eprintid: 1475272
rev_number: 37
eprint_status: archive
userid: 608
dir: disk0/01/47/52/72
datestamp: 2016-03-10 17:21:06
lastmod: 2021-09-17 23:06:41
status_changed: 2016-03-10 17:21:06
type: article
metadata_visibility: show
creators_name: Pellicano, E
creators_name: Smith, A
creators_name: Cristino, F
creators_name: Briscoe, J
creators_name: Hood, B
creators_name: Gilchrist, I
title: Children with autism are neither systematic nor optimal foragers
ispublished: pub
divisions: UCL
divisions: B16
divisions: B14
divisions: J81
keywords: autism, systemizing, weak central coherence, cognition, visual search, foraging
abstract: It is well established that children with autism often show outstanding visual search skills. To date, however, no study has tested whether these skills, usually assessed on a table-top or computer, translate to more true-to-life settings. One prominent account of autism, Baron-Cohen's “systemizing” theory, gives us good reason to suspect that they should. In this study, we tested whether autistic children's exceptional skills at small-scale search extend to a large-scale environment and, in so doing, tested key claims of the systemizing account. Twenty school-age children with autism and 20 age- and ability-matched typical children took part in a large-scale search task in the “foraging room”: a purpose-built laboratory, with numerous possible search locations embedded into the floor. Children were instructed to search an array of 16 (green) locations to find the hidden (red) target as quickly as possible. The distribution of target locations was manipulated so that they appeared on one side of the midline for 80% of trials. Contrary to predictions of the systemizing account, autistic children's search behavior was much less efficient than that of typical children: they showed reduced sensitivity to the statistical properties of the search array, and furthermore, their search patterns were strikingly less optimal and less systematic. The nature of large-scale search behavior in autism cannot therefore be explained by a facility for systemizing. Rather, children with autism showed difficulties exploring and exploiting the large-scale space, which might instead be attributed to constraints (rather than benefits) in their cognitive repertoire.
date: 2011-01-04
date_type: published
official_url: http://dx.doi.org/10.1073/pnas.1014076108
oa_status: green
full_text_type: other
language: eng
primo: open
primo_central: open_green
article_type_text: Article
verified: verified_manual
elements_id: 1071788
doi: 10.1073/pnas.1014076108
lyricists_name: Pellicano, Elizabeth
lyricists_id: LPELL25
actors_name: Pellicano, Elizabeth
actors_id: LPELL25
actors_role: owner
full_text_status: public
publication: Proceedings of the National Academy of Sciences
volume: 108
number: 1
pagerange: 421-426
issn: 1091-6490
citation:        Pellicano, E;    Smith, A;    Cristino, F;    Briscoe, J;    Hood, B;    Gilchrist, I;      (2011)    Children with autism are neither systematic nor optimal foragers.                   Proceedings of the National Academy of Sciences , 108  (1)   pp. 421-426.    10.1073/pnas.1014076108 <https://doi.org/10.1073/pnas.1014076108>.       Green open access   
 
document_url: https://discovery.ucl.ac.uk/id/eprint/1475272/3/Pellicano_et%20al%202011.pdf