two 

groups of rabbits and were allowed to play with them for a while. Then they were told 

that the rabbits were tired and wanted to sleep. The rabbits were piled up in a corner of 

the table. The children were asked to prepare sweets (small blocks) as treats for the 

rabbits. The rabbits were piled up in groups of either 2, 3, 4, or 6 while they were 
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sleeping. Because the rabbits were piled up the children could not establish a perceptual 

correspondence between the sweets and the rabbits. They had to anticipate that each 

location, in which sweets were placed represented a rabbit and tell the experimenter how 

many sweets they gave to each rabbit. In quotitive problems the children had to prepare 

the right number of plates for a picnic giving to each rabbit either 2, 3, 4 or 6 sweets 

(taking them out of a pile of 8 or 12 sweets) and afterwards tell the experimenter how 

many rabbits had a share. 

The results demonstrated that 5 year olds had great difficulty in solving the quotitive 

tasks. Only one-fifth of those children was successful. In contrast, almost half of them 

gave the correct answer in the partitive division situation. At the age of 6 children 

performed quite well in quotitive division tasks, although their performance in partition 

was still better. 

The analysis of children's strategies in solving the problems showed that successful 

children used one-to-one correspondence procedures in partition and one-to-many 

procedures in quotition. Five year olds were more likely to solve the tasks when they had 

to share sweets between two rabbits. In this case they did the distribution in a one-to-me 

and one-to-you basis and then counted the sweets in one of the subsets. However, even 

in this case some children counted the whole lot and gave the wrong response. In 

quotitive problems the majority of the successful children repeatedly took the number of 

blocks that corresponded to the size of the divisor from the pile and placed them on 

different sides of the table to correspond to each rabbit's place, and then counted the 

number of groups formed. However, even in this case some children, instead of counting 

the number of groups formed, counted the number of the sweets in the set and gave a 

wrong answer. 

The results of this study suggest that a considerable number of 6 year olds can organize 
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their actions and reason about division well when provided with concrete material. But 

would the children be equally successful in computing the size of the shared quotas when 

no material is provided? Bryant (1974) on the basis of a rather different set of 

experiments has suggested that children are able to reflect on the basis of relations before 

dealing with absolute values. Would this also be the case with division problems? Correa 

(1995) provided evidence that children can deal with sharing relations before receiving 

school instruction. But would the children also be successful with division computational 

problems? 

In order to find an answer to this question Correa (1995) designed a study which aimed 

to test the development of children's computational solutions and their ability to work out 

the cardinal values in partitive and quotitive division problems in situations parallel to 

those that the children had faced in the previous situations. 

In partition, children aged 6, 7, 8 and 9 were presented with a certain amount of sweets 

which were to be shared by the experimenter between a specific number of teddy bears. 

The children had to work out the number of sweets given to each teddy without 

manipulating the material. 

The results of the study showed that the older children performed significantly better than 

the younger ones in those tasks. Their performance was considerably affected by the size 

of the dividend and the divisor. The increase in the size of the numbers caused 

considerable difficulty for the children, especially the young ones. In order to examine 

whether the children dealt with partition primarily in terms of relative rather than absolute 

codes, the percentage of their correct responses in the computational condition was 

compared with the percentage of correct responses in the relative value condition in 

which they had to compare the relative size of two shared quotas (see section 2.2.1). It 

was found that 6 and 7 year old children were able to make a non-computational estimate 
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of the size of the quotient in partitive division tasks, and yet found it difficult to state the 

exact size of the quotient. 

In quotitive division problems, the children had to estimate the number of teddies that 

could be invited to a picnic in a situation in which they knew the total number of sweets 

available and the number of sweets to be given to each teddy. Once more it was found 

that the percentage of 6 and 7 year olds children who worked out the task successfully 

was below the percentage of children of the same age group who succeeded in the 

relational problems where they had to reason on the relative number of recipients based 

on the inverse relation between the divisor and the quotient. A direct comparison between 

the computational partitive and quotitive tasks followed the general pattern observed in 

the relative tasks. Generally, children scored better in the partitive than the quotitive 

tasks. Regarding the strategies that the children employed to reach the answer it was 

found that they used the repeated addition strategy frequently in partitive division 

problems, while in quotitive problems they relied mostly on double counting. A possible 

explanation for this seems to be a need in children to achieve answers by using a 

procedure that is more closely related to the action implicit in the structure of the 

problems. 

Until now evidence has been presented on children's schemas of action in situations 

where they have to quantify exhausted division problems. But how would children 

perform in quantifying division problems when there is a remainder? Burton (1992) 

presented 7 year old children with 12 partitive and quotitive division problems with and 

without remainders, with remainders used and not used, when provided with 

manipulatives that either matched the problems precisely (such as eggs, in a problem 

involving eggs) or not (such as counters in a problem with cookies). 

The results of the study showed that there were more correct responses in the problems 
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without remainders. Children were capable of solving division problems when 

manipulatives were supplied and they were especially successful if the objects matched 

the problem situation. Problems with remainders used or not used were more difficult for 

children but still a significant number of children managed to give the correct answer. No 

significant differences were found between partitive and quotitive problems although 

there were more correct responses given in partitive problems. Burton's fmdings suggests 

that children can solve a variety of division problems with the help of manipulatives 

before having any instruction at school. 

Children's ability to deal with remainders in a sharing situation has also been examined 

by Brown (1992). She studied how second grade children, who had not received formal 

instruction in division, cope with division problems with no remainders, with remainders 

used or not. The participants were provided with counters that they could manipulate. 

In her study quotitive problems were found to be easier (87%) compared with the 

partitive ones (70%). The children performed nearly the same in quotitive (47%) and 

partitive problems (45%) when the remainder was not used. The most difficult problems 

were the partitive ones which had a remainder. Only 43% of the children achieved a 

correct solution compared with 55% in the corresponding quotitive problems. Regarding 

the analysis of the strategies that children followed to obtain the answer it was found that 

grouping with multiples was more frequently used than sharing. The results of her study 

suggest that children are able to solve a variety of division problems, even with 

remainders, when provided with concrete materials, well before receiving any instruction 

on the operation of division. 

2.3.3 Comparison studies on children's efficiency to quantify multiplication and 

division problems 

All the above mentioned studies focused on the quantification of either multiplication or 
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division problems. There are also some studies which investigated the solution strategies 

the same children employ in solving both multiplication and division problems. These 

studies provide useful information on whether children can solve multiplication and 

division problems at the same time or whether the understanding of one operation 

precedes the other. 

Children strategies in solving multiplication and division problems were reported in 

detail in Kouba's (1989) study. Six to 8 year olds were asked to compute a number of 

multiplication and division problems, mixed with addition and subtraction problems. 

Manipulatives to model the situation were provided. 

The children were presented with problems, both in multiplication, partitive and quotitive 

division as shown in Table 2.1. 

TABLE 2.1 

Multiplication and division word problems 

Multiplication - Grouping 

You are having soup for lunch. There are 	bowls. If you put 	crackers in each bowl, how many 

crackers do you need altogether? 

Multiplication - Matching 

Pretend you are a squirrel. There are 	trees. If you find 	nuts under each tree, how many nuts do you 

find altogether? 

Measurement Division - Grouping 

You are making hot chocolate. You have 	marshmallows to use up. If you put 	marshmallows in 

each cup, how many cups do you need? 

Measurement Division - Matching 

You are making lunch. You have 	carrots to use up. If you put 	carrots with each apples, how many 
apples do you need? 

Partitive Division - Grouping 

You are having a party. You have 	cookies and 	plates. You put all the cookies on the plates so that 

there is the same number of cookies on each plate. How many cookies are on one plate? 

Partitive Division - Matching 

You are shopping. You paid 	pennies altogether for 	toys. You paid the same number of pennies for 

each toy. How many pennies did you pay for one toy? 

Note. From Kouba (1989), p. 150 
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Just above a quarter of the first graders, less than half of the second graders and two 

thirds of the third graders followed the correct strategy in the multiplication problems, 

while similar results were observed for the division problems. However, it is not 

mentioned in the study how many children actually gave a correct response apart from 

using the correct strategy. The strategies that led to a correct solution or could have led 

to one if the child had not made a counting mistake were characterised as appropriate 

strategies. 

Children's strategies, as characterized by the degree of abstraction, were classified into 

five categories. 

(a) Direct representation: The children processed the information in a sequential way 

that reflected the structure of the problem. They used physical objects to model the 

situation and some form of one by one counting to calculate the answer. For example, in 

the problem: "There are 6 cups and you put 5 marshmallows in each cup. How many 

marshmallows are there in the cups altogether?" The children might have created 6 

groups with 5 objects in each and then counted the total number of objects one by one. 

They could set out 5 objects to represent the set of the 5 marshmallows and count this set 

6 times. Another possibility was to use the objects as tallies. In this case the child counted 

"one...five"; and set out an object, "six...ten" and set out a second object, and so on until 

six objects were set out. There was variation in children's counting strategies and some 

children used counting-on for the first set while others followed a counting-all strategy. 

(b) Transitional counting: In this case children calculated the answer by using a counting 

sequence based on multiples of a factor in the problem. For example in the above 

problem they counted six groups of five by saying "five, ten, fifteen, twenty, twenty-five, 

thirty" or "five, ten, fifteen, twenty, twenty-five, twenty- six, twenty-seven, twenty-eight, 

twenty-nine, thirty". 
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(c) Additive or subtractive counting: The children clearly identified the use of repeated 

addition or subtraction to obtain the answer. For example they said: five plus five is ten, 

ten plus five is fifteen ... twenty five plus five is thirty" 

(d) Recalled number facts: In this case the children recalled the appropriate multiplication 

combination from the times tables. For example the child could have said 5x6=30 or 

5x5=25 and 5 more makes 30. 

(e) Double counting: This strategy was observed only in division problems. When the 

children used double counting strategy for quotitive division they did not start by 

representing the size of the dividend. The dividend was used as an indicator of when to 

stop the action of forming groups. The children kept a running count of the total number 

of objects in the groups while also counting out the objects to form groups. When the 

count of the total reached the size of the dividend the child stopped and reported the 

numbers of groups formed as an answer. For partitive division double counting was done 

while sharing out the objects one by one. 

The percentage of children using each strategy in multiplication and division problems 

is shown in the following tables. 
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TABLE 2.2 

Percent of children using each type of solution strategy on multiplication problems 

Grade N 

Type 

Direct 

Representation 

Double 

Count 

Transitional 

Count 

Additive or 

Subtractive 

Recalled 

Facts 

Grouping 

1 43 25 0 2 2 0 

2 35 9 0 6 24 3 

3 50 8 0 10 8 40 

Matching 

1 43 23 0 4 0 0 

2 35 18 0 12 18 0 

3 50 8 0 4 10 34 

Note. From Kouba (1989), p.154 

TABLE 2.3 

Percent of children using each type of solution strategy on measurement division 

problems 

Grade N 

Type 

Direct 

Representation 

Double 

Count 

Transitional 

Count 

Additive or 

Subtractive 

Recalled 

Facts 

Grouping 

1 43 25 0 0 0 2 

2 35 26 6 6 0 6 

3 50 12 4 10 0 38 

Matching 

1 43 25 0 0 0 0 

2 35 35 17 3 3 0 

3 50 16 4 6 2 32 

Note. From Kouba (1989), p.154 
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TABLE 2.4 

Percent of children using each type of solution strategy on partitive division problems 

Grade N 

Type 

Direct 

Representation 

Double 

Count 

Transitional 

Count 

Additive or 

Subtractive 

Recalled 

Facts 

Grouping 

1 43 25 0 0 0 0 

2 35 30 0 3 9 0 

3 50 12 4 8 2 34 

Matching 

1 43 11 0 0 0 0 

2 35 23 0 3 0 3 

3 50 4 2 8 0 32 

Note. From Kouba (1989), p.154 

Children's strategies varied according to the problem, depending on whether it was a 

multiplication or a division one. Multiplication problems were mainly solved by direct 

representation or by number facts, while measurement/quotitive problems were solved 

by double counting, recalled facts and by assembling equivalent groups until the pile of 

objects representing the dividend was exhausted. For partitive division children solved 

the problems by dealing out objects and by trial-and-error grouping. 

What is not stated in Kouba's research report is whether the children participating in the 

study had received any instruction in school which was likely to affect the strategies that 

they employed to solve the problem. 

Kouba offers a very detailed presentation of the computational strategies that young 

children employed to quantify the multiplication and division problems when they were 

provided with manipulatives. Kouba however did not distinguish between the way the 

problem is computed and the way the problem is represented. It has to be made clear that 

the fact that the children used different solution strategies to compute the multiplication 

problems does not mean that they represented the problems in a different way. In all the 
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computing solutions the children came up with in multiplication problems the underlining 

schema was that of the one-to-many correspondence. The underlining schema of action 

in partitive division was that of sharing no matter whether the children dealt the objects 

or grouped them by trial and error in equal quotas. In quotitive division the underlining 

schema of action was that of forming equal quotas. 

The available evidence suggests that children are able to solve a wide range of 

multiplication and division problems early on. The question that follows is how much 

more difficult are the multiplication and division problems compared with the addition 

and subtraction problems. 

Evidence of British children's ability to solve word problems is provided by the Durham 

Project (Aubrey, 1997) which aimed to establish what mathematical knowledge pre-

school children bring into class. One hundred and sixty eight children were given simple 

addition, subtraction, multiplication and division problems. They were also provided with 

concrete material to model the situation. It was found that in addition 51% gained a score 

of 4 or 5 out of 5, 39% scored 1 to 3 and 10% scored nil. In subtraction 63% scored 4 or 

5 out of 5, 24% scored between 1-3 and 13% scored nil. Children did even better in 

multiplication: 66% scored 4 or 5 out of 5, 13% scored 1 and 21% scored nil. Division 

yielded even higher scores: 73% scored 4 or 5 out of 5, 25% scored 1 to 3, and 2% scored 

nil. 

Aubrey (1997) suggests that children have a surprising range and diversity of 

competences that the existing school curriculum may not be able to support and develop 

further. Children were able to deal not only with additive, but also with multiplicative 

problems that are only introduced at the end of grade 2, with great ease. The report of the 

project however does not give any information about the strategies that children followed. 
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The comparative difficulty of multiplication and division problems versus addition and 

subtraction was also studied by Carpenter, Ansell, Franke, Fennema and Weisbeck (1993) 

who gave word problems on all four operations to kindergarden pupils. The children who 

took part in their study had spent a year in the nursery solving a variety of basic word 

problems involving all the basic operations, although they had never received formal 

instructions on how to solve them. Their aim was: (a) to investigate the problem solving 

processes that kindergarden children use in solving all the basic operation word problems 

and (b) given the claimed difficulty of multiplication and division problems, to see if the 

children can solve them when given appropriate exposure, or whether these problems are 

beyond their abilities. In their tasks they included addition and subtraction situations 

(join, compare and separate problems), multiplication (correspondence problems), 

division (partitive and quotitive), multi-step problems (division with a remainder, 

multiplication with subtraction) and non-routine problems as shown in Table 2.5 . 

The 70 children in the study were interviewed and were provided with counters, paper 

and pencils that they could use to solve the problems. Responses were coded both in 

terms of the strategy used and whether the answer given was correct. A child was coded 

as following a valid strategy when s/he used a strategy that would have resulted in a 

correct response when there was no counting error. They were classified as following (a) 

"direct modelling" strategy when they used counters, tally marks and fingers to model 

directly the actions or relations described in the situation, (b) "counting strategy" when 

they count up or back from a given number or skip counted to calculate the answer, (c) 

"derived facts" when they recalled number facts to quantify the answer, (d) "others"when 

they used counters in a way that did not directly represent the situation and (e) 

"uncodable" if the answer was correct but the child's actions could not be identified. The 

computational strategies that the children used to quantify the multiplication problems 

suggest that they reasoned on the basis of a one-to-many correspondence schema. 
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TABLE 2.5 

Interview problems 

Problem Type 
	

Order given 	 Problem 

Addition and Subtraction 

Separate (result unknown) 	1 	Paco had 13 cookies. He ate 6 of them. How many cookies 

does Paco have left? 

Join (Change unknown) 	3 	Carla has 7 dollars. How many more dollars does she have 

to earn so that she will have 11 dollars to but a puppy? 

Compare 	 5 	James has 12 balloons. Amy has 7 balloons. How many more 

balloons does James have than Amy? 

Multiplication and Division 

Multiplication 	 2 	Robin has 3 packages of gum. There are 6 pieces of gum in 

each package. How many pieces of gum does Robin have 

altogether? 

Measurement Division 	4 	Tad had 15 guppies. He put 3 guppies in each jar. How many 

jars did Tad put guppies in? 

Partitive Division 	 6 	Mr Gomez put 20 cupcakes into 4 boxes so that there were 

the same number of cupcakes in each box. How many 

cupcakes did Mr Gomez put in each box? 

Multistep and nonroutine 

Division with remainder 	9 	19 children are going to the circus. 5 children can ride in each 

car. How many cars will be needed to get all 19 children to 

the circus? 

Multistep 	 8 	Maggie had 3 packages of cupcakes. There were 4 cupcakes 

in each package. She ate 5 cupcakes. How many are left? 

Nonroutine 	 7 	19 children are taking a minibus to the zoo. They will have 

to sit either 2 or 3 to a seat. The bus has 7 seats. How many 

children will have to sit three to a seat and how many can sit 

two to a seat? 

Note. From Carpenter et al. (1993), p.434 

A quantitative analysis of the strategies that the children followed showed that the 

majority of strategies used can be characterized as directly representing or modelling the 

actions of the relations described in the problem. 

The kindergarden children in this study showed remarkable success in solving word 

problems as shown in Table 5.6. 
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TABLE 5.6 

Number of children correctly solving each problem and the number and kind of valid 

strategies 

Problem 	Number 

Correct 

Valid 

Strategies 

Direct 

Modelling Counting 

Derived 

Facts Other Uncodable 

Separate 

result unknown 51 62 54 5 2 0 1 

Join 

change unknown 52 56 39 12 1 1 3 

Compare 17 50 34 7 3 6 0 

Multiplication 50 60 46 14 0 0 0 

Measurement 

division 50 51 50 1 0 0 0 

Partitive 

division 49 49 39 1 1 6 2 

Division 

remainder 45 45 42 1 2 0 0 

Multistep 45 47 44 0 3 0 0 

Nonroutine 36 41 40 1 0 0 0 

Note. From Carpenter et al. (1993), p.435. 

Surprisingly multiplication and division problems were not found to be more difficult 

compared with addition and subtraction problems for the children. 

According to Carpenter et al. (1993) the results of this study suggest that children can 

solve a wider range of problems, including multiplication and division. This study also 

provides evidence that young children can learn to solve a broad range of problems by 

directly modelling the actions and relations in the problem. However, Carpenter et al 

(1993) pointed out that they cannot claim that all the children would solve these problems 

in the same way because instruction did encourage the use of direct modelling to solve 

the problems and it is possible that if instruction had a different focus, the strategies 

adopted by them might have been different. 
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Carpenters et al's (1993) findings suggest that children's problem solving abilities have 

been seriously underestimated and that children can solve a variety of problems quite 

early. They proposed that children can be helped to develop problem solving abilities if 

adults build upon and extend their intuitive modelling skills. 

There is a big discrepancy in the level of success of the children that took part in 

Carpenter et al's (1993) and the children in Correa's (1995) and Kouba's (1989) study. 

Although the children in Carpenter et al's investigation were in nursery class they were 

doing much better than the first grade children in Kouba's (1989) study and they were as 

successful as the third graders. Although Carpenter et al's (1993) study was not an 

experimental one, we cannot overlook the fact that their children had some experience 

with word problem solving. The discrepancy between Correa's and Kouba study can be 

explained by the difference in the administration of the problems. 

Carpenter et al's findings support the idea that children have their own schemas of action 

that enable them to deal with both multiplication and division problems at a young age. 

Based on these schemas of action the children will later on build their knowledge on 

multiplication and division as operations. 

2.3.4 Is the understanding of the schema of one-to-many correspondence the key 

for understanding all multiplicative relations? 

Quantifying proportional and Cartesian problems 

The aforementioned studies have shown that children can solve a variety of 

multiplication problems as soon as they recognize the one-to-many correspondence 

relation between the two variables. 
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For example, "One shelf has 4 books. How many books are held in 3 shelves?". In this 

example the child can proceed by scalar reasoning: "1 shelf 4 books, 2 shelves, 8 books, 

3 shelves 12 books". 

There are, though, problems where this type of reasoning would not lead to the right 

solution. Consider, for example, the problem: "3 kilograms of coffee cost £15. What is 

the price of 7 kilograms?". This proportional problem is clearly a one-to-many 

correspondence problem, but a scalar solution is not appropriate, because 7 is not in the 

replication (3 kg cost £15, 6 kg cost £30, 9 kg cost £45). A problem like the above needs 

a functional solution. There is a constant ratio relation between weight and price (1 kg 

cost £5). That means that the price per kilogram must be found first in order to find the 

price of 7 kilograms. A functional solution requires the establishment of a multiplicative 

relation not only within the variables but also across the corresponding variables. 

Although, there is no evidence on young children's performance on this type of problems 

it is unlikely that young children would find them easy to quantify, especially when they 

involve complex computational procedures. 

What has been well documented is that the understanding of one-to-many correspondence 

does not necessarily help the children to distinguish the situations where they have to 

establish a proportional relation between the variables. As a result the children carry on 

applying scalar solutions that can be labouriously intensive to problems that could have 

been more easily quantified by a functional solution. A genuine multiplicative reasoning 

requires competence both in scalar and functional reasoning. 

In the onion soup problem presented by Hart (1984) 13 to 15 year olds were given the 

recipe for a soup for 8 people and had to find the quantity of the ingredients they had to 

use to make the onion soup for 4 and 6 people. She found that the children had no 

difficulty in finding how much water and chicken cubes they would need to make the 
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soup for 4 people. More than 90% of the participants obtained the correct solution by 

halving the original amounts. This was a scalar solution based on inverse replications. 

When the children had to estimate the amount of ingredients needed for 6 people they 

also applied replications. Because 6 people were equal to 4 people plus 2 the children 

went on halving the amount they needed for 4 people and added the two results together. 

Again this solution was based on inverse replications and the majority of the children 

were successful in the task. The preference of scalar solutions was surprising because the 

same problem could have been solved easily by a functional solution where the amount 

of each ingredient would have been a function of the number of persons. 

Vergnaud (1988) gave 11 to 15 year olds a correspondence problem "The consumption 

of my car is 7.5 litres of gas for 100 km; how much gas will I use for a vacation trip of 

6580 km?". He found that although the functional solution required a simple arithmetic 

procedure even the older children preferred a scalar solution. Similar findings on the 

prevalence of scalar over functional solution have been reported to a number of other 

studies (Karplus, Pulos and Stage, 1983; Kaput and Maxwell-West, 1994; Nunes, 

Schliemann and Carraher, 1993). 

There is also another type of multiplication problem which is regarded as being rather 

difficult for young children. This type of problems is known as the Cartesian product 

problem (Anghileri, 1989; Brown, 1981; Hervey, 1966; Mulligan and Mitchelmore, 

1997; Nesher, 1992). An example of a Cartesian problem is: "Anna has 4 skirts and 3 

shirts. How many different combinations of outfits can she make?". Nesher (1988) 

suggested that Cartesian problems are complex because a problem like the above consists 

of three strings: the first two refer to two independent sets of objects (shirts and skirts) 

and the third one, the outfits, which is the product of a cross multiplication between each 

of the skirts and each of the shirts. Moreover, in a Cartesian problem the one-to-many 

correspondence between each skirt and the shirt is not clearly indicated in the verbal 
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expression of the problem and it is up to the child to establish this relation. 

In order to examine if children treat Cartesian problems as one-to-many correspondence 

situations and what strategies they employ to solve them, Bryant, Morgado and Nunes 

(1993) set up a study to investigate how children come to master them. Children aged 8 

and 9 from Oxford were given four multiplication problems, two one-to-many 

correspondence problems and two Cartesian product problems so that they could contrast 

their level of difficulty. The children were also provided with the materials that they 

could use to quantify the problems. In one Cartesian product problem the children were 

given miniatures of the different shorts and t-shirts that they could manipulate to solve 

the problem. It was expected that the procedure the children would follow to solve the 

problem would reveal what the children think about the situation. The problem with this 

design, though, was that the children could just imitate the problem situation, combine 

the shorts with the t-shirts and count the different outfits. In order to make sure the 

children would solve the problem by reasoning mathematically, they were randomly split 

into two groups. In one group the children were provided with all the materials described 

in the problem. The children had to think how they were going to organize their actions 

to form the number of outfits. In the second group the children were only presented with 

a subset of the materials which could be used to create a model of thinking that could 

help them to solve the problem. 

It was expected that the simple one-to-many correspondence problems would be easier 

for the children no matter whether they had all the materials or just a sample of them. The 

children assigned to the group presented with all the materials were expected to be more 

successful overall than the children presented with a sample of it. It was also assumed 

that in the Cartesian product problems the children would benefit more when they were 

given all the materials. 
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The results of the study verified the above expectations. Most of the children gave the 

correct solution when presented with all the materials in the one-to-many correspondence 

problems, but only half of the 8 year olds could respond correctly when presented with 

a sample of the materials. Regarding the Cartesian product problems just above half of 

the 9 year olds and a few of the 8 year olds gave the right response after manipulating all 

the materials. However, none of the 8 year olds and less than half of the 9 year olds could 

solve the situation given only a sample of the materials. 

The strategies that the successful children followed while manipulating the materials 

showed that they recognize the need to establish a one-to-many correspondence between 

the number of shorts and the t-shirts. However, because Cartesian problems are complex, 

only 9 year olds recognized the implicit one-to-many correspondence. 

Bryant, Morgado and Nunes's (1993) study reveals that children are successful in 

Cartesian problems only if they identify the correspondence that is implied between the 

two sets. 

The difficulty of Cartesian problems was also highlighted in Mulligan and Mitchelmore 

(1997) study. On four occasions, they gave grades 2 and 3 children who had not 

previously been instructed on multiplication and division, a number of problems. These 

problems differed in semantic structure. The purpose was to assess the relative difficulty 

of the problems and the strategies the children used to solve them. The children were 

read the following different types of multiplication problems: (a) equivalent groups (e.g., 

2 tables, each with 4 children), (b) multiplicative comparison (e.g., 3 times as many boys 

as girls), rectangular arrays (e.g., 3 rows of 4 children) and Cartesian products (e.g., the 

number of possible boy girls pairs). 

Despite the use of manipulative materials Cartesian problems were the most difficult, 
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averaging 1% correct responses over interviews 1 - 3 to 14% at interview 4. In contrast, 

in the equivalent-groups, the success rate for the rate and array problems increased from 

the average of 45% at interview 1 to 86% at interview 4. The authors argue that the 

Cartesian problems are hard because the recognition of the one-to-many correspondence 

between the sets is not straightforward. 

The research findings suggest that the difficulty of Cartesian problems is attributed to the 

semantic structure of the problem situation which does not reveal the one-to-many 

correspondence relation between the two sets. It could also be the case that in order to 

solve the Cartesian problems the development of an entirely different schema of action 

is required. However, there is no research evidence to support this. 

Commutativity in multiplication 

The work of Piaget, Kaufmann and Bourquin (1977) and Frydman (1990) that was 

discussed previously showed that the children had a very poor understanding of the 

principle of commutativity in multiplication. The children had great difficulty in the 

common multiplies tasks that would have been easily solved if they had understood the 

idea of commutativity. 

This finding has been verified by a number of other studies. Pettito and Ginsburg (1982) 

asked unschooled adults in Africa to compute a number of exercises. Some of these 

exercises examined their understanding of commutativity. They were asked to compute 

10x7 and immediately after 7x10 and 6x100 and 100x6. The results showed that the 

participants were accurate in their calculations but they rarely used commutativity in 

multiplication. When the adults were asked whether or not the two problems in the 

commuted pairs were the same, only 38% agreed that 10x7 and 7x10 were the same and 

68% agreed for the 6x100 and 100x6 pair. But even the ones who agreed about the 

equality of the two pairs did not always solve the two problems by means of 
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commutativity. The study does not report the participants reasons for judging 

commutativity problems to be the same of different. Thus, it provides a limited insight 

into the way adults come to understand the principle of commutativity. In contrast, US 

college students were shown to have a good understanding of commutativity in 

multiplication. About 93% of them used this principle to compute the problems. 

Nunes and Bryant (1995) proposed that children's difficulty in understanding the property 

of commutativity in multiplication can be explained by the problem situation. They 

suggested that correspondence problems might be the easiest to quantify but the situation 

itself might not help the children to understand the mathematical principle of 

commutativity because it raises conceptual difficulties for the children. In a 

computational level 30x5 is the same as 5x30, but buying 30 oranges for 5 pence each is 

a different problem than buying 5 oranges for 30 pence each, because the values of the 

measures must be changed. It is more likely that the children would understand 

commutativity better in situations where the two variables have a spatial relation to each 

other. For example, a chocolate bar that is 4 squares long and 2 squares wide is of the 

same size as one that is 2 squares long and 4 wide. The values of the measure are not 

changed and the children can realize their equality by rotating the bars of chocolate. 

Nunes and Bryant hypothesized that commutativity can be more easily understood in 

spatial rearrangement problems where the children do rotation than in one-to-many 

correspondence problems where they have to rearrange the size of the corresponding sets. 

In one of the studies they carried out the children were given the sum of the total in one 

multiplication problem, for example 12 chairs x 8 rows = 96 chairs, and then they were 

presented with a similar problem where there were 8 chairs in 12 rows. If the children 

could infer the total number of chairs in the second problem using the previous 

information and not the calculator then they had an understanding of commutativity. Two 

types of problems were used, rotation and rearrangement problems in order to test 
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whether the understanding of commutativity varied as a result of the problem situation. 

These problems were mixed with non-commutative problems to test whether the children 

had developed a set way to respond in all the problems or if they could recognise the 

situations where they could apply the commutativity rule. The 10 year olds participants 

of the study were assigned in 4 groups. Two groups were given rotation problems and the 

other two rearrangement problems. In one of each of these groups the children were 

presented with small numbers and in the other with large numbers. 

