TY  - JOUR
SP  - 131
VL  - 404
N1  - This version is the author accepted manuscript. For information on re-use, please refer to the publisher?s terms and conditions.
SN  - 1872-9584
UR  - http://doi.org/10.1016/j.nimb.2017.01.067
A1  - Michelet, C
A1  - Barberet, P
A1  - Desbarats, P
A1  - Giovannelli, J-F
A1  - Schou, C
A1  - Chebil, I
A1  - Delville, M-H
A1  - Gordillo, N
A1  - Beasley, DG
A1  - Deves, G
A1  - Moretto, P
A1  - Seznec, H
JF  - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
EP  - 139
AV  - public
Y1  - 2017/08/01/
TI  - An implementation of the NiftyRec medical imaging library for PIXE-tomography reconstruction
PB  - ELSEVIER SCIENCE BV
ID  - discovery1569927
N2  - A new development of the TomoRebuild software package is presented, including ?thick sample? correction for non linear X-ray production (NLXP) and X-ray absorption (XA). As in the previous versions, C++ programming with standard libraries was used for easier portability. Data reduction requires different steps which may be run either from a command line instruction or via a user friendly interface, developed as a portable Java plugin in ImageJ. All experimental and reconstruction parameters can be easily modified, either directly in the ASCII parameter files or via the ImageJ interface. A detailed user guide in English is provided. Sinograms and final reconstructed images are generated in usual binary formats that can be read by most public domain graphic softwares. New MLEM and OSEM methods are proposed, using optimized methods from the NiftyRec medical imaging library. An overview of the different medical imaging methods that have been used for ion beam microtomography applications is presented. In TomoRebuild, PIXET data reduction is performed for each chemical element independently and separately from STIMT, except for two steps where the fusion of STIMT and PIXET data is required: the calculation of the correction matrix and the normalization of PIXET data to obtain mass fraction distributions. Correction matrices for NLXP and XA are calculated using procedures extracted from the DISRA code, taking into account a large X-ray detection solid angle. For this, the 3D STIMT mass density distribution is used, considering a homogeneous global composition. A first example of PIXET experiment using two detectors is presented. Reconstruction results are compared and found in good agreement between different codes: FBP, NiftyRec MLEM and OSEM of the TomoRebuild software package, the original DISRA, its accelerated version provided in JPIXET and the accelerated MLEM version of JPIXET, with or without correction.
KW  - PIXE tomography
KW  -  Quantitative imaging
KW  -  Filtered backprojection
KW  -  MLEM
KW  -  OSEM
KW  -  ImageJ
KW  -  Caenorhabditis elegans
ER  -