%0 Journal Article
%@ 0022-1236
%A Boedihardjo, H
%A Ni, H
%A Qian, Z
%D 2014
%F discovery:1555643
%J Journal of Functional Analysis
%K Rough path theory;   Uniqueness of signature problem;   SLE curves
%N 6
%P 1778-1806
%T Uniqueness of signature for simple curves
%U https://discovery.ucl.ac.uk/id/eprint/1555643/
%V 267
%X We propose a topological approach to the problem of determining a curve from its iterated integrals. In particular, we prove that a family of terms in the signature series of a two dimensional closed curve with finite p   variation, 1≤p<21≤p<2, are in fact moments of its winding number. This relation allows us to prove that the signature series of a class of simple non-smooth curves uniquely determine the curves. This implies that outside a Chordal SLEκSLEκ null set, where 0<κ≤40<κ≤4, the signature series of curves uniquely determine the curves. Our calculations also enable us to express the Fourier transform of the n-point functions of SLE curves in terms of the expected signature of SLE curves. Although the techniques used in this article are deterministic, the results provide a platform for studying SLE curves through the signatures of their sample paths.
%Z This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.