The results revealed that the only problems where the children decided not to use the 

calculator to compute the sum were the commutativity problems. Thus, they could 

distinguish between the commutative and the non-commutative problems. There was a 

clear difference between the rotation and the rearrangement problems. The children 

performed significantly better in the rotation problems. The children could infer the size 

of the set without using the calculator. More than half of the children quantified the 

spatial rearrangment commutativity problems (56.7%) with small numbers by means of 

the cues they were given compared with 39.5% of the one-to-many correspondence 

rearrangement problems. Another result was that the children were more likely to use 

commutativity with small than with large numbers. It seems that as soon as the children 

see large numbers they think that the problem is a hard one and turn immediately to the 

calculator without considering the possibility of avoiding it. 

Nunes and Bryant's study demonstrates that children's understanding of mathematical 

properties can vary across situations. Although one-to-many correspondence problems 

are the easiest one to be quantified they do not provide the best context for the 

understanding of the principle of commutativity. 

2.3.5 Quantifying Fractions 

Evidence has been presented on children's ability to quantify multiplication and division 
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problems that involved discontinuous quantities. There is also a large body of research 

on children's ability to quantify fractions, while there is no evidence on young children's 

ability to solve multiplication problems with continuous quantities. The aim of this 

section is to present the evidence available on young children's ability to quantify 

fractions. 

2.3.5.1 The role of half in the division of continuous quantities 

In contrast to Piaget, Inhelder and Szeminska's (1960) assumption that part-whole 

relations are the starting point for understanding fractions, Bryant (1974) suggested that 

children, even before being able to understand part-whole relations, are still able to 

understand some more elementary relations when they first encounter continuous 

quantities in fractions: the part-part relations. He argued that if a quantity is divided into 

two parts young children are able to judge which part is bigger, smaller or whether they 

are equal. He suggested that the understanding of these first logical relations can be used 

as the beginning of quantifying fractions. Because these relations are used in situations 

where a whole is divided into two parts, he suggests that "half' plays a special role in the 

origin of quantification of fractions, as the half boundary defines whether the two parts 

are equal or one is bigger than the other. In order to check for the effect of the half 

boundary in children's equivalence judgements Spinillo and Bryant (1991) asked children 

aged 5 to 8 years old to look at a picture that represented a box with a particular 

proportion of white and blue bricks inside. Then the children were shown two boxes only 

one of which had the same proportion of white to blue bricks. The picture was actually 

smaller than the boxes and the bricks in the box had been rearranged. In the picture the 

stripe of the blue blocks was horizontal while in the box it was vertical or vice versa. The 

children had to find which box had the same proportion of white-to-blue stripes as the 

picture. The perceptual modifications were done to ensure that the children would not 

carry out the comparison on a perceptual box-to-picture match. They predicted that the 

children would perform better in those tasks where they could use the half boundary or 
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cross the half boundary, than in those where the half boundary could not be used. 

They found that the majority of the children performed significantly better in the tasks 

where they could use the half boundary to make their judgements, which suggests that the 

half boundary might represent the first step in children's use of relations to quantify. Less 

than half of the 5 year olds, half of the 6 year olds and the majority of the 7 and 8 year 

olds performed significantly above chance level in the tasks where the half boundary 

could be used as a reference to match the picture with one of the boxes. 

These findings suggest that the concept of half represents the first step in children's use 

of relations to quantify fractions. 

2.3.5.2 Comparison of children's ability to share discontinuous and continuous 

quantities 

There is a growing body of research that aims to compare the relative difficulty of sharing 

discontinuous and continuous quantities. 

Hiebert and Tonnessen (1978), studied the development of the fraction concept within 

two physical contexts: continuous and discrete quantities. The sample of their study was 

quite small comprising 9 children aged between 5;4 to 8 years. The children were 

presented with an area (clay pie) and a length task (piece of licorice), which they were 

required to divide into halves, thirds and quarters. They were also asked to share penny 

candies (discontinuous quantities) among two, three and four recipients in order to assess 

the relative difficulty of the two types of quantities. 

The results of the study revealed that the discrete objects task was considerably easier 
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than the continuous cases of length and area tasks. Six children were successful in the 

candies task, but only two succeeded in both area and length tasks. The factors 

responsible for these results could be that for discrete quantities children can solve the 

task without anticipating the final solution beforehand. Discrete quantities tasks were 

also solvable on the basis of number strategies, but the continuous quantities tasks of area 

and length required a subdivision into equal groups, which requires familiarity with area 

metric properties and certain measurement skills. 

Regarding the developmental sequence in understanding fractional numbers it was found 

that for area problems halves and fourths were successfully constructed by some children 

but thirds were not. For the length task, fourths were not found to be easier than thirds. 

No order of difficulty sequence was observed in the discrete quantities tasks and the 

children solved the situation following a one-to-one partitioning procedure. 

The overall results suggest that the sharing of continuous quantities is harder than the 

sharing of discontinuous quantities and that children employ different strategies with each 

quantity. 

The relative difficulty of sharing discontinuous and continuous quantities was also 

studied by Miller (1984). He asked children aged 3 to 9 to share a number of different 

kinds of material among two, three and four turtles. The turtles were supposed to enjoy 

a snack consisting of materials emphasizing number (candies), length (strips of clay 

spaghetti), area (clay squares of fudge) and volume (glasses of kool-aid) as shown in the 

following picture. 
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PICTURE 2.1 

Materials used to investigate spontaneous measurement procedures. 

Note. From Miller. (1984), p.198. 

In the above scene an extra plate was set for dinner. with the explanation that another 

turtle was invited but could not make it. Therefore, the children had to help the two 

turtles to share the spare portion of snack evenly. For doing this the children were 

provided with various measurement devices (rulers and cups of different sizes) that they 

could use. 

The analysis of the strategies used to share the candies showed that the vast majority of 

children in all age groups employed the strategy of distributive counting, in which the 

candies were distributed one at a time among the turtles. in many cases accompanied by 

statements such as "one for you and one for you ...". For sharing the glass of drink 

(volume) most children visually compared the levels of tluid to determine relative 

volume. More complicated methods like measuring the height of the column, or using a 

unit from a measuring cup were employed by a small percentage of older children. Only 

a small number of preschoolers used non-quantitative procedures to share the materials. 
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In sharing the stripes of spaghetti (length) children exhibited different solution strategies. 

Most preschooler cut the spaghetti into arbitrary numbers of pieces. They took care to 

make sure that the same number of pieces was distributed, although the pieces were often 

of different sizes. The use of strategies in which children cut the material directly into 

fractions of approximately equal size increased with age. In this case the children either 

estimated the size of each piece and then cut it into fractions or folded the piece into 

halves or thirds. The choice of this strategy indicates that for those children equality 

involves considering the size as well as the number of the shared pieces. The strategies 

observed for the sharing of the fudge cake (area) were similar to those in the length 

problem. Again, preschoolers had the tendency to cut the cake into arbitrary pieces, 

whereas strategies involving the use of units of constant size were limited to older 

children. 

Further evidence on children's ability to share discontinuous and continuous quantities 

was provided by Hunting and Sharpley (1988a, 1988b). Their aim was to explore what 

kinds of behaviour preschoolers display when solving partitioning problems with discrete 

and continuous quantities, what mental processes seem to govern such behaviour and 

what they understand about the fractions '/2 1/3 and 1/4. The sample of their study 

consisted of 206 children, mean age 4.5. In the first set of tasks the children were required 

to share different types of material between two, three and four dolls, in a way that the 

material was all used up and each doll had an even share. The children had to share 

skipping ropes (continuous quantities) and crackers (discrete quantities). The second set 

of problems required the children to represent the fraction 1/2, and if successful fractions 

1/3 and 1/4, by halving a sausage (continuous quantity) and putting half of a number of 

cards (discontinuous quantities) in an envelope. 

The results of sharing the rope between 2 dolls showed that most of the children cut the 

string just once but the length difference between the pieces was in many cases 60mm or 
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less. When asked if they considered their dolls to be happy with their share the majority 

of the children agreed and less than half of them employed a checking behaviour. When 

the rope had to be shared among 3 dolls, one third of the children made one cut, the other 

one third made two cuts and the remaining made three, four or more cuts. Various 

procedures were observed in the behaviour of children who made more than three cuts, 

such as selecting three pieces to give to the 3 dolls, measuring the second and the third 

piece off against the first piece, adjusting by trimming as the pieces were being cut etc. 

Only four children were observed to fold the rope before cutting. In answer to the 

question as to whether the dolls were happy with their shares 190 children answered 

"yes". Checking behaviour was observed only in one fourth of the cases. 

In sharing crackers among 3 dolls 44% of the children showed a systematic procedures 

by sharing out the crackers one by one. Sixteen percent of the children adopted a one-to-

many correspondence procedure for at least one cycle and 10% of them made equal 

shares as a result of non-systematic methods. The remainder of the children followed 

non-systematic procedures and ended up with unequal shares. When the children were 

asked how they could be confident about the fairness of their sharing the most common 

checking methods were numerical justification without overt counting, point counting of 

the piles of crackers and visual comparison. When the children had to re-apportion the 

shares of the 3 dolls for a fourth doll 94 children employed successful methods. 

Regarding the second set of problems where the children had to cut a sausage into halves, 

thirds and quarters, 73 children cut the sausage near the mid-point when halving it and 

118 executed a succession of cuts. Of the successful children only 10 managed to cut the 

sausage in quarters and none of them was successful in cutting it into thirds. Before 

executing the cutting the children were asked how many pieces and how many cuts they 

were expected to make. It was found that the vast majority of the children did not have 

an anticipatory schema. 
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In the swap-cards tasks where the children were asked to put half of the 12 cards into an 

envelope, a substantial number of children (35%) placed all of them in the envelope 

provided. Only 23 children (11%) responded appropriately. However, the vast number 

of children's responses cluster around six which suggests a qualitative or approximate 

notion of half. None of the successful children was able to divide the cards into quarters. 

The overall results of Miller's (1984) and Hunting and Sharpley (1988a, 1988b) study 

suggest that children perform better in the context of discrete rather than continuous 

quantities. Children's difficulty with fractions can be attributed to the lack of anticipatory 

schema and checking procedures, which are important for efficient problem solving. This 

could be due either to the complete lack of schemas or to the fact that the problems were 

quite dissimilar to children's experiences therefore, they could not draw on prior 

knowledge. 

It was found that cutting continuous quantities into halves is easier than cutting them into 

quarters and thirds. It is possible though, that children had great difficulty with quarters 

and thirds due to lack of understanding of the fractional language used. Many children 

in the study showed a qualitative conception of half which preceded the understanding 

of the other fractions. This finding strengthens Spinillo and Bryant's (1991) assumption 

that the concept of half plays a significant role in the quantification of fractions. 

Despite the methodological problems these studies show that the potentiality for learning 

fractions is present in children at an early age. Hunting and Sharpley suggested that 

instructional activities which encourage exhaustive distribution, together with discussions 

about the merits of systematic sharing procedures for forming equal shares, would 

prepare children for further learning. They suggest that the fraction vocabulary (halves, 

thirds, fourths) should be introduced when the children become proficient in allocating 

shares. It is not, however, clear whether the children should start from the sharing of 
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discontinuous quantities before being introduced to the continuous ones. 

2.3.5.3 Summary 

The results of the aforementioned studies on children's ability to quantify multiplication 

and division problems involving discontinuous quantities are rather encouraging. All the 

studies agree that the vast majority of children are able to quantify a variety of 

multiplication and division problems by employing their schemas of action before the 

introduction of multiplication and division as an operation at school. This understanding 

is a long process and develops gradually with age. The children are initially able to reason 

in the situation on the basis of relations and later on they are able to deal with absolute 

values. 

The strategies that children adopt to solve multiplication problems reveal that they reason 

in the situation on the basis of the one-to-many correspondence schema. Because 

multiplication involves a constant relation of one-to-many correspondence between two 

sets, problems in which this correspondence is explicit can be solved relatively easily. 

However, the understanding of one-to-many correspondence is not the key for solving all 

multiplication problems. For example, proportional problems often require a functional 

solution and are difficult for the children. Cartesian problems are also found to be hard, 

either because the one-to-many correspondence relation between the values is not 

recognized in the structure of the problem or because they require an entirely different 

schema of action to be solved. One-to-many correspondence situation do not teach the 

children much about a significant property of multiplication, the commutativity rule. The 

children might be efficient in quantifying correspondence problems, but have no 

understanding of the axb=bxa relation between the corresponding variables. 

The research evidence suggests that the children have no difficulty in quantifying 
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correspondence problems. Setting sets into correspondence is a solution strategy that can 

lead to successful quantification. What needs to be explored further is whether the 

children can use their correspondence schema of action to reflect on multiplicative 

situations. Would for example the children use the concept of ratio to order the size of 

different corresponding sets even in situations that do not provide sources for 

quantification, like the ones with continuous quantities? 

Similarly, there is evidence that 6 year olds are doing well when they quantify division 

problems that involve the sharing of discrete quantities (Correa, 1995) There is also 

evidence (Sophian et al., 1997) suggesting that by the age of 7 children can order the size 

of different quotas when the shared quantity is continuous. There is not, though, a study 

comparing children's understanding of sharing relations across discontinuous and 

continuous quantities. If there are schemas of action to support their reasoning there 

should not be a difference between the two types of quantities. 

Alternative views about the origin(s) of multiplication and division 

In the previous section the theories that sought the origin of children's understanding of 

multiplication and division in children's schemas of action were presented. There is an 

alternative hypothesis according to which the origin of multiplication and division is to 

be found in other operations, that is in addition and subtraction. There is a large 

consensus that the origin of division is to be sought in the context of sharing situations, 

but there is less consensus about the origin of multiplication. For example Dickson, 

Brown and Gibson (1984) suggested that there is no schema of action related to 

multiplication; Fischbein and his colleagues (1985) proposed that multiplication 

originates in the understanding of repeated addition situations. The aim of this section is 

to present the alternative views and the relative research evidence. 
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2.4 Dickson, Brown, and Gibson's hypothesis: Multiplication is not related to any 

schema of action 

Dickson, Brown and Gibson (1984) suggested that sharing is the schema of action related 

to the origin of division but that there is no schema of action related to multiplication. 

They also proposed that the understanding of division might precede the understanding 

of multiplication. These conclusions were drawn from Brown's (1981) study where she 

tested the relative difficulty of the four basic operations. She asked 11 year old children 

to make up stories to match various arithmetic expressions in all the four operations. It 

was found that the percentage of success in multiplication was the lowest, 45% when 

small numbers were involved and 31% when large numbers were involved. 

Multiplication was also found to be the hardest operation when the children were asked 

to identify the operation that best fitted a given problem: Addition was easily recognized 

by 88% of the children, subtraction by 67%, division by 63% and multiplication only by 

53%. 

This is how Dickson, Brown and Gibson (1984) explain the relative difficulty of 

multiplication: 

"... whereas "adding", "taking away" and "sharing" are concrete actions easily visualised, "times" 

has no such obvious active reference. This may explain why children appear to have particular 

difficulty with attaching any meaning to the operation of multiplication ..." (p.233). 

The children who took part in Dickson, Brown, and Gibson's study were 11 years old 

and had received a significant amount of instruction in all the operations. The study 

highlights the difficulties that the children had with the basic operations in the context 

of word problems, and it does not give an answer to the origins of the concept of 

multiplication and division. Dickson, Brown, and Gibson's proposal that multiplication 

is not related to any schema of action contradicts a vast number of previous studies 
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(Burton, 1992; Carpenter, et. al, 1993; Frydman, 1990; Piaget, 1965) which have shown 

that children understand the invariants that underline the operation of multiplication early 

on and have the schemas of action to solve a number of multiplication problems at a 

young age. It is likely that the children's difficulty in constructing multiplication and 

division situations in Brown's study represents the failure of the school to teach the 

operations in a meaningful context. As a result the children are not able to produce 

meaningful multiplicative situations when presented with the symbolic expression 9x3. 

2.5 Fischbein, Deri, Nello and Marino's theory: the role of addition and 

subtraction in the understanding of multiplication and division 

Fischbein, Defi, Nello and Marino (1985) proposed the theory of primitive intuitive 

models about the origins of multiplication and division. According to their theory "Each 

fundamental operation of arithmetic generally remains linked to an implicit, 

unconscious, and primitive intuitive model. Identification of the operation needed to solve 

a problem with two items of numerical data takes place not directly but as mediated by 

the model" (Fischbein et al., 1985, p.4). 

Fischbein et al. (1985) suggested that the concept of multiplication is intuitively attached 

to a repeated addition model. Thus, 3x5 can be viewed as 5+5+5. The basis for their 

hypothesis was the finding that children have difficulty in solving problems in which the 

multiplier is a decimal or a fraction and hence not readily interpreted as "lots of or 

"times". In the repeated addition interpretation of multiplication, the multiplier (or 

operator) must be a whole number, the product must be bigger than the multiplicand (or 

operand), while the multiplicand can be any positive number. "One cannot intuitively 

conceive of taking a quantity 0.63 times or 3/7 times whereas one can easily conceive 3 

times 0.63 as 0.63+0.63+0.63, even if one cannot perform the operations. Because the 
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operator is always a whole number, multiplication necessarily "makes bigger" (p.6). 

Fischbein et al. (1985) argued that if the numerical data of the problem do not fit the 

constraints of the model, the children may not choose the correct operation and the 

solution effort may be diverted or blocked. 

They also proposed that the primitive intuitive model for partitive division is sharing and 

for quotitive division is repeated subtraction. The partitive division model is where an 

object or a collection of objects is divided into a number of equal fragments or 

subcollections, originated from sharing. The constraints are that the dividend must be 

bigger than the divisor; the divisor must be a whole number and the quotient must be 

smaller than the dividend. Quotitive division situations are where the object is to 

determine how many times a given quantity is contained in a larger one and can be seen 

as repeated subtraction if the quotient is a whole number. The constraint is that the 

dividend must be larger than the divisor. 

In order to verify their hypothesis on primitive intuitive models they carried out a study 

that involved 628 pupils, aged between 10 to 13, from 13 different schools in Italy. The 

children were given a list of 42 problems, 12 multiplication and 14 division problems, 

mixed with addition and subtraction problems. They were not asked to perform the actual 

calculation but only to indicate the operation used to solve the problem. 

All the 12 multiplication problems referred to situations where the concept of 

multiplication as repeated addition was applicable. What varied across the problems was 

the nature of the number used. In two problems the multiplier and the multiplicand were 

whole numbers, while in the other problems either the multiplier or the multiplicand were 

expressed in decimals. They expected that the problems which violated the constraint that 

the multiplier must be a whole number would be hard for the children. 

95 



There were five partitive problems which violated the intuitive rule that the dividend has 

to be larger than the divisor. In two of those problems the dividend and the divisor were 

both whole numbers and in the remaining three the dividend was a decimal number. 

There was also one problem where the divisor was a decimal. The problems where the 

divisor was bigger than the dividend, where the divisor or the dividend was a decimal, 

were expected to be hard for the children. 

In two of the quotitive division situations, both the dividend and the divisor were whole 

numbers with the dividend being bigger than the divisor. In the other three quotitive 

problems the divisor was a decimal number and these were predicted to be difficult for 

the children. 

Almost all the children were successful in the situation involving multiplication where 

both numbers were integers according to the constraints of the model. Children's 

performance was affected by the presence of the decimal numbers and tended to vary 

according to whether they were used as multipliers or multiplicands. Children tended to 

perform better with a decimal multiplicand than with a decimal multiplier. Nevertheless, 

the effect of the decimal tended to diminish when the decimal was familiar to the children 

or when the whole part of it was larger than the fractional part. 

In division problems children performed better in the partitive than in the quotitive 

problems. The pupils performed at ceiling level with whole numbers when the dividend 

was bigger than the divisor. Performance level dropped significantly when the divisor 

was bigger than the dividend and in this case they found it easier to deal with problems 

that had a decimal dividend and a smaller whole number divisor. The children also 

performed poorly in the partitive problems where the divisor was a decimal number. 

Once again the children did better in quotitive problems that involved whole numbers 

according to the constraints of the model. Their performance was lower in the situations 
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where the divisor was a decimal number, especially when it was less than 1. 

The results of their study with division led them to the conclusion that "there is only one 

intuitive primitive model for division problems - the partitive model. By instruction only, 

pupils acquire a second intuitive model - the quotitive model " (p.14). This conclusion 

was justified by children's difficulty in recognising division as the correct operation to 

solve quotitive division problems. 

Fischbein et al's (1985) research on children's understanding of multiplication and 

division has a number of methodological weaknesses. The problems that were classified 

as partitive did not always correspond to what is defined as a partitive problem by 

Fischbein et al (1985). For example, the following problem: "I spent 1500 lire for 3 kg 

of nuts. What is the price of 1 kg?". The operation used to solve this problems is division, 

but the structure of the problem is that of a correspondence problem, where one of the 

terms in correspondence is missing. The child has to find the ratio between the weight 

and the price. If it was a partitive division problem there should have been a quantity to 

be shared among a number of recipients. Fischbein et al (1985) also presented partitive 

division problems where the divisor was a fraction. We can argue that recipients in 

partitive problems cannot be fractions. 

The contrast between the partitive and the quotitive problems was not very convincing. 

The suggested finding that quotitive problems are harder than partitive is confounded 

because there was no control of the size of the numbers used. The numbers used for 

partitive situations were smaller than those used for the quotitive ones, which could have 

affected children's performance. Furthermore, in one of the quotitive problems the size 

of the divisor was a decimal smaller than 1 (0.75), but no parallel item was included in 

the partitive problems. Besides, the story context of the problems was not comparable as 

in some cases and the quotitive problems were presented within a more complex context. 
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For example, one of the problems that Fischbein refers to as partitive and one quotitive 

were phrased in the following way: 

"I spent 1500 lire for 3 kg of nuts. What is the price of 1 kg?" (partitive problem) 

"The walls of the bathroom are 280 cm high. How many rows of tiles are needed to cover the walls if each 

row is 20 cm wide?" (quotitive problem) 

The context of the partitive problems was familiar to children's experience, easy to 

interpret and similar to the problems that children were accustomed to solving in school. 

In summary, it can be said that the design of the study did not adequately control for all 

the variables that could have interfered with and affected the children's responses, and 

the variables that are contrasted (partitive and quotitive) were not designed to be 

comparable. Under these circumstances it should not be surprising that children found 

partitive problems easier than the quotitive ones. However, the suggestion that intuitive 

models have a strong influence on children's understanding of the operation of 

multiplication and division was an issue that opened new ground for research. 

In my view Fischbein et al's (1985) conclusion that repeated addition forms the basis for 

understanding multiplication and repeated subtraction for understanding quotitive 

division problems is not well founded. In their study the children were asked to indicate 

the correct operation for solving a problem. It is possible though, that if the children were 

given the opportunity to solve the problem they would have reacted differently. Research 

on addition and subtraction has shown that children are able to solve a wide range of 

addition and subtraction by joining and separating sets long before they are able to name 

which arithmetic operation is adequate to calculate the results formally (Carpenter and 

Moser, 1982; Hughes, 1986; Riley, Greeno and Heller, 1983; Marton and Neuman, 

1990). Hudson (1983) has shown that young children are able to solve a number of 
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problems that involve comparison between sets, when they can use their counting 

schema, before they are able to indicate which arithmetic operation would be appropriate 

to solve the problem. This mismatch between solving problems through schemas of 

action and through formal representation has been documented not only in research with 

children but also with unschooled adults whose schemas had not been socialized into the 

ways of knowing used in schools (Nunes, 1992, 1996b). These adults who were capable 

of solving a wide range of arithmetic problems in everyday life situations, had remarkable 

difficulty in solving a missing addend problem using a calculator. That is because the 

calculator cannot work out solutions that are based on counting up from the first addend 

to the total value. The use of a calculator requires the formal representation of a series of 

commands (eg. 27-12) that are similar to those that school encourages children to develop 

in order to solve a missing addend problem. 

This is also the case with multiplication and division. In the previous section (2.3) it was 

shown that young children and unschooled adults who had never been introduced to 

multiplication and division had the schemas to solve a wide range of multiplication and 

division, partitive and quotitive, word problems by modelling the actions in the problem 

(Aubrey, 1997; Brown, 1992; Burton, 1992; Carpenter, et. al, 1993; Correa, 1995; Kouba, 

1989; Nunes, Schliemann and Carraher, 1993). So then, why are there children, as in 

Fischbein and his colleagues' study, who have received formal instruction on 

multiplication and division and yet are confused and not able to choose the correct 

operation for a simple one step multiplication or division problem? 

As pointed out by Nunes (1996a, 1996b) this is because there is not a perfect match 

between schemas of action and operations. When children are taught the four operations 

at school their old meanings, derived from their schemas of action, are reshaped when 

they are connected to the new system of signs that they are taught. As a result of this 

reshaping "the child has to compress different action schemas into a simplified system 
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of representations with fewer options" (Nunes, 1996a, p.244). That means that all the 

action schemas that the child had related to addition and subtraction have to be reduced 

to the expression a+b=c and the implied forms c-b=a and c-a=b. The job done by a 

number of schemas of action has to be done now by two arithmetic operations: addition 

and subtraction. An additional difficulty to this is posed by the fact that in the school the 

child has to solve a problem by acting on numbers. Nunes (1996a) suggests that "schemas 

of action cannot be used on numbers because numbers offer a compressed representation 

of objects (8 is one representation for eight individual objects which can be counted, 

separated into sets etc, when they are individualized" (p.244)). 

Because reasoning is not identical to operations, it is possible that Fischbein et al's 

subjects would have preformed differently if they had been given the chance to activate 

their schemas of actions in the multiplication and division problems. 

Fischbein et al's suggestion that multiplication originates from repeated addition reflects 

the way multiplication is taught in school rather than the initial development of the 

concept in children's minds. Because the children who took part in their study had 

received a considerable amount of instruction in multiplication and division, the study 

investigated children's understanding of multiplication and division after their schemas 

of actions had been reshaped into the conventional system of school mathematics. When 

children enter school they have a good grasp of the concept of ratio in one-to-many 

correspondence situations (see sections 2.1 and 2.3), which is an invariant present in the 

operation of multiplication and forms the basis for its understanding. When 

multiplication is introduced in the school the teacher has to find a context that would 

facilitate the connection between the old meanings that the child has and the new concept. 

For the teaching of multiplication the most common practice is to connect it with 

repeated addition, which is familiar to the children. Children have no difficulty in 

understanding that instead of adding labouriously 6 times 3, this can be simplified into 
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"six threes" or "six times three". According to Nunes (1996a) this connection allows 

children to relate multiplication with something familiar, that is addition and also gives 

them a strategy to calculate a number of multiplication sums. She stresses though, that 

the price for this particular path in the socialization of children's thinking may be that the 

meaning that young learners connect with multiplication will need much more 

redescription for them to progress beyond the initial stage, because there are invariants 

in the operation of multiplication that are not present in the concept of addition. Additive 

situations are about part-whole relations where objects or sets of objects are either joined 

or separated. Multiplication, on the other hand, is about a constant relation, expressed as 

a ratio, between two variables, an invariable that is not present in additive situations. 

The child has also to learn a new set of number meanings. In multiplicative situations 

quantities do not only refer to actual amounts as in addition and subtraction, but also to 

relations (intensive quantities). For example, when we are talking about the "price per 

kilo" we refer to the relation between weight and price, rather than to the amounts of 

sugar and money. If multiplication were introduced as repeated addition the child would 

be able to solve problems that require simple scalar solutions, but would have great 

difficulty in solving the ones that require functional solutions. Because multiplication 

involves a whole new set of invariants and number meanings that are not present in 

addition, the child might never represent them if multiplication is introduced as just 

another more complicated form of addition (Nunes, 1996a, 1996b; Nunes and Bryant, 

1996). 

Fischbein et al's theory of the primitive intuitive model is itself inconsistent. The origins 

of operations are sought, in the case of partitive division in children's schemas of action 

(sharing schema) and in the case of multiplication and quotitive division in an operation, 

that is repeated addition and repeated subtraction respectively. 

The theory of primitive intuitive models accounts more for the difficulties and the 
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misconceptions that upper primary and high school children have about multiplication 

and division after instruction and practice at school and it does not give an answer neither 

on how multiplicative reasoning starts, nor on how it develops. 

2.6 An overall summary: What is known and what can be explored further 

Two contrasting approaches have been developed about the origins of children's 

understanding of multiplication and division. One approach that was originally put 

forward by Piaget (1965) sought the origin of multiplicative thinking in children's 

schemas of action. The second approach proposed by Fischbein et al (1985) sought the 

origin of these two operations on additive structures. Each of these hypothesis generates 

different predictions. If multiplication and division originates from addition and 

subtraction respectively, then the children are not expected to be able to reflect on 

multiplicative relations before being able to quantify multiplicative problems. If 

multiplication and division originates from children's schemas of action then the children 

are expected to be able to reflect on multiplicative relations before being able to deal with 

the absolute values of the situation. 

The aim of the thesis is to test these different predictions by studying children's 

performance in relational non-computational multiplicative problems and in 

computational problems involving both discontinuous and continuous quantities; the 

latter do not provide any source for quantification. 

The hypothesis of the study is that the origin of multiplication and division are in 

children's schemas of action. Schemas of action provide the first meaning for these 

operations, because they preserve the same invariants that are present in the operation of 

multiplication and division. 
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The origin of multiplication is sought in the one-to-many correspondence schema of 

action. There is evidence that children can understand a wide range of correspondence 

relations early on. Children as young as 5 and 6 have a good understanding of transitive 

inferences based on one-to-many correspondence and are able to develop procedures to 

obtain equal totals when the shared quantities consist of different units and the ratios bear 

a simple relation to each other. They can also quantify multiplication problems when the 

one-to-many correspondence relation between the terms is explicit. 

There are, though, some aspects of children's understanding of correspondence relations 

that should be explored further. There is evidence that young children have a good 

understanding of one-to-many correspondence situations, but we do not know whether 

they can order different one-to-many correspondence ratios. The ability to order different 

one-to-many correspondence ratios is important, because the product in a multiplicative 

situation of one-to-many correspondence type depends both on the number of elements 

in the basic set and on the ratio (given the same basic set). If the children can order the 

size of the two corresponding sets on the basis of their relations then it can be claimed 

that they have an understanding of the multiplicative relations that stem from their 

schemas of action. If the children though need to quantify the two sets first to order their 

size, then it can be claimed that Fischbein's suggestion that multiplication originates from 

addition has some ground. To ensure that children's multiplicative thinking is 

independent of their ability to quantify, the children would also be asked to order 

corresponding ratios with continuous quantities that are beyond their quantification 

ability. 

