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Distributed quantum computation via optical fibres
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We investigate the possibility of realising effective quantum gates between two atoms in distant
cavities coupled by an optical fibre. We show that highly reliable swap and entangling gates are
achievable. We exactly study the stability of these gates in presence of imperfections in coupling
strengths and interaction times and prove them to be robust. Moreover, we analyse the effect of
spontaneous emission and losses and show that such gates are very promising in view of the high
level of coherent control currently achievable in optical cavities.
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The study of the possibilities allowed by coherent evo-
lutions of quantum systems is central to quantum infor-
mation science. Most notably, exploiting suitable coher-
ent dynamics to implement deterministic quantum gates
between separate subsystems is a basic aim for quantum
computation. Several proposals have been suggested to
engineer entanglement or quantum communication be-
tween atoms trapped in distant optical cavities, either
through direct linking of the cavities [1, 2, 3, 4], or
through detection of leaking photons [5, 6]. The realisa-
tion of quantum gates between distant qubits in quantum
optical settings has also been recently envisaged [7, 8].
Such proposals are very promising and highly inventive.
However, they are either probabilistic or relying on ac-
curately tailored sequences of pulses (thereby requiring
a considerable degree of control). In this paper, an al-
ternative to such schemes is proposed, with a particu-
lar focus on the implementation of distributed quantum
computation. To this aim, we investigate the possibility
of realising deterministic gates between two-level atoms
in separate optical cavities, through a coherent resonant
coupling mediated by an optical fibre. The only con-
trol required would be the synchronised switching on and
off of the atom-field interactions in the distant cavities,
achievable through simple control pulses. The study of
such a system (which would constitute the basic cell of
scalable optical networks) is crucial in view of the out-
standing improvements currently achieved in the control
of single atoms trapped in optical cavities [9] and of the
recent realisation of microfabricated cavity-fibre systems
[10].

In the considered system the interaction between the
qubits is mediated by the bosonic light field. It has been
showed that, in principle, an exact deterministic gate
may be realized if the interaction between two qubits
is mediated by another two-level system through XY
nearest neighbour interactions [11]. If the central sys-
tem is a bosonic field though, interacting with the two
qubits through a rotating wave Hamiltonian, a perfect
gate is not possible, as the Rabi frequencies in the two-
and single- excitation subspaces are no longer commen-

surate and the mediating field does not exactly decouple
from the qubits at short enough times. However, as we
will show, times do exist for which the qubits are de-
coupled from the field at a high degree of accuracy. The
resulting effective dynamics of the two qubits can then be
described in terms of quantum operations which approx-
imate unitary gates with a high fidelity. The discrepancy
between such approximate gates and the desired unitary
ones would be negligeable with respect to the errors in-
volved by an experimental implementation of the scheme.

We consider two two-level atoms in distant optical
cavities, interacting with the local cavity fields through
dipole interactions in rotating wave approximation. The
two cavities will be henceforth labeled by the indexes
1 and 2. We will allow for a detuning ∆ of the tran-
sition of atom 2 from the resonance frequency ω of
the cavities (whereas atom 1 will be assumed to be
at resonance). The cavities are connected by an op-
tical fibre, whose coupling to the modes of the cav-
ities may be modeled by the interaction Hamiltonian

HIf =
∑∞
j=1

νj

[

bj(a
†
1 + (−1)j eiϕa†2) + h.c.

]

[2], where

bi are the modes of the fibre, a1 and a2 are the cavities’
modes, νi is the coupling strength with the fibre mode
i and the phase ϕ is due to the propagation of the field
through the fibre of length l: ϕ = 2πωl/c [12].

Now, let ν̄ be the decay rate of the cavities’ fields into
a continuum of fibre modes. Taking into account a finite
length l of the fibre implies a quantization of the modes of
the fibre with frequency spacing given by 2πc/l. One has
then that the number of modes which would significantly
interact with the cavities’ modes is of the order of n =
(lν̄)/(2πc) [2]. We will focus here on the case n . 1, for
which essentially only one (resonant) mode of the fibre
will interact with the cavity modes (“short fibre limit”)
[13]. Notice that such a regime applies in most realistic
experimental situations: for instance, l . 1 m and ν̄ ≃
1 GHz (natural units are adopted with ~ = 1) are in
the proper range. We recall that the coupling ν to the
modes of a fibre of finite length can be estimated as ν ≃
√

