eprintid: 1475272 rev_number: 37 eprint_status: archive userid: 608 dir: disk0/01/47/52/72 datestamp: 2016-03-10 17:21:06 lastmod: 2021-09-17 23:06:41 status_changed: 2016-03-10 17:21:06 type: article metadata_visibility: show creators_name: Pellicano, E creators_name: Smith, A creators_name: Cristino, F creators_name: Briscoe, J creators_name: Hood, B creators_name: Gilchrist, I title: Children with autism are neither systematic nor optimal foragers ispublished: pub divisions: UCL divisions: B16 divisions: B14 divisions: J81 keywords: autism, systemizing, weak central coherence, cognition, visual search, foraging abstract: It is well established that children with autism often show outstanding visual search skills. To date, however, no study has tested whether these skills, usually assessed on a table-top or computer, translate to more true-to-life settings. One prominent account of autism, Baron-Cohen's “systemizing” theory, gives us good reason to suspect that they should. In this study, we tested whether autistic children's exceptional skills at small-scale search extend to a large-scale environment and, in so doing, tested key claims of the systemizing account. Twenty school-age children with autism and 20 age- and ability-matched typical children took part in a large-scale search task in the “foraging room”: a purpose-built laboratory, with numerous possible search locations embedded into the floor. Children were instructed to search an array of 16 (green) locations to find the hidden (red) target as quickly as possible. The distribution of target locations was manipulated so that they appeared on one side of the midline for 80% of trials. Contrary to predictions of the systemizing account, autistic children's search behavior was much less efficient than that of typical children: they showed reduced sensitivity to the statistical properties of the search array, and furthermore, their search patterns were strikingly less optimal and less systematic. The nature of large-scale search behavior in autism cannot therefore be explained by a facility for systemizing. Rather, children with autism showed difficulties exploring and exploiting the large-scale space, which might instead be attributed to constraints (rather than benefits) in their cognitive repertoire. date: 2011-01-04 date_type: published official_url: http://dx.doi.org/10.1073/pnas.1014076108 oa_status: green full_text_type: other language: eng primo: open primo_central: open_green article_type_text: Article verified: verified_manual elements_id: 1071788 doi: 10.1073/pnas.1014076108 lyricists_name: Pellicano, Elizabeth lyricists_id: LPELL25 actors_name: Pellicano, Elizabeth actors_id: LPELL25 actors_role: owner full_text_status: public publication: Proceedings of the National Academy of Sciences volume: 108 number: 1 pagerange: 421-426 issn: 1091-6490 citation: Pellicano, E; Smith, A; Cristino, F; Briscoe, J; Hood, B; Gilchrist, I; (2011) Children with autism are neither systematic nor optimal foragers. Proceedings of the National Academy of Sciences , 108 (1) pp. 421-426. 10.1073/pnas.1014076108 <https://doi.org/10.1073/pnas.1014076108>. Green open access document_url: https://discovery.ucl.ac.uk/id/eprint/1475272/3/Pellicano_et%20al%202011.pdf