By exploring the previously undocumented evidence on children's ability to order 

different one-to-many correspondence ratios this study will contribute to the formation 

of a more elaborated picture of children's understanding of one-to-many correspondence 

situations. 
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The origin of division is sought in the sharing situation. Sharing and division are 

conceptually close to each other but division is more than sharing. In division the child 

has to consider a whole new set of relations between the terms and particularly the effect 

that the number of quotas has of their size. Correa (1995) has provided evidence that even 

the 5 year olds understand the relations that are involved between the dividend, the 

divisor and the quotient in the context of a sharing situation. They are able to apply the 

inverse relation between the divisor and the quotient and make judgements on the relative 

size of the shared quotas not only in partitive problems, but also in quotitive problems 

which have been characterized as rather difficult for young children before they are able 

to quantify the size of the shared quotas. Her findings suggest that children have some 

understanding of sharing relations before being able to quantify the size of the shared 

quotas. 

To test whether the understanding of division stems from children's sharing schemas of 

action or from subtraction as suggested by Fischbein, this study will investigate children's 

understanding of sharing relations with two types of quantities. It seeks to replicate 

Correa's findings with discontinuous quantities and also to study children's reasoning on 

sharing relations with continuous quantities. The introduction of continuous quantities 

should ensure that the children reason on the situation on the basis of relations only 

because the quantification of the task is beyond their ability, since their sharing results 

in fractions. If the children can reflect on sharing relations with continuous quantities that 

they cannot quantified, then it can be claimed that their reasoning on sharing relations 

stems from their schemas of action and not from their ability to quantify the size of the 

quotas. 

Most of the research on multiplication and division has focused on when and how the 

children quantify different multiplication and division problems, but there is restricted 

evidence on whether the children understand the complementary relation of the two 
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operations. The research evidence on whether multiplication and division develop 

independent of each other or in a coordinated fashion is inconclusive. Piaget (1965) 

suggested that division is the inverse of multiplication and that the two operations are 

discovered simultaneously, but he did not carry any research to verify his assumption. In 

contrast, Fischbein et al. (1985) proposed that the two operations have distinct origins: 

multiplication originates from addition, while division originates from children's sharing 

schemas, but they did not provide any evidence on how the children come to coordinate 

the two operations. 

This study aims to examine whether multiplication and division develop independently 

of each other or as coordinated operations. The hypothesis of this study is that 

multiplication and division have distinct roots and that children discover their inverse 

relation at a later stage. The reasons for this are firstly because the invariants of the two 

operations are different and secondly because multiplication and division are likely to 

follow the same developmental path as addition and subtraction, which are discovered 

simultaneously but are coordinated only at a later stage. The study explores the 

coordination of multiplicative relations not only across the operation of multiplication 

and division, but also within each operation. Division is described as one operation but 

the children have two schemas of action, that is, sharing for partitive problems and 

forming quotas for the quotitive problems. Have the children coordinated the relations 

between these two sharing schemas of action? Have they coordinated the multiplicative 

relations in correspondence situations that require the understanding of the commutativity 

rule? 

The experimental chapters that follow give a detailed account of the aims, the rationale 

and the findings of each study. 
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CHAPTER 3 

EXPLORING CHILDREN'S UNDERSTANDING OF 

MULTIPLICATION 

3.1 The aim and the rationale of the study 

The aim of this study is to investigate the origins of children's understanding of 

multiplication. Two possible sources of this origin have been proposed; addition 

(Fischbein et al, 1985) and one-to-many correspondence (Piaget, 1965). This experiment 

is designed to investigate these two possible origins in situations where young children 

would have to order the size of two corresponding sets. If multiplication originates from 

addition, then it can be predicted that the children will be able to order the two sets only 

after quantifying each of these two totals. If multiplication originates from the 

understanding of one-to-many correspondence then the children should be able to 

establish a multiplicative relation between the two sets and order their size sets on the 

basis of this relation. For example, would the children understand that 5 vases with 3 

flowers in each will have a total of more flowers than 5 vases with 2 just by reflecting on 

the ratio difference of the corresponding sets or do they have to quantify the two sums to 

give the correct answer? Note that thinking additively in this problem would mean that 

each set would be thought of in isolation from the other. The child would need to quantify 

the sum of each set and then compare the two totals. Thinking multiplicatively would 

mean that the child would establish a relation between these sets and would make a 

judgement on the basis of this relation. If the children are able to order the product of 

different ratios without having to quantify, then it can be claimed that they have an 

understanding of the relations involved in a multiplicative situation and particularly of 

the concept of ratio. They also understand a core relation, that the total in an 
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multiplicative situation of one-to-many correspondence depends both on the number of 

elements in the basic set and on the ratio, given the same basic set. If children can make 

their judgements only after quantifying the number of flowers then it can be claimed that 

children's first understanding of multiplication stems from addition. 

The hypothesis of the study is that the origins of multiplication should be sought in 

children's correspondence schema of action. If the hypothesis that children's first 

understanding of multiplication comes from the one-to-many correspondence schema of 

action is correct, then the children should be able to show an understanding of the 

mathematical property of ratio and order the relative size of the corresponding sets on the 

basis of multiplicative relations. If children can make judgements on the size of the 

corresponding sets by means of their correspondence relations, then their performance 

should not vary across the situations that provide cues for quantification and those which 

do not. To ensure that children's reasoning is based on their understanding of 

multiplicative relations and not on quantification strategies the children in this study were 

asked to make judgements not only in tasks involving discontinuous quantities, such as 

the flower task which provides cues for quantification, but also in tasks involving 

continuous quantities that cannot be easily quantified by young children. If children order 

the size of corresponding sets by quantification, then there should be a difference in 

children's performance between the ordering of discontinuous and continuous quantities. 

In order to examine whether the children could distinguish the situations that could be 

ordered by means of multiplicative relations they were presented with a) a set of 

problems that could be ordered on the basis of correspondence relations and b) another 

set of problems that could not be ordered on the basis of correspondence relations and 

where they had to quantify the sums to order the sets. 

The contrast between children's ability to make judgements about multiplicative 
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quantities on the basis of correspondence relations or on the basis of quantification was 

explored further by asking the children to quantify the sets. If the children could make 

correct judgements on the basis of correspondence relations but yet could not quantify 

the sets then it could be claimed that their reasoning was genuinely based on the 

understanding of the properties of multiplication. 

3.2 METHODS 

3.2.1 Design 

Children's ability to order the product of different one-to-many correspondence ratios 

was tested both with discontinuous and continuous quantities that did not provide any 

source for quantification. 

With discontinuous quantities the children were asked to order the size of the 

corresponding ratios a) in situations where this was possible on the basis of 

correspondence relations and b) in situations where they had to quantify the sets. Thus, 

it was possible to examine whether the children could distinguish between the situations 

where they could order the sets on the basis of correspondence relations and those were 

they had to quantify. 

The children were also asked to quantify some problems. Thus, whether their 

quantification ability proceeded or followed their ability to reflect on one-to-many 

correspondence relations could be examined. 

With continuous quantities the children were also asked to reflect on ordering relations 

and also to quantify correspondence problems. 
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A detailed account of the structure of the study is given below. 

3.2.1.1 Discontinuous Quantities 

Relational Tasks 

In the case of discontinuous quantities the children were presented with two rows of 

hutches which had rabbits in them. The child had to decide which row of hutches had 

more rabbits in total in a number of conditions which either the number of rabbits per 

hutch or the number of hutches per set or both were varied. 

The rabbits and hutches task was chosen because the two variables in correspondence, 

that is the number of hutches and the number of rabbits in each hutch, were clearly 

represented. The child could see the two rows of hutches and think about the rabbits that 

were in each hutch. Note that the rabbits were in the hutch and therefore were not visible. 

This precaution was taken to avoid solutions based on visual perception. In order to 

encourage the children to think of the rabbits in each row as a sum, they were asked to 

order the size of the two sets after the rabbits in each row had moved into their house. 

The children had to order the totals of rabbits in two sets of problems (Table 3.1). In the 

first set the children could order the sets on the basis of their multiplicative relations 

because either the number of rabbits per hutch or the number of hutches per row was kept 

constant. Because only one variable varied each time, these problems were called one 

variable problems. In the second set of problems the children could not make any 

judgements about the relative size of the sets because neither the number of rabbits per 

hutch nor the number of hutches per row was kept constant. In these problems ordering 

was impossible without quantification. Because both the number of rabbits per hutch and 

the number of hutches varied in the two sets these problems were called the two variable 

problems. 
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The structure of the one and two variable problems is presented below. 

One Variable Problems  

The one variable problems consisted of three groups of problems depending on which 

variable varied each time. 

a. The Same Number - Same Ratio Problems 

The number of hutches and the number of rabbits per hutch was the same in both groups 

For example 

[2] [2] [2] [2] 

[2] [2] [2] [2] 

This was a control problem to see whether the children had an understanding of the 

situation with which they were presented. 

b. The Same Number - Different Ratio Problems 

The number of hutches was the same in both sets, but the number of rabbits per hutch 

was different in the two sets. For example 

[3] [3] [3] [3] 

[2] [2] [2] [2] 

The children had to consider the ratio difference in the two sets to give the correct 

answer. 

c. Different Number - Same Ratio Problems 

The number of rabbits per hutch was the same in both sets, but one set had more hutches. 

For example 
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[3] [3] [3] [3] 

[3] [3] [3] [3] [3] 

Because the ratio was kept constant in the two sets the children could give the correct 

response considering only the difference in the number of elements in the two sets. 

Each set of problems had 4 items in order to test the consistency of children's responses. 

Two Variables Problems 

The two variable problems consisted of two groups of problems. 

d) The Different Number - Different Ratio Problems 

In this set of problems ordering on the basis of relations was not possible, because none 

of the variables, neither the number of rabbits per hutch nor the number of hutches per 

row was kept constant. The children had to use quantification strategies to give the 

correct answer. 

There was, though, the chance of children finding the correct response by focusing merely 

on the number of rabbits per hutches. For example 

[4] [4] [4] 

[2] [2] [2] [2] 

In other items the children could give the correct answer by focusing merely on the 

number of hutches. For example 

[5] [5] 

[3] [3] [3] [3] 

111 



In order to be able to detect the children who gave a correct response following the above 

wrong strategies both types of items were included in the design. 

The Different Number - Different Ratio problems had 8 items in total, 4 in which the 

correct answer was the row that had more rabbits per hutch but less hutches and 4 in 

which the correct answer was in the row that had less rabbits per hutch but more hutches. 

e. Commutativity 

The difference between the Commutativity and the Different Number - Different Ratio 

problems was that in principle the children could give the correct answer without 

computing the precise cardinals, because the number of hutches was compensated by the 

number of rabbits per hutch. For example 

[4] [4] 

[2] [2] [2] [2] 

There were 4 items designed with respect to the commutativity rule in multiplication. 

It was expected that the one-variable problems, that is the Same Number - Same Ratio, 

Same Number - Same Ratio and Different Number - Same Ratio would be easier for the 

children than the two variable problems, that is those that involved the Different Number 

- Different Ratio and the Commutativity. 

Quantification Tasks 

In order to contrast the children's ability to order the relative size of the different totals 

on the basis of ratio relations with their ability to quantify the total number of rabbits in 

each set, they were also asked to pick up a number of pellets equal to the number of 

rabbits in six items, four from the one variable and two from the two variable problems 

(Table 3.1). 
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3.2.1.2 Continuous Quantities 

In the Continuous quantities tasks the children had to judge the sweetness of two cakes 

on the basis of the amount of sugar put into each cake. They had to consider the number 

of sugar spoons and the size of the spoons (teaspoons or soup spoons) used to pick up the 

sugar. The children were told that 1 soup spoon corresponded to teaspoons. 

Continuous quantities were included because quantifying the amount of sugar put in the 

two bowls would have been very difficult for children so young. Ordering the sweetness 

of the two cakes on the basis of relations would have been the only strategy available for 

the children. 

Two sets of tasks were designed: one relational task where the children were asked to 

order the sweetness of the two cakes on the basis of correspondence relations and a 

quantification task where they were asked to quantify the amount of sugar in the cakes. 

Thus, it was possible to examine whether they reasoned on the situation on the basis of 

multiplicative relations or by quantification. More details about the two sets of tasks are 

given below. 

Relational Tasks 

The children were asked to order the sweetness of the cakes in two sets of problems 

(Table 3.1). 

a. The Same Number - Same Ratio Problems. 

Both cakes had the same number of same sized spoons. For example: 

Cake A: 3 teaspoons 

Cake B: 3 teaspoons 
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This was a control condition to see whether the children had an understanding of the 

situation with which they were presented. 

b. The Same Number - Different Ratio Problems 

This condition examined children's understanding of correspondence relations. Both 

cakes had the same number of spoons, but different sized spoons were used for each cake. 

For example 

Cake A: 3 teaspoons 

Cake B: 3 soup spoons 

In this case the child had to consider the ratio difference in the two sets to give the correct 

answer. 

If the children responded on the basis of correspondence relations then ordering the 

sweetness of the cakes was expected to be a relatively easy task. But if the children 

reasoned on the situation following a quantification strategy then this was expected to be 

a difficult condition because it involved complex counting procedures. 

Two variable problems were not presented with Continuous quantities due to the 

complication they involved. Testing whether the children could distinguish between the 

situations where the could order the ratios on the basis of relations and the ones where 

they had to quantify was done with Discontinuous quantities only. 

Quantification Task 

In order to test whether the children had a genuine understanding of correspondence 

relations and to ensure that their judgments were made on the basis of multiplicative 

relations only their performance was observed in quantification tasks. 
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The children were asked to put in a bowl an amount of sugar equal to the amount picked 

up by the researcher using a different sized spoon. For example, if the experimenter put 

3 soup spoons of sugar into cake A the child had to pick up the same amount of sugar for 

cake B using the tea spoon or vice versa. The children were told that 2 teaspoons 

corresponded to 1 soup spoon. 

The quantification task was expected to be more difficult, not only because it required the 

use of the principle that 1 soup spoon was equal to 2 teaspoons but also because it 

required the organization of the counting activity. 

To test the consistency of children's responses each condition with continuous quantities 

had 4 items. 
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3.2.2 Participants 

The participants of the experiment were (a) 30 4-year olds (19 male and 11 female), mean 

age 4.5; range 4.1 to 4;10, (b) 35 5-year olds (16 male and 19 female), mean age 5.7; 

range 5.1 to 5.11, (c) 35 6-years olds (18 male and 17 female); mean age 6.6; range 6 to 

6.10, and (d) 35 7-year olds (17 male and 18 female); mean age 7.7; range 7 to 7.10. 

The children were from two state schools in North East London. According to the 

information given by their teachers, none of them had received formal instruction in 

multiplication at school. Only the 7 year olds who had been taught the multiplication 

tables up to 5. 

3.2.3 Material 

The material consisted of 10 paper-made hutches (5 red and 5 blue), 2 paper-made houses 

(1 red and 1 blue), 50 pellets of rabbit food, 1 soup spoon and 1 teaspoon, 2 opaque 

plastic bowls (1 blue and 1 red) and 1 packet of sugar. All the above materials, except the 

spoons, were of identical size and features and differed only in their colour. 

3.2.4 Procedure 

Discontinuous quantities 

The Relational Tasks 

The children were presented with two sets of hutches, the blue and red ones, which were 

laid down in two rows (basic sets). For example, they were shown 3 red and 3 blue 

hutches. At the end of each row there was a big house. The blue house was at the end of 

the blue row of hutches and the red house was at the end of the red row of hutches 

(Picture 3.1). The children were told that the hutches were carrying some rabbits that 
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lived in the big houses. In each blue hutch there were 2 rabbits and in each red hutch 

there were 2 rabbits. Then the children were told that all the rabbits from the blue hutches 

had to go into the blue house and all the rabbits from the red hutches had to go into the 

red house. The experimenter removed the rabbits into their houses behind a screen. The 

question posed to the children was: "Does the blue house have the same or different 

number of rabbits as the red house? Which house has more rabbits?". 

To make the situation understandable the children were initially presented with an 

exemplary situation. In this situation there was a blue and a red hutch each having 2 

rabbits. Each hutch was opened to show the children the rabbits that were in. Then the 

rabbits were moved into their houses in the full view of the child. The question posed to 

the child was: "Does the blue house have the same or different number of rabbits as the 

red house?". Then they were presented with a similar exemplary situation. This time there 

were 3 rabbits in the blue hatch and 2 rabbits in the red hutch. If the children were not 

able to provide the correct answer in both exemplary situations their participation in the 

experimental tasks was terminated. 

It was only in the exemplary situation that the children saw how many rabbits were in the 

hutch. In all the other trials they were merely told how many rabbits each hutch had. The 

houses as well as the hutches were opaque and the children could not see the rabbits 

inside. The moving of the rabbits from the hutches to the houses was done behind a 

screen to avoid the questions being answered on perceptual cues. When the rabbits were 

moved the children were reminded how many rabbits were previously in each hutch. 

Quantification task 

After the rabbits had been moved into the houses and the child had indicated which house 

had more rabbits the child was told that the rabbits were hungry and each of them wanted 

to have a pellet of food. The child was shown a pile of pellets and was asked to pick up 
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the right number to feed the rabbits in each house. "Now look: we want to feed the 

rabbits that are in the blue house. Each rabbit wants to have a pellet. Can you pick up 

the right number so that each rabbit will have one?. During this task the hutches that 

used to hold the rabbits were in the complete view and the children were reminded how 

many rabbits were previously in each hutch. 

Continuous Quantities 

Relational Task 

Because the task involved taking sugar with different size spoons the child was initially 

shown the quantitative difference between a soup spoon and a teaspoon. Each soup spoon 

contained two teaspoons of sugar. The children were then presented with two bowls one 

blue and one red, which were going to be used to prepare two cakes (Picture 3.2). The 

experimenter took the soup spoon and placed 3 spoons of sugar into the red bowl. For the 

other cake the experimenter took the teaspoon and put 3 spoons of sugar into the blue 

bowl. The experimenter counted with the children the number of spoonfuls of sugar put 

into each cake. The amount of sugar placed in the bowls was not visible to the child. The 

question posed to the child was: "Will the cake in the blue bowl taste as sweet as the cake 

in the red bowl or differently? Which one do you think is going to be sweeter? Why?" 

Because the spoons of sugar were put in continuously and the children might lose track 

of the number of spoons placed in the bowl, they were shown a card with dots 

corresponding to the number of teaspoons or soup spoons placed in each bowl. The type 

of spoon used to put the sugar in the bowl was put next to the card with the dots. 

Quantification Task 

In the quantification task the experimenter put a few spoons of sugar either with the big 

or the small spoon into one bowl and asked the children to put the same amount of sugar 

into the other bowl - in order to make the two cakes taste the same - using a different 

sized spoon from the one used by the experimenter. If for example the experimenter put 
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2 soup spoons into the bowl the child had to pick up the equal amount using the teaspoon. 

In that case the child had to consider that 2 teaspoons corresponded to 1 soup spoon and 

organize his/her counting activity. A card with dots next to the bowl displayed how many 

spoonfuls were put in by the experimenter. 
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PICTURE 3.1 

Discontinuous Quantities 

Ordering the size of the multiplicative product 

Each hutch carries 2 rabbits 	 Each hutch carries 3 rabbits 

Does the blue house have the same number of rabbits as the red house? 
Which house has more? 
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PICTURE 3.2 

Continuous Quantities 

Ordering the size of the multiplicative product 

3 teaspoons of sugar in the blue bowl 	3 soup spoons of sugar in the red bowl 

Will the cake in the blue bowl taste as sweet as the cake in the red bowl? 
Which one is going to be more sweet? 
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3.3 RESULTS 

3.3.1 Preliminary analysis 

The screening procedure 

There were 8 4 year olds who failed to give a correct response in the exemplary situation. 

Scoring children's responses 

One point was awarded every time the child indicated correctly which house had more 

rabbits. The scores in each group of problems ranged from 0 (minimum) to 4 (maximum), 

because each condition had 4 items. Only in the Different Number - Different Ratio 

group the maximum score was 8, because there were 8 items. 

The distribution of children's scores in each group revealed that they were not normally 

distributed. The children gave either the correct or the wrong response in most of the 

items in the ordering and the quantification task, therefore, the distributions were skewed 

as it is shown in figures 3.1. to 3.9. It was also possible that the children may have given 

correct responses by chance. For this reason the children were grouped into two 

categories: those who gave correct responses by chance and those who gave correct 

responses in a significant above chance level. The children had to choose between three 

possible answers a) the red house has the same number of rabbits as the blue house, (b) 

the red house has less rabbits than the blue house, and (c) the red house has more rabbits 

than the blue house. For this reason, the probability of correct responses by chance was 

estimated by means of Binomial Distribution. The children had to achieve a score of 4 

out of 4 (p<.01) in the group of problems that had 4 items to be considered as scoring 

above chance level, or a minimum score of 6 out of 8 (p<.001) in the Different Number -

Different Ratio group that had 8 items. 

The majority of the 4 year-olds scored at chance level. Only 7 children gave corect 
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responses at above chance level in the one variable problems. Therefore, they were not 

included in the analysis. 

FIGURE 3.1 
The distribution of children's scores in the relational tasks in the Same Number - Same Ratio 

situation with discontinuous quantities 

FIGURE 3.2 
The distribution of children's scores in the relational task in the Same Number - Different 

Ratio situation with discontinuous quantities 
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FIGURE 3.3 
The distribution of children's scores in the relational task in the Different Number - Same 

Ratio situation with discontinuous quantites 
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FIGURE 3.4 
The distribution of children's scores in the relational task in the Different Number - Different 

Ratio situation with discontinuous quantities 
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FIGURE 3.5 
The distribution of children's scores in the relational task in the commutativity situation with 

discontinuous quantities 

FIGURE 3.6 
The distribution of children's scores in the relational task in Same Number - Same Ratio 

situation with continuous quantities 
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FIGURE 3.7 
The distribution of children's scores in the relational task in the Same Number - Different 

Ratio situation with continuous quantities 
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FIGURE 3.8 
The distribution of children's scores in the quantification task with discontinuous quantities 
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3.3.2 Discontinuous Quantities 

3.3.2.1 Relational tasks 

The aim of the relational tasks with discontinuous quantities was to test whether the 

children could order the totals of two sets of rabbits on the basis of correspondence 

relations. In the one variable problems either the number of rabbits per hutch or the 

number of hutches per row was constant. Therefore, the children could order the sets by 

reflecting on the one-to-many correspondence relations. In the two variable problems, 

though, ordering the ratios on the basis of relations was not possible because neither the 

number of rabbits per hutch nor the number of hutches per row was constant. 

The findings revealed that in the one variable problems the children performed almost 

at ceiling level. As shown in Table 3.3 all the children apart from one 5 year old 

succeeded in the control task (Same Number - Same Ratio). That means that the children 

had no difficulty in understanding the situation they were presented. The Same Number -

Different Ratio problems were equally easy for the children. In order to achieve a correct 

answer the children had to think of the difference in the ratio of rabbits per hutch in the 

two rows. The children considered this difference and only two 5 year olds failed. The 

Different Number - Same Ratio problems were slightly more difficult. In order to achieve 

a correct score the children had to consider the difference in the number of hutches, since 

the ratio of rabbits per hutch was the same in both rows, but even in this task 31 out of 

35 children 5 year olds gave the correct responses. 

The children were given an overall passing score in the one variable problems when they 

answered correctly in all the three one-variable conditions. This was to ensure that the 

successful children were those who had considered both the number of rabbits per hutch, 

as in the Same Number -Different Ratio problems and the number of hutches per row, 

as in the Same Ratio - Different Number problems for making their judgements. As 
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shown in Table 3.2 the vast majority of children ordered the corresponding sets on the 

basis of correspondence relations taking into account both the number of rabbits per 

hutch and the number of hutches per row. 

TABLE 3.2 

Number of children passing or failing in one variable problems with discontinuous 

quantities by age 

Age n Pass Fail 

5 35 31 4 

6 35 33 2 

7 35 34 1 

Total 105 98 7 

Variation in children's performance was observed only in the two variable problems, that 

is at the Different Number - Different Ratio set where the children had to employ 

quantification strategies (Table 3.3). In these problems only 7 5 year old, 22 6 year old 

and 30 7 year old gave the correct responses. A Chi-Square test showed that there was 

a significant association between age and performance (X2=31.64, df=2, p<.001). The 

older the children were the better they performed in this task. 

Children's performance was slightly lower in the Commutativity task where, in principle, 

they did not have to quantify in order to give the correct answer. 
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TABLE 3.3 

Number of children passing or failing in the ordering task with discontinuous 

quantities by age and condition 

Age n Condition Fail Pass 

5 yrs 35 Same Number - Same Ratio 1 34 

Same Number - Different Ratio 2 33 

Different Number - Same Ratio 4 31 

Different Number - Different Ratio 28 7 

Commutativity Task 30 5 

6 yrs 35 Same Number - Same Ratio 35 

Same Number - Different Ratio 35 

Different Number - Same Ratio 2 33 

Different Number - Different Ratio 13 22 

Commutativity Task 14 21 

7 yrs 35 Same Number - Same Ratio 35 

Same Number - Different Ratio 35 

Different Number - Same Ratio 1 34 

Different Number - Different Ratio 5 30 

Commutativity Task 6 29 

3.3.2.2 Quantification tasks 

The children were presented with a quantification task in which they had to infer the 

number of rabbits in each row. This condition was included for two reasons: a) to test 

whether they could quantify the one-to-many correspondence situation and b) contrast 

their ability to order quantities on the basis of relations with their ability to quantify them. 

If the children could order the totals of corresponding ratios on the basis of relations 

before being able to quantify them then it could be claimed that the understanding of one- 
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to-many correspondence relations precedes children's ability to quantify and therefore the 

understanding of one-to-many correspondence relations and not quantification forms the 

basis for the understanding of multiplication. 

In the quantification task when they were asked to pick up the right number of pellets for 

the rabbits the children had to consider two things: the number of hutches in each row 

and the number of rabbits per hutch. The children were considered to perform 

significantly above chance if they quantified correctly five out of the six trials presented 

(p<.01). The results showed that the majority of the 5 year olds and all the 6 and 7 year 

old children were able to pick up pellets equal to the number of rabbits (Table 3.4). A 

McNemar test showed that ordering the two sets on the basis of relations was 

significantly easier for the 5 year olds (p<.01) than quantifying the number of rabbits. 

There were 8 5 year olds who could order the size of the total number of rabbits in the 

two rows but could not quantify the number of rabbits. The difference between the 

ordering and the quantification tasks was not significant in the other age groups. 

TABLE 3.4 

Children's performance in one-variable ordering and quantification tasks by age 

Age n 

Fail Ordering 

Fail Quantification 

Pass Ordering 

Fail Quantification 

Fail Ordering 

Pass Quantification 

Pass Ordering 

Pass Quantification 

5 yrs 35 4 8 23 

6 yrs 35 2 33 

7 yrs 35 1 34 

Total 105 4 8 3 90 

However, there were children who did not succeed in the Different Number - Different 

Ratio ordering task and yet could quantify the number of pellets necessary to feed the 

rabbits (Table 3.5). The above evidence suggests that the quantification strategy was 

available, but the children did not use it for ordering the size of the corresponding sets. 
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TABLE 3.5 

Children's performance in two-variable ordering and quantification tasks by age 

Age n 

Fail Ordering 	Pass Ordering 

Fail Quantification Fail Quantification 

Fail Ordering 

Pass Quantification 

Pass Ordering 

Pass Quantification 

5 yrs 35 11 1 17 6 

6 yrs 35 13 22 

7 yrs 35 5 30 

Total 105 11 1 35 58 

3.3.3 Continuous Quantities 

3.3.3.1 Relational tasks 

Children's abilities to order sets on the basis of relations was tested with Continuous 

quantities which do not provide any source of quantification. If the children could order 

the sweetness of the two cakes, it could be inferred that they did so on the basis of 

relations only because quantifying the amount of sugar used was beyond the 

computational abilities of children so young. 

The results of the study revealed that all but one of the 5 year olds had no difficulty to 

order the sweetness of the two cakes in the control task. In the experimental condition the 

vast majority of children was able to order the sweetness of the cakes and only 3 5 year 

olds failed in the task (Table 3.6). 
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TABLE 3.6 

Number of children passing or failing in the ordering task with continuous quantities 

by age and condition 

Age n Condition Fail Pass 

5 yrs 35 Same Number of Spoons Same Size 1 34 

Same Number of Spoons Different Size 3 32 

6 yrs 35 Same Number of Spoons Same Size 35 

Same Number of Spoons Different Size 35 

7 yrs 35 Same Number of Spoons Same Size 35 

Same Number of Spoons Different Size 35 

3.3.3.2 Quantification tasks 

The quantification task was designed to contrast children's ability to order quantities on 

the basis of relations with their ability to quantify these quantities. 

Although the vast majority of children could order the sweetness of the two cakes they 

had great difficulty in quantifying the amount of the sugar. When, for example, the 

experimenter put 2 soup spoons of sugar into the red bowl the 5 and 6 year olds could not 

put the same amount in the blue bowl using the tea spoon, although they were instructed 

that 1 soup spoon corresponded to 2 teaspoons. 

The results (Table 3. 7) revealed that fewer than the 1/4 of the 6 year olds and fewer than 

half of the 7 year olds were able to quantify the amount of sugar, whereas even the 5 year 

old, were performing at ceiling level when asked to order the sweetness of the two cakes. 

The difficulty of the quantification task can be attributed to the complex counting 

procedures that were involved. When the children had to convert the big spoons to small 

134 



ones, they had to count each big spoon as two small spoons and vice versa. This required 

a higher level of abstraction than imagining and counting x number of rabbits in each 

hutch. Children's quantification scores improved significantly with age (X2=21.33, df=8, 

p<.01) 

TABLE 3.7 

Number of children obtaining each score (maximum=4) in the quantification task with 

continuous quantities by age 

Age n 0 1 2 3 4 

5 yrs 35 32 1 2 

6 yrs 35 22 2 2 1 8 

7 yrs 35 14 3 2 1 15 

Total 105 68 6 4 2 25 

3.3.4 Children's justifications and strategies 

In order to provide further evidence on whether the children reasoned on the situation on 

the basis of relations or by following quantification strategies, it was necessary to see if 

they distinguished the items where quantification was needed from those where it was not 

necessary. Asking the children about their strategies and justifications for their answers 

could provided such an insight. 

