eprintid: 1490319 rev_number: 30 eprint_status: archive userid: 608 dir: disk0/01/49/03/19 datestamp: 2016-05-07 21:13:13 lastmod: 2021-09-19 23:51:05 status_changed: 2017-07-31 10:41:40 type: article metadata_visibility: show creators_name: Vermeesch, P creators_name: Garzanti, E title: Making geological sense of 'Big Data' in sedimentary provenance ispublished: pub divisions: UCL divisions: B04 divisions: C06 divisions: F57 keywords: Science & Technology, Physical Sciences, Geochemistry & Geophysics, Provenance, Statistics, Sediments, U-Pb, Zircon, Heavy Minerals, Detrital Age Distributions, Chinese Loess Plateau, Namib Sand Sea, Transport note: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. abstract: Sedimentary provenance studies increasingly apply multiple chemical, mineralogical and isotopic proxies to many samples. The resulting datasets are often so large (containing thousands of numerical values) and complex (comprising multiple dimensions) that it is warranted to use the Internet-era term ‘Big Data’ to describe them. This paper introduces Multidimensional Scaling (MDS), Generalised Procrustes Analysis (GPA) and Individual Differences Scaling (INDSCAL, a type of ‘3-way MDS’ algorithm) as simple yet powerful tools to extract geological insights from ‘Big Data’ in a provenance context. Using a dataset from the Namib Sand Sea as a test case, we show how MDS can be used to visualise the similarities and differences between 16 fluvial and aeolian sand samples for five different provenance proxies, resulting in five different ‘configurations’. These configurations can be fed into a GPA algorithm, which translates, rotates, scales and reflects them to extract a ‘consensus view’ for all the data considered together. Alternatively, the five proxies can be jointly analysed by INDSCAL, which fits the data with not one but two sets of coordinates: the ‘group configuration’, which strongly resembles the graphical output produced by GPA, and the ‘source weights’, which can be used to attach geological meaning to the group configuration. For the Namib study, the three methods paint a detailed and self-consistent picture of a sediment routing system in which sand composition is determined by the combination of provenance and hydraulic sorting effects. date: 2015-08-20 date_type: published publisher: ELSEVIER SCIENCE BV official_url: https://doi.org/10.1016/j.chemgeo.2015.05.004 oa_status: green full_text_type: other language: eng primo: open primo_central: open_green article_type_text: Article verified: verified_manual elements_id: 1040065 doi: 10.1016/j.chemgeo.2015.05.004 lyricists_name: Vermeesch, Pieter lyricists_id: PVERM09 full_text_status: public publication: Chemical Geology volume: 409 pagerange: 20-27 pages: 8 issn: 0009-2541 citation: Vermeesch, P; Garzanti, E; (2015) Making geological sense of 'Big Data' in sedimentary provenance. Chemical Geology , 409 pp. 20-27. 10.1016/j.chemgeo.2015.05.004 <https://doi.org/10.1016/j.chemgeo.2015.05.004>. Green open access document_url: https://discovery.ucl.ac.uk/id/eprint/1490319/1/Vermeesch_making_geological_sense_of_big_data.pdf