4πν̄c/l. Let us also notice that the coupling strength
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ν can be increased by decreasing the reflectivity of the
cavity mirror connected to the fibre. In the specified
limit, the Hamiltonian HIf reduces to Hf

Hf = ν
[

b(a†1 + eiϕa†2) + h.c.
]

, (1)

where b is the resonant mode of the fibre. The total
Hamiltonian of the composite system can be written, in
a frame rotating at frequency ω, as

H = ∆|12〉〈12| +
2

∑

j=1

(gj |0j〉〈1j |a†j + h.c.) +Hf , (2)

where |1j〉 and |0j〉 are the excited and ground states of
atom j, gj is the dipole coupling between atom and field
in cavity j (generally complex, as local coupling phases,
depending on the positions of the atoms in the cavities,
might be present) and ∆ is the detuning of the transition
of atom 2. The addressed system is thus equivalent to two
qubits connected by a chain of three harmonic oscillators.
For ease of notation, let us also define g ≡ |g1|, δ ≡
|g2| − |g1| and σ−

j = |gj〉〈ej | for j = 1, 2.
Before proceeding, let us remark an interesting feature

of the Hamiltonian H , which unveils some significant in-
sight about the dynamics we intend to study. Let us
consider the normal modes c and c∓ of the three inter-
acting bosonic modes. One has c = (a1 − e−iϕa2)/

√
2,

with frequency ω, and c∓ = (a1 + e−iϕa2 ∓
√

2b)/2, with
frequencies ω ∓

√
2ν. The three normal modes are not

coupled with each other but interact with the atoms be-
cause of the contributions of the cavity fields. However,
for ν ≫ |gj |, the interaction of the atoms with the non
resonant modes is highly suppressed (it is essentially lim-
ited to the second order in the Dyson series) and the sys-
tem reduces to two qubits resonantly coupled through a
single harmonic oscillator. Remarkably, as the dominant
interacting mode c has no contribution from the fibre
mode b, the system gets in this instance insensitive to
fibre losses. On the other hand, note that fulfilling the
condition ν ≫ |gj | might require weak couplings, thus
implying larger operating times.

Let us now discuss the computational possibilities al-
lowed by the coherent evolution described by the Hamil-
tonian (2). To this aim, we will be interested in the
reduced dynamics of the two distant atoms. We will as-
sume that the system can be ‘initialized’ bringing all
the field modes in the vacuum state and allowing for
any initial state of the qubits. The Hamiltonian H
clearly conserves the number of global excitations and,
for our aims, one can restrict to the zero-, single- and
two-excitation subspaces. The quantum operation de-
scribing the effective dynamics of the atoms can thus be
exactly worked out determining its Kraus operators for
any values of ν, gj and ∆. Denoting by |ijk〉 the state
of the field given by the number state i in the mode
of cavity 1, k in the mode of cavity 2 and j in the fi-
bre mode, one has Eijk(t) = 〈ijk| exp (−iHt)|000〉 for
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FIG. 1: Fidelities of an emulated swap gate as a function of
time. The gate is obtained for |g1| = |g2| = g and ∆ = 0; the
diamonds refer to ν/g = 1.1, the squares refer to ν/g = 1.2,
while the triangles refer to ν/g = 1. All the quantities plotted
are dimensionless.

i, j, k = 0, 1, 2 and the state of the atoms ̺(t) is given

by ̺(t) =
∑2

i,j,k=0
Eijk(t)̺(0)E†

ijk(t). In particular, we
are interested in singling out “decoupling times” at which
the state of the atoms will be highly decoupled from the
light field so that their evolution will be approximately
unitary. At such times the field has a very high probabil-
ity of being in the vacuum state in both the single- and
two-excitation subspaces (the global vacuum is a trivial
eigenvector of H). This condition is fulfilled when the
Kraus operators Eijk ≃ 0 for i, j, k 6= 0, so that the
Kraus operator E000 approximates a unitary evolution.
More precisely, the fidelity of a Kraus operation {Eijk}
emulating a unitary gate U can be properly estimated as
follows. Suppose a pure two-qubit state |ψ〉 enters the
operation as input: a measure of the reliability of the
gate is given by the overlap

f(|ψ〉) = 〈ψ|U †





2
∑

i,j,k=0

Eijk|ψ〉〈ψ|E†
ijk



U |ψ〉 .

