%0 Journal Article
%A Schulze, F
%A White, B
%D 2020
%F discovery:1571171
%I Walter de Gruyter
%J Journal für die reine und angewandte Mathematik (Crelles Journal)
%N 758
%T A local regularity theorem for mean curvature flow with triple edges
%U https://discovery.ucl.ac.uk/id/eprint/1571171/
%V 2020
%X Mean curvature flow of clusters of n-dimensional surfaces in Rn+k that meet in triples at equal angles along smooth edges and higher order junctions on lower-dimensional faces is a natural extension of classical mean curvature flow. We call such a flow a mean curvature flow with triple edges. We show that if a smooth mean curvature flow with triple edges is weakly close to a static union of three n-dimensional unit density half-planes, then it is smoothly close. Extending the regularity result to a class of integral Brakke flows, we show that this implies smooth short-time existence of the flow starting from an initial surface cluster that has triple edges, but no higher order junctions.
%Z This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.