The children's justifications and strategies were classified into five different categories 

derived from the observations in this study. Note that the order in which the justifications 

are presented does not correspond to any order of sophistication. 
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I. Irrelevant or no justifications 

This type of justification does not involve any mathematical reasoning relevant to the 

solution of the task. This category comprises the absence of justification, "I don't know" 

responses, personal preferences and socially desirable behaviour. 

II. Justifications focusing on one variable only 

Many children failed to give the correct response because they assumed that the house 

which corresponded to the row with the more hutches would have more rabbits, 

overlooking the number of rabbits in each hutch. For example, Alex aged 6.6, when he 

saw the row of 3 red hutches that had 4 rabbits in each and the row of 5 blue hutches with 

2 rabbits in each concluded without any hesitation that the blue row had more rabbits 

"because there are more blue hutches". 

Some other children were misled by the number of rabbits in each hutch neglecting the 

number of hutches. For example, in the trial where there were 2 red hutches with 4 

rabbits and 5 blue hutches with 2 rabbits, Holly, aged 5.4, said that the red house had 

more rabbits because "each red hutch has 4 rabbits, but these (pointing to the blue) have 

only 2". 

III. Justifications based on quantification 

This justification was mostly observed in the Different Number - Different Ratio and the 

Commutativity problem. Because neither the ratio of rabbits per hutch nor the number 

of hutches per set was kept constant, the only way to order the size of the sets was to 

quantify the number of rabbits in each row and compare the final product. The children 

displayed a number of quantification strategies. Counting in ones was frequently 

observed. For example, in the case where there were 3 hutches with 4 rabbits each, the 

children tapped on the cage counting simultaneously the number of rabbits: 1,2,3,4 (one 

hutch), 5,6,7,8 (the second hutch), 9, 10, 11, 12 (the third hutch). Other children 
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represented the rabbits with their fingers and established a visual correspondence between 

the hutches and their finger. They looked at the first hutch and extended 4 finger, then 

they looked at the second hutch and extended 4 fingers on the other hand and said "4+4 

is 8". Then they looked at the third hutch and said " and 4 more is ... (counting with the 

fingers) 12! Other children added the number of rabbits in the 3 hutches by number facts. 

For example, 4+4=8, 8+4=12, while a few of the 7 year olds responded on the basis of 

number facts based on their knowledge of the times tables (3x 4=12). 

IV. Commutativity 

This strategy was observed only in the Commutativity problems. The children recognized 

that both rows of hutches had the same number of rabbis without having to quantify. For 

example, in the trials were there were 2 red hutches with 4 rabbits and 4 blue hutches 

with 2 rabbits, Chelsea, a 7.5 year old girl, responded that there is the same number of 

rabbits because "2 4s is the same as 4 2s". It was difficult though to distinguish whether 

the children reached the conclusion on the equality of the corresponding sets after 

quantifying the situation (2x4=8, 4x2=8) or by means of the commutativity rule only. 

V. Correspondence relationships 

In the one-variable problems the children were able to find out which house had more 

rabbits on the basis of correspondence relations: the set with more hutches had a total of 

more rabbits, when the number of rabbits per hutch was the same in both sets; and the set 

which had more rabbits in each hutch had a total of more rabbits when the two compared 

sets had an equal number of hutches. 

For example, in the situation where there were 4 red hutches with 2 rabbits in each hutch 

and 4 blue hutches and 4 rabbits in each hutch, Francesca, a 5.8 year old girl said that the 

blue house had more rabbits because "this and this and this and this hutch (pointing to 

each hutch) have 4 rabbits, while this and this and this and this (pointing to the red 
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hutches) have only 2". 

In the situation where there were 3 red hutches with 4 rabbits in each and 4 blue hutches 

with 4 rabbits in each, Junior, a 6.5 year old boy, said that the blue house had more 

rabbits because "there is one more 4 there". 

Two independent judges analysed children's justifications. Interjudge agreement for the 

two judges was 96.3%. Discrepant judgements were presented to a third judge. Because 

in all the cases the evaluation made by the third judge coincided with one of the first two 

judges' evaluation, this judgement was taken as final. 

3.3.4.1 Types of justification across age 

As shown in Tables 3.8 and 3.9 in the one variable problems both with Discontinuous 

and Continuous quantities the children gave their responses on the basis of one-to-many 

correspondence relations. 

However, in the Different Number - Different Ratio and the Commutativity problems 

where neither the number of hutches nor the number of rabbits was kept constant, 

children's strategies varied. Many 5 year olds focused their attention either on the number 

of hutches or on the number of rabbits per hutch. The number of those children declined 

with age, but there were still some children at the age of 7 who focused on only one 

variable of the situation. The number of children who tried to quantify in this condition 

increased with age. 

Regarding the Commutativity problems the majority of the children did not recognize 

the equality of the total number of rabbits in the two rows by means of commutativity and 

the vast majority of the successful children ordered the relative size of the two rows by 

138 



means of quantification. 

TABLE 3.8 

The proportion of justifications with discontinuous quantities by of age and condition 

Justifications 

Age 	Condition Irrelevant 

Focus on 

one variable Quantification Correspondence Commutativity Total 

5 	Same Number/Different Ratio .07 .01 .92 1 

Different Number/ Same Ratio .06 .06 .04 .84 

Different Number / Different Ratio .03 .78 .19 1 

Commutativity .02 .81 .17 1 

6 	Same Number/Different Ratio .01 .03 .96 1 

Different Number/ Same Ratio .06 .07 .87 1 

Different Number / Different Ratio .02 .36 .62 1 

Commutativity .37 .60 .03 1 

7 	Same Number/Different Ratio 1 1 

Different Number/ Same Ratio .03 .97 1 

Different Number / Different Ratio .14 .86 1 

Commutativity .14 .77 .09 1 

TABLE 3.9 

The proportion of justifications in the Same Number - Different Ratio problems with 

continuous quantities by age 

Age Irrelevant Correspondence Total 

5 .05 .95 1 

6 1 1 

7 1 1 
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The fact that the children ordered the two sets on the basis of correspondence relations 

for discontinuous as well as for continuous quantities suggests that the children treated 

the two situations in the same way. This shows that the continuous quantities did not 

impose any further difficulty for the children when they are treated on the level of 

relations. 

3.3.4.2 Types of justification and overall success 

There was a strong association between the types of justification and children's 

performance in all the conditions, both with discontinuous and continuous quantities 

(Tables 3.10 and 3.11). In the one variable problems where either the number of hutches 

or the number of rabbits per hutch was kept constant the children ordered the total 

number of rabbits on the basis of correspondence relations. In the two-variable problems 

with discontinuous quantities (Different Number - Different Ratio and Commutativity) 

where neither the number of hutches nor the number of rabbits per hutch was constant, 

the successful children were those who tried to quantify the two sets. The majority of the 

children who failed in this condition was those who paid attention only to one variable 

of the situation, either to the number of hutches or to the number of rabbits per hutch. 

In the Commutativity condition the majority of the children did not recognize that the 

number of rabbits per hutch could be compensated for by the number of hutches per row. 

None of the 5 year olds applied the commutativity principle and only 2 of the 6 year olds 

and 5 of the 7 year olds thought in terms of commutativity in some of the items. The 

strategies that the children applied suggest that Commutativity was treated in the same 

way as the Different Number - Different Ratio problems. It might be surprising that some 

of the children who followed quantification strategies failed to order the sets correctly. 

This is because some children made counting errors. The children had to be accurate in 

their counting because they had to come up with the same total number in order to give 
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Performance  
Children 
who Failed 

Children 
who Succeeded 

Irrelevant 

.64 

.01 

the correct answer. 

TABLE 3.10 

The proportion of justifications across each of the conditions of the ordering task with 

discontinuous quantities as a function of children's performance 

Same Number - Different Ratio  
Focus on one 
variable 	Quantification Relations Total 

- 	 .36 	1 

.01 	.98 	1 

Different Number - Same Ratio  
Focus on one 

Performance 	Irrelevant variable 	Quantification Relations Total 
Children 
who Failed 	 .29 	.71 	 1 

Children 
who Succeeded 	 .04 	.96 	1 

Different Number - Different Ratio  
Focus on one 

Performance 	Irrelevant variable 	Quantification Relations Total 
Children 
who Failed 	 .03 	97 	 1 

Children 
who Succeeded 	.01 	 .99 	 1 

Commutativity  

Focus on one 
Performance 	Irrelevant 	variable 	Quantification Commutativity Total 
Children 
who Failed 	 .03 	.93 	 0.3 	 1 

Children 
who Succeeded 	 .93 	.07 	1 
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TABLE 3.11 

Proportion of justifications in the continuous quantities experimental task as a 

function of children's performance 

Same Number - Different Ratio  
Focus on one 

Performance 	Irrelevant variable 	Quantification Relations Total 
Children 
who Failed 	 .58 	.42 	 1 

Children 
who Succeeded 	 1 	1 
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3.4 DISCUSSION AND CONCLUSIONS 

The aim of this study was to investigate the origins of children's understanding of 

multiplication. Two possibilities were considered: a) that multiplication originates from 

the understanding of additive structures and b) that multiplication originates from the 

understanding of one-to-many correspondence situations. If the first assumption was 

correct then the children were expected to order the corresponding ratios by following 

quantification strategies. The were expected to have difficulty to quantify the continuous 

quantities tasks that were beyond their quantification ability. If the second assumption 

was correct then the children were expected to order the sets that bore a correspondence 

relation to each other on the basis of multiplicative relations. The fact that some tasks 

involved discontinuous or continuous quantities was not expected to impose extra 

difficulty. 

The findings of the study revealed that young children ordered the corresponding sets on 

the basis of relations. This is supported by the following findings: 

a) There was a discrepancy in the children's performance in the tasks where ordering the 

size of the sets on the basis of correspondence relations was possible and the tasks where 

they had to quantify. This difference in the level of performance suggests that the children 

could use the correspondence relations to order the sets that bore a multiplicative relation 

to each other, but failed in the tasks that required a quantification strategy. Even the 5 

year olds were able to consider the effect that the ratio of rabbits per hutch or the number 

of hutches per row had on the total number of rabbits. If children's judgements in the one 

and the two variable problems were made on the basis of quantification then children's 

performance would not have varied across the problem situations. 

b) There were 5 year old children who could order the size of the sets on the basis of 

143 



relations, but could not quantify their size. This finding suggests that their ability to 

reflect on correspondence relations did not stem from their quantification ability, but 

from their schemas of action. 

c) The finding that children are able to order sets on the basis of one-to-many 

correspondence relations is strengthened by children's performance on the tasks 

involving continuous quantities. Continuous quantities could not easily be quantified 

even by the 7 year olds, but even the 5 year olds had no difficulty in ordering their size. 

d) Further evidence is provided by children's justification. The justifications of the 

successful children in the one variable problems with discontinuous and continuous 

quantities suggest that they ordered the sets on the basis of multiplicative relations. The 

children, in their judgements, referred either to the ratio difference or to the difference in 

the elements in the two sets. It was only in the two variable problems where they 

attempted to quantify in order to find out the size of each set. 

This study showed that young children who have not received instruction on 

multiplication at school have a good understanding of the mathematical properties of 

multiplication. The children exhibited a good understanding of one-to-many 

correspondence relations and of the idea that the sum in a multiplicative situation 

depends both on the number of elements in the set and on the ratio. Their understanding 

of the invariants of multiplication was not dependent on their ability to quantify. The 

children used quantification strategies only in the problems where the sets did not bear 

a simple correspondence relation to each other. The children performed at ceiling level 

even with continuous quantities that did not provide any source for quantification. These 

findings question Fischbein's hypothesis that the origin of multiplication is to be found 

in addition, because the children had an understanding of multiplicative relations before 

they could quantify the multiplicative problems. 
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One-to-many correspondence relations form the basis for the understanding of 

multiplication as an operation but do not, though, teach the children everything about 

multiplication. The participants in this study showed a poor understanding of the 

principle of commutativity in multiplication which is an important property of the 

operation. 

In conclusion, this study showed that the origin of multiplication is to be found in 

children's one-to-many correspondence schema of action and not in their ability to 

quantify multiplicative problems. The one-to-many correspondence schema of action 

supports children's reasoning even in situations that are beyond their quantification 

ability. 
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CHAPTER 4 

EXPLORING CHILDREN'S UNDERSTANDING OF DIVISION 

4.1 Overview of the aims of the experiments on partitive and quotitive division 

The aim of this study is to investigate children's understanding of the mathematical 

properties of division. There is evidence that young children are efficient in using sharing 

to distribute a quantity between a number of recipients (Davis and Pitkethly, 1990; 

Desforges and Desforges, 1980; Frydman and Bryant, 1988; Miller, 1984). They are 

competent even in complex sharing situations. For example, they can adjust the sharing 

process to take into account differences in the size of the shared units in order to obtain 

equal quotas (Frydman, 1990). But do they learn anything about division as an operation 

from their sharing schemas of action? 

Sharing and division are conceptually close because in both cases the child has to share 

a quantity into equal size quotas. However, as suggested by Correa, Nunes and Bryant 

(1998) sharing and division are not the same thing. In sharing the child's only 

consideration is to give equal amounts to each recipient following a procedure in which 

each recipient is given one item and then another one and so on, until the total quantity 

is exhausted. In division, though, not only has the equality of the shared quotas to be 

considered, but also the child has to understand a whole new set of relations: the direct 

relation between the dividend and the quotient and the inverse relation between the 

divisor and the quotient. That means that in division the child has to understand that the 

more the quantity to be shared is, the more each recipient will get, and the more 

recipients there are, the less each will get if the shared quantity remains constant. 

The aim of this set of studies is to investigate young children's understanding of the 

invariants of a sharing situation. It focuses on children's understanding of the relations 
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between the three terms: the dividend, the divisor and the quotient. Do the children 

understand that there is a direct relation between the dividend and the quotient and an 

inverse relation between the divisor and the quotient? The understanding of the sharing 

relations between these terms constitutes a significant step beyond the simple activity of 

sharing towards the understanding of division as an operation. 

Previous evidence provided by Correa (1995) suggested that by the age of 6 most children 

have an understanding of the inverse relation between the divisor and the quotient when 

the shared quantity is discontinuous, such as sweets. In another study involving only 

continuous quantities Sophian et al (1997) showed that 7 year olds can reflect on sharing 

relations but the level of success in their study with continuous quantities was lower than 

the level of success in Correa's study suggesting that the children have more difficulty 

to reflect on situations that result in fractions. This study aims to investigate children's 

understanding of sharing relations both with discontinuous and continuous quantities. 

Continuous quantities were included for two reasons. Firstly, because the sharing of 

continuous quantities results in fractions, which constitute a major source of difficulty 

for children (Behr, Harel, Post and Lesh, 1993; Post, 1981). Children's most common 

error, when asked to order fractions like 'A, 1/4, 1/5, is to conclude that increasing the size 

of the denominator increases the value of the fraction (Gelman, 1991; Mack, 1990; Post, 

1981). Would the children make the same error in relational problems when asked to 

order the relative size of the shared quotas or do they have an anticipatory schema based 

on their understanding of the relations between the terms? Can they judge that a cake 

shared between 3 children would result in bigger shares than the same cake shared 

between 5 children? 

Secondly, the introduction of continuous quantities should ensure that the children would 

reason on the situation on the basis of relations only, because the quantification of a 

fractional problem like the above would be beyond the grasp of young children. 
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The hypothesis of the study is that the origins of children's understanding of division can 

be traced to children's sharing schemas because they preserve the same mathematical 

properties as the operation of division. If this hypothesis is correct then the children 

should be able to reflect on the sharing relations between the dividend, the divisor and 

the quotient both with discontinuous and continuous quantities, before being introduced 

to division at school at around the age of 8. If the alternative hypothesis that children 

come to understand division through quantification (Fischbein et al., 1985) is correct, 

then the children are expected to be able to reflect on the sharing relations in situations 

involving discontinuous quantities that they might be able to quantify when the 

computation is simple, but in the situations involving continuous quantities that are 

beyond their quantification ability this would not be possible. 

The understanding of the direct relation between the dividend and the quotient was not 

examined because this relation was not considered to be a good indicator of children's 

understanding of sharing relations.In Sophian et al's study (1997) the children who could 

not apply the inverse relation between the divisor and the quotient when the number of 

recipients varied had no difficulty to apply the direct relation between the dividend and 

the quota in the situations where the amount of the shared quantity differed but the 

number of recipients remained the same. All the children had to understand was additive 

relations: the bigger the whole, the bigger the parts and vice versa ignoring the effect of 

the divisor. The study investigated children's understanding of the inverse relation 

between the number of recipients and the size of the quotas by varying the size of the 

divisor in situations where the dividend was kept constant. 

The understanding of sharing relations was investigated in two situations: the partitive 

and the quotitive. The reasons for exploring sharing relations in these two situations is 

because each of them evokes a different schema of action. In partitive division problems 

the schema takes the form of sharing in a one-for-me, one-for-you fashion, whereas in 

quotitive division problems the schema involves constructing equal quotas until the total 

to be shared is exhausted. The two studies on partitive and quotitive division were 

designed in a parallel way to make possible the comparison of their results. 
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STUDY I 

PARTITIVE DIVISION 

The first study was designed to investigate whether young children who had not received 

any instruction in division had an understanding of the inverse relation between the size 

of the shares and the number of the shares in the context of partitive division problems 

both with discontinuous and continuous quantities. In partitive problems the size of the 

quantity to be shared as well as the number of recipients is known and the question refers 

to the size of the shared quotas. For example, with discontinuous quantities the children 

had to decide which group of cats would eat more fish if both groups had 12 fish, but in 

one group there were 2 cats sharing and in the other 4. A similar decision had to be made 

when the cats were sharing a continuous quantity like a fish-cake. 

4.2 METHODS 

4.2.1 Design 

The children had to make their judgements on the relative size of the shared quotas both 

with Discontinuous (fish) and Continuous (fish-cakes) quantities in two Conditions that 

varied the number of recipients. The task conditions are presented in detail below: 

The Same Condition 

The amount of fish to be shared was the same in both groups of cats as well as the 

number of cats sharing. This condition was a control task to test whether the children had 

an understanding of the situation with which they were presented. For example, the 

children were shown two groups of 3 cats in each, sharing 12 fish. This trial was coded 

as trial 12 3(3) and means that a group of 3 cats and another group of the same size (3) 

are sharing 12 fish each. 
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[12 fish] 	 [12 fish] 

[cat] [cat] [cat] 	 [cat] [cat] [cat] 

The Different Condition 

The amount of fish to be shared was the same in both groups but the number of cats 

sharing varied. This was the experimental condition. If the children understood that the 

fewer cats sharing the more they would get, then it can be claimed that they have an 

understanding of the inverse relation between the number of the shares and their size. 

For example, a group of 2 cats and another group of 4 cats were sharing 12 fish each. 

This trial was coded as 12 2(4). 

[12 fish] 	 [12 fish] 

[cat] [cat] 	 [cat] [cat] [cat] [cat] 

The Different Condition was expected to be harder because it required the understanding 

of the inverse relation between the number of the quotas and their size. The more cats 

sharing, the less each would get. 

Both conditions were presented with Continuous quantities as well but this time the cats 

were sharing a fishcake(s). 

The size of the shared quantity varied. The number of fish to be shared was either 12 or 

24 with Discontinuous quantities, and 1, 2 or 3 fishcakes with Continuous quantities. 

Varying the size of the dividend should indicate whether children's reasoning was 

affected by the size of the shared set. Each condition had four items with each dividend 

which were sufficient to test the consistency of children's responses. 
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Table 4.1 gives a detailed view of the experimental design. 

The Rationale of the Numbers Used 

For discontinuous quantities numbers 12 and 24 were chosen as the most appropriate for 

dividends, because each has four divisors and thus, it was possible to check eight times 

the consistency of children's responses. The introduction of large numbers like 24 was 

done to ensure that the children would order the size of the quotas on the basis of 

relations between the terms because the computation of the tasks where there were 24 

fish to be shared would have been difficult especially for the younger children. With 

fractional problems both unitary and non-unitary fractions were included because there 

is evidence to suggest that children have a better understanding of the former (Goldblatt 

& Raymond, 1996). 

The study also raised the question of whether the specific numerical comparisons used 

in each problem would affect children's performance. Spinillo and Bryant (1991) and 

Parrat Dayan and Voneche (1992) have suggested that half plays an important role in 

children's understanding of fractions and that children can solve problems more easily 

where the values cross the half boundary. To test the effect that half might play in 

children's reasoning about sharing relations, each condition had four pairs that crossed 

the half boundary. That means that in one group there were always 2 cats sharing as for 

example in trial "12 fish 2(3) cats". The other four pairs were within the half boundary. 

That means that the cats in both groups received less than half of the quantity of fish, as 

for example in trial "12 fish, 3(4) cats". 

The study also controlled for the effect of increasing the numerical contrast between the 

alternatives. There were pairs that had a difference of one cat as in trial "12 fish, 2(3) 

cats" and pairs that had a bigger difference as in trial "12 fish, 3(6) cats". It was expected 

that the situations where the numerical contrast was greater the children would be 
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encouraged to think about the inverse relation between the number of recipients and the 

size of the quotas. 

TABLE 4.1 

The design of the study 

Discontinuous Quantities 	 Continuous Quantities 

Discontinuous 
	

Unit fractions 	Non Unit fractions 

Condition 	Dividend 	Divisors 	 Dividend Divisors 	Dividend Divisors 

	

12 fish 	2(2) cats 	 lfish-cake 	2(2) cats 	2 cakes 4(4) cats 

3(3) 	 3(3) 	 5(5) 

4(4) 	 4(4) 	 6(6) 

Same 
	

6(6) 	 6(6) 	 7(7) 

	

24 fish 	2(2) cats 	 3 cakes 6(6) cats 

3(3) 	 7(7) 

4(4) 	 8(8) 

6(6) 	 9(9) 

12 fish 	2(3) cats 	 lfish-cake 2(3) cats 	2 cakes 4(6) cats 

2(6) 

3(4) 

2(6) 

3(4) 

4(5) 

5(7) 

Different 3(6) 3(6) 6(7) 

24 fish 2(3) 3 cakes 	6(8) cats 

2(6) 6(7) 

3(4) 9(7) 

6(3) 9(8) 
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4.2.2 Participants 

The participants were (a) 32 4-year olds (16 male and 16 female), mean age 4.6; range 

4 to 4.11; (b) 32 5-year olds (16 male and 16 female), mean age 5.5; range 5 to 5.11; (c) 

32 6-years olds (18 female and 14 male); mean age 6.6; range 6 to 6.11; and (d) 32 7-

years olds (15 male and 17 female), mean age 7.6; range 7 to 7.11. 

This age range was chosen for the study because there is evidence suggesting that some 

4 year olds are successful in distributing counters of the same value among recipients 

(Frydman, 1990). It is not, though, until the age of 5 that children are confident in sharing 

and have an understanding of the numerical equivalence of the shared quotas (Frydman 

and Bryant, 1988; Hunting and Davis, 1991). 

The children were from two state schools in North East London and none of them had 

received any formal instruction in division at school according to the information given 

by the class teachers. 

4.2.3 Materials 

The material consisted of 18 cats (9 brown and 9 white), 48 identical grey fish and 6 

identical round cakes all made from paper. All the cats were identical in size and features 

and differed only in their colour. 

4.2.4 Procedure 

The children were interviewed individually on their school premises in two sessions. The 

division of the interview into two sessions was necessary because the experiment lasted 

for a long time and it would have been tiring for the children to go through all the items 

in one session. Each child worked with the discontinuous quantities in one session and 

the continuous quantities in another session. The order of the sessions was systematically 

varied among the subjects; half of the subjects started with the discontinuous and the 
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other half with the continuous quantities. The interval between the sessions was half a 

day: one session was given in the morning and the other in the afternoon of the same day. 

In the Discontinuous quantities tasks each child was presented with two groups of cats, 

one composed of white and the other of brown cats, placed at different sides of the table. 

The children were allowed to play with the cats for a while and then, with the help of the 

experimenter, counted how many cats were at each side. The children were told that the 

cats were going to have their favourite dinner which was fish! The experimenter told 

them that there were 12 (or 24) fish to be shared fairly among each group of cats (See 

Picture 4.1). The experimenter actually counted with the children the number of fish 

assigned to each group of cats to avoid doubts about their equality, and put them in a pile 

to avoid responses based on correspondence procedures. The children were told that the 

cats were going to share the fish fairly among them and eat it all up. Then the 

experimenter pointed to one white and one brown cat and asked the children whether the 

white and the brown cats will received the same or different amount of fish . The children 

were told: "Look at this white and this brown cat:• do you think they will eat the same or 

a different amount of fish? ". If the answer was "different" the children were asked to 

indicate which cat will eat more. After each response the children were asked to justify 

their answer independently of whether it was correct or not. An alternative way of setting 

the question in case the children could not understand it was: "Look at this white cat and 

this brown cat:• do you think that they will put the same or a different amount offish in 

their tummies?" The children were not allowed to manipulate the material and no 

feedback was given regarding the correctness of their answers. 

The same procedure was followed in the continuous quantities tasks. The only difference 

was that the quantity to be shared among the cats was a fishcake(s). 

The order in which the trials were presented as well as the position of the sets on the table 
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(more cats on the right or on the left) were systematically varied across trials. 

To ensure that the children understood the situation, they were initially presented with 

an exemplary situation in which they were allowed to manipulate the material. In the 

discontinuous quantities situation the exemplary problem was 2 fish to be shared by 2 

white cats and 2 fish to be shared by 2 brown cats. The material was in the full view of 

the children and the question was: "Look at this white and this brown cat: do you think 

they will eat the same amount of fish or will one of them eat more?". Then they were 

presented with a similar exemplary situation where 2 brown and 1 white cat sharing 2 fish 

each. If the children were not able to provide the correct answer to the above problems, 

their participation in the experimental tasks was terminated. 
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PICTURE 4.1 

Partitive Division 

Sharing Discontinuous Quantities 

2 cats sharing 12 fish 
	

3 cats sharing 12 fish 

Which cats will eat more? 
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4.3 RESULTS 

4.3.1 Preliminary Analysis 

The screening procedure 

The exemplary situation was used as a screening procedure. There were 9 4 year olds and 

3 5 year olds excluded from the experimental procedure after failing in the exemplary 

situation. 

Scoring children's responses 

One point was given each time the child indicated correctly which cat would receive 

more fish or fishcake. 

The distribution of children's scores in each condition shows that they were not normally 

distributed. The majority of children either gave the correct or the wrong response in all 

the items of each condition. The distribution of the children's scores in the Same 

Condition was skewed to the right indicating that the children were getting the maximum 

score and bimodal in the Different Condition showing that the children either got all the 

items correct or all items wrong. The distribution of children's scores is presented in 

Figures 4.1 to 4.4. 
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FIGURE 4.1 

The distribution of children's scores in the same condition with discontinuous quantities 
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FIGURE 4.2 

The distribution of children's scores in the different condition with discontinuous quantities 
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FIGURE 4.3 

The distribution of children's scores in the same condition with continuous quantities 
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FIGURE 4.4 

The distribution of children's scores in the different condition with continuous quantities 

0 
	

2 	3 	4 	5 
	

7 
	

8 
	

12 
Score 

159 



Children's scores as shown in Figures 4.1 to 4.4 are not a meaningful source of 

information on whether the children had an understanding of the relation between the 

dividend, the divisor and the quotient. If for example the child had a score of 2 out of 8 

it had to be clarified whether this score was by chance or not. It could have been possible 

that the children got some answers correct by chance. The probability of correct answers 

occurring by chance was calculated in each condition. In each trial the children had to 

choose between three possible answers: (a) the white cat would get the same number of 

fish as the brown cat, (b) the white cat would get more fish than the brown cat, and (c) 

the white cat would get less fish than the brown cat. The probability of correct answers 

was estimated by means the Binominal Distribution. In order to be confident that a child 

did not answer correctly by chance (s)he had to answer correct a minimum of 6 or more 

out of the 8 items (p<.01). When there were twelve trials, as in the case of Continuous 

quantities it was necessary to achieve at least 9 correct answers out of 12 (p<.01). 

For each condition the children were given either a passing score if they answered 

correctly significantly above chance level, or otherwise, a failing score. The number of 

children who had a passing and failing score in each condition, with discontinuous and 

continuous quantities is presented in Tables 4.2 and 4.3 
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TABLE 4.2 

Number of children succeeding in the Same and the Different condition with 

discontinuous quantities by age and size of the dividend 

Age 	n 	Dividend 
	

Same Condition 	Different Condition 

4 	32 	12 	 6 
24 	 6 

5 	32 	12 	 20 	 11 
24 	 20 	 11 

6 	32 	12 	 27 	 17 
24 	 27 	 17 

7 	32 	12 	 32 	 26 
24 	 32 	 26 

TABLE 4.3 

Number of children succeeding in the Same and Different condition with continuous 

quantities by age and size of the dividend 

Age 	n 	Dividend 	Same Condition 	Different Condition 
4 yrs 32 	1 	 6 	 2 

2 	 5 	 2 

3 	 5 	 2 

5 yrs 	32 	1 	 20 	 11 

2 	 20 	 10 

3 	 20 	 10 

6 yrs 32 	1 	 27 	 17 

2 	 27 	 16 

3 	 27 	 16 

7 yrs 32 	1 	 32 	 26 

2 	 32 	 26 

3 	 32 	 26 
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Because the majority of the 4 year olds obtained failing scores this age group was not 

included in the further analysis of the results. 

As shown in the above tables the size of the dividend did not have any effect on 

children's responses. The children who were successful with dividend 12 were equally 

successful with dividend 24. Similarly, with Continuous quantities the children who were 

successful when the number of fishcakes to be shared was 1 were also successful when 

the number to be shared was 2 and 3. For this reason the data with the different dividends 

were merged and no distinction is made from here on between the discontinuous 

quantities tasks with dividend 12 and 24 and the unitary and non-unitary fractions. 

Whether the compared pairs were within or crossed the half boundary did not affect 

children's performance. This finding contrasts with the finiding of other studies (Desli, 

1997; Spinnilo and Bryant, 1991) that suggest that the presence of the half boundry can 

improve children's performance. A possible reason for not verifying this well established 

finding can be that the children of this study had to go through a large number of tasks, 

that encouraged the children to operate on the basis of an either a more-is-more or a 

more-is-less rule instead of focusing of the effect of the specific numbers used. Similarly, 

the numerical contrasts between the alternatives did not affect children's performance 

either. Children's performance did not differ in the situations where there were 2 cats 

versus 3 cats sharing and in the situations where there were 2 versus 6 cats sharing. 