The fidelity F of the gate may then be obtained by av-
eraging over all pure input states: F ≡ 〈f(|ψ〉)〉|ψ〉.

Setting ∆ = 0, δ = 0 and g ≃ ν yields a highly reli-
able swap gate at the decoupling time t ≃ π/g. The fi-
delity of the proposed swap operation is shown in Fig. 1.
As apparent, such a fidelity can exceed the value 0.99
and is remarkably stable with respect to possible imper-
fections in the coupling strengths and in the temporal
resolution needed to switch off the interaction once the
desired evolution is achieved. Let us remark that the val-
ues g ≃ ν ≃ 1 GHz (at hand with present technology in
optical cavities) would grant an operating time τ ≃ 1 Ns.
We also report that, after a time t ≃ 3.4/g, a swap gate
with fidelity F ≃ 0.98 can be obtained for ν ≃ 100g (and
∆ = δ = 0), i.e. in the range of parameters for which
the system gets insensitive to fibre losses. This agreeable
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FIG. 2: Fidelities of an emulated cphase gate (U0.15π) as
a function of time. The diamonds refer to ν/∆ = 10,
|g1|/∆ = 0.1 and |g2|/∆ = 0.15; the squares and the triangles
refer, respectively, to a relative variation of −5% and +5% in
|g1|, |g2| and ν. The fidelities of the successive (more entan-
gling) cphase gates are similar. All the quantities plotted are
dimensionless.

advantage is thus achieved by allowing a longer operat-
ing time (due to the condition on g) and a slightly lower
(but still almost perfect) fidelity.

Moreover, this model allows for a reliable emula-
tion of an entangling gate. To fix ideas, we focus
on a ‘controlled-phase’ (cphase) gate between the two
qubits, described by the unitary matrix Uϑ in the
computational basis: Uϑ = Diag (1, 1, 1, eiϑ). This
gate is equivalent, up to local unitaries, to the gates
Diag (1, eiϑ1 , eiϑ2 , eiϑ+ϑ1+ϑ2) for any ϑ1, ϑ2 ∈ [0, 2π],
since the phases ϑ1 and ϑ2 can be cancelled out by local
phase gates. We will thus henceforth refer to all such
gates as “cphase” gates. The entangling power of such
gates increases as the phase ϑ increases between 0 and π
(for which a controlled-Z gate is achieved). Let us also
recall that any of these entangling gates, together with
local unitary operations, make up a universal set of gates
(as any two-mode gate can be recovered as a proper com-
bination of the entangling gate and of local gates [14]).
The symmetry of the Hamiltonian (crucial in realising a
swap gate), must be broken here because it prevents a
phase ϑ to appear at decoupling times. In point of fact,
if the transition of atom 2 is detuned (e.g., by Stark or
Zeeman effect), a phase does arise, thus allowing for an ef-
fective entangling gate. Reliable decouplings allowing to
emulate such a gate are achieved for ν ≫ |gj |, for which
the fibre is “bypassed” and fibre losses do not affect the
performance of the gate. For ν ≃ 100g ≃ 200δ ≃ 10∆
a sequence of cphase gates – separated by a period of
about 4.4g−1 – with increasing ϑ (ranging from ϑ ≃ 0.15π
to ϑ ≃ 0.93π) is emulated. The most entangling cphase

gate (U0.93π) is achieved after six “Rabi-like” oscillations
in the two excitation subspace. The fidelity F of the em-
ulated gate exceeds the value 0.99. Its stability is demon-
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FIG. 3: Entanglement of formation in ebits as a function of
time (in units g−1) for ν = 100g = 10∆ and δ = g (dashed
line), δ = 0.5g (continuous line) and δ = 0 (dotted line). At
the peaks, cphase gates are emulated.

strated in Fig. 2. The operating time of the gates would
range, for ν ≃ 10GHz, from 3µs to 0.3µs, according to
the desired entangling power. Figure 3 shows the entan-
glement of formation between the two atoms generated
for an initial state (|0〉 + |1〉) ⊗ (|0〉 + |1〉)/2 (which gets
maximally entangled if processed by a controlled-Z) with
several choices of parameters. As apparent, a speed-up
in the creation of entanglement is achieved by increasing
the relative difference δ/g. However, too large differences
(δ/g & 0.5) affect the fidelity and stability of the emu-
lated gate and thus, while advantageous for building up
entanglement, are not convenient to perform actual com-
putation.