(Appendix 4.1 and 4.2). 

4.3.2 The effect of the condition and the type of quantity on children's performance 

Because an overall analysis of variance was not possible, as there is not such a non-

parametric test that allows a within and between subjects analysis with the number of 

conditions, each factor was worked out separately in each age group. 

The frequency of correct responses in Tables 4.2 and 4.3 shows that there were more 
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children succeeding in the Same than in the Different condition. When the performance 

of the children was compared across the two situations it was found that not all the 

children who did well in the Same condition performed well in the Different condition. 

Tables 4.4 and 4.5 show that there were 25 and 27 children who ordered the size of the 

quotas correctly in the Same condition with discontinuous and continuous quantities 

respectively, but failed in the Different condition. This finding means that the children 

had no difficulty in understanding the situation, but were not employing the inverse 

relation between the number of recipients and the size of the quotas to give a successful 

answer in the Different condition. All the children who answered correctly in the 

Different condition had no problem in the control condition, but not the other way round. 

It is possible that the 17 children who failed in both conditions had no understanding of 

the situation or did not have any anticipatory schema to cope with it. The number of those 

children decreased with age and had disappeared at the age of 7. The number of children 

who succeeded in both conditions improved with age. One third of 5 year olds, half of 

the 6 years olds and around 80% of the 7 years olds were successful in the task both with 

Discontinuous and Continuous quantities. A Chi-Square test showed that there was a 

significant association between age and performance with Discontinuous (X2=14.47, 

df=2, p<.001) and Continuous quantities (X2=16.44, df=2, p<.001). 

TABLE 4.4 

Children's performance across conditions with discontinuous quantities by age 

Fail Both Pass Same Pass 

Age n Conditions Fail Different Both 

5 yrs 32 12 9 11 

6 yrs 32 5 10 17 

7 yrs 32 6 26 

Total 96 17 25 54 
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TABLE 4.5 

Children's performance across conditions with continuous quantities by age 

Age n 
Fail Both 
Conditions 

Pass Same 
Fail Different 

Pass 
Both 

5 yrs 32 12 10 10 

6 yrs 32 5 11 16 

7 yrs 32 6 26 

Total 96 17 27 52 

Tables 4.4 and 4.5 show that the total number of children giving correct responses with 

discontinuous and continuous quantities was not very different. Success with the 

continuous quantities that could not be quantified was the criterion for saying that the 

children's reasoning was based on sharing relations and not the quantification of the task. 

The children's scores were submitted to a further analysis in order to examine the 

importance of the types of quantities shared (discontinuous versus continuous) on their 

performance. 

A Chi-Square test showed that there was a significant association between performance 

in the type of quantity presented in the problems (X2=120.09, df=1, p<.0001). The 

children who were successful with discontinuous quantities, were the same, except two, 

who were successful with continuous quantities (Table 4.6). A McNemar test showed that 

this difference was not significant (p<.5). The consistency in the children's responses 

suggests that the children had a genuine understanding of sharing relations that was not 

affected by the type of quantities used in the task. 
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TABLE 4.6 

Number of children succeeding and failing in the different condition across 

discontinuous and continuous quantities 

Continuous Quantites 

Discontinuous Quantities 

Pass 	 Fail Total 

Pass 

Fail 

52 

2 42 

52 

44 

Total 54 42 96 

4.3.3 Children's strategies and justifications 

Children's ability to reflect on the effect of the number of splits on the size of the quotas 

especially with the continuous quantities that they could not quantify suggests that their 

ability to reflect on sharing relations did not stem from their ability to quantify. In order 

to provide more evidence on how the children reasoned on the relation between the 

divisor and the quotient, they were asked to justify their responses after indicating which 

cat was going to have more fish to eat. Children's justifications in the Different 

Condition were classified into five different categories. The order in which their 

strategies are presented does not indicate any levels of sophistication. 

I. Irrelevant justifications 

This justification does not involve any mathematical reasoning relevant to the solution 

of the tasks. It comprises the absence of justification, "I don't know" responses, personal 

preferences and socially desirable answers. 

For example, when where there were 12 fish to be shared between 2 white cats and 12 

fish to be shared among 3 brown cats many different responses were given: 
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Phoebe, a 5.2 year old girl, answered that "the white cat will eat more because it will 

cheat the others". 

Jude, a 5.8 years old girl, answered that "the brown cat will eat more because it is more 

hungry". 

Abdulraman, a 5.1 years old boy, answered that "both groups will eat the same amount 

because they are good friends and they do not want to fight". 

Lee, a 5.4 years old boy, answered that "the brown cat will eat more because it will run 

faster and get more fish". 

Emmanuel, a 5.7 years old boy, answered in the same question that "the white cat will eat 

more because I like it most". 

This kind of justifications was frequently observed among the younger age group. 

II. Justifications focused on the dividend 

In this case children focused their attention on the size of the dividend, that is the amount 

of fish to be shared, without taking into account the number of cats sharing. 

For example, when there were 12 fish to be shared between 2 white cats and 12 fish to 

be shared among 3 brown cats Peter, a 5.5 years old boy, said that all the cats will get the 

same amount of fish because "both groups have 12 fish". 

III. Justifications based on a direct relation between the divisor and the quotient 

In this case the children established an incorrect direct relation between the number of 

recipients and the size of the quota. That means that the children applied the "more-is- 
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more" rule. They thought that the more cats there were, the more fish they would get. For 

example, when there were 12 fish to be shared between 2 white cats and 12 fish to be 

shared among 3 brown cats Claret, a 6.3 years old girl, said that the brown cats will eat 

more fish because "there are more brown cats". 

IV. Attempt to quantify  

Very few of the children justified their answers by quantifying the situation. For example, 

when there were 12 fish to be shared between 2 white cats and 12 fish to be shared among 

3 brown cats Phil, a 7.2 years old boy, said that "the white cats will eat more because if 

you share 12 fish to 2 white cats each of them will get 6, because 6 and 6 equals 12. But 

if you share 12 fish to 3 brown cats each of them will get 4, because 4 and 4 and 4 equals 

12". Alicia, a 7.3 years old girl, said that "the white cat will get more because it will eat 

half of the fish. The brown cat will eat less". The fact that some children attempted to 

quantify the situation does not necessarily mean that they gave the correct result. 

With the Continuous quantities when there was 1 cake to be shared between 2 white cats 

and 1 cake to be shared among 3 brown cats Alexia, a 6.8 years old girl, answered "the 

white cats will get more because they will get half cake each, but the brown cats will get 

a smaller piece". 

V. Justification based on the inverse relation between the divisor and the quotient 

Children spoke in terms of an inverse relation between the values: the more cats there are, 

the fewer fish they would receive. For example, when there were 12 fish to be shared 

between 2 white cats and 12 fish to be shared among 3 brown cats Richard, a 6.9 years 

old boy, said that "the white cat will eat more because there are less cats here and they 

will get a bigger portion". 

Two independent judges analysed children's justifications. Interjudge agreement for the 
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two judges was 98.9%. Discrepant judgements were presented to a third judge. Because 

in all the cases the evaluation made by the third judge coincided with one of the first two 

judges' evaluation, this judgement was taken as final. 

4.3.3.1 The effect of age on the type of justification given 

Because the main interest of the study was in children's responses in the Different 

Condition tasks their justifications in this condition were analysed in relation to the age 

of the participants. 

Tables 4.7 and 4.8 present the proportion of the types of justification given by each age 

group in the Different Condition with Discontinuous and Continuous quantities. As age 

increased children tended to give correct justifications. This finding was expected 

because as was shown earlier, there was an increase of correct responses in the Different 

Condition tasks with age. One third of the 5 year olds, half of the 6 year olds and 80% of 

the 7 years olds focused on the inverse relation between the number of recipients and the 

size of the shared quotas in their justifications. Many 5 year olds gave either no 

justification or an irrelevant justification (justification type I), but this type of reasoning 

decreased dramatically with age. Five and 6 year olds often applied the "more-is-more" 

rule between the values (justification type III). There was a small increase in the 

application of the "more-is-more" rule at the age of 6 with Discontinuous quantities. 

There was also an increase with age in children's attempt to quantify (justification type 

IV) their answers. 
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TABLE 4.7 

The proportion of justifications with discontinuous quantities by age 

Age n Irrelevant 
Focus on the 
Dividend 

Direct 
Relation 

Attempt to 
Quantib,  

Inverse 
Relation Total 

5 yrs 32 .36 .04 .29 .01 .30 1 

6 yrs 32 .12 .03 .35 .02 .48 1 

7 yrs 32 .04 .02 .13 .06 .75 1 

TABLE 4.8 

The proportion of justifications with continuous quantities by age 

Age n Irrelevant 
Focus on the 
Dividend 

Direct 
Relation 

Attempt to 
Quante 

Inverse 
Relation Total 

5 yrs 32 .32 .04 .34 .01 .29 1 

6 yrs 32 .09 .03 .33 .02 .53 1 

7 yrs 32 .06 .01 .13 .03 .77 1 

4.3.3.2 Types of justification and overall success 

Further analysis demonstrated that there was also a strong association between the types 

of justification given and children's performance (Tables 4.9 and 4.10). The majority of 

the successful children pointed out the inverse relation between the divisor and the 

quotient (justification type V). Some of the successful children also tried to quantify 

(justification type IV). The majority of children who failed to indicate correctly which cat 
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was going to eat more fish applied a direct relation between the divisor and the quotient. 

Some of the children who failed also gave no response or an irrelevant justification 

(justification type I) and, more rarely, focused their attention on the equality of the size 

of the dividends (justification type II). The distribution of the types of justification across 

wrong and correct responses was similar in discontinuous and continuous quantities. 

TABLE 4.9 

Proportion of justifications with discontinuous quantities as a function of children's 

performance 

Focus on the Direct 	Attempt to Inverse 
Performance 	Irrelevant Dividend 	Relation 	Quantifi, Relation Total 
Children 
who Failed 	.32 	.07 	.58 	 .02 	1 

Children 
who Succeeded 	.05 	 .06 	.89 	1 

TABLE 4.10 
Proportion of justifications with continuous quantities as a function of children's 

performance 

Focus on the Direct 	Attempt to Inverse 
Performance 	Irrelevant Dividend 	Relation Quantifi,  Relation Total 
Children 
who Failed 	.28 	.06 	.65 	 .01 	1 

Children 
who Succeeded 	.06 	 .01 	.03 	.90 	1 
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As it can be seen in the above tables some of the successful children's justifications are 

under the Irrelevant category. These children - 3 in total - gave no justification for their 

answer. They were successful both with Discontinuous and Continuous quantities but 

were too shy to speak and justify their response. 
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4.4 DISCUSSION AND CONCLUSIONS 

The aim of this study was to investigate the origins of children's understanding of 

division. It was hypothesized that the origin of division is to be sought in children's 

sharing schemas of action. If this was correct then the children were expected to have an 

understanding of the relations involved in a sharing situation. They were expected to be 

able to understand a core relation: that the size of quotas is inversely related to the 

number of the quotas. If the alternative hypothesis was correct, i.e. that the origin of 

division lies in children's ability to quantify sharing problems then the children were not 

expected to be able to reflect on the inverse relation of the sharing terms in the problems 

involving continuous quantities that they could not quantity. 

The results of the study revealed that young children have a good understanding of the 

inverse relation between the divisor and the quotient and that this understanding stems 

from their schemas of action and is independent of their ability to quantify. This was 

supported by the following findings: 

a) The majority of children could order the size of the shared quotas with continuous 

quantities that were beyond their quantification ability. If understanding of sharing 

relations stemmed from quantification then the children were not expected to have any 

understanding of sharing relations in these tasks. 

b) Children's understanding of the effect of partitioning a quantity among different 

number of recipients was not affected by the size of the shared quantity. This implies that 

the children reasoned on the situation on the basis of relations. If they had applied 

quantification strategies then they were expected to have some difficulties with the 

discontinuous quantities tasks where the dividend was large and it would have certainly 

been impossible to deal with fractions which would have been difficult even for older 

children who had already been taught them at school (Behr, Harel, Post and Lesh, 1993; 
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Goldblatt & Raymond, 1996). 

c) Further positive evidence in favour of the hypothesis is provided by children's 

justifications. The vast majority of the successful children pointed out the inverse relation 

between the divisor and the quotient and consistently applied this relation in all the 

experimental tasks. Contrarily, those who failed applied a direct relation between the 

divisor and the quotient. 

These findings confirm the hypothesis of the study, i.e. that the children have an 

understanding of the properties of division and that this understand arises from their 

schemas of action and not from their ability to quantify sharing situations. 

The finding that children are able to reflect on an arithmetical situation on the basis of 

relations before they are able to compute sums are in accordance with Bryant's (1974) 

and Correa's (1995) previous findings. 

Regarding the children who failed in the Different Condition but succeeded in the Same 

Condition their failure can be attributed to their difficulty in being able to apply the 

inverse relation between the number of recipients and the size of the quota. Those 

children had an understanding of the situation, because they did well in the tasks of the 

Same Condition, but did not have an anticipatory schema for the effect that the number 

of splits have on the size of the portions. The majority of the participants were led to 

wrong answers by assuming a direct relationship between the number of the recipients 

and the size of the quota. This type of error increased at the age of 6, before decreasing 

at the age of 7. This deterioration in children's answers was also observed by Correa 

(1995) and might reflect their effort to take into account both the number of the recipients 

in the sharing situation and the size of the shared set. This shift in children's focus 

occurred the moment that the children's irrelevant responses decreased and they started 
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to view the situation as a mathematical one. 

It is possible that children's experience with additive situations, where the more elements 

you add to a set the more you get, interfered and led them to conclude that the more 

sharing the more they would get. 

These results are in accordance with Correa's (1994) findings who observed 

approximately the same level of success with children with discontinuous quantities. The 

5 year old children of this study did, though, better in the continuous quantities tasks than 

the 5 year olds in Sophian et al's (1997) study, while there is not a difference between the 

two studies in the performance of the 7 year olds. The direct comparison between the 

findings of this study and Sophian's study should be done with caution because the two 

studies were carried in different countries and had a different design. 

Age was found to have a significant effect on children's performance. It seems that the 

older the children get, the better understanding of partitive division relations they have. 

Age is treated here as a descriptive and not explanatory factor. Children's improvement 

with age could result from their everyday experiences with sharing or from school 

learning of related concepts. The design of the study does not allow us to select one 

possibility over the others. 

To conclude, this study has provided strong evidence that before being introduced to 

division young children have a good understanding of a significant invariant of division: 

the inverse relation between the divisor and the quotient. This understanding stems from 

their sharing schemas of action and not from their ability to quantify the size of the 

quotas. Their schemas of action support their reasoning even in situation that are beyond 

their quantification ability. The understanding of the mathematical properties of division 

is a significant step from sharing towards the understanding of division as an operation. 
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STUDY II 

QUOTITIVE DIVISION 

The second study also investigated children's understanding of the inverse relation 

between the divisor and the quotient, but this time in the context of quotitive division 

problems. In quotitive problems the divisor is the size of the shared quotas. For example, 

"there are 12 fish and each gets 4. How many cats can have a share?". In quotitive 

problems the size of the shared quantity as well as the size of the shared quotas are given 

and the question refers to the number of quotas that can be formed. In this case, if the 

dividend is kept constant, the bigger the quotas are, the fewer there would be. 

Children's understanding of the inverse relation between the divisor and the quotient was 

studied both with discontinuous and continuous quantities, in situations where they were 

asked to compare the relative number of quotas formed. For example, in the case of 

discontinuous quantities the children were presented with a situation where two cats had 

a number of 12 fish each. One cat was serving its fish in portions of 2s and the other in 

portions of 3s. The children had to decide which cat was going to invite more friends for 

dinner. The children had to recognize that an increase in the size of the quotas resulted 

in a decrease in the number of recipients. 

4.5 METHODS 

4.5.1 Design 

The children had to make their judgements of the relative number of recipients both with 

discontinuous (fish) and continuous (fishcakes) quantities, in two conditions that varied 

the number of recipients. The conditions are presented in detail below: 
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The Same Condition 

The amount of fish to be shared was the same in both groups of cats as well as the size 

of the shared quotas. This was a control condition to test whether the children understood 

the situation with which they were presented. For example, two cats had 12 fish each. 

Both cats shared their fish by giving 2 fish to each guest coming for dinner "trial 12 

2(2)". 

[12 fish] 	 [12 fish] 

to be shared in 2s 	to be shared in 2s 

The Different Condition 

The amount of fish to be shared was the same in both groups of cats, but the size of the 

shared quotas was different. For example, one cat shared its lot of fish in 2s and the other 

cat in 3s "trial 12 2(3)". 

[12 fish] 	 [12 fish] 

to be shared in 2s 	to be shared in 3s 

The children were asked to compare the relative number of recipients that could be 

invited in the two situations, that is which cat would be able to invite more friends. This 

was the experimental condition. If the children understood that the smaller the quota is, 

the more the recipients there could be, then it can be said that they have an understanding 

of the inverse relation between the divisor and the quotient. 

The Different Condition was expected to be harder because it required the understanding 

of the effect of the size of the quotas on their number. 

Both conditions were presented also with continuous quantities. With continuous 
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quantities the cats were sharing pieces of fish-cake instead of fish. 

The size of the shared quantities varied in both conditions. In some trials the cats had 

either 12 or 24 fish (discontinuous quantities) or 1, 2 or 3 fish-cakes (continuous 

quantities) to share. The size of the shared quotas was varied to see whether children's 

reasoning was affected by the size of the dividend. Each condition had 4 items with each 

dividend to account for the consistency of children's responses. 

Because the sharing of continuous quantities resulted in fractions there was a procedural 

difference in the two conditions that might have affected children's responses. With 

discontinuous quantities the subjects were told the size of the quota, for example: "each 

guest will receive 3 fish". In contrast, with continuous quantities the children were only 

presented with the size of the quota and were not given any numerical information about 

its size because the quantity could only be described as a fraction, for example, a quarter 

of a cake. That would have been rather confusing of the children because they were not 

familiar with the fractional language. In order to make the two situations comparable an 

additional situation with discontinuous quantities was designed in which the subjects 

were merely presented with the size of the quota, without being told its cardinality. The 

order in which the two situations were presented was systematically varied across the 

subjects. 

Table 4.11 gives a detailed view of the design of the study. 
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TABLE 4.11 

The design of the study 

Discontinuous Quantities 	 Continuous Quantities 

Discontinuous Unit fractions 	 Non Unit fractions 

Condition 	Dividend Divisor 	Dividend Divisor 	Dividend Divisor 

	

12 fish 	2(2) fish 	lfish-cake 	1/2(1/2) cake 	2 cakes 	'/2(1/2) cake 

3(3) 	 1/3(1/3) 	 1/3(1/3) 

Same 
	

4(4) 	 1/4(1/4) 	 1/4(1/4) 

6(6) 	 1/8(1/8) 	 1/8(1/8) 

	

24 fish 	2(2) fish 	 3 cakes 	1/2(1/2) cake 

3(3) 	 1/3(1/3) 

4(4) 	 1/4(1/4) 

6(6) 	 1/8(1/8) 

12 fish 	2(3) fish 	lfish-cake '/2(1/4) cake 	2 cakes 1/2(1/4) cake 

2(6) 	 1/2(1/8) 	 1/2 (1/8) 

3(4) 	 1/3(1/4) 	 1/3(1/4) 

3(6) 	 1/3(1/8) 	 1/3(1/8) 

Different 

24 fish 	2(3) fish 	 3 cakes 1/2(1/4) cake 

2(6) 	 1/2(1/8) 

3(4) 	 1/3(1/4) 

3(6) 	 1/4(1/8) 
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The rationale of the numbers used 

The numbers chosen and the contrasting pairs formed complied to the same criteria as in 

study I in partitve division. 

4.5.2 Participants 

The subjects of the experiment were (a) 32 5-year old (16 male and 16 female), mean age 

5.7; range 5 to 5.11; (b) 32 6-year old (15 male and 17 female), mean age 6.7; range 6.1 

to 6.11; (c) 32 7-years old (16 female and 16 male); mean age 7.6; range 7 to 7.10. 

The children were from two state schools in North East London from the same Local 

Educational Authority as the children who participated in the partitive division 

experiment. None of them had received formal instruction in division at school according 

to the information given by their teachers. 

4.5.3 Material 

The material consisted of 2 cats (1 brown and 1 white), 2 dogs (1 brown and 1 white), 48 

identical fish, 48 identical biscuits, 6 identical round cakes and pictures of plates having 

either 2, 3, 4, or 6 fish or biscuits or IA, 1/3, 1/4, 1/8 pieces of cakes, all made out of 

paper. All the cats and dogs were of identical size and features and differed only in their 

colour. 

4.5.4 Procedure 

The children were interviewed individually in a quiet area of their schools in two 

sessions. It was necessary to split the interview into two sessions because the experiment 

lasted a long time. The children worked with discontinuous quantities in one session and 

with continuous quantities in another and vise versa. The interval between the two 

sessions was half a day: One session was given in the morning and the other in the 

afternoon of the same day. The order the sessions were presented was varied 
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systematically across the subjects. 

In the discontinuous quantities tasks each child was presented with two cats the white and 

the brown cat, placed at different sides of the table. Then the children were told a little 

story about these cats. They had their birthday and therefore, each of them wanted to give 

a party - the brown party and the white party - and invite friends. Each cat had either 12 

or 24 fish to give as a treat to its guests. The fish was placed in a pile on the table in front 

of each cat. The experimenter counted the fish in each pile with the children to make sure 

that there was no doubt regarding the equality of the two amounts. Then the children 

where told that the cats had a problem: they did not know how many friends to invite, 

because they did not know if there was going to be enough fish for all. The brown cat 

then decided to serve, for example, 2 fish to each friend coming to the party. A picture 

of some fish in a plate (2, 3, 4 or 6 fish) which corresponded to the amount of fish that 

the brown cat wanted to give as a treat to each visitor was presented (see Picture 4.2). The 

experimenter explained that the brown cat would take the 2, 3, 4 or 6 fish from her pile, 

put them on a plate like the one shown in the picture and invite a friend to have it. Then, 

she would take again the same number of fish out of the pile put them on another plate 

and invite another friend to have it. She will keep on doing this until no fish will be left. 

The same procedure was followed by the white cat. The experimenter then asked the 

child whether the two cats will invite the same or different number of guests (Will the 

brown cat invite the same number of friends as the white cat, or different? Which cat will 

invite more?). 

A similar procedure was used for the discontinuous quantities situation where no 

numbers were mentioned. This time the children were presented with a parallel story: the 

dog and the bone shaped biscuits task. The number of biscuits that each dog was willing 

to give to its friends was presented in pictures with perceptual patterns so that the 

children could easily compare which picture had more elements. For example (::) for 4 

biscuits and (:::) for 6 biscuits. 
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The same procedure was followed with the continuous quantities items. The difference 

this time was that the quantity to be shared was a cake and the children were presented 

with portions of this cake that corresponded to the size of pieces that each cat was willing 

to cut from the cake and treat each guest. Although the cakes were identical, the size of 

the pieces of cake varied: they were small (1/8 of the cake), medium (1/4 of the cake), big 

pieces (1/3 of the cake) or halves (1/2 of the cake). Again the children were asked to judge 

the relative number of guests that could be invited. 

The children were not allowed to manipulate the materials. After each response the 

children were asked to justify their answers, independently of whether it was correct or 

not. The order in which the trials were presented and the position of the sets on the table 

(bigger shares on the right or on the left) was systematically varied across trials. 

To ensure that the children understood the experimental situation they were presented 

with an exemplary situation in which they were allowed to manipulate the material. In 

the discontinuous quantities situation the example was: The brown and the white cat had 

a total of 4 fish each and wanted to give a dinner to their friends. The white cat wanted 

to share its lot in 2s as did the brown cat. The question was whether the two cats would 

be able to invite the same or a different number of friends. Then they were presented with 

another situation where the brown cat wanted to give to each friend 4 fish and the white 

cat wanted to give 2 to each. If they were not able to provide the correct answer their 

participation in the experimental tasks was terminated. In the exemplary situations the 

children were allowed to manipulate the material. 
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PICTURE 4.2 

Quotitive Division 

Sharing Discontinuous Quantities 

The brown cat will share its lot of 12 fish 
	

The white cat will share its lot of 12 fish 
in 2s 
	

in 3s 

Which cat will be able to invite more friends? 
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4.6 RESULTS 

4.6.1 Preliminary Analysis 

The Screening Procedure 

The exemplary situation was the screening procedure for this task. There were 15 4 year 

olds and 8 5 year olds excluded from the experimental procedure for failing in the 

exemplary situation. 

Scoring children's responses 

One point was given each time the child indicated correctly which cat was going to invite 

more friends. 

The distribution of children's scores in each condition showed that they were not 

normally distributed. The majority of children either gave the correct or the wrong 

response in all the items of each condition. The distribution of children's scores in the 

Same Condition was skewed to the right indicating that the children were getting the 

maximum score and bimodal in the Different Condition suggesting that the children 

either got all the items correct or wrong. The distributions are presented in figures 4.5 

to 4.8. 
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FIGURE 4.5 

The distribution of children's scores in the same condition with discontinuous quantities 
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FIFGURE 4.6 

The distribution of children's scores in the different condition with discontinuous quantities 
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FIGURE 4.7 

The distribution of children's s scores in the same condition with continuous quantities 
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FIGURE 4.8 

The distribution of children's scores in the different condition with continuous quantities 
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Children's scores as shown in Figures 4.5 to 4.8 are not a meaningful source of 

information on whether they had an understanding of the relation between the dividend, 

the divisor and the quotient. If, for example, the child had a score of 3 out of 8 in the 

different condition with discontinuous quantities it had to be clear whether this score was 

by chance or not. For this reason the probability of correct responses occurring by chance 

was calculated for each condition. In each trial the children had to choose between three 

possible answers: (a) the white cat would invite more friends than the brown cat, (b) the 

white cat would invite fewer friends than the brown cat, and (c ) the white cat would 

invite the same number of friends as the brown cat. The probability of correct responses 

was estimated by means the Binominal Distribution. In order to be confident that a child 

did not respond by chance (s)he had to answer correct a minimum of 6 or more out of 8 

items (p<.01). When there were twelve trials, as in the case of Continuous quantities it 

was necessary to achieve at least 9 correct answers out of 12 (p<.01). 

In each condition the children were given either a passing score if their correct responses 

were at above chance level, or otherwise, a failing score. 

The number of children who had a passing or a failing score in each condition, with 

discontinuous and continuous quantities is presented in Tables 4.12 and 4.13. 
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TABLE 4.12 

Number of children succeeding in the Same and Different condition with 

discontinuous quantities by age and size of the dividend 

Age n Dividend Same Condition Different Condition 

5 yrs 32 12 16 
24 16 5 

6 yrs 32 12 27 12 
24 27 12 

7 yrs 32 12 32 22 
24 32 22 

TABLE 4.13 

Number of children succeeding in the Same and Different condition with continuous 

quantities by age and size of the dividend 

Age n Dividend Same Condition Different Condition 
5 yrs 32 1 16 7 

2 16 7 
3 16 7 

6 yrs 32 1 27 15 
2 27 14 
3 27 14 

7 yrs 32 1 32 23 
2 32 23 
3 32 23 
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With discontinuous quantities the children were tested in two conditions, one where 

numbers were mentioned and one where they were not. Children performed identically 

in the two situations. The children who succeeded when the size of the shared quota was 

described quantitatively were those who succeeded when no numbers were mentioned. 

For this reason the following analysis is based on children's responses in the situation 

where the size of the quotas was not mentioned. 

As shown in the above tables the size of the dividend did not have any effect on 

children's responses. The children who were successful with dividend 12 were equally 

successful with dividend 24. The same was true with continuous quantities. For this 

reason no distinction is made between the discontinuous quantities tasks where the 

dividend varied and between unitary and non-unitary fractions. 

Also, whether the compared pairs were within or crossed the half boundary or not did not 

affect children's performance neither did the difference in the size of the compared 

quotas (Appendix 4.3 and 4.4). 

4.6.2 The effect of the condition and the type of quantity on children's performance 

Because an overall analysis of variance was not possible, as there is no such non 

parametric test that would allow a within and between subjects analysis with the number 

of conditions, each factor was worked out separately in each age group. 

Tables 4.12 and 4.13 show that there were less children successful in the Different 

condition both with discontinuous and continuous quantities. In order to examine how 

the children who succeeded in the Same condition performed in the Different condition 

their performance was compared across the two conditions. 
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Tables 4.14 and 4.15 show that not all the children who succeeded in the Same condition 

performed equally well in the Different condition. There were 36 children in 

discontinuous and 35 in continuous quantities who gave the correct response in the Same 

condition tasks but failed in the Different condition. There were no children, though, who 

did well in the Different condition without being equally successful in the Same 

condition. Children's success in the Same condition excludes the possibility that the 

children did not understand the question in the Different condition. 

There were also children who failed in both situations. These children either had 

difficulty in understanding the situation or did not have the schemas to deal with it. The 

number of those children decreased dramatically with age and there were none at the age 

of 7. 

The number of children who succeeded in both conditions improved with age. As can be 

seen in Tables 4.14 and 4.15 16% of the 5 year olds, 38% of the 6 year olds and 69% of 

the 7 year olds were successful in both conditions with discontinuous quantities, while 

22% of the 5 year olds, 44% of the 6 year olds and 72% of the 7 year olds did well with 

continuous quantities. However, even by the age of 7 not all the subjects had acquired 

this understanding. A Chi-Square test showed that there was a significant association 

between age and performance in the discontinuous (X2=18.91, df=2, p<.001) and 

continuous quantities tasks (X2=14.23, df=2, p<.001). 
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TABLE 4.14 

Children's performance across conditions with discontinuous quantities by age 

Age n 
Fail Both 

Conditions 

Pass Same 

Fail Different 

Pass 

Both 

5 yrs 32 16 11 5 

6 yrs 32 5 15 12 

7 yrs 32 10 22 

Total 96 21 36 39 

TABLE 4.15 

Children's performance across conditions with continuous quantities by age 

Age n 

Fail Both 

Conditions 

Pass Same 

Fail Different 

Pass 

Both 

5 yrs old 32 13 12 7 

6 yrs old 32 4 14 14 

7 yrs old 32 9 23 

Total 96 17 35 44 

The above Tables show that the number of children succeeding in the Different condition 

was nearly the same with discontinuous and continuous quantities. Children's success 

with continuous quantities indicates that their schemas of action supported their 

reasoning even in the situations that they could not quantify. In order to examine how the 

children who could ordered the number of recipients with discontinuous quantities 

performed with continuous quantities their performance was compared across the two 

situations. 
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A Chi-Square test showed that there was an association between the type of quantity 

presented and children's performance (X2=77.62, df=1, p<.0001). As it can be seen in 

Table 4.16 all the children who succeeded with discontinuous quantities were equally 

successful with continuous quantities. There were 5 children in total who succeeded in 

the continuous quantities task but failed with discontinuous quantities. A McNemar test 

showed that there was no significant difference in children's performance across the two 

types of quantities (p<.06). This finding suggests that the children can reflect on sharing 

relations even in situations that they cannot quantify. 