We now take into account dissipation due to sponta-
neus emission of the atoms and to cavity and fibre losses.
The global system is then governed, in Schrödinger pic-
ture, by the following master equation

˙̺ = −i[H, ̺]+ γ

2

2
∑

j=1

L[aj ]̺+
κ

2

2
∑

j=1

L[σ−
j ]̺+

β

2
L[b]̺ , (3)

where the superoperator L[ô] is defined as L[ô] = 2ô̺ô†−
ô†ô̺ − ̺ô†ô for operator ô and κ, γ and β stand, re-
spectively, for the spontaneous emission rate and for the
cavity and fibre decay rates (assumed for simplicity to
be equal in the two cavities). The thermal contributions
of the bath have been neglected, as is possible at optical
frequencies. Considering decoherence analytically for one
excitation and numerically for two excitations (by inte-
grating Eq. (3)), the operator tomography of the process
encompassing decoherence has been reconstructed in the
cases interesting for emulating gates.

In the regime ν ≫ |gj | the fidelities of the gates have
been consistently found to be essentially unaffected by
fibre losses. In general, moreover, the ‘direct’ effect of
spontaneous emission proves to be more relevant than the
‘indirect’ effect of cavity losses. For the swap gate with
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ν ≃ 1.2g (with maximum fidelity F ≃ 0.997 without
dissipation), the maximum fidelity drops to F ≃ 0.956
for κ = 10−2g, thus allowing for a still relatively reli-
able gate, while a fidelity F ≃ 0.989 is maintained for
κ = γ = β = 10−3g. Lower decay rate leaves the gate vir-
tually unaffected, while higher rates completely spoils it.
Notice that values permitting an effective swap would be
already at hand for rubidium atoms in integrated fibre-
cavity systems (see data from Ref. [10], with length of the
cavity L ≃ 100µm). The case ν = 100g = 200δ = 10∆,
selected to demonstrate the possibility of a cphase gate,
proved to be slightly more sensitive to spontaneous emis-
sion and cavity losses. Let us focus on the first gate (after
one Rabi-like oscillation): for κ = 10−2g, the fidelity of
the gate falls to F ≃ 0.93 (in which case the fidelity of
the optimal most entangling gate, achieved after six oscil-
lations, is completely spoiled), while for κ = γ = 10−3g
(recall that this regime is insensitive to fibre losses), the
fidelity of the first gate is still F ≃ 0.97. Generally, decay
rates as low as 10−4g have a negligeable effect on the per-
formances of the gates, while decay rates of the order of
10−2g would allow for remarkable experimental demon-
strations of swap and entangling gates. In view of the
quality attained in the fabrication of high-finesse optical
cavities, the main technical issue left seems to be limiting
the spontaneous emission rates. Hyperfine ground levels
(with negligible ‘intrinsic’ spontaneous emission rates) of
effective two-level lambda systems could thus be good
candidates for the implementation of such computational
schemes. In fact, let us consider a lambda system (refer
to Ref. [2] for details), where one transition is driven by
a laser of strength h with detuning d and the other is
mediated by a mode of the field with resonant coupling
h (assumed for simplicity to be real and equal to the laser
strenght). Let ξ stand for the spontaneous emission rate
of the excited level, which will be adiabatically eliminated
under the condition d ≫ h. Let us suppose to exploit
such a two-level system for the proposed scheme. In our
previous notation, one would have [2] g ≃ dh2/(d2 + ξ2)
and κ ≃ ξh2/(d2 + ξ2), with g/κ ≃ d/ξ: a large enough
detuning would thus allow to coherently implement the
scheme with these effective two-level systems.

We have investigated the implementation of quantum
computation and entangling schemes for atoms trapped
in distant cavities coupled by an optical fibre. Imperfec-
tions and dissipation have been considered showing that,
in the short fibre regime, reliable gates with promising
operating times could be at hand with present technol-
ogy. Let us also mention that, in the considered sys-

tem, not only entangling and swap gates, but also perfect
quantum state transfer is possible. Besides, the proposed
setup would also allow for the unitary generation of clus-
ter states between distributed atoms or ions [8], and could
thus find application not only in gate-based but also in
“one-way” quantum computation. More generally, our
results strongly emphasize the potentialities of quantum
optical systems towards the realisation of effective quan-
tum networking schemes.
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