TABLE 4.16 

Number of children succeeding and failing in the different condition across 

discontinuous and continuous quantities 

Discontinuous Quantities 

Continuous Quantites Pass Fail Total 

Pass 39 5 44 

Fail - 52 52 

Total 39 57 96 

4.6.3 Children's strategies and justifications 

In order to provide more evidence on whether the children ordered the relative number 

of the quotas on the basis of relations or by quantifying the situation the justifications of 

their responses were analysed. Their justifications are classified into five different 

categories derived from the observations of this study. 

191 



I. Irrelevant justification 

This category includes justifications that did not consider any mathematical facts relevant 

to the situation. It also includes the absence of justification, "I do not know" responses, 

personal preferences and socially desirable behaviour. 

For example, when there were 12 fish to be shared in 2s by the brown cat and 12 fish to 

be shared in 3s by the white cat Amit, a 5.2 year old boy, answered that "the brown cat 

will invite more friends because it is more popular". Hellen, a 5.3 year old girl, answered 

that "the white cat will have more guests because her friends are more hungry". Chris a 

5.5 year old boy, answered that "both cats will invite the some number of friends because 

that is fair". Javier, a 5.7 year old boy, answered that "the brown cat will have more 

friends because it is a nice cat". 

II. Justification focused on the dividend 

In this case children focused their attention on the size of the dividend, that is on the 

number of fish to be shared, ignoring the size of each shared portion. For example, in the 

same example as above Nathaniel, a 5.8 year old boy, said that both cats will invite the 

same number of friends because "both cats have 12 fish". 

III. Justification based on the direct relation between the divisor and the quotient 

In this case children established an incorrect direct relationship between the size of the 

shared quota and the number of recipients. That means that the children applied the 

"more-is-more" rule. They thought that the bigger the quota is, the more the recipients 

would be. In the above example, Fabio, a 6.2 year old boy, said that the white cat will 

have more guests because it is sharing its fish in bigger portions. 

IV. Attempt to quantify 

In this type of justification children justified their answers by attempting to execute in 
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their mind the operation of division and find out the result of sharing. In the example 

describe above Manoj, a 7.5 year old boy, said that "the brown cat will have more guests 

because if you have 12 fish and you give 2 to each friend you will have enough for 6. But 

the white cat gives 3 so it have enough for 4 cats. In the case of continuous quantities 

when there was 1 cake to be shared in portions of half by the brown cat and 1 cake to be 

shared in quarters by the white cat Nicola, a 6.8 year old girl, answered "the white cat will 

have more guests because it cuts the cakes in small pieces so it will have enough to treat 

more friends, while the brown cat cuts the cake in half and will be able to treat only two 

friends". 

For the children who tried to quantify the situation it is not clear whether they first did 

the quantification and then gave their responses, or whether they quantified to verify their 

initial prediction or to explain to the experimenter why their response is the correct one. 

V. Justification based on the inverse relation between the divisor and the quotient 

Children spoke in terms of an inverse relation between the values: the bigger the portion 

the fewer guests could be invited. For example, Steven, a 6.7 year old boy, said that "the 

brown cat will have more guests because it is giving less fish to each guest so it will have 

more left, while the white cat will soon run out of fish". 

Two independent judges analysed children's justifications. Interjudge agreement for the 

two judges was 97.1%. Discrepant judges were presented to a third judge. Because in all 

the cases the evaluation made by the third judge coincided with one of the first two 

judges' evaluations, this judgement was taken as final. 
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4.6.3.1 The effect of age on the type of justification given 

Tables 4.17 and 4.18 present the types of justifications given by each age group in the 

Different condition with discontinuous and continuous quantities. As age increased 

children referred to more sophisticated types of justification. The five the and the six year 

olds applied more frequently the "more-is-more" rule. The percentage of children who 

applied a direct relation between the size of the quota and the number of recipients was 

still high at the age of 7. A few of the 7 year olds also tried to justify their responses by 

quantification. Fifteen percent of the of 5 year olds, 36% of the 6 year olds and 63% of 

the 7 years olds pointed to the inverse relations between the size of the quota and the 

number of recipients with discontinuous quantities. Regarding the continuous quantities 

18% of the 5 year olds, 42% of the 6 year olds and 65% of the 7 year olds applied the 

inverse relation between the values. The increase of the justification referring to the 

inverse divisor-quotient relation in the continuous quantities tasks is due to the fact that 

there were more successful children with continuous quantities. 

TABLE 4.17 

The proportion of justifications with discontinuous quantities by age 

Focus on the Direct 	Attempt to 	Inverse 

Age n Irrelevant 	Dividend 	Relation Quanti6, 	Relation Total 

5 32 .27 .03 . 55 .15 1 

6 32 .09 .53 .02 .36 1 

7 32 .03 .28 .06 .63 1 
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TABLE 4.18 

The proportion of justifications with continuous quantities by age 

Age n Irrelevant 
Focus on the 
Dividend 

Direct 
Relation 

Attempt to 	Inverse 
Quantift 	Relation Total 

5 yrs 32 .29 .03 .48 .02 .18 1 

6 yrs 32 .06 .49 .03 .42 1 

7 yrs 32 .02 .25 .07 .66 1 

4.6.3.2 Types of justification and overall success 

Further analysis of the protocols demonstrated that there was a strong association 

between children success in the tasks and the types of justifications they gave. Tables 

4.19 and 4.20 show that the children who gave the correct response were mainly those 

who applied the inverse relation between the size of the quota and the number of 

recipients. The children who gave wrong responses were mostly applying the "more-is-

more" rule or giving an irrelevant justification. 

TABLE 4.19 
The proportion of justifications with discontinuous quantities as a function of 

children's performance 

Focus on the Direct 	Attempt to Inverse 
Performance Irrelevant Dividend 	Relation Quante Relation Total 
Children 
who Failed 	.20 	.02 	.78 	 1 

Children 
who Succeeded 	.01 	 - 	.05 	.94 	1 
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TABLE 4.20 

The proportion of justifications with continuous quantities as a function of children's 

performance 

Focus on the Direct 	Attempt to Inverse 
Performance Irrelevant Dividend Relation QuantO,  Relation Total 
Children 
who Failed 	.21 	.02 	.77 	 1 

Children 
who Succeeded 	.04 	 .04 	.92 	1 
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4.7 DISCUSSION AND CONCLUSIONS 

The aim of this study was to investigate the origins of children's understanding of 

division in their understanding of sharing relations in the context of quotitive problems. 

The hypothesis that the origins of division are to be found in children's schemas of action 

was contrasted with the alternative hypothesis suggesting that the origins of division are 

in children understanding of additive structures. If the former hypothesis was correct the 

children were expected to be able to reflect on sharing relations in situations they could 

not quantify. If the latter hypothesis was correct then the children were not expected to 

be able to reflect on sharing relations in situations that were beyond their quantification 

ability. 

The results of the study revealed that young children have a good understanding of the 

inverse relation between the divisor and the quotient in the context of quotitive division 

problems. Their ability to reflect on sharing relations derived from their schemas of 

action that supported their reasoning even in the situations that they could not quantity. 

The fact that children's understanding of sharing relations stemmed from their schemas 

of action and not from their ability to quantify the division problems is supported by the 

following evidence: 

a) By the age of 6 one third of the participants and by the age of 7 more than half of the 

participants were able to apply the inverse relation between the divisor and the quotient, 

although non of these children had been taught division at school. 

b) Many children were able to order the relative number of quotas in the problems that 

involved continuous quantities. These problems were beyond the quantification ability 

of these young children. There is well documented evidence that quantifying fractions is 

difficult even for the children who have been formally taught them (Behr, Harel, Post and 
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Lesh, 1993; Goldblatt & Raymond, 1996). These children's reasoning was supported by 

knowledge derived from their schemas of action. 

c) The ordering of the relative number of recipients was not affected either by the size of 

the shared quantity or by the size of the quotas. This was a common finding both with 

discontinuous and continuous. If the children had used quantification strategies to order 

the number of the quotas, then their performance would have varied as a result of the 

numbers presented in each problem. The children would have performed poorly in the 

tasks that involved larger numbers, but well in the tasks that involved smaller numbers. 

The fact that the successful children did well across all the items suggests that they 

reflected on the situation on the basis of relations only. 

d) Additional evidence in favour of the hypothesis is obtained by children's justifications. 

The vast majority of the successful children referred to the inverse relation between the 

size and the number of the quotas and consistently applied this relation in all the 

experimental items. Conversely, those who failed consistently applied a direct relation 

between the divisor and the quotient. 

Age was found to have a significant effect on children's performance. It seems that the 

older the children get, the better understanding of sharing relations they have. Note that 

age is treated here as a descriptive and not explanatory factor. 

The results of this study regarding discontinuous quantities are in accordance with 

Correa's (1995) findings who also found that children were able to reflect on sharing 

relations in the context of quotitive situations long before receiving school instruction. 

In conclusion, this study has shown that children have an understanding of sharing 

relations and particularly of the effect that the size of the quotas has on the number of 
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quotas that can be formed. The children were found to have a good understanding of the 

properties of division even in the situations that they could not quantify. This finding is 

in favour of the hypothesis that the origins of division are in children's schemas of action 

and not in their ability to quantify division problems. 
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4.8 COMPARATIVE ANALYSIS OF PARTITIVE (STUDY I) AND QUOTITIVE 

(STUDY II) PROBLEMS 

The aim of both studies was to investigate children's understanding of the inverse relation 

between the divisor and the quotient in two sharing situations: In partitive division 

problems (study I) where the divisor was the number of recipients and in quotitive 

division problems (study II) where the divisor was the size of the quota. 

The two experiments were designed in a similar way in order to make the comparison 

between them possible. The subjects in both studies were between 5 to 7 years old and 

were at state schools in the same Local Educational Authority in North East London. It 

can be claimed that the two samples were similar, therefore, it is possible to compare 

them. 

4.8.1 Response correctness 

The frequency of correct responses in partitive and quotitive problems was compared in 

order to identify the effect that the type of problem had on children's reasoning (Table 

4.21). The two studies were compared across conditions and types of quantities. A Chi 

Square test showed that there was a significant association between the type of problem 

presented and children's performance (X2=4.69, df=1, p<.03). The children performed 

significantly better in the partitive than in the quotitive problems in the Different 

condition when the quantity to be shared was discontinuous. The difference between 

partitive and quotitive division was not significant across the age groups. There was not 

though a significant difference in children's performance in the Different condition when 

the quantity to be shared was continuous (X2=1.68, df=1, p<.19). 
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TABLE 4.21 

The number of correct responses in the partitive (N=96) and quotitive problems 

(N=96) across discontinuous and continuous quantities 

Type of situation 

Type of Quantity 
	

Partitive 	 Quotitive 

Discontinuous 
	

54 	 39 

Continuous 
	

52 	 44 

4.8.2 Discussion and Conclusions 

The comparison of the number of children who showed an understanding of the inverse 

divisor-quotient relation in partitive and quotitive division situations showed that the 

children's ability to reflect on sharing relations was dependent upon the type of the 

sharing situation. On the whole the children could reason about the relations involved in 

a sharing situation more easily in partitive than in quotitive division problems when the 

quantities were discontinuous. 

No differences, though, were found in children's performance when the quantities were 

continuous. This was a surprising finding and cannot be easily interpreted. What is 

important is that children had an anticipation schema about the relative size of the 

fractions based on the relations between the terms. This finding is even more surprising 

given that children have great difficulty in ordering and computing fractions at school. 

Children's success with continuous quantities that do not provide a source for 

quantification reinforces the hypothesis of the study that the origins of children's 

understanding of division are to sought in their schemas of action, and not in their ability 

to compute the number or the size of the shares. 

201 



These results are also in accordance with those of Correa (1995) who also found a 

difference in children's performance in favour of the partitive problems with 

discontinuous quantities. 

The difference in children's performance in partitive and quotitive division situations can 

be attributed to the different schemas of action that children have for these situations. In 

partitive division the schema of action takes the form of sharing a quantity in an one-for-

a, one-for-b fashion, while in quotitive division the schema involves the formation of 

equal quotas until the shared quantity is exhausted. Many studies have shown that 

children have no difficulty to act out sharing problems (Correa, 1995; Davis and 

Pitkethly, 1990; Desforges and Desforges, 1980; Frydman and Bryant, 1988; Miller, 

1984), but find it more difficult in forming quotas to quantify quotitive problems (Correa, 

1995). When Correa compared children's ability to act out partitive and quotitive 

problems in situations where they could manipulate the material she found that the 

quantification of quotitive problems was significantly harder than the quantification of 

partitive problems. It can be possible, then, that the difference in reflecting on sharing 

relations in partitive and quotitive situations is due to the fact that the children develop 

the sharing schema of action earlier on. 
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CHAPTER 5 

THE COORDINATION OF MULTIPLICATION AND DIVISION 

5.1 The aim and the rationale of the study 

This study has two aims. The first aim is to investigate the coordination of multiplication 

and division across the multiplicative situations. It examines a) whether the two 

operations develop in a coordinated fashion or whether their understanding develops in 

parallel before they become coordinated and b) if the children have an understanding of 

the cancelling effect of one operation over the other. The second aim is to investigate the 

coordination of multiplicative relations within the operation of multiplication and 

division, i.e. the coordination of the sharing and forming quotas schemas of action in 

division and the understanding of commutativity in multiplication. 

The coordination of multiplication and division across the multiplicative situations 

The hypothesis of the study is that the two operations develop in parallel at the beginning 

and become co-ordinated at a later stage. This hypothesis is based on two ideas. 

Firstly, the origins of multiplication and division are different because the two operations 

describe different situations and the schemas of action that the children have to deal with 

each situation are also different. 

Multiplication is rooted in one-to-many correspondence situations. The schema of action 

that children have to deal with multiplication problems is to replicate correspondences. 

For example, if there are 4 chocolates in a box and there are 3 boxes, the child can 
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quantify the total number of chocolates by replicating 3 times the ratio 1:4 and count the 

total. 

Division is rooted in sharing situations. There are two schemas of action that can be 

implemented in sharing depending on whether it is a partitive or a quotitive situation. In 

partitive division, where the size of each quota is unknown, the schema of action is 

sharing in a one-for-me, one-for-you fashion. For example, if there are 8 sweets to be 

given to 2 children, in order to find how many sweets each recipient would get the child 

would give one-to-a, one-to-b, one-to-a, one-to-b and so on, until the total is used up. In 

quotitive division, where the number of quotas is unknown, the schema of action involves 

constructing equal quotas until the total to be shared is exhausted. For example, if there 

are 12 sweets and each child gets 3 in order to find out how many friends can be invited 

the child would make groups of 3s until the total of 12 sweets is exhausted and then count 

the number of groups formed. 

Because multiplication and division originate from different situations and the actions 

performed are different, it is likely that the children do not understand their inverse 

relation from the beginning. 

Secondly, it is possible that the development of multiplication and division is similar to 

the development of addition and subtraction. Although, subtraction is the inverse of 

addition, initially children have different and independent schemas of actions for the two 

operations. There is evidence that children are equally successful in solving addition and 

subtraction problems by modelling the actions described in the situation, but they only 

understand the inverse relations of the two operations later on (Carraher and Bryant, 

1987; Carpenter and Moser, 1982; De Corte and Verschaffel, 1987; Hudson, 1983; 

Marton and Neuman, 1990; Riley, Greeno and Heller, 1983; Vergnaud, 1983, 1997). 

Missing addend problems, that have been used to investigate children's understanding 
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of subtraction as the inverse of addition, are initially solved by additive strategies. For 

example, the problem " Anna has 4 chocolates. Mummy gave her some more. Now Anna 

has 7 chocolates. How many chocolates did mummy give her ?" describes an additive 

situation where one of the addends is missing. This problem can be solved in two 

different ways. One is an additive way that directly represents the actions described in the 

problem situation: the child counts out 4 counters (pauses), goes on counting up to 7 and 

then counts the counters that where added on to the 4 to get up to 7. The other way is by 

inverting the transformation, that is by subtracting the initial stage of 4 chocolates from 

the final stage of 7 chocolates. This solution does not represent directly the actions 

described in the problem situation, because an additive situation is quantified with 

subtraction. This strategy is only observed at a later stage when the children have co-

ordinated the two operations. Vergnaud (1997) pointed out that the difficulty that the 

children have with missing addend problems is conceptual because it requires the 

distinction between the initial state, the final state, the direct transformation, the inverse 

transformation and the application of the inverted transformation to the final state. 

Following the same line of reasoning it is possible to study whether multiplication and 

division develop in parallel and independent from each other or in a co-ordinated fashion. 

There is evidence (Carpenter et al. 1993; Kouba, 1989) that young children are equally 

successful in solving multiplication and division problems before receiving school 

instruction by modelling the actions described in the problem situation, but there is no 

research evidence on whether they understand their inverse relation. If children's schemas 

of action for the two operations develop in a co-ordinated fashion then they are expected 

to be able to deal with problem situations that do not match directly their schemas of 

actions. 

Missing factor correspondence problems, that is problems where one of the terms in 

correspondence is missing, can be used to investigate children's understanding of the 
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inverse relation between multiplication and division. In the problem "Three children 

came to my party and they all brought me the same number of flowers. I got 12 flowers. 

How many flowers did each child give me?" one of the terms in correspondence, that is 

the number of flowers per child, is missing. There are two possible solutions for this 

problem. Solutions based on correspondence procedures are feasible by trying different 

correspondences 1:2, 1:3, 1:4 until the total of 12 flowers is achieved. This trial and error 

correspondence strategy represents directly the actions described in the problem situation. 

The other way is by inverting the transformations. If the child has co-ordinated the 

schemas of actions for multiplication and division, then he would invert mentally the 

transformations and apply one of the two action schemas of sharing to solve the 

correspondence problem. S/he would either share the 12 flowers among the 3 recipients 

and count the size of the shared sets or make groups of 3s and count the number of 

groups formed. Such a solution strategy does not represent the actions described in the 

problem situation and shows that the child has made a connection between multiplication 

and division, because a correspondence situation is quantified with sharing. 

Similarly, the understanding of the inverse relation between the two operations can be 

examined with sharing problems where one of the terms is missing. For example, the 

problem "Four children came to my party. I shared all my balloons among them. Each 

child got 3. How many balloons had I bought?" describes a sharing situation, but the size 

of the shared quantity is missing. Again, there are two possible solutions. The problem 

can be quantified by sharing procedures that match directly the actions described in the 

problem situation. The child can share balloons in a one-for-a, one-for-b fashion among 

the four children until each has 3 and then count the total number of the balloons shared. 

If the child has co-ordinated the action schemas for multiplication and division then (s)he 

would invert the transformations and use correspondence procedures to quantify the 

number of balloons. He would form 4 sets of 3s and count the total. Such a strategy does 

not represent directly the actions described in the problem situation and is based on the 
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inversion of the transformations. 

The second question on children's understanding of the relations across multiplicative 

situations examines the understanding of the inverse relation of the two operations in a 

different paradigm. It investigates the cancelling effect of one operation over the other. 

Do the children understand that a number multiplied and divided by the same number 

remains the same? Studies in additive situations explored children's understanding of 

the cancelling effect of subtraction over addition by asking them to compute problems 

like 5+7-7=?. Reaction time was used to indicate whether the child carried out the 

computation or if they quantified the problems based on the fact that the same number 

was added and then subtracted. It was found that children understood the cancelling 

relation of the two operations at a later stage. For this reason it was expected that the 

understanding of the inverse relation between multiplication and division would be a late 

acquisition. 

The coordination of multiplicative relations within division and multiplication 

Apart from studying the co-ordination of the sharing and multiplying schemas of action 

across the multiplicative situations, the study also aims to investigate the coordination 

of multiplicative relations within each operation. 

In mathematical terms partitive and quotitive division are equivalent situations because 

they are both quantified by division. The children, though, have different schemas of 

action for every situation. In partitive division problems the schema involves sharing in 

a one-for-me, one-for-you fashion, whereas quotitive division problems are about 

constructing equal quotas until the total to be shared is exhausted. Do these two schemas 

develop in parallel, independent from each other, or do the children establish any relation 

between them? A sharing problem such as "I have 12 sweets and I want to give them all 
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to 3 children. How many sweets will each child get?" can be solved either by acting out 

the problem situation and sharing the sweets among the 3 recipients in a one-to-a, one-to-

b fashion and counting the size of the shared quotas or by forming quotas of 3s and 

counting the number of the quotas. Similarly, a quotitive problem such as "I have 12 

sweets and I want to give 3 to each of my friend. How many friends can I invite?" can be 

solved either by modelling the actions described in the problem situations, that is, by 

forming quotas of 3s until the total is exhausted and counting the number of sets formed 

or by sharing the 12 sweets to 3 parts and counting the size of each quota. The alternative 

way to quantify the above mentioned sharing and quotitive problems does not match 

directly the actions described in the problem situation and requires the coordination of 

the sharing and the quotitive schemas of action. It was expected that the two schemas of 

action develop independently from each other and become coordinated at a later stage. 

The coordination of the relations within multiplication is investigated by examining 

children's understanding of commutativity. Children have been documented to be 

competent in employing their correspondence schema of action to quantify one-to-many 

correspondence problems (Carpenter et al, 1993; Kouba, 1989). But do they learn 

anything about the property of commutativity from quantifying one-to-many 

correspondence problems? There is evidence suggesting that the concept of 

commutativity is a late acquisition (Frydman, 1990; Nunes and Bryant, 1995; Piaget, 

Kaufmann and Borquin, 1977; Pettito and Ginsburg, 1982). Although one-to-many 

correspondence problems are easily quantified by young children Nunes and Bryant 

(1995) have shown that the understanding of commutativity is harder in the context of 

these problems than in the context of spatial rearrangement problems. The sample of the 

aforementioned studies on commutativity consisted of adults or children who had 

received considerable amounts of instruction about multiplication and perhaps about the 

property of commutativity at school. This study aims to investigate the understanding of 

commutativity in the context of one-to-many correspondence problems with younger 
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children. It was expected that the understanding of commutativity would be related to the 

coordination of partitive and quotitive division, because they both require the 

coordination of the relations between the multiplicative terms. 

5.2 METHODS 

5.2.1 Design 

In order to test the coordination of multiplicative relations across situations two 

conditions were designed: the Acting and the Reflecting condition. The coordination of 

multiplicative relations within multiplication and division was examined in the Display 

Condition. 

5.2.1.1 The coordination of multiplicative relations across multiplication and 

division 

The Acting Condition 

This condition aimed to study whether multiplication and division develop in a parallel 

or in a coordinated fashion. For this reason the children were presented with 

multiplication, partitive and quotitive division problems that they could act out with the 

help of the counters. There were two sets of problems (see Table 5.1). The first set 

consisted of the Direct Situation Problems. That means that it was possible to model the 

problems directly using the correspondence, the sharing and the forming quotas schemas 

of action. In the second set this direct modelling was not possible because a crucial piece 

of information was missing (e.g. the dividend in a sharing problem and the value of one 

of the corresponding variables in a multiplication problem). These were the Inverse 
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Situation Problems. It was expected that the children who have coordinated the three 

different schemas of action (sharing, forming quotas and setting into correspondence) 

would be able to invert the transformation and deploy an action usually connected with 

division to solve a multiplication problem and vice versa. 

It has to be noted that in the sharing problems the word "share" or "sharing" was not 

used. The word "give" was used instead. This precaution was taken because in the pilot 

study when the children were told to share, for example, their sweets among 3 children, 

some children wanted to keep some sweets for themselves, but when they were told to 

give all the sweets to 3 children then it was clear that they could not include themselves. 

Each child was presented with one problem of each type: one direct and one inverse 

partitive, quotitive and correspondence problem. 

The study controlled for the size of the numbers presented in the problems to ensure that 

they were within the counting range of the young age group. The number of recipients 

and the size of the quotas/sets never exceeded number 8, while the size of the whole in 

correspondence problems never exceeded 24. The order in which the different sets of 

numbers were presented was systematically varied across problems. For example, the set 

of numbers 3 - 4 - 12 was given to one participant in a direct partitive problem, to another 

participant to an inverse partitive problem, to another in a correspondence problem etc. 

This was done to control for the effect that the size of the numbers presented could have 

had on the children's performance. The child was never presented the same set of 

numbers within the same condition. 
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TABLE 5.1 

The direct and inverse situation problems of the acting condition 

DIRECT 	 INVERSE 

PARTITIVE 

I have 15 sweets. I want to give all the 	 I had a party. Three children came 

sweets to 3 children. How many sweets 	 Each child brought me the same 

will each receive?. 	 number of flowers. I got 15 

flowers. How many flowers did 

each child bring? 

QUOTITIVE 

I have 15 sweets. I want to give to each friend 	I had a party. Each child that came 

coming to my party 3. How many friends can 	brought me 3 flowers. I got 15 

I invite? 	 flowers. How many children came? 

CORRESPONDENCE 

I bought 3 boxes. Each box had 4 chocolates in it. 	I had a party. Four children came. 

How many chocolates do I have? 	 I gave all my balloons to them and 

each got 3. How many balloons 

did I have? 

The Reflecting Condition  

This condition aimed to study children's understanding of the inverse relation between 

multiplication and division in situations where one operation cancelled the effect of the 

other. Research in addition has presented the children with computation problems like 

5+7-7=?. The current study could not follow this trend because an expression like 

5x7:7=? would have been an inconceivable sequence of numbers for the young 

participants who had no received any instruction on multiplication and division. For this 

reason the children were presented with word problems where a number was multiplied 
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and then divided by the same number. 

Two situations were introduced. Both involved setting sets in correspondence and then 

sharing. In one situation the number of recipients was the same as the number of sets, for 

example: 

" I have 4 boxes. Each box has 3 biscuits in it. I want to give all my biscuits to 

4 friends. How many will each friend get?" 

In the second situation the number of recipients was the same as the size of the 

corresponding sets. For example: 

" I have 5 bags. Each bag has 3 lollies. I want to give all my lollies to 3 friends. 

How many will each get?" 

The problems where the number of recipients were equal to the size of the quotas and the 

problems where the number of recipients was equal to number of the quotas were 

mathematically equivalent. They both obeyed the rule that a number multiplied and 

divided by the same number remains the same. The children were encouraged to think 

about the problem first and try to infer the size of the quotas without the help of the 

counters. If the children could not quantify the problem then they had the option to act 

out the situation with the help of the counters. 

In the last problem above number 3 (3 lollies in each bag and 3 friends) was presented 

consecutively. To control for the order in which the numbers were presented in each 

situation each child was presented with one situation where the identical numbers were 

presented consecutively and one where they were not. For example, the above problem 

was also presented as: 
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" I bought bags of lollies. Each bag had 3 lollies. I bought 5 bags. I want to give 

all my lollies to 3 friends. How many will each get?" 

The children were presented with four problems in total. Two where the number of 

recipients was the same as the number of the quotas and two where the number of 

recipients was the same as the size of the quotas. The sets of numbers presented were 

systematically varied across the participants. The children were never presented the same 

number set twice within the same condition. 

5.2.1.2 The coordination of multiplicative relations within multiplication and 

division 

The Display Condition 

This Display condition aimed to investigate a) the understanding of commutativity in 

one-to-many correspondence situations and b) the co-ordination of the two different 

schemas of action that the children have for partitive and quotitive division. Two 

situations were designed: The Direct and the Indirect Situation. In both situations the 

problem was acted out by the experimenter and the child was asked to look at the 

arrangement of the counters to quantify the problem. The tasks used in this condition 

were adopted from Squire's (in progress) study. 

The Direct Situation 

In the Direct Condition the partitive, quotitive and correspondence problems were acted 

out with the counters in a way that gave a direct match to children's schemas of action. 

For example, in the partitive division problem "I have 20 chocolates and I want to give 

them all to 5 children. They will all receive the same number of sweets. How many will 
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each child get?" the children were shown the 20 chocolates shared out in 5 sets. 

xxxx xxxx xxxx xxxx xxxx 

The children could quantify the problem without carrying out any sharing action because 

the number of quotas was equal to the number of recipients. 

In the quotitive problem "I have 12 lollies and I will give 3 to each friend coming to my 

party. How many friends can I invite?" the children were shown the 12 lollies sorted out 

in quotas of 3s. 

XXX XXX XXX XXX 

Similarly, in the multiplication problem "Seven children came to my birthday party. Each 

child gave me 3 flowers. How many flowers did I get?" the children were shown 7 sets 

of 3s. 

XXX xxx xxx xxx xxx xxx xxx 

The Direct Situation was a control condition to examine whether the children could 

identify a display relevant to the problem. 

The Indirect Situation 

The Indirect Situation aimed to investigate the coordination between partitive and 

quotitive division concepts and the understanding of commutativity in multiplication. In 

order to investigate the co-ordination of the sharing and forming quotas schemas of action 

the children were presented with partitive problems that were acted out by forming quotas 

and quotitive problems that were acted out as sharing problems. 
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For example, in the problem "I have 12 flowers and I want to give them to 3 children. 

How many flowers will each child receive?" the children were shown 4 sets of 3s. Such 

a display would have been helpful if the problem was a quotitive one. 

xxx xxx xxx xxx 

The children could quantify the problem without performing any sharing action if they 

had coordinated the relations between the multiplicative terms. They could reflect on the 

internal relation between the number of recipients and the size of the quotas, that is each 

child would take 4, because (s)he gets one flower from each set. 

Similarly, in the quotitive problem "I have 15 chocolates and I will give 3 to each friend 

coming to my party. How many friends can I invite?" the children were shown 3 sets of 

5s. The problem was displayed with a sharing solution. 

XXXXX 
	

XXXXX 	XXXXX 

The problem could be solved without performing any actions if the children could reflect 

on the relation between the number of the quotas and their size; each friend will get one 

from each set, therefore, five friends can be invited. 

Children's understanding of commutativity was investigated in one-to-many 

correspondence situations where the corresponding sets were rearranged with respect to 

the commutativity rule. For example, in the problem " I bought 4 boxes. Each box had 

3 crayons. How many crayons do I have" the crayons were rearranged in 3 sets of 4s as 

shown below 

xxxx xxxx xxxx. 
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If the children had an understanding of commutativity then they could quantify the 

problem by means of the display. 

The sets of numbers used in the problems were systematically varied across problems and 

across the participants. The children were never presented the same set of numbers twice 

in the same condition. 

5.2.2 Participants 

The participants of the study were (a) 30 5-year olds (14 male and 16 female), mean age 

5.6; range 5.1 to 5.11, (b) 30 6-years olds (17 male and 13 female); mean age 6.7; range 

6 to 6.11, (c) 30 7-year olds (15 male and 15 female); mean age 7.7; range 7 to 7.11, and 

(d) 30 8-year olds (15 male and 15 female), mean age 8.6; range 8.1 to 8.11. 

The children were from three state supported play-scheme groups in North East London. 

According to the information given by the children, none of the 5 and 6 year olds had 

received instruction on multiplication and division. Many 7 year olds said that the had 

done the times tables at schools, but they had not done division. It was only the 8 year 

olds who had been introduced both to multiplication and division. 

5.2.3 Materials 

The only material used were 60 square plastic red and yellow counters. 

5.2.4 Procedure 

The children were interviewed individually in their play-scheme premises in two 

sessions. The division of the interview into two sessions was necessary because the 
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experiment lasted approximately for 45 minutes and it would have been tiring for the 

children. This division was facilitated by the fact that the study itself had two sections, 

one examining the coordination of relations across and the other within multiplicative 

situations. The children were tested on the tasks of one situation in the morning and the 

tasks of the other situation in the afternoon of the same day. The order of presenting the 

tasks of the across and within situations was systematically varied across the children. 

The children were told that they were going to play some number games. Each problem 

was initially read aloud slowly to them. Then the children were asked if the problem was 

clear. In order to make sure that they could remember the problem they were asked to say 

the problem to the experimenter. The experimenter repeated the problems to the child as 

many times as was necessary. 

In the Acting Condition the children had the option of using counters to act out the 

situation. The were told that they could take counters from the pile, that was on the table, 

if they thought it was going to be helpful for them. 

In the Display Condition the experimenter was the one who manipulated the counters. For 

the division problems she read the problem to the child, then counted aloud as many 

counters as needed from the pile to represent the quantity to be shared and then without 

giving any more explanations of what she was doing she arranged them into quotas. The 

quotas were presented in a way that the children could easily see that they were all equal. 

Then she read the problem again to the child. The children were asked to look carefully 

at the display on the table, because they were told that there were some cues that could 

help them find the answer. If they did not find the display helpful, then they could 

manipulate the counters to find the answer. 

If child responded immediately by guessing s/he was encouraged by the experimenter 
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to think again, look at the display or use the counters, depending on the experimental 

condition, to make sure that s/he would give the correct response. After responding, each 

child was asked to explain to the experimenter how (s)he had worked out the answer. 

The pilot study had shown that some children, especially the younger ones, needed some 

encouragement and probing in order to reach a solution. For example, in the partitive 

division task where the children had to share the counters some children did not exhaust 

the quantity to be shared, although it was stressed that they had to give all their sweets 

to their friends. In this case the experimenter had to remind the children that they had to 

give all of them to their friends. If the children stopped in the middle of the process either 

because they could not remember what they wanted to do next or what the question was 

about, the experimenter probed them by repeating the problem and by asking them what 

they thought they could do next. 
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5.3 RESULTS 

5.3.1 Introduction 

The results section is divided in two parts. The first part examines the coordination of 

multiplicative relations across the multiplicative situations. The analysis of children's 

responses in the Acting and the Reflecting Condition provides evidence on whether the 

children have coordinated the schemas of action they have for multiplication and division 

and whether they have an understanding of the cancelling effect of one operation over the 

other. The second part looks at the coordination of multiplicative relations within 

multiplication and division. The analysis of children's performance in the Display 

Condition examines the coordination of the two schemas of actions that can be 

implemented in a sharing situation, that of sharing and forming quotas and the 

understanding of commutativity in multiplication. 

5.3.2 The Coordination of Multiplicative Relations Across Multiplication and 

Division 

5.3.2.1 The Acting Condition 

5.3.2.1.1 A Preliminary quantitative analysis 

The aim of this condition was to examine the coordination of the operation of 

multiplication and division. If multiplication and division develop in a coordinated 

fashion then the children are expected to use their schemas of action to quantify problems 

that give a direct match to them (direct problems), and also use the same schemas to 

quantify problems that involved multiplication and division as the inverse operation 
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(inverse problems). In order to quantify inverse problems the children should mentally 

invert the transformations described in the problem situation. It was expected that the 

children would have difficulty in quantifying problems that involve multiplication and 

division as inverse operations because it is hypothesized that initially the two operations 

develop independently of each other. 

In order to examine whether the two operations develop in a coordinated fashion or not, 

children's performance was compared in situations where multiplication and division was 

employed as a direct and inverse solution. Three pairs of problems were compared: a) 

problems where sharing was the direct and the inverse solution, b) problems where 

forming quotas was the direct and the inverse solution and c) problems where setting 

elements into correspondence was the direct and the inverse solution. 

Table 5.2 suggests that the children were more successful in the problems where they 

could implement sharing and form quotas as a direct solution than as an inverse solution. 

That means that although the children had the strategy to tackle inverse problems they 

did not use it. 

TABLE 5.2 

The number of children succeeding in the direct and inverse problems by age 

Age n 

Sharing 

Direct 	Inverse 

Forming Quotas 

Direct 	Inverse 

Setting into Correspondence 

Direct 	Inverse 

5 30 16 3 9 5 11 11 

6 30 22 9 15 11 21 20 

7 30 27 17 24 19 26 26 

8 30 30 24 25 24 30 29 

Total 120 95 53 73 59 88 86 
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There was a clear age trend in children's performance. The older the children were the 

better they performed. A Chi-Square test on the effect of age on children's performance 

showed that the older children were more competent in solving direct sharing (X2=22.78, 

df=3, p<.0001), direct quotitive (X2=24.44, df--3, p<.0002) and correspondence problems 

(X2= 23.43, df=3, p<.0001). This age trend was also observed in the inverse sharing (X2= 

34.16, df=3, p<.0001), inverse quotitive (X2= 28.37, df=3, p<.0001) and inverse 

correspondence (X2= 31.02 df=3, p<.0001) problems. 

A small parenthesis. This was the first time young children were asked to 

quantify partitive and quotitive division problems. Therefore, it was possible to compare 

their performance across the experiments on relational and computational division 

problems. This comparison is discussed in detail in Appendix 5.1. 

5.3.2.1.2 Children's Strategies 

In order to form a more elaborated picture of how the children quantified the direct and 

the inverse problems their strategies were described. 

A distinction is made between Active Strategies and Verbal Strategies. In the Active 

strategies the children used the counters to quantify the problem situation. In the Verbal 

Strategies they did not use the counters, but solved the problem orally. Children's wrong 

strategies as well as the sources of error in implementing their schemas are also 

presented. The solution strategies that were observed in the problems of the Acting 

Condition are presented in detail below. 
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Active Strategies 

I. Sharing 

In sharing the children equally distributed a quantity between a number of recipients. 

Sources of error 

A number of sources of error was observed while the children implemented sharing. 

Children's errors were classified in two categories. 

a) Counting errors: This category includes the children who had the sharing schema of 

action, but who failed to give the correct response because they made a counting mistake 

while counting the size of the shared quotas. A few children, in counting the size of the 

quotas, included the counters that stood for the recipients, because they were not different 

from the other counters. 

b) Conceptual errors: This category comprises two types of errors. a) Errors due to the 

fact that the children did not know how to share systematically. There were children who 

did not give a share to some of the recipients or who gave different amounts to each 

recipients. b) Errors made by children who knew how to share, but when asked to 

quantify the size of the shared quotas either counted the number of the quotas or counted 

the total number of counters shared out. They had not yet coordinated the action of 

sharing and counting. 

II. Forming Quotas 

In this schema of action the children formed equal sized quotas and from the number of 

quotas formed they inferred the number of recipients. 
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Sources of Error 

The errors that were observed when the children formed quotas were classified into two 

categories depending on the nature of the errors. 

a) Counting errors: The children who made counting errors had the schema of action that 

could led them to quantify the problem correctly, but failed to give the correct responses 

because they did a counting mistake while counting the number of the quotas formed. 

b) Conceptual errors: This category comprises the children who lacked coordination 

between the action of forming quotas and counting. These children formed the quotas, 

but when asked to quantify the number of recipients they either counted the size of the 

quotas or the number of the counters they shared. 

III. Setting into Correspondence 

By setting into correspondence the children replicated two corresponding sets x times to 

build up the size of the whole. 

The mistakes that were observed were counting mistakes, while the children counted the 

counters to determine the size of the whole. 

It has to be stressed that the children implemented the above schemas of action in various 

ways depending on the number of variables they represented with the counters (the size 

of the quantity to be shared, the number of recipients, the number of the corresponding 

sets or the size of corresponding sets) and the way they acted out the situation (sharing 

in one-for-me, one-for-you fashion, sharing in small sets, sharing in a double counting 

fashion). Because these variations in acting out the problems were not found to be related 
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to the coordination of the two operations they are not discussed in detail in this study. 

More information on the variations of the main schemas of action presented here are 

given in Appendix 5.2. 

Verbal Strategies  

The children solved the problems without the help of the counters but by following oral 

counting strategies and number facts. Children's verbal strategies were classified in two 

categories that are described in detail below. 

I. Counting strategies based on addition and number sequences 

This category includes the children who quantified the problems by counting or uttering 

a string of numbers. For example, in a correspondence problem where 5 children brought 

3 sweets each, a child could have said: 1, 2, 3 (pause), 4, 5, 6 (pause) ... 13, 14, 15! while 

other children explained that they added 3s like 3, 6, 9, 12, 15. 

II. Number facts based on times tables 

There were children who quantified the problems based on number facts they derived 

from the times table. Because multiplication is sometimes taught as a string of numbers 

like 3, 6, 9, 12, 15 it was difficult to distinguish whether the children used addition or the 

times table. For this reason only the children who explicitly used the times expression 

(5x3=15) or referred to the times table ("3, 6, 9, 12, 15, because that is how it goes in the 

times table") were classified under this strategy. 

It has to be noted that it was not always observable how the children did the counting. In 

224 



some cases they did their thinking aloud while in other cases all the thinking and 

quantification was done silently. In the second case, although the children explained to 

the experimenter what they did, it is possible that what they reported might not always 

be the same as what they really did. For example, in quantifying a correspondence 

problem where 3 children came to the party each bringing 5 sweets, a child might had 

initially add 5+5=10 and another 5, equal 15. This might have triggered his/her memory 

of the times table where 3x5=15. When the child was asked how (s)he quantified the 

problem (s)he might just have only said that it is in the times table that 3x5=15. 

Sources of Error 

In verbal strategies most mistakes were counting mistakes. Even when the children 

referred to number facts based on times table they made mistakes because they did not 

always know their tables well. 

Strategies leading to wrong responses 

I. False Strategies 

The most common false strategy was that the children represented the variables of the 

problem and added them together. This strategy was observed both when the children 

used the counters to quantify the situation and when they used verbal strategies. 

II. Lack of Strategy 

This category includes all the children who did not have a strategy to quantify the 

problem. The children in this category gave the following types of responses: 

a. Some children merely said "I do not know". 
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b. Other children repeated some information already present in the problem situation. 

c. Some children represented one or both variables described in the problem situation 

with counters and could not proceed further. 

5.3.2.1.3 Children's schemas as direct and inverse solutions 

Table 5.3 on the frequency of the children who succeeded in the different problem 

situations suggested that the majority of the children had a strategy to quantify the 

problems that gave a direct match to their schemas of action, but there were fewer 

successful children in the problems that involved the inverse operation. This section 

examines a) how the children who were successful in the direct match problems 

performed in the inverse situation problems and b) the specific strategies that they 

employed to quantify the direct and the inverse problems. The importance of presenting 

children's strategies is justified by the fact that the children could quantify the inverse 

problems without necessarily inverting the transformations. As research in additive 

structures has shown (Carraher and Bryant, 1987; Marton and Neuman, 1990) many 

children who have not coordinated addition and subtraction quantify the missing addend 

problems not by subtraction, but by using additive strategies. Similarly, some of the 

children who quantified the inverse multiplication and division problems could have 

given the correct answer, without inverting the transformations. 

The sharing schema as a direct and an inverse solution 

The children in the study could employ the sharing schema of action to quantify two 

problems: a) the partitive division problem that gave a direct match to their schemas of 

action and b) the missing factor correspondence problem where the size of the 

corresponding sets was missing (inverse sharing problem). To quantify the latter problem 

by sharing, the children had to invert the transformations mentally. If the children had not 
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coordinated the two operations of multiplication and division they were expected either 

not be able to quantify the inverse problem or to quantify it by correspondence 

procedures. 

A Chi-Square test showed that there was a significant association between the type of 

problem presented - direct sharing versus inverse sharing - and performance (X2=20.66, 

df=1, p<.0001). However, as Table 5.3 shows, that not all the children who quantified the 

problem that gave a direct match to their schemas of action were able to quantify the 

problem where sharing was the inverse operation. There were 43 children who quantified 

the direct situation, but failed to quantify the inverse situation, although both problems 

could be acted out by the same strategy. A McNemar test showed that the difference in 

the level of performance in the two problems was significant (p<.0001). The ability to 

quantify the direct situation problem was a prerequisite to being able to quantify the 

inverse situation problem. There was only one child who quantified the inverse situation 

having failed the direct sharing problem but this was due to a counting error. 

TABLE 5.3 

The number of children succeeding and failing across the direct and inverse sharing 

problems 

Direct Sharing Problem 

Inverse Sharing Problem Fail Pass Total 

Fail 24 43 67 

Pass 1 52 53 

Total 25 95 120 

Success in the inverse sharing situation could also be achieved without inverting the 
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transformations. Table 5.4 presents all the strategies that the successful children used in 

the direct and the inverse sharing situation. The majority of the children who quantified 

the direct problem reached the solution by sharing (62%) and number facts (21%). But 

not all the children who quantified the direct problem by sharing did sharing to quantify 

the inverse situation. Out of the 35 children who used sharing in the direct situation only 

21 did sharing in the inverse situation. There were 12 children who used sharing in the 

direct situation but failed to invert the transformations and use sharing as an inverse 

solution. These children reached the correct solution by applying correspondence 

strategies. There were 6 additional children who used sharing in the inverse situation, 

although in the direct situation they had used verbal strategies. For the children who 

employed verbal strategies, such as counting and number facts, no conclusions can be 

drawn on whether they had coordinated the two operations. There is no way of knowing 

if they inverted the transformations mentally, (18 flowers : 3 children =?) and carried out 

the computational part with the help of times table (3x?=18) or if they treated the 

situation as a correspondence one and tried different numbers that multiplied by 3 give 

18 (3x4=12/ 3x5=15/ 3x6=18). 

Regarding the children who failed to quantify the inverse sharing problem although they 

had quantified the direct situation, Table 5.5 suggests that the majority of them did not 

have any strategy to quantify the problem and gave "I do not know" responses. Their 

success, though, in the direct situation suggests that they had a schema to quantify the 

inverse situation, but they could not mentally invert the transformations to interpret the 

situation. 
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TABLE 5.4 

The frequency of the successful children's strategies in the direct and inverse sharing 

problems 

Strategies in the Inverse 

Sharing Problem Sharing 

Strategies in direct sharing problem 

Forming Quotas 	Counting 	Number Facts Total 

Sharing 21 2 4 27 

Forming Quotas - - 1 1 

Correspondence 12 1 - - 13 

Counting 1 1 2 4 

Number Facts 1 - 6 7 

Total 35 2 4 11 52 

TABLE 5.5 

The frequency of the strategies employed by the children who were successful in the 

direct sharing problems but failed in the inverse sharing problems 

Strategies in the Inverse 

Sharing Problem 

Strategies in direct sharing problem 

Sharing 	Counting 	Number Facts Total 

No strategy 34 1 35 

Correspondence 2 1 3 

Counting Errors 1 1 2 

Conceptual Errors 3 3 

Total 40 2 4 43 
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The forming quotas schema as a direct and an inverse solution 

The schema of forming quotas could be used to quantify a) quotitive division problems 

that gave a direct match to children's schemas of action and b) missing factor 

correspondence problems where the number of the corresponding sets was unknown 

(inverse quotitive problems) if they could invert the transformations mentally to interpret 

the problem situation. 

A Chi-Square test showed that there was a significant association (X2=56.58, df=1, 

p<.0001) between performance and the type of quotitive problems presented, direct 

versus inverse. When the performance of the children who were successful in the direct 

quotitive problem was compared with their performance in the inverse quotitive problem 

it was found that not all the children who quantified the direct situation were able to 

quantify the inverse situation. Table 5.6 shows that there were 17 children who quantified 

the direct quotitive problem, but, nevertheless, failed to quantify the inverse quotitive 

problem, although both problems could be acted out by the same schema of action. A 

McNemar test showed that the children were performing significantly better in the direct 

quotitive problems (p<.002). The ability to quantify the direct problems was a 

prerequisite for quantifying the inverse problems. There were only three children who 

failed to quantify the direct situation due to a counting error, but were successful in 

quantifying the inverse quotitive situation. 
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TABLE 5.6 

The number of children succeeding and failing across the direct and inverse quotitive 

problems 

Direct Quotitive Problem 

Inverse Quotitive Problem Fail Pass Total 

Fail 44 17 61 

Pass 3 56 59 

Total 47 73 120 

When children's strategies in quantifying the direct and the inverse quotitive situations 

were described it was found that not all the children who quantified the inverse situation 

did so by inverting their schemas of action. Table 5.7 shows that out of the 49 children 

who formed quotas in the direct quotitive problem, 33 formed quotas in the inverse 

problem. There were 11 children who had formed quotas when the problem gave a direct 

match to their schemas of action, but did not invert the transformations in the inverse 

situation. Instead, they employed correspondence procedures to quantify the problem. 

Regarding the children who used verbal strategies to quantify the inverse quotitive 

problem, there is no way of knowing whether they inverted the transformations and used 

division to quantify the problem (18:3=?) or if they tried different numbers that 

multiplied by 3 give 18. 

All the children who failed to quantify the inverse situation although they had succeeded 

in the direct situation said that they did not know how to tackle the problem. Seven of 

them represented with the counters the size of the total and the size of the quotas, but 

could not proceed further. 
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TABLE 5.7 

The frequency of the successful children's strategies in the direct and inverse quotitive 

problems 

Strategies in the inverse 

quotitive problem 

Strategies in Quotitive Problem 

Forming Quotas 	Counting 	Number Facts Total 

Forming Quotas 33 1 34 

Correspondence 11 11 

Counting 2 1 1 4 
Number Facts 3 - 4 7 

Total 49 2 5 56 

The correspondence schema as a direct and an inverse solution 

The setting into correspondence schema could be applied to quantify a) correspondence 

problems that gave a direct match to children's schemas of action and b) sharing 

problems where the size of the shared quantity was unknown. In the latter case, if the 

children had coordinated the two operations they could invert the transformations and use 

correspondence instead of sharing procedures to quantify the problem. 

Children's performance in the multiplication problem was compared with their 

performance in the problem where multiplication was the inverse operation. A Chi-

Square test showed that there was a significant association between performance and the 

type of problem presented (X2=83.38, df=1, p<.0001). Table 5.8 suggests that the 

majority of the children who solved the direct multiplication problem were able to 

quantify the inverse problem. A McNemar test revealed that there was no significant 

difference in children's performance in the two problems (<.73). 
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TABLE 5.8 

The number of children succeeding and failing across the direct and inverse 

correspondence problems 

Direct Correspondence Problem 

Inverse Correspondence Problem Fail Pass Total 

Fail 29 3 32 

Pass 5 83 88 

Total 34 86 120 

In order to examine whether the children quantified the inverse situation by 

correspondence or sharing procedures their strategies were described. Table 5.9 shows 

that the majority of the children applied correspondence procedures both in the direct and 

the inverse problems. There were only 4 children who did not invert the transformations 

and used sharing instead. 

TABLE 5.9 

The frequency of the successful children's strategies across the direct and inverse 

correspondence problems 

Strategies in the inverse 

correspondence problem 

Strategies in the direct correspondence problem 

Correspondence 	Counting 	Number Facts Total 

Sharing 4 4 

Correspondence 48 11 1 60 

Counting 3 4 7 

Number Facts 3 9 12 

Total 55 18 10 83 
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For the 12 children who based their responses on the times table, it is not possible to say 

whether they had a strategy based on correspondence or sharing procedure. For the 7 

children who counted it is not clear whether they were counting the sets (3, 6, 9, 12) or 

whether they were double counting while sharing: 1 2 3 4 / 5 6 7 8 / 9 10 11 12. 

5.3.2.1.4 Conclusions 

The aim of this experiment was to test the coordination of the operations of 

multiplication and division in young children. The hypothesis of the study was that the 

two operations develop independently from each other and become coordinated at a later 

stage. 

The findings suggest an asymmetry in the coordination of the two operations. The 

children were able to quantify partitive and quotitive problems that gave a direct match 

to their schemas of action by sharing and forming quotas respectively. However, not all 

the successful children in the direct partitive and quotitive problems were able to quantify 

the inverse sharing and quotitive problems, although, these problems could also be 

quantified by the sharing and the forming schemas of action respectively. The difficulty 

in the inverse problems was conceptual because the children had to invert the 

transformations mentally in order to interpret the situation. In these situations the children 

exhibited a poor coordination of the operations of multiplication and division. 

The children, though, had no difficulty in quantifying the problems where the 

correspondence schema of action was employed as a direct or an inverse operation. The 

efficiency that the children displayed in using the correspondence schema as an inverse 

operation, might be due to the transparent language used in the inverse correspondence 

problem. In the inverse correspondence problem the one-to-many correspondence relation 
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between the number of recipients and the size of sets was explicitly presented in the 

problem. Therefore, the children were encouraged to use the correspondence schema of 

action. 

The findings on children's difficulty in coordinating the operations of multiplication and 

division are analogous to those on the coordination of the operations of addition and 

subtraction. Research on the development of addition and subtraction has found that 

children are successful in quantifying addition and subtraction problems, but have 

difficulty in working out missing addend problems where they have to invert the 

transformations and do subtraction (Carraher and Bryant, 1987; Marton and Neuman, 

1990). Instead, many children carry on using additive procedures to find the size of the 

missing addend. Similarly, the majority of the children in this study could solve 

multiplication and division problems that gave a direct match to their schemas of action 

but found it difficult to quantify missing factor correspondence problems that required 

an inversion of the transformations. Instead of inverting the transformations many 

children employed correspondence instead of sharing procedures to find a solution. 

The difficulty in coordinating the relations across the multiplicative situations leads to 

the conclusion that the two operations of multiplication and division develop 

independently of each other. The coordination of the relations across the multiplicative 

situations is a late acquisition. 

5.3.2.2 The Reflecting Condition 

The aim of this condition was to test children's understanding of the cancelling effect of 

one operation over the other. It investigated children's understanding of the rule that, a 
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number multiplied and divided by the same number remains the same, (axb):b=a or 

(axb):a=b. It was expected that this understanding would be a late acquisition. 

5.3.2.2.1 Quantitative and Qualitative Analysis 

The children were asked to infer the size of the shared quotas by reflecting on the 

situation. If the children could not find the answer by reflecting on the problem they had 

the option of acting out the situation. 

The total number of successful children in Table 5.10 shows that there was no difference 

in their performance in the problems where the number of recipients was equal to the 

number of the quotas or the size of the quotas. The order of presenting the problem terms 

(first the number or the size of the sets and then the number of recipients or vice versa) 

did not affect the children's performance. 

Table 5.10 also shows that there was a difference in the quantification strategy that the 

children employed depending on whether the number of recipients was equal to the size 

or the number of the corresponding sets. 
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TABLE 5.10 

The strategies of the children succeeding in the reflecting condition problems 

Types of Problem 

Number of sets equal to the 

number of recipients 

(dividing with the multiplier) 

Size of sets equal to the 

number of recipients 

(dividing with the multiplicand) 

Strategies 	 (axb):a=b (bxa):a=b (axb):b=a (bxa):b=a 

Reflecting on the relations 28 34 4 2 

Acting out part of the situation 23 28 2 1 

Acting out the whole situation 27 18 74 76 

Number Facts 2 2 2 2 

Total 80 82 82 81 

About a third of the successful children made an inference about the size of quotas by 

reflecting on the situation when the number of recipients was equal to the number of the 

quotas, while only 4 made an inference on the basis of relations when the number of 

recipients was the same as the size of the quotas. The fact that a third of the children 

made an inference about the size of the quotas in the first situation does not necessarily 

mean that they displayed a genuine understanding of the cancelling affect of one 

operation over the other. What they did was actually a short-cut in their thinking. When 

the problem was about 4 children who were to share the biscuits of 4 packages with 5 in 

each, the participants established a one-to-many correspondence relation between the 

recipients and the packages and said that there is a package for each child. 

The two thirds of the successful children in the (axb):a situations could not make an 
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inference of the size of the quotas and went on acting out the situation with the help of 

the counters. Half of these children set the biscuits into correspondence and then shared 

them while the other half did not do the sharing because they realized that there was a 

package for every child. 

In the (axb):b situation most of the children acted out the problem first by setting the 

packages of biscuits in correspondence and then sharing the biscuits among the 

recipients. The fact that in this situation only a couple of children acted out part of the 

situation is because only these two had coordinated the relations between the sharing and 

the forming quotas schemas of action. 

There was only a couple of children who quantified the problem on the basis of number 

facts based on the times table. These children first multiplied the number of packages 

with the number of biscuits and then divided the total number of biscuits to the recipients. 

For example, they said: 4 packages x 3 biscuits each = 12 biscuits; 12 biscuits to be 

given to 4 children is ... 3 because 3x4=12. It seems that even these children who were 

familiar with the times table could not make a direct inference to the size of the quotas, 

but like the children who acted out the situation, first multiplied and then divided the 

biscuits. 

It has to be noted that the children were not always consistent in the strategies they 

employed to quantify the problems. For example, in the two problems where the number 

of recipients was equal to the number of the quotas, some children solved one of those 

problems on the basis of correspondence relations and the other by acting out fully or 

partially the situation, or the other way round. 
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5.3.2.2.2 Conclusions 

The aim of this condition was to test children's understanding of the complementary 

relation of multiplication and division and especially their understanding of the rule that, 

a number multiplied and divided by the same number remains the same [(axb):b=a or 

(axb):a=b]. 

It was found that the children had no understanding of the cancelling effect of one 

operation over the other. It is possible though, that the design of the study was not 

sensitive enough to detect such an understanding. Perhaps the problems were lengthy and 

the children had to retain to much information in their mind. As a result their focus 

moved away from the relations described in the problem. 

5.3.2.3 The Display Condition 

The aim of this condition was to look at children's understanding of multiplicative 

relations within the multiplicative situations of division and multiplication. 

More specifically, it looked at the relations within division and investigated the 

coordination of partitive and quotitive division. If the children have coordinated these 

two schemas of action, then they should be able to quantify partitive problems that have 

been acted out by forming quotas and quotitive division problems that have been acted 

out by sharing. It was expected that the two schemas of action develop independently 

from each other and become coordinated at a later stage. 

The relations within multiplication were also investigated by examining children's 

understanding of the commutativity rule. It was expected that the understanding of 
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commutativity would be related to the coordination of partitive and quotitive division, 

because they both required the coordination of the relations between the multiplicative 

terms. 

5.3.2.3.1. Quantitative and Qualitative Analysis 

In order to investigate the coordination of partitive and quotitive division the children 

were asked to quantify partitive and quotitive problems in two situations: a) the direct 

situation where the display matched their schemas of action and b) the indirect situation 

where the display did not match directly their schemas of action and the children had to 

coordinate the sharing and the forming quotas schemas of action to quantify the problem. 

The coordination of multiplicative relations was examined in a situation where the 

arrangement of the counters was done with respect to the commutativity rule. If the 

children did not find the display helpful they could act out the situation with the help of 

counters. 

The total number of successful children shown in Table 5.11 demonstrates that the vast 

majority of the participants gave a correct response in all the problems where the display 

matched their schemas of action. In partitive and quotitive problems 93% and 95% 

respectively of the successful children found the display relevant and only a few used 

sharing or formed quotas to quantify the problem. Similarly, in the direct match 

correspondence problems 92% of the successful children quantified the problem by 

means of the display. 

Children's performance was, though, lower in the situations where the display did not 

match their schemas of action directly. A McNemar test showed that there was a 

significant difference in children's performance in the direct and the indirect match 

partitive (p<.0001) and quotitive (X2=15.75, p<.0001) problems where they had to 
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coordinate the sharing and the forming quotas schema of action and the direct and 

indirect correspondence problem that required the understanding of the commutativity 

rule in multiplication (X2=24.325, p<.0001). 

TABLE 5.11 

The frequency of the solution strategies of the succeeding children in the direct and 

inverse display problems 

Partitive Problems Quotitive Problems Correspondence Problems 

Strategies 	Direct Match Indirect Match Direct Match Indirect Match Direct Match Indirect Match 

Cues 102 9 90 3 93 4 

Sharing 8 75 - 

Forming Quotas 5 69 

Correspondences 8 36 

Counting 1 - - - 14 

Number Facts 2 1 6 

Total 110 87 95 73 101 70 

Not only did the children's performance drop in the problems where the display did not 

match their schemas of action directly, but also their quantification strategies leading to 

a correct answer were different. For the partitive and quotitive problems that did not 

match the children's schemas of action directly and which required the coordination of 

the sharing and forming quotas schemas of action the children did not find the display 

relevant to the problem. Only 10% of the successful children quantified the partitive 

problem by coordinating partitive and quotitive division and 86% did sharing, that is, 

they rearranged the counters to give a direct match to their schemas. Even fewer children 

were able to coordinate the sharing and forming quotas schemas of action in quotitive 
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problems that did not match their schemas of action. Only 4% of the successful children 

found the display helpful while the remaining children quantified the situation by acting 

out the situation and forming quotas. Similarly, when the display observed commutativity 

the children found it irrelevant to the problem and rearranged the counters to give a direct 

match to their correspondence schema of action. Out of 70 successful children only 4 

quantified the problem with respect to commutativity. 

The profile of the successful children 

It has to be noted that the majority of the children who had coordinated the relations 

between sharing and forming quotas in the context of partitive problems were from the 

older age groups - 2 7 year olds and 7 8 year olds. From the 3 children who coordinated 

the same relations in the context of quotitive problems 1 was aged 7 and 2 were aged 8. 

All the children who had coordinated the sharing and the forming quotas schemas of 

action in the context of quotitive division had also coordinated the same relations in the 

context of partitive division, but not the other way round. Out of the 4 8 year olds who 

displayed an understanding of the commutativity rule only two had coordinated the 

relations between partitive and quotitive division in at least one problem. A common 

characteristic of all these children was that they had quantified the problems of the Acting 

Condition where multiplication and division were used as inverse operations by inverting 

the transformations. However, not all the children who had inverted the transformations 

in that condition were equally able to coordinate the relations between the multiplicative 

terms within division and multiplication. 

5.3.2.3.2 Conclusions 

The aim of the display condition was to examine the coordination of multiplicative 

relations within the situations of multiplication and division. 

242 



The findings supported the hypothesis that the coordination of the relations within 

division is a late acquisition. The children had the ability to recognize a display as 

relevant to a partitive and a quotitive problem when the arrangement of the counters 

matched their schemas of action. The same children, though, had great difficulty in 

quantifying the problems where the display did not matched their schemas of action 

directly and required an understanding of the intrinsic relation between sharing and 

forming quotas. Children's difficulty in coordinating the different schemas of action they 

have for sharing situations suggests that these schemas initially developed independently 

of each other. Their coordination requires a genuine multiplicative thinking where the 

children should consider simultaneously the relations between the number of quotas, the 

size of quotas and the number of recipients. 

The coordination of the relations between the multiplicative terms is also the key to the 

understanding of commutativity in multiplication. Even the 5 year olds were able to 

quantify the one-to-many correspondence problems when the arrangement of the counters 

matched their schemas of action directly. The same children, though, showed a poor 

understanding of the property of commutativity in the context of the same problems. That 

means that the children develop a limited understanding of the mathematical properties 

of multiplication by quantifying one-to-many correspondence problems. This finding is 

in accordance with previous evidence showing that the understanding of the property of 

commutativity in multiplication is a late development (Frydman, 1990; Nunes and 

Bryant, 1995 Piaget, Kaufmann and Borquin, 1977; Pettito and Ginsburg, 1982). The 

finding that children have difficulty in understanding commutativity in the context of 

one-to-many correspondence problems supports further Nunes and Bryant's (1995) claim 

about the effect of the problem situation on the understanding of mathematical properties. 

They found that one-to-many correspondence situations raise conceptual difficulties for 

the understanding of commutativity, because for example, buying 10 apples for 30 pence 
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each is not equivalent to buying 30 apple for 10 pence each. Such a situation requires the 

children to consider commutativity as a property related to numbers and not to measures. 

The fact that the children in this study exhibited such a poor understanding of 

commutativity might be attributed to the difficulty raised in the specific situation. It is 

possible that the children would have performed differently in rotation situation 

problems. Nunes and Bryant (1995) have shown that rotation problems foster the 

understanding of commutativity because the measures remain the same. A chocolate bar 

4 square longs and 2 squares wide still contains the same number of squares if it is 

rotated. For this reason the finding that in this study the children had no understanding 

of the property of commutativity must be expressed with caution. 

Due to the low frequency of success in this condition, the results of the study do not 

suggest a clear pattern in the development of commutativity and the coordination of 

sharing and quotitive division. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

The aim of this thesis was to investigate the origins of children's understanding of 

multiplication and division and how the two operations progressively become 

coordinated in young children. 

The hypothesis of the study was that the origins of these operations are to be sought in 

children's schemas of action. Schemas of action preserve the same invariants as the 

operations themselves and, therefore, form the conceptual basis on which the children can 

build a more elaborate understanding of multiplication and division as operations. 

Because schemas of action are about objects and their transformations and not about 

computations the children were expected to be able to reflect on multiplicative relations 

before dealing with the strictly numerical aspects of the situation. 

The hypothesis of the study was contrasted with an alternative hypothesis proposed by 

Fischbein et al (1985) according to which the origins of multiplicative structures are to 

be found in other operations, that of addition and subtraction. Therefore, in their theory 

the ability to compute multiplicative problems has a key role for the understanding of 

multiplicative relations. 

In order to test whether there were schemas of action that support the development of 

multiplication and division the participants of the study were asked to reflect on 

multiplicative relations in relational, non-computational problems. The advantage of 

designing a study where the children were not asked to give numerical answers and 

compute sums was that it was possible to work with young children who had never been 
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taught multiplication and division at school. The children were asked to reflect on 

multiplicative relations in situations involving not only discontinuous, but also 

continuous quantities. The introduction of continuous quantities excluded the possibility 

of children using quantification strategies to make judgements about the situation. For 

these reasons children's reasoning on multiplicative relations relied entirely on their 

schemas of actions. Therefore, it was possible to identify their schemas of actions and 

examine what they learn about the properties of multiplication and division from them. 

The findings of the study supported the hypothesis that the origins of multiplication are 

to be sought in the one-to-many correspondence schema of action. Even the 5 year olds 

had no difficulty to order the size of different one-to-many correspondence ratios. They 

showed a good understanding of the concept of ratio and took into account the ratio 

differences in making their ordering comparisons. The same children though, had 

difficulty in quantifying the sums of the two sets. The finding that children have schemas 

of action that support their reasoning when reflecting on correspondence situations was 

strengthened even more by their performance in ordering the size of corresponding sets 

with continuous quantities that were beyond their quantification ability. Children's 

performance with discontinuous and continuous quantities and their justifications suggest 

that children's reasoning stems from their correspondence schema of action. The children 

had a good understanding of a significant invariant of multiplication, the concept of ratio, 

and were able to apply their understanding to make relational judgements about situations 

that they could not quantify. If the understanding of the properties of multiplication was 

related to the understanding of addition as suggested by Fischbein et al (1985) then the 

children would not have been able to make judgments on situations before dealing with 

absolute values. 

The findings of the study on multiplication suggest that the children can use their 

246 



correspondence schema of action to reflect on multiplicative relations. It has to be noted, 

though, that the correspondence schema of action does not teach the children everything 

about multiplication. It facilitates children's understanding of the concept of ratio, but the 

findings suggest that it does not teach them much about another important property of 

multiplication, that of commutativity. 

The finding that children have the schemas of action that support their reasoning when 

reflecting on multiplicative relations was also verified in the context of sharing situations 

where the children were asked to make judgements about the relative size of the shared 

quotas (partitive problems) and the relative number of recipients (quotitive problems). 

By the age of 6 many children were able to reflect on the effect that the number of the 

quotas had on their size, not only with discontinuous, but also with continuous quantities 

that resulted in fractions. Children's ability to order the size of different fractions - the 

computation of which has been well documented to be a major source of difficulty even 

for the children who have been taught fractions at schools- suggests that children have 

a powerful understanding of sharing relations that supports their reasoning even in 

situations that are beyond their computation ability. 

The aforementioned studies revealed that young children before being introduced to 

multiplication and division at school have the schemas of action to deal with 

multiplicative situations. Their schemas of action have equipped them with the 

understanding of some of the significant invariants of multiplication and division which 

allow them to make judgements and reflect on multiplicative relations. But do their 

multiplicative schemas of action develop in parallel or in a coordinated fashion? 

This study took a step further to provide some evidence on the undocumented field of the 

development and the coordination of multiplication and division. The last experiment 
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showed that the children might have the schemas of action to act out solutions on 

multiplication and division problems, but when they were presented with inverse 

problems that required the coordination of their schemas their performance dropped 

significantly. Their difficulty with this sort of problems was conceptual because they had 

to mentally invert the transformations to interpret the situation. Mental inversion of the 

transformations was found to be difficult because it required the coordination of the 

different multiplicative schemas of actions across the multiplicative situations. 

The coordination of multiplicative relations within each situation was also found to be 

a late achievement. The children were efficient in sharing and forming quotas to quantify 

partitive and quotitive division problems respectively, but the sharing and the forming 

quotas schemas of action were not related to each other. Similarly, in multiplication the 

children had not coordinated the relations between the number and the size of the 

corresponding sets that have a key role for the understanding of commutativity. The 

children showed once again a poor understanding of commutativity, although they were 

proficient in setting sets into correspondence to quantify one-to-many correspondence 

situations. 

The evidence suggests that the operation of multiplication and division follows the same 

developmental path as the operation of addition and subtraction. The two operations 

initially develop independently of each other until becoming coordinated. The finding 

that multiplication and division initially develop independently is providing further 

positive evidence for the hypothesis of the study that the two operations have distinct 

origins. 

The research findings on children's understanding of the mathematical properties of 

multiplication and division and their development and coordination suggest that the 
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development of multiplicative thinking is not an instant achievement but a long process 

over a period of years, the onset of which is at a very young age. Children's 

correspondence and sharing schemas of action lay the basis for the development of a wide 

range of multiplicative relations on which the children themselves and school instruction 

can build a more elaborate knowledge. 

The educational implications of the study 

The finding that children have the schemas of action that support their understanding of 

multiplicative concepts before being introduced to multiplication and division at school 

has significant implications for the school practice and especially on how multiplication 

and division should be taught. 

Today the most common practice adopted by the schools is to teach multiplication as a 

repeated addition. The popularity of the model of teaching multiplication as repeated 

addition is reflected in a number of teachers textbooks. Deboy and Pitt (1987) suggest 

that "as soon as the children are able to add together small numbers the idea of 

multiplication can be introduced as repeated addition" (p. 116). Thyer and Maggs (1994) 

also point out the importance of addition for the understanding of multiplication. "A 

preliminary to the introduction of multiplication would be to practice a variety of 

repeated addition examples" (p. 56). Biggs and Sutton (1983) suggest that multiplication 

is nothing more than repeated addition and as soon as the children understand the relation 

between addition and multiplication a significant aim has been achieved: "General Aim: 

The children will understand multiplication both as an effective way of adding equal 

numbers and as magnification" (pp. 52-53). Multiplication has been so strongly related 

to addition that correspondence problems are often referred in the literature as "repeated 

addition problems" (Hart, 1981; Luke, 1988; Peled and Nesher, 1988). 
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When the teacher introduces multiplication for first time in the classroom (s)he has to 

find a familiar context to introduce the new operation. There is no doubt that teaching 

multiplication as repeated addition helps the children to connect multiplication to a 

situation already familiar to them and also provides them with a strategy sufficient to 

calculate a number of multiplication problems. However, the price for teaching 

multiplication as repeated addition as pointed out by Nunes (1996a), is that children's 

thinking would need much more reshaping in order to progress beyond this initial stage. 

The reason is that the invariants of the concept of multiplication are not present in the 

concept of addition. Teaching multiplication as repeated addition fails to focus on the 

relation between the corresponding variables which is the most important invariant of 

multiplication. This constant relation between the two variables is not present in addition 

because addition is about part-whole relations in which objects or sets of object that do 

not have any internal relation to each other are put together. The result of teaching 

multiplication as repeated addition is that the idea of correspondence is overlooked and 

is not connected to the operation of multiplication. English and Halford (1995) point out 

that by using addition to interpret multiplicative situations is questionable whether the 

children would ever come to see multiplicative situations in terms of multiplication. 

It is possible that the number of misconceptions concerning multiplication and division 

that have been widely reported with children as well as with adults (Bell, Fischbein & 

Greer, 1984; Fischbein et al., 1985; Graeber & Baker, 1991) is a result of the teaching 

they received at school. The paradox is that children enter the school with a good grasp 

of some of the invariants of multiplicative situations and after receiving a considerable 

amount of school instruction they develop a series of misconceptions concerning the use 

of the operations and an inadequate understanding of multiplicative relations. It can be 

the case that teaching multiplication as repeated addition prevents the children from 

relating their early schemas of action to multiplication in order to develop a genuine 
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understanding of the operation. 

The school practice of teaching multiplication as repeated addition also implies that 

children have no understanding of multiplicative concepts so far. The evidence provided 

in this study as well as in other studies (Correa, 1995; Frydman, 1990) suggests that 

children are not empty minds but do bring into the classroom a rich understanding of 

multiplicative relations stemming from their schemas of action. The schools should 

therefore call upon children's schemas of action and anchor the operation of 

multiplication to the correspondence schema of action, which in contrast to addition, 

preserves the invariants of multiplication as an operation. 

Relating multiplication to the one-to-many correspondence schema of action has the 

advantage that the new mathematical operation is connected to children's exiting 

meanings. At the same time the invariants of multiplication are respected and their 

understanding will facilitate the process of socialization of the old meanings into 

mathematical concepts (Nunes, 1996a). Multiplication should be taught not as a quicker 

way to do addition but as an operation that relates two corresponding variables. This 

relation between variables is the most important invariant in multiplication and should 

be the foundation on which schools should build their teaching. 

There is a larger consensus today that division should be related to children's sharing 

schema of action (Anghileri, 1997; English and Halford, 1995). Teaching division as 

sharing helps the children to anchor the new operation on a familiar schema of action and 

as a result the understanding of the new operation develops in a more meaningful context. 

It has to be stressed though, that division is not the same as sharing. School teaching 

should focus not only on the action of sharing but also on sharing relations. The children 

should be encouraged to reflect on the effect that the number of recipients has on the size 
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of the quotas and vice versa and to connect their sharing and the forming quotas schemas 

of action. The understanding of the net of relations between the dividend, the divisor and 

the quotient is a significant step beyond the activity of sharing towards the understanding 

of division as a multiplicative operation. 

The findings of the study suggest that children have the schemas of action that support 

their reasoning on multiplicative situations, but it is a long process until these schemas 

are coordinated. The school practice should provide the children with situations that 

would help them relate and coordinate their schemas of action within and across the 

multiplicative situations. It is not until the children understand the inverse relation of the 

two operations that the operations are seen in their true multiplicative light. The schools 

will have to support the understanding of the properties of multiplication like that of 

commutativity that the children do not come in grips with from their correspondence 

schemas of action. 

In conclusion, the evidence provided by this study suggests that the children have a good 

understanding of some of the fundamental invariants of multiplication and division and 

that their meanings stem from their schemas of action. Schools should make use of 

children's early understandings and connect the new operations to their existing schemas 

of action. Connecting multiplication and division to the correspondence and sharing 

schemas of action has the advantage that the new operations are introduced in a familiar 

and meaningful context, but most importantly the invariants of the operations are stressed 

and preserved. 

Suggestions for further research 

There is still a lot to be understood about children's development of multiplicative 

thinking. 
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This study focused on children's understanding of the concept of ratio and their 

understanding of commutativity in the context of one-to-many correspondence situations. 

Children's early understanding of multiplicative relations should also be examined in 

different situations such as those that involve the covariation of two or more variables 

either directly or inversely. Reflecting on these situations requires a genuine 

multiplicative thinking that relies on the establishment of a functional relation between 

the variables. 

There is more to be understood about children's ability to invert the transformations and 

solve missing factor correspondence problems by division. In the last experiment of this 

study there were many children who quantified the inverse problems by means of times 

tables. For these children the results were inconclusive about whether they had a genuine 

understanding of the inverse relations of the two operations and did the computational 

part by means of the times tables or if they used correspondence procedures. Future 

studies can clarify the inversion of the transformations by presenting children with 

problems involving large numbers that cannot be quantified by using time tables but 

through a calculator. The calculator restricts children's choices to the 4 operations and 

blocks trial and error procedures. Thus, it can easily checked whether the children solved 

the problems by using the inverse operation or by trying different possible 

correspondences. 

This study was rather descriptive about how the children come to coordinated the two 

operations. Studies with longitudinal designs as well as training studies are needed in 

order to provide evidence on how the children eventually come to coordinate the two 

operations. 

The study also showed that the coordination of the relations within multiplication and 
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division is a late achievement. Commutativity in multiplication was not easily understood 

and the sharing and forming quotas schemas of action were not related to each other. 

Although this study hypothesized that there should be some kind of relation between 

commutativity and the coordinations of the two sharing schemas of action, because they 

both required the coordination of the relations between the number of the quotas / sets 

and their size, the study failed to test this hypothesis due to the low level of success in 

both tasks. A more elaborated intervention study is needed to test whether teaching the 

children about commutativity would help them to coordinate their sharing schemas or the 

other way round. 
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Appendix 4.1 

The number of correct responses in each trial with discontinuous quantities 

Age 

Condition Dividend Trial 	 5-yr 	6-yr 7-yr 

2(2) 	 24 	 29 	32 

Same 	12 	3(3) 	 22 	 27 	32 

4(4) 	 21 	 26 	32 

6(6) 	 23 	 27 	32 

2(2) 	 22 	 27 	32 

24 	3(3) 	 21 	 28 	32 

4(4) 	 23 	 29 	32 

6(6) 	 22 	 28 	32 

2(3) 	 13 	 18 	26 

Different 	12 	2(6) 	 11 	 17 	26 

3(4) 	 12 	 17 	27 

3(6) 	 11 	 16 	26 

2(3) 	 11 	 17 	27 

24 	2(6) 	 12 	 16 	26 

3(4) 	 10 	 17 	28 

3(6) 	 12 	 17 	27 
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Appendix 4.2 

The number of correct responses in each trial with continuous quantities 

Age 

Condition Dividend Trial 	 5-yr 	6-yr 	7-yr 

2(2) 	 23 	 27 	32 

Same 	1 	 3(3) 	 24 	 29 	31 

4(4) 	 21 	 28 	32 

5(5) 	 22 	 27 	32 

2(3) 	 12 	 16 	26 

Different 	1 	 2(6) 	 11 	 18 	26 

3(4) 	 11 	 17 	27 

3(6) 	 12 	 16 	28 

4(4) 	 22 	 28 	32 

Same 	2 	 5(5) 	 23 	 29 	32 

6(6) 	 20 	 27 	32 

7(7) 	 22 	 28 	32 

4(6) 	 10 	 17 	27 

Different 	2 	 4(5 	 9 	 16 	26 

5(7) 	 11 	 16 	26 

6(7) 	 10 	 17 	26 

6(6) 	 23 	 28 	32 

Same 	3 	 7(7) 	 20 	 27 	32 

8(8) 	 22 	 29 	32 

9(9) 	 21 	 27 	32 

6(8) 	 10 	 18 	26 

Different 	3 	 6(7) 	 10 	 17 	26 

9(7) 	 11 	 16 	26 

9(8) 	 12 	 16 	27 
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Appendix 4.3 

The number correct responses in each trial with discontinuous quantities 

Age 

Condition Dividend Trial 	 5-yr 	 6-yr 7-yr 

2(2) 	 18 	 30 	32 

Same 	12 	3(3) 	 16 	 27 	32 

4(4) 	 17 	 28 	32 

6(6) 	 16 	 29 	32 

2(2) 	 17 	 28 	32 

24 	3(3) 	 18 	 26 	32 

4(4) 	 16 	 27 	32 

6(6) 	 17 	 28 	32 

2(3) 	 6 	 13 	22 

Different 	12 	2(6) 	 7 	 12 	23 

3(4) 	 8 	 12 	21 

3(6) 	 7 	 13 	22 

2(3) 	 9 	 12 	24 

24 	2(6) 	 7 	 12 	22 

3(4) 	 7 	 13 	22 

3(6) 	 8 	 11 	23 
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Appendix 4.4 

The number of correct responses in each trial with continuous quantities 

Age 

Condition Dividend Trial 	 5-yr 	 6-yr 7-yr 

1/2(1/2) 	 17 	 29 	32 

Same 	1 	 1/3(1/3) 	 18 	 26 	32 

1/4(1/4) 	 18 	 27 	32 

1/5(1/5) 	 16 	 28 	32 

'/2(1/4) 	 8 	 17 	24 

Different 	1 	 1/2(1/8) 	 7 	 16 	23 

1/3(1/4) 	 7 	 15 	25 

1/3(1/8) 	 9 	 15 	23 

1/2(1/2) 	 16 	 28 	32 

Same 	2 	 1/3(1/3) 	 15 	 30 	32 

1/4(1/4) 	 16 	 26 	32 

1/8(1/8) 	 18 	 27 	32 

'/2(1/4) 	 7 	 14 	23 

Different 	2 	 1/2(1/8) 	 6 	 13 	24 

1/3(1/4) 	 8 	 15 	23 

1/3(1/8) 	 8 	 15 	23 

1/2( 1/2) 	 15 	 26 	32 

Same 	3 	 1/3(1/3) 	 16 	 29 	32 

1/4(1/4) 	 18 	 27 	32 

1/8(1/8) 	 17 	 28 	32 

1/2(1/4) 	 7 	 13 	24 

Different 	3 	 '/2(1/8) 	 7 	 14 	23 

1/3(1/4) 	 9 	 15 	25 

1/4(1/8) 	 8 	 14 	23 
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Appendix 5.1 

Comparing children's performance across relational and quantificational 

division problems 

The last study was the only study where the children were asked to quantify problems in 

partitive and quotitive division by acting out the situation. In the studies reported in 

Chapter 4 the children were presented with relational division problems which they could 

solve by reflecting on the sharing relations. 

It was considered appropriate to look at children's performance across the relational and 

quantification division problems. Correa, Nunes and Bryant (1998) have shown that 

children's ability to do sharing and infer the numerical equivalence of the shared quotas 

does not necessarily mean that the children have an understanding of the sharing relations 

between the dividend, the divisor and the quotient. Based on their findings they suggested 

that sharing and division are not the same thing. It was therefore, expected that the 

children would find it easier to act out partitive and quotitive problems that matched their 

schemas of action with the help of counters than to reflect of sharing relations. 

In order to find whether the quantification of division problems would be easier or harder 

than the reasoning on sharing relations children's performance across relational and 

quantification problems was compared. 

Children's scores were compared across the relational and quantification problems (Table 

A.1). A Chi Square test showed that there was a significant association (X2=5.14, df=1, 

p<.02) between performance and the type of problem presented (partitive relational 

versus partitive quantificational). Quantifying a partitive problem by acting it out was 
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found to be easier than reflecting on sharing relations. Although there were more children 

succeessful in quantificational quotitive problems the association between performance 

and type of quotitive problem (relational versus quantificational) was not find to be 

significant (X2=3.01, df=1, p<.08). 

TABLE A.1 

The percentage of correct responses across relational and quantificational partitive and 

quotitive division problems 

Type of Division Problem 

Type of Question Asked 	Partitive 	 Quotitive 

Relational 
	

56% 	 41% 

Quantificational 
	

72% 	 48% 

The trend that these findings suggest is that the ability to share and form quotas does not 

guarantee the conceptual understanding of the mathematical relations in division. That 

means that the operation of division is not the same as sharing, although sharing is the 

schema of action from which it originates. 

Someone, though, should be very careful with the interpretation of these findings because 

the children were not randomly assigned in the relational versus the computational tasks. 

Although the children who took part in the studies were under the same Local 

Educational Authority in North East London in the computational task the children were 
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attending a summer play scheme group in the same area. It is not known whether the 

children attending the play schemes differ from the children who do not. More reliable 

results would have been obtained with a repeated measures study in which the same 

children would be asked to reflect on sharing relations and quantify division problems. 
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Appendix 5.2 

How the children implemented their schemas of action 

The children who used counters to quantify the problems where multiplication and 

division was employed as a direct or inverse operations implemented their schemas in a 

variety of ways depending on the number of variables they represented with the counters 

and on whether they did double counting or not. The following paragraphs give a detailed 

account of the variations observed within the sharing, the forming quotas and the 

correspondence schema of action. 

I. Sharing 

Sharing by representing two variables 

The children represented with counters both the quantity to be shared and the number of 

recipients. For example, when they had 15 sweets to share among 3 children, they took 

15 counters from the pile to represented the number of sweets they had and another 3 

counters to represent the recipients. Then they shared the sweets among the recipients. 

Child Child Child 

x 	x 	x 

x 	x 	x 

x 	x 	x 

x 	x 	x 

x 	x 	x 
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Sharing by representing one variable 

The children took counters from the pile to represented one variable which was always 

the number of the sweets they had. Then they did the sharing by placing the sweets at 

three different places at the table that represented the 3 recipients. 

Regardless of whether the children represented one or two variables, some children 

distributed the sweets to the children one-by-one until the 15 sweets were exhausted, 

while other children shared the sweets in small groups of 2s, 3s or 4s rather than one at 

a time. 

Double counting by representing two variables 

In double counting the children did not start by representing the number of sweets they 

had. Instead, the number of sweets (15) was used to indicate when sharing should stop. 

Some children, before sharing in a double counting fashion, took some counters to 

represent the number of recipients.Then they took counters from the pile one-by-one and 

shared them. At the same time they controlled for the whole that was to be shared and 

formed the quotas. For example, the above sharing problem was quantified in the 

following way : 	 child child child 
1 2 3 
4 5 6 
7 8 9 
10 11 12 
13 14 15 
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Double counting by representing one variable 

Some children who shared the counters in the double counting fashion did not represent 

the recipients, but placed the counters they were sharing at distinctive places on the table. 

1 2 3 
4 5 6 
7 8 9 
10 11 12 
13 14 15 

II. Forming Quotas 

Forming quotas by representing two variables 

The children represented both the quantity to be shared and the number of the recipients. 

When there were 15 sweets to be shared in quotas of 3s they took 15 counters from the 

pile to represented the number of sweets they had. Then they put a few counters in the 

row to represent the friends they could possibly invite. After that they repeatedly 

subtracted quotas of 3s and matched each quota with a friend until the shared quantity 

was exhausted. 

Friend 	Friends 	Friend 	Friend 	Friend 	Friend 

xxx 	xxx 	xxx 	xxx 	xxx 	(No sweets) 

Then the children counted the number of friends who got sweets and answered how many 

they could invite. 

Other children did not place the counters that represented the friends in a row before 

sharing the quotas, but every time they formed a quota, they paired it with a friend. 
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Forming quotas by representing one variable only 

The children took 15 counters from the pile to represent one variable only which always 

was the whole to be shared. Then they repeatedly subtracted quotas of 3s and placed them 

at different places on the table. The number of the quotas formed was equal to the number 

of recipients. 

xxx xxx xxx xxx xxx 

Double Counting by representing one variable only 

As in sharing, the child did not start by representing the quantity to be shared. Instead, the 

number of sweets (15) was used to indicate when the child should stop forming quotas. 

The child took quotas of 3s from the pile and placed them at different places on the table. 

At the same time the child controlled for the whole that was to be shared and the size of 

the quotas. The number of the quotas formed was equal to the number of number of the 

recipients. For example, the above problem was quantified in the following way: 

1-2-3 
	

4-5-6 	7-8-9 
	

10 - 11 - 12 	13 - 14 - 15 

None of the children who formed the quotas in a double counting fashion represented 

both variables. 

III. Setting into Correspondence 

Setting into correspondence by representing two 

variables 

In this implementation the children represented both corresponding variables. They took 

5 counters from the pile to represented the number of children that came to the party, for 

example, and then placed 3 counters in front of each child to represent the chocolates 
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each child had brought. Other children took 1 counter at the time and paired it with 3 

chocolates until they had built up 5 sets of 3s. In both cases there was a clear one-to-many 

correspondence between the children and the chocolates. 

Child 	Child 	Child 	Child 	Child 

XXX 
	

XXX 	 XXX 	 XXX 	 XXX 

Then the children counted the total number of chocolates given. 

Setting into correspondence by representing one 

variable 

The children took counters from the pile to represent only one variable which in some 

cases was the number of chocolates given. They formed 5 sets of 3s and placed them at 

different places on the table. Then they counted the total number of chocolates. 

XXX xxx xxx xxx xxx 

It has to be stressed that there is a similarity between forming quotas and setting sets in 

correspondence, because in both situations the shared quotas or sets are into 

correspondence with a recipient. However, in an activity level the two schemas are 

different. The starting point in the forming quotas schema is to form the quantity to be 

shared the size of which is priory defined. After forming the shared quantity then the 

child repeatedly subtracts quotas until the shared quantity is exhausted. The activity of 

forming quotas ends as soon as the total is exhausted. In multiplication, thought, the 

starting point is not the formation of the quantity to be shared, because this quantity 
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serves as the unknown. The starting point is the replication of the corresponding ratios 

the number of which is priory defined. The action of setting sets in correspondence ends 

as soon as the number of replications is accomplished. 

Tables A.2, A.3 and A.4 present the frequency that they above variations were used to 

quantify the problems where the schemas of sharing, forming quotas and setting into 

correspondence were employed as a direct or as an inverse operation. 

TABLE A.2 

The frequency of the strategy variations observed within the sharing schema of action in the direct 

and inverse problems by the successful children 

Direct Solution 	 Inverse Solution 

Sharing 	Sharing 	Double Counting Double Counting 	Sharing 	Sharing 	Double Counting 	Double Counting 

2 variables 	1 variable 	2 variables 	1 variable 	 1 variables 	2 variable 	1 variable 	 2 variables 

31 	41 	2 	4 	 16 	10 	 1 	 1 
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TABLE A.3 

The frequency of the strategy variations observed within the quotitive schema of action in the direct 

and inverse problems by the successful children 

Direct Solution 	 Inverse Solution 

Forming Quotas Forming Quotas Double Counting Double Counting 	Forming Quotas Forming Quotas Double Counting Double Counting 

2 variables 	1 variable 	2 variables 	1 variable 	1 variables 	2 variable 	2 variables 	1 variable 

22 	35 	2 	7 	 14 	9 	 1 	 10 

TABLE A.4 

The frequency of the strategy variations observed within the correspondence schema of action in the direct 

and inverse problems by the successful children 

Direct Solution 	 Inverse Solution 

Correspondence 	Correspondence 	Correspondence 	Correspondence 

1 variables 	 2 variable 
	

1 variables 	 2 variable 

34 	 21 	 35 	